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1. = INKTRODUCTION

In 1969, Adler ) suggested that there are no higher order cor-

rections to the axial anomaly 1)’2)’3).

4)

This suggestion wae supported later
by Adler and Bardeen with convincing cut-off dependent argumenis in the
framework of spinor electrodynamics and in a simple version of the Gell-Mann

5)

end Lévy & wmodel coupled to the electromagnetic field.

In the case of the ¢ model the arguments proposed by Adler and
Bardeen are, however, much weaker than in the case of spinor electrodynamics.
In faet, Adler and Bardeen do not prove the renormalizability of the model and
uge Ward identitises without being sure that they are not affected by the re~
normalization procedure. Unfortunately the more relevant case is actually
the former because, using the Adler-Bardeen result in the framework of the
model, it is possidble to compute the low energy value of the Tfo - 2%
amplitude.

6) 7)

have proved the absence of radiative corrections to the axial ancmaly using

Recently, Zee end, independently, Lowenstein and Schroer

the Callan-Symanzik equation 8). In particular the proof given by Lowenstein
and Schroer using the Zimmermann's normal product algorithm (NPA) ?) does not
involve any cut-off procedure. Using the method of Lowenstein and Schroer we
prove in this paper the Adler-Bardeen theorem in-the simplified wversion of
the & meodel in which the "™ is an isoscalar meson and only one fermion

field (say, the proton field) exists.

The paper is organized as follows. First we state the renormali-
zation rules for the ' o model using the NPA (Section 2). Then we derive an
equation analogous to the Callan-Symanzik eguation for our model using the
method developed by Lowenstein 10) (Section 3). In Section 4 we discuss the
congegquences of the coupling to an external electromagnetic field and we

prove the theoren.



?. — REXORMALIZATION OF TIIE G WODEZL

The penormalization rules for the @ model are widely discussed

A}
11)’12)’13). Fowever, the o model with spinors

in the existing lilcrature
hes rnever been treabed before in the framework of the NPA, therefore we have

to study it in some detail.

e consider a truncated version of the 6 model which contains
only & proton field (¥ ) a neusral pseudoscalar (") and 2 scalar meson

(¢ ). By definition of the ¢ meodcl, an axial current (x) exists that

J
g
satisfies the Ward identity :
» ..
3 <joa X7 = -e Mo X2 v 2, §x-x) <o X,
¥ + 2L
A Slx;)

i _ A
..AZ $ex- !j}((-s’(x)-r-F) XA % -%{ijs(x-ep<(%>x,)x >*+1
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where <« >, means the vacuun expectatlon value of the covariant time ordered

product, ¥ is amy product of fields

' fon. b P —_ Fu
X - ﬁ o’(x;)‘l-l—-i ‘T\’U%) —D-z YQJ«;W" Y(*L) (2)
1 4

and the symbolsa Xz’?;f), etc., mean suppressicn of the correspondirg field
i

from the product.

We shall first show that the exisfence of the identity (1) is guf-
ficient to determire the paraneters of the effective Lagrangian of the model
in terms of ths physical parsmeters 12). Lfterwards we will show that in the
model corresponding to this effective Lagrangian, a current jéh actually

exists that savisfies Egq. (1).

Let a8 begic to show how Eq. (1) determ’res the parameters of the
effective Lagrangisn in teris of the physical parameters. Since we arc in-
terested in deriving from Ed. (1) conditions on the proper vertices that can
be directly trenslated into relations among the parareters of the Lagrangian
it i® eonvenient to recast Zq. (1} into an equation for the generaiing funct-

ionel of she Green's functions.



. _vacuum functional =:

o It is now convenient to define 1@

-zl '

_ Let us consider the vacuum functlonal of tha mndel S EL{ ,.'ET;ifﬂ;-é':L&
Here J.,,( <), Jd(x) T (xg, 'l'(.(x) are the: externa.l scurces of . the ‘Il’ v ,‘*’ v
i& fields respectively 14 . The functlonal generating the connected parts Df the -

time—ordered Green's functions 1s :

Z e, =—*‘°%Sf1, 1,1 '11

: integratlng (1) with respect to the varlable x we gat the equation .£o th‘

- and the equatlon for Z

54,.“33(% +c=) (“](xa);]?)z &('[ ;1,55{_ L3 Y

Moo= SI:X)Z 2 (%) » gj:::)z \Hx) ST(’O -

and to perform the Legendre tre.nsformatlon .

