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Abstract

Background: Complement represents a crucial mediator of neuroinflammation and neurodegeneration after traumatic

brain injury. The role of the terminal complement activation pathway, leading to generation of the membrane attack

complex (MAC), has not been thoroughly investigated. CD59 is the major regulator of MAC formation and represents

an essential protector from homologous cell injury after complement activation in the injured brain.

Methods: Mice deleted in the Cd59a gene (CD59a-/-) and wild-type littermates (n = 60) were subjected to focal closed

head injury. Sham-operated (n = 60) and normal untreated mice (n = 14) served as negative controls. The posttraumatic

neurological impairment was assessed for up to one week after trauma, using a standardized Neurological Severity Score

(NSS). The extent of neuronal cell death was determined by serum levels of neuron-specific enolase (NSE) and by staining

of brain tissue sections in TUNEL technique. The expression profiles of pro-apoptotic (Fas, FasL, Bax) and anti-apoptotic

(Bcl-2) mediators were determined at the gene and protein level by real-time RT-PCR and Western blot, respectively.

Results: Clinically, the brain-injured CD59a-/- mice showed a significantly impaired neurological outcome within 7 days,

as determined by a higher NSS, compared to wild-type controls. The NSE serum levels, an indirect marker of neuronal

cell death, were significantly elevated in CD59a-/- mice at 4 h and 24 h after trauma, compared to wild-type littermates.

At the tissue level, increased neuronal cell death and brain tissue destruction was detected by TUNEL histochemistry in

CD59a-/- mice within 24 hours to 7 days after head trauma. The analysis of brain homogenates for potential mediators

and regulators of cell death other than the complement MAC (Fas, FasL, Bax, Bcl-2) revealed no difference in gene

expression and protein levels between CD59a-/- and wild-type mice.

Conclusion: These data emphasize an important role of CD59 in mediating protection from secondary neuronal cell

death and further underscore the key role of the terminal complement pathway in the pathophysiology of traumatic brain

injury. The exact mechanisms of complement MAC-induced secondary neuronal cell death after head injury require

further investigation.
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Background
Clinical and experimental studies have implied a pivotal
role for the membrane attack complex (MAC, C5b-9) of
the terminal complement activation pathway in the
pathogenesis of secondary neuronal cell death after trau-
matic brain injury [1-4]. The complement regulatory mol-
ecule CD59 represents the major controller of MAC
formation and an essential protector of homologous cell
injury after complement activation [5,6]. Neurons express
CD59 constitutively to protect from autologous "innocent
bystander" cell lysis after activation of the complement
system in the injured brain [2,7]. However, due to low lev-
els of neuronal CD59 expression, the neuronal capacity of
controlling complement activation is very limited [7],
which renders neurons susceptible to complement-medi-
ated lysis by the MAC in the setting of intracerebral com-
plement activation [8-10].

One of the putative mechanisms of complement-medi-
ated neuronal death is reflected by the notion that the
activation of phosphatidyl-inositol-specific phospholi-
pase C (PI-PLC) after traumatic brain injury [11] renders
neurons vulnerable to MAC-mediated lysis by shedding of
the glycosyl-phosphatidyl-inositol (GPI)-anchored glyco-
protein CD59 from neuronal membranes [2]. The intrac-
erebral formation and deposition of MAC on neurons in
the contusion area and penumbra zone has been shown
to occur after human head injury [3,12]. However, the
biological significance of CD59 in protecting from com-
plement-mediated neuropathology after traumatic brain
injury is far from being fully understood.

The present study was designed to investigate the role of
CD59a in a standardized experimental model of closed
head injury in mice lacking the gene for Cd59a (CD59a-/-

). In mice, the Cd59 gene is duplicated, yielding Cd59a
(widely expressed) and Cd59b (testis-restricted) [13,14].
The CD59a-/- mice were previously shown to be highly
susceptible to complement-mediated demyelination and
axonal injury in a model of experimental allergic enceph-
alomyelitis (EAE) [15], and thus provide an excellent in
vivo model to investigate the role of complement-medi-
ated membrane attack and CD59-dependent neuropro-
tection in the setting of traumatic brain injury. We
hypothesized that CD59a-/- mice would be more suscepti-
ble to complement-mediated secondary brain injury than
wild-type littermates in a standardized model of closed
head injury.