- ""‘_ .-'.:i-i:;;. S :

W,z ¥, ¥1=2- j“"'(‘"?u: l,tx) +Zo¢ ]o'w:) ‘i"wt«:*"@'i “\’m) (&)

Since.i'.

W+ ‘]"der(x_) is the functional generating the proper vertice_s 15)

Bl uele o -_f_«z«3 W3 -§- .- Ao

'we get, from Eq. (4)

| 5 [MLW (&”’*F) (%Hf-——w w}-_- T;‘Pw)}
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If we assume that all the terms of the effective Lagrangian are
Zimmermann's normal products N4, then their coefficients are proportional

40 functional derivatives of W.

Indeed let us consider the most general effective Lagrangian for
the ® , & and_"r fields :

£ [ Y- T Yig Trpm g Fho e ishiga)s 426
(9)

34 5 Ba. 2 e 3 4 4 1, :.]
- — - —— - A - { AT - A @ - 1
= - e 'A_*TW A .2311‘ A, AT

The values at zero external momenta of the superficially divergent proper

vertices are given by the coefficients of the Lagranglan. If W 1is the

generator of the proper vertices, we have, for example ) :
iTaixl S wf ] | S_ ha
S‘@l.) S'fq.) Papes '
"S" _ (10)
Ta- [ W } =-f
S‘Kp ¢ beo
We can solve globally Fq. (8) by using the method of Symanzik 12) ana we

obtain for the ¢ model :
(=)

Lgp =N '["@*a ZA RS DY (s (ary e dd e 2 ((}w)’}(}«?%

fac Gy
+C 2 : a2 g 122
+-- }5’)—)—‘-—(‘“’-&6’)—8 ¢ _Tzq*(w..,g)_._-;“; 0‘+‘!’)—

(11)

) We: put
™, -.:ZL_L M o4 m
ITT; dx, 2 K T W=e§(; )T, -
4 1 S(":) 1 S(ﬁ)

where \f is any field.
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where m, and 24 $2 are the masses of the proton, N and &
}-'- ’

F =mn/g, a, by 4, B and € are given by fixing the position and the residue
of the poles of the proton and W propagators and the position of the pole
of the & propagator, and we have @

ileh] Bl o8
3 2 4 2 2 .
] A oo

L _._S_.S_..}=i.{ .S_._S.__.E_.S..w}_
¥ 2 h’ VSt % $p o 8 f’l”(Sanngw STTqaﬁ&p ;

peifeo
< iw § f
sl - shavad;

=o

(12)

T8 8 .S
‘iLLL %*i'ﬂ,—-a' - } c =X (wed)d
q[ {52@3 S%wg‘ko: fioife o XSS o

=20

The parameters D, E, d, £ are proportional to the value at zero external
momenta of superficially convergent vertices, therefore they are known

functions of the physical parameters m, )1, 8 and g.

We will now show that in the theory defined by the effective
Lagrangian given in Bg. (11) an axial current jg (x) that satisfies Eq. (1)
actually exists.
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We shall start by showing that the current
- (o) .a y 1_’{- 'LY] My
gIW-TYE§ ¢ )+ = Q)
S o= [ -a 2 YIYS (x l} e

satisfies the corresponding integrated Ward Zdentity. Indeed, using the

method developed by lLowensteln 15), we have
3 (}f'
de <5 w X} *Z <P KA, —&Z (<3 TIXA D, -
IEH) 'ﬂ'(t})

-‘i%-[ k<(?‘(i )X) X-*{{:)i? Z ((Y ‘ﬁﬂlx\?(\%? i+J r(m’[-ﬁs'nw+

+(5&+C)T°‘+é§-—’“’("’+ﬂ GD?T‘*-GD 'ro*(m«)wﬁ?qwﬁ;

: m s 0 : C? )
i Fp vt sl - [(Srcire s 228 Lo

L D% ’l.‘[';*“':'(q“* B){rx;q’](_x) - r.g-().l.\... E)Tf(r)} X >+

Ir. the right-hand side of Eq. {13), terms of the kind dex '3}40 (x) 1>

hzve been forgotten. Denoting by S‘lf {x) the polynomial in the fields

which is N, in Eq. (13) (that is the proper source of the W field),
we have by Zimmermann's identity relating normal products of different

degree :

Ycix <N3['S+](><)X > = de < NQ[SW + < Do*«,c.L‘IT%O’+ »csc’s‘ﬂ‘wcj’tl”“‘ +
(14)

v iyt elwXo
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iw S 8
Ly = Z'E'- [Sir(o) SgZ(o} L {g ) SC&"‘ XSS Lﬂ’

Taking into account Bgs. (14}, {15) and Eq. (12), in the last term of the

right-hand side of Eq. (13) everything cancels except ~{m/g)( ;a.‘+B)Idx<?l’(x)X>
/

and we obtaln i

O= [Ax <3(°}fx)x>-4,z <’ﬁ'{x)x/\) -(.z_ <(G‘('ﬁ +--)x/\> -

T(x,) ‘qu)

(16)

_-{wa) 0 +24 @ Toa), X, O] 5 <o
% e, |

Thus the integrated Ward identity is proved.

Suppressing the integration and bringing to the left-hand side
all the new terms appearing at the right-hand side which have the form

- -af <jé1)r (X)X?{— we obtain Egq. (1)} with j; - jéo)}“‘ N jéﬂf‘ .

+



3. ~ THE CALLAN-SYMANZIK EQUATION

We now study the (allan-Symanzik equations for the model defined
in Section 2. Lowenstein 10 has shown that in the framework of the EPA =
class of generalized Callan-Symanzik equations for the ‘f 4 maodel and for

7) can be obtained in a straightforward manner.

s massive vector mesSon model
Indeed the diffefentiation of a Green's function with respect to the parame-

ters of the theory is equivalent to the insertion of new vertices in the cor-
responding Feynmen dimsgram&. The independent vertex insertions (DVO's) cor-
respond to the different terms in the Lagrangisn. If there are more differential
operations than DV0Q's, one gets directly linear relations among the differential
operations (these are the Callan-Symanzik equations). Qince our Lagrangian
contains 1% terms, we have to exploit the content of the Ward identities in

order to use this method.

We will show that six "differential operators" exist that leave
unchanged the integrated Ward identities. They will thus be expressible in

terms of symmetric linear combinations of the 13 DVO's.

Then we will show that the symmetric DVO's are only five and
furthermore that only one symmetric vertex insertion of degree smaller than
four exists (the actual degree being twa). FProm these results the existence

of two independent generalized Callan-Symanzik eguations immediately follows.
We now study how the differential operators change the Ward iden-

tity (8). Taking into account explicitly the parameters of the model, we can

write Eq. (8) in the gymboiic form

R(F) W(?,M}'}*)S).—-O (w\\.uu. F= r-'-;—) (17)

if we multiply g by 1+M we have to first order in % :

RCr(-0) Wegtaemd,m p, §) = © (18)
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Gomparing Bq. (17) and Eq. {18) we get :

-F(LRIW +R(3yW)=0 (19)
From :
$
FCR)W Flor W =-RF [ =)=~ R (7, W) »
JEEInE

and, by the same method, we gei :

R(('“‘gm“ FAQW)=° (21.1)
R(p3yW)=o0 o (et
R(S'DSW) =0 (21.4)

The operator

. LITTING JRy
N W= fdx (g W+ oo e W)

multiplies each vertex by the number of the corresponding boson legs. Since :

- = Fldeda W =- (22)
[R Nrf N &lw = AN W= FJ“*SMW =-RF é‘q- zg
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We have

R((Na"‘ F&c) W)“ (23)

In much the ssme way we can show that the operator NP which multiplies each

vertex by the number of proton legs satisfies the equation :

RN, W)=0

(24)

For s = m, ;., S y £ Lowenstein has shown that :

A3
A?@W-;g‘i (Aﬁch)ASW (25)

where the cj (j = 1...13) are the coefficlents of the 13 terms of the
Lagrengian and the DVO's [kj represent the insertions of the corresponding

vertices.