Materials and methods
Animals

The generation and characterization of CD59a-/- mice was
previously described [16]. These mice were found to have
a spontaneous intravascular hemolysis due to erythrocyte
susceptibility to complement-mediated lysis. Despite the

chronic hemolysis, the CD59a-/- mice are healthy and fer-
tile, not anemic, but display elevated reticulocyte counts
as a indicator of increased erythrocyte turnover [16]. The
CD59a-/- mice were generated on a mixed 129/Sv ×
C57BL/6 genetic background. Wild-type littermates of the
129/Sv × C57BL/6 strain were used as controls. All mice
were of age 10–12 weeks, weighing 28–32 g, and of male
gender exclusively, in order to avoid a bias regarding gen-
der-related susceptibilty to brain injury. Animals were
kept in single cages, bred in a selective pathogen-free
(SPF) environment under standardized conditions of
temperature (21°C), humidity (60%), light and dark
cycles (12:12 h), with food and water provided ad libitum.
A total of n = 134 animals were used for this study (n = 67
wild-type; n = 67 CD59a-/-). All experimental procedures
were performed in compliance with the standards of the
Federation of European Laboratory Animal Science Association
(FELASA) and were approved by the institutional animal
care committee (Landesamt für Arbeitsschutz, Gesundheitss-
chutz und technische Sicherheit Berlin, Berlin, Germany;
approval No. G0308/04).

Surgical procedures

Mice were subjected to experimental closed head injury
using a standardized weight-drop device, as previously
described [17]. In brief, after induction of isoflurane
anesthesia, the skull was exposed by a longitudinal mid-
line scalp incision. The head was fixed and a 250 g weight
was dropped on the skull, inducing a focal blunt injury to
the left hemisphere from a mean height of 1.7 ± 0.51 cm
(mean ± SEM) for CD59a-/-, and 2.6 ± 0.48 cm for wild-
type mice, respectively. The difference in selected weight-
drop heights between the knockout mice and wild-type
littermates is due to the observed increased susceptibility
to head injury in the CD59a-/- mice, leading to sudden
posttraumatic death in initial validation experiments. We
therefore titrated the falling height to achieve a similar
extent of neurological impairment 1 h after trauma
between the groups, based on the baseline posttraumatic
NSS (see below). The 1 h NSS reflects the initial extent of
head injury. Thus, the reduced weight-drop height in the
knockout mice is an indirect sign of increased susceptibil-
ity to trauma in the CD59a-/- group, independent of the
additional parameters assessed at later time-points. The
stratification of cohorts according to the initial NSS at 1 h
has been previously described in this model system as a
feasible strategy to attain comparable injury severity
between the groups at baseline. This notion is supported
by recent studies in the same experimental system which
demonstrated a correlation between injury severity deter-
mined on MRI with the NSS at 1 hour after trauma
[18,19].

After trauma, all mice received supporting oxygenation
with 100% O2 until fully awake. They were brought back
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to their cages and monitored at regular time intervals for
up to 7 days. Posttraumatic analgesia was provided by
injection of 0.1 mg/Kg buprenorphin s.c. immediately
prior to the experimental procedure. The posttraumatic
neurological impairment was assessed at defined time
intervals after trauma (t = 1 h, 4 h, 24 h, and 7 days) using
a standardized Neurological Severity Score (NSS), as
described below. Sham-operated mice underwent identi-
cal procedures with regard to anesthesia, analgesia, and
surgical scalp incision, but were not subjected to experi-
mental head trauma. Normal mice were used as an addi-
tional internal negative control group and were kept
under identical conditions as the trauma and sham-oper-
ated mice, but no anesthesia, analgesia, surgical and
experimental procedures were performed.

Sample harvesting procedures

Ten mice per group and time-point were euthanized by
decapitation under isoflurane anesthesia at t = 4 h, 24 h,
and 7 days. Brains were immediately surgically removed,
divided into left (injured) and right (contralateral/unin-
jured) hemispheres, snap-frozen in liquid nitrogen and
stored at -80°C until analysis. In addition, serum samples
were collected prior to decapitation by intracardiac punc-
ture at identical time-points for determination of neuro-
nal cell death markers by ELISA. Serum samples were
collected in sterile tubes, centrifuged at 12,000 rpm at 4°C
for 20 min, aliquoted and frozen at -80°C until analyzed.

Neurological severity score (NSS)

A previously characterized 10-parameter score was used
for assessment of posttraumatic neurological impairment,
as described elsewhere in detail [20]. The NSS was
assessed in a blinded fashion by two different investiga-
tors at the time-points t = 1 h, 4 h, 24 h, and 7 days after
trauma. The baseline NSS at 1 hour reflects the severity of
the initial injury. The score comprises 10 individual
parameters, including tasks on motor function, alertness,
and physiological behavior, whereby one point is given
for failure of the task, and no point for succeeding. A max-
imum NSS score of 10 points indicates severe neurologi-
cal dysfunction, with failure of all tasks. A spontaneous
recovery over time, for up to 4 weeks after trauma, is
observed in this model system, as previously described
[17,20,21].