It ie also easy to see that 10)

a3
N, W =§- L’j Aj W (26.8)

3 |
NPW = ;5 h Aﬁw (26.b)

and by Zimmermann's identity :

P :
FAM = ;5 (rj bW (26.¢)

By Eus. (21.a-d), (23), (24}, (25), (26), we know that the operators mam-Far
).;'5}_ ,S‘J ’ g'ag+FA¢ y NB+F &rr and NP correspond to linear combina-
tions A‘®/ of the A's such that

)
RA W =0 (27)
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We now determine the number of independent ﬁ (S). Suppose we change the
coefficients of the effective Lagrangian in such a way that the generators

of the proper vertices W @:1, %,_, corresponding'to the new Lagrangian
()
fa%} Cuyrtn) = i ¥ Z (t Lo (28)

satisfies the e%uation R(F w((s1, {5

) = to first order in the pis'.
Then to each 0 (s

thiere correspords a A N since

3

LT:) RW-([;“ )Fvﬂ [ ('é W({s} ,[;)B <A'SW)=O (29)

We know that, at fixed F, all the coefficients of the Lagrangian
are known functions of five parameters (those which are fixed by the norniali—
zation conditions) hence we can infer that the number of independent A (s)'s

i

is five:; An alternative procedure to find the A :ES)'S iz to use the sgua-

tion @

' &)
O= f&x ?/'< 3(0)&)

X? =—LJ&x('ﬂ’(x)A X> -2, Iau <1f<x)X> +

H_Z,('ﬁ‘(xa(l KA LZ <(G‘<g)+FM KA

dm 11‘('3 )
F‘u (SJ 9

«F\?+Z <O V), A s Xt

Ay, ?( QC) d{

(30)

-—{Z <8,

whare Z& (s) =1 de N4[b£5):1(x), which is equivalent to Eg. (29). Indeed
it z( P‘J’ . F‘,) is the generator of the connected Green's fu.nctioﬁs for
eff( %1,..., %,) it turns out from REgs. (4) and (30) that
@1,..., {s, satisfies the integrated Ward identity {(4) where c¢ is

the Lagranglan f

replaced by C(%P"" F” = c+ z Then we can perform the Legendre
transformation given by Egs. (5) a.nd (6 Ereplacing sgain ¢ by cf F1,..., F” )
and we obtain a new functional W( ey By ) satisfying BEq. (8) and conse-
quently Eq. (29). [It is easy to show that W( F1,..., %u )+J'dx c(?v...,?“ yo.(x)

generates the proper vertices.j

There remains to be studied how many independent vertex insertions
AES) = 1 J"dx i E(S)](x) with S < 4 exist in the model which satisfy
Bq. (30). For $ = 2 we consider :
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5 -
A = -JZ',—I.A& Nz,[s('ﬂ}-rﬁ')*l-‘?ﬂ'](x) (.31)

Q

By Zimmermann's f.ormula, we obtain :
(s) _ 3 ;
fax<(IS)0n-N,[S, 1) A X, = [axf <N, [e,wne + o,0s o5 0

) (32)
+/:.,,1H"?f+ i-csiFYs'Y‘](") ATX )+ (el;?( + Gl;?sz[G"h‘](k} X>+3

E:ompare with Eq. (14Z| . Then we get in the same way as Eq. (13) :

IAx7<3@]{,'<) A x)uZ <wmaa XA z"_ <(s‘c31+-m XA,

§(x) 1“'37
(s) '
{Z d‘{'ra,)ﬂ A X/\ > +i4<q Yea), O X{QS“(}‘*@J“*«‘*)A,XZ'
) % R}y _ (33)

L Jde cvon X o+ (F0-4)- 4% ) [4x (N Lomden X5,

In order to obtaln Eq (3), we have to put F (1-d2) - 1‘% = 0. There is
thus only one A for S = 2. In much the same way it can be shown that
there ies only one As for S = 3. I% then follows from Zimmermann's
reduction formula that the two symmetric insertion with S = 2 and S

are proportional.

We can conclude that only one symmetric insertion (Aés))

exists of degree % < 4.

Now it is easy to obtain the generalized Callan-Symanzik equations.

Indeed, using Zimmermann's identity, we can write :

(s) 5 (s)

A =§3 "53' Aé (34.8)

=]
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and by Egs. (21.a-d), (2%) and {24}

& (s)
wd ~FA =2.4; 0\,
< a .g[é} t 3
W= ) .
r %t{\is)
= .
9 4{31&2 A$ } |
}'afFAd:-.;j v'5 A;i | ) (34.1)
NB+FA¢,=4§S o &
s A(s)
Np= 24 % By

There are consequently two 1ndependent linear relations among the quantltles

(34.a-b) which we may take to be
(qumw)w [4 L-A- t) AwwA W (35)

CD».'LNULN)W (4 £- & t)mmM W o
D=3+ &}}}.+ L(83-m3)

(37)

D=2%¢ {"%}W fff“f’ ™3

)’g = tm o +-)1'} + SB& (38.)

The values of the coefficients h, ﬂ, ty @ up to second order in g are

computed in the Appendix.
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Before concluding this section, it ig convenient to see how
Egq. (30) transforms 1f we suppress the integration. The new terms which

appear in the left-hand side have the form
o !
* (4) (3) s
- {( /(‘X)A X>+<3 (")X>
a % +
.8 * 54
where 1 = Oy4.0,9 § bringing them to the right-hand side we obtain

}{<£§x} AX,+ (jfx) X>+§= - (< <‘n*o=)/_\X?.,.+.c'<1rmx3)+

+xZ Soexy¢Toy OO X A2y -4 Z S(x-g )<(Sy+F) A x/\> -
Sy 43 D

r - Er..
-4, 1302 (hay ) A X +5(x %K(XJ”C*)) AXLD (39)
b‘ l{ ) : @ @a ]}

where
'

P U 5
33}* ﬁf\}‘ AZ FA ; _L:%iﬁi&i

.v4 5 .}}
=20k )
r] o 4 S A
We now write Eq. {1) and Eq. (%3) more compactly in functional form. Let us

consider the Lagrangian :

6’.1)
f;%Ceo, sl = :E ZgN[ lg:N[oﬁchPo \” (0)
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where 35 (PO,..., ‘55) = 35 + j% and O{)‘ ig an external axial field.
If the corresponding generator of the connected Green's functions is
Z[:c;{/u ,q,:l we have by zq. (1) and Eq. (39) up to first order in the F‘s :

2, §
et 04

Loj,,ga.hjﬂ;x)(sl Zi, 1+ F) - (T, )?’s)]g ()Z[%pl-

(41)

P

i § S
- & (Y, S()Z(}.g-] « Z(a ?35%@‘65“(_&))

3. = PROOF OF THE THEOQREM

We shall now discuss the coupling of the s model to an external
electromagnetic field. We will first study the changes of the Ward identities
due to the electromagnetie field. Then using the modified Ward identities we
shall show that the proper vertices containing photon legs satisfy the Callan-
Symanzik equations (35) and (36). PFinally, using Eq. (35), we shall prove the

theorem.

Teking into account the vector current conservation we add to the

effective Lagrangian the coupling term :

- S
e (4+a) N‘%[YY}’Y] ﬂ): j}'ﬂ (42)

wheres A)L ig the vector potential.