Quantification of neuron-specific enolase

Serum levels of neuron-specific enolase (NSE), an estab-
lished marker of neuronal cell death after head injury
[22], were determined by a commercially available ELISA,
specific for human NSE (Immuno-Biological Laborato-
ries, Minneapolis, MN). Following confirmation of cross-
reactivity of mouse NSE, samples were diluted 1:10 and
analyzed by ELISA according to the manufacturer's proto-
col. Absorbance was read at 450 nm using a "SpectraMax

190" reader (Molecular Devices, Sunnyvale, CA). All sam-
ples were analyzed in duplicate and results were calcu-
lated from the means of duplicate sample analysis. The
sensitivity of the assay was 1 pg/ml, and the standard
curve was linear from 1 pg/ml to 140 pg/ml.

Assessment of neuronal cell death

The terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) technique was applied, using the "Flu-
orescein In Situ Cell Death Detection Kit" (Roche Diag-
nostics GmbH, Mannheim, Germany), according to the
manufacturer's instructions, to determine the extent of
neuronal cell death in tissue sections, as previously
described [23,24]. In brief, slides were dried for 30 min
followed by fixation in 10% formalin solution at RT. After
washing in PBS, sections were incubated in ice-cold etha-
nol-acetic acid solution (3:1), washed in PBS and incu-
bated with 3% Triton X-100 solution for 60 min at RT for
permeabilization. Slides were then incubated with the
TdT-enzyme in reaction buffer containing fluorescein-
dUTP for 90 min at 37°C. Negative control was per-
formed using only the reaction buffer without TdT
enzyme. Positive controls were performed by digesting
with 500 U/ml DNase grade I solution (Roche). To pre-
serve cells for comparison, slices were covered with
Vectashield® mounting medium containing 4',6'-
diamino-2-phenylindole (DAPI; Vector). All samples
were evaluated immediately after staining using an "Axi-
oskop 40" fluorescence microscope (Zeiss, Germany) at
460 nm for DAPI and 520 nm for TUNEL fluorescence.
Data were analyzed by Alpha digi doc 1201 software
(Alpha Innotech, San Leandro, CA).

Real-time RT-PCR

Changes in the mRNA expression profiles of pro-apop-
totic (Fas, FasL, Bax) and anti-apoptotic (Bcl-2) mediators
were determined by semi-quantitative two-step real-time
RT-PCR using commercially available, murine-specific
primers (Qiagen, Hilden, Germany). The amplicon
lengths were 136 bp for GAPDH (Qiagen No. 241012), 96
bp for Fas (Qiagen No. 241122), 109 bp for FasL (Qiagen
No. 241194), 146 bp for Bax (Qiagen No. 241116), and
118 bp for Bcl-2 (Qiagen No. 241118). The detailed tech-
nique used in our laboratory was previously described
[24,25]. In brief, the left brain hemispheres were homog-
enized as individual hemispheres in Qiazol® buffer (Qia-
gen). Total RNA was isolated and further purified using
RNeasy® Mini-kits (Qiagen) and RNA concentrations were
measured using a spectrophotometer (Bio-Rad, Munich,
Germany). From each brain hemisphere, 2 μg RNA were
reversely transcribed using random nonamer and oligo-
dT16mer primers (Operon Biotechnologies, Cologne,
Germany) with Omniscript® kits (Qiagen), according to
the manufacturer's instructions. Real-time RT-PCR was
performed using validated commercially available and
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custom designed primer-probe® sets (Qiagen) and opti-
mized protocols on the Opticon® real-time PCR Detection
System (Bio-Rad). For quantification of gene expression
levels, GAPDH amplicons were generated and used as a
"house-keeping" internal control gene. Relative gene
expression levels were calculated in relation to the corre-
sponding GAPDH gene expression levels.

Western blotting

The protein levels of pro- and anti-apoptotic mediators
were determined in homogenized mouse brains by West-
ern blot analysis, as previously described [23,25]. Briefly,
mouse brains were surgically removed under anesthesia,
separated into left and right hemispheres, and immedi-
ately homogenized in lysis buffer (Sigma) containing 100
mM TRIS-HCl (pH 7.5), 150 mM NaCl, 0.5% sodium
dodecyl sulfate (SDS), 0.5% Nonidet P-40, 10 μg/ml
aprotinin, 10 μg/ml leupeptin, 5 μg/ml pepstatin, 1 mM
phenyl-methyl-sulfonyl fluoride in deionized water, using
an Ultra Turrax Homogenizer® (IKA Werke, Staufen, Ger-
many). After 15 min centrifugation at 13,000 × g, the pro-
tein content of the supernatants was determined by
commercially available colorimetric protein assay ("BCA
Protein Assay", Pierce/Perbio Science, Bonn, Germany). A
60 μg sample of total protein was denatured in loading
buffer and separated under reducing conditions on 10%
(for Fas, FasL) or 12% (for Bax, Bcl-2) SDS-polyacryla-
mide gels in parallel