Let us consider how the Ward identities [Eqs. (1) and (39)] change
in the presence of the electiromagnetic field. We develop in the usuasl way the
divergence P <j§X Y > when Y = Trr (w }. Since j}" is formally
chiral invarianit each term of Egs. (1) and (39) can be multiplied by I (within
the vacuum expeclhation value). In addition new terms coming from the reduction
of N ES,,»:] to N E‘S-r] in the presence of the vertices {42) must be intro-

-
duced [Denoting 4(1\] E‘S.n,:! -N ES.#:[ > = <AX >, <( BES.,_J‘ —N4I:S?:[)XY >,
= <AXY >++ < BX >0 we are Just considering the terms <«<BX >+:l Because of

vector current consServation and charge conjugation we see that :
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(i) no proper superficially divergent disgram exists in the model that
contains N [sw:l, one, three or four currents J and any product

s
of the insertions Z&i (i =0,..4,5) ;

(ii) +the only proper superficially divergent vertices with one N [§ ]
vertex and two currents have no external leg except the two photons

and contain no Z} ) insertion.

Comparing with the discussion at the end of the preceding secticn

we can immediately write the Ward identity :

et M 25 (o<t R 21 -
(43)

L (oo - 7 4 ]‘3' W) ) e Fo.
"Z(’l"wsﬁw [le}*lF’]* [c}iﬁy_:? E@xsi) F"'"’F‘) re 3T

where Z[:T;,A ,F] ig the generator of the connected Green's funetions
corresponding to the Lagrangian
@, A ) (§,4) g
- F.=df -3 A
e e N A A
and
Jl((&‘ ‘) %5) 4 Z F’
with
y P\)Ss‘ ~o Y PROP '
re — € 2 2 (NS 1@ 3@}(\:)7 ] (44)
R .
g4 c]f 'kc' 3 J b ¥ k:q:o
T cs)'“ ¥ PRoP
Rp= ~— & ['aﬁ 3 (N[5 1e A (k» ] (45)
'8‘4{ J e 3 ; %aqao
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The 1ast term in Eq. (43) is the axiasl anomaly. Performing again the Legendre
transformation (6) we obtain the new generator of the proper vertices
v d L4 ,\3:[ which satisfies the equation :

¢ §
) Ay b= (S0 B Wi 8, ) -Teage WEdt 1) -

(46)

J’L(%’f W[ by f’] *‘W[ ) }P)S‘ggf)xs'{'c*)) R PRy (*s) wasc\"}?s’ P

up to first order in the %:i's.

We now come to the Callan-Symanzik equations for the proper

vertices with ¥ ©photon legs which are generated by :

v

. .§_._._ dl = (47)
[1}1 S ) Wee i ﬂﬂ, Wj“l"'rv

In this discussion we never consider the vacuum polarization vertex. Follow-
ing the procedure used in order to obtain Eq. (25) and Egs. (26.a-b), we get
for s = m, f, Ss g =

A%, %;'}*»hy(é 3 Log (4+a) U{u‘-.)af ;'S a3 AW (48.2)

[\JE’\M)“‘_)u 2 3A3 Wﬂ (48.5)

(N Zv)

J3
}5 4 3 ?3 ﬁ fﬁ /h

Zimmermenn's identities (26.¢) and (34.8) are modified in the following way :

(48.c)

FA,W —p‘((ua.)w /J‘:Zﬂ ]'-1 ; )‘* " (49)
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A (el W i N
-wvY (4+ = . -
¢ uﬁ‘f'/“» KS ) Jarfe 4 | }Z‘S N s (50)

where :

s g s
=4 F %% (B ] 7
_Xo, 4 AU’[TQEX;S“;EOJ ﬁ)W[_f%u,oj S%o‘)g A== 0 ’
© S 5
= 4 T T E e 7
A 4, [ "{xfﬁ;@g‘?tﬂwro@ﬂ] i ’ls lﬁr:‘fvo

M _g.— E'__ . (53)
Y-3Fa [T . ”HFW

© § .
!a,s"- %AO [ ii:’sl’%c;) W ;@(‘;3% 1‘:..-.«?:.0 54

By applying Eq. (35) to the vertex

L

§ §
T ZS —— —_— = A+
[T { PS‘T’C—WW §¥w g]*:aif;o

we obtain

Comparing Egs. (48.a-c¢c), (49), (50) with Egs. (25), (26.a-c), (34.a), we get
the Callan-S8ymanzik equation for W)l }; éorreSponding to Eq. (35) s
. 17" Fw

D+tN +a NIW  —oDbeftra)s2:)W  =f-LALIFAW
(Do n by fapo Pyt ) N‘vg R )

56
j"u

$ 0 AL:} W}‘r')*v- V(- {-4 ) zfcrw{s) Gea “}..--
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which, by Eg. (55), becomes @

D+ tN +aNIW (411 + % (57)
( B P fhffju ( _ ) f;fUYﬂ }‘ 1TZ1 %ﬁ )H

Recalling that o 18 proportional to

e , S
£ ghYs [a_a i N f Wre a ,03}
’11 k. Si} ORLICRS (S5 P

ﬂt:?-_-lc¢1=0
and applying Eq. (S57) to r, we obtain :

()
Da- (.D&-aF)JuFD 2= (4-A- 40 - tr e tAt)Eqn v ln

To recast Eq. (58) in a simpler form, we remark that, from Eq. (46), we have :

§ £
av S ---- - Wia, A | X
U SZMSS« s}, widm T | . (59)

‘M‘

r
2
——
0

| SLLL L#_
e feo #-?;o
yys 2 o - § &8
[P"}S““’ S A W, Aﬂﬂ] " h.ivm §a19 fAm W [o"}'ﬂ]
o Bovepeqan /A Yso

Applying to the left-hand side of Bgs. (59) and (60) the well-known low energy
theorem for the vaocuum expectation value of the time ordered product of the

divergence of the axial current and of two electromagnetie currents, we obtain :

Wco,g.,ol] <o (61)

J Sﬁﬁ)
e jﬁ) } AP0
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S z}“‘f*‘? b [D E E; E, oA ,Fﬂl =0 o (82)
Kose T Bo §Trs) $8(3) SBw Al
g5 ! v A=p=t=o

From Egs. (61), (62), we obtain P ZS&I‘
becomes @

Dr=o
(63)

For reasonsg of dimensionality r is a funection ¢f g and of the mass ratiocs.
In terms of the variables g, x = (Sg/mz) - ‘E, 'y = (& m/),,'z), Eq. {(63)
becomes :

(H(fé,x) %3} + L(?}x) )x) "C(};x] .

where the fixed parameter y 1is omitted. From the Appendix, we obtain

(64)

‘ﬂ(g,*) ® =2 m oo
_H(c&,x)= DU\ ""Z. ZMH j X witl H“-'-"ji (65)
‘((%r) & B AR

x o O e ‘ o .  i;
-4(_3_).. +J§)=gu§m\_ 4 x with La;o eud L‘}‘cﬁo (66)

gince H, L and r are formal power series in g whose éoefficieﬁts-aré
. * .
gnalytic funetions of x around x =0 . ),.we put

o4 eQ ™Mo
2"4'*';”\%*- )zm,m.? X

end we obtain, from Eg. (64)

o 22 Ml-f“l’ mak' e’ mamy
Zw'zmzm' m(H .,'“_‘3 X +L,Im} X )R.
0 4 * o ™ m _

*
) For x=0 and y ~ 1, all the particles of the theory are stable.
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which implies that for any M and N :

M N
ZmZM(M Ho amedn L )=o0 (68)
4 o

fm, o M-ﬂ",”""‘ M’Mal H_p) M-t

For M= 1, N = 0, Eqg. (68) gives

have

Ty 0 H0 0= 6, for M=1, B =1, we

y ¥

r (L +H ) = 0 and taking into account the relations obtained
1,170,417 70,0 -

1,7Eq, 0 * g 4) = 0.

If we now increase M, we obtain for arbitrary values of M and § :

from M =1 up to N =H§-1 we get for M= 1, N =§ : »

L

(M Hq°+NL94))1H”=° (69)

{since of course MH, o+ WL, , never vanishes). Bquation (69) implies that
] ?
r=r, ~which does not depend on y. Thus the Adler-Bardeen theorem is

proved.

4. - A COMMENT

The proof of the Adler-Bardeen theorem for the & model is ana-
logous to the one given by Zee and by Lowenstein and Schroer in the case of
spinor electrodynamics with some differences which are due to the stiructures
of the models.

Indeed a "true" Callan-Symanzik equation does not exist in our
case. By "true", we mean an eguation which does not contain derivatives
with respect to mass ratios. It is interesting to point out that in the case
of the & model without fermions a "true" Callan-Symanzik equation does
exist. The basic difference between the two models is that in the symmetiric

limit the proton is massless.
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APPENDIX

To compute the coefficients of Eg. (35) we apply 1t to some simple

vertices. To zeroth order in g we immediately obtain :

'E £_ t-}L:O
""é:')* | (a.1)

To second order we start considering the vertex ;

§ §
-.—L r 'a T W = ‘h—b (A.g)
8 [ E" P SmFJ ST[P) ]\sz Y=o

where o ~ 0(g2)' Since )\3} {1+b) = 0 we have, from Eq. (35)

Lo b+ 2(‘:3 mﬂ Vb & 24 (4sb) (H;Jl’c_)m{ LN S ] +
T SN
Y Y Sl L

[ l° l" S'ﬂ'qa) SW&P A., L-.fso

seleciting the terms which are 0(82) we obltain

2—"' 4 D2 _E_ _ [.l (a.4)
8[ r l’S‘IquST\'(— ( Ae- ( jk) )W]"r-‘f'&a |

which cen be written in the form :

| 32 N ©
z’c:.*,[(% _,»_t’( (-»-;t )4 )I(q PJ]M | (4.5)

where I(q,p) is the integrand corresponding to the sum of Feyanman diagrams

in Fig. 1 :

b 1 Hof

1 ' {.
'!\‘ '.‘ .
boft i,
\f' 'u...a

b [ E'tf

H

D_‘ 'Da.. b!

- Pigure 1 =
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ﬁ& represents the addition of a & leg and Zk és) the insertion of a
(% °+ ¢2)/2 vertex. Up to one loop the Feynman integrands satisfy the
equation

L

1y L6
(FO,+E-F)8)I6M =33, TP (1.6)

Thus

5[y lon) »

t 1ig completely determined by the non-integrable part of }p ')pr I{q,p)
(for the integrable part we can extract .32 from the integf;l and obtain

zero). Thus the only contribution to + comes from D1

S RS

. 2fdq i R .
- }I oy ™ (@~m) 2'(?'&—)

In much the same way, applying Eq. (35) to

{4.8)

—

[N[ PS‘S['(-}} E‘%c-pH | ) qu
petpse

we obtain to second order in g

'““ﬂ@f) 20 Tm{’a’ Lo, r)l (4.9)

where I'(q,p) is the integrand corresponding to the sum of diagrams in

Fig. 2

*

e e

D, D,

- Figure 2 -
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we obtain :

2
st eamso exd 2.-31(—3—-)

4y

since the divergent parts of the two diagrams in Fig. 3 cancel.

Y Y

- jﬁ -

D D,

- Figure 3 -

Pinally we consider the vertex

(V] --s6ak
$Tea
‘f:b
Taking into account the diagrams in Fig. 4 :
wow
N 151 \s“,' ‘3:_‘(‘:"
£ o Pl
Ri ‘g‘\f 19
LN, o e LN
I% E% cae

- Pigure 4 -

(4.11)



Y

we obtain @

Es @)
_ (A.12)
s (3 4 s 9
‘l A Co
- emr | m— iy + — N = 5 _— ""3 — %
m"(ﬁ (5-) 4 (7‘-}3"-5))] e ) (4x)
It then follows
2 N . L '
REAVEES o |
LG R ) . (12
For ( $%/m?) = % £ =0 because the divergent parts of Dg, Dy and D,

cancel.

Thus we have up to second order in g
ray :
5
D= )}3.*&'(2;)(})}*.(??—")%)

where ? = (82/1112).
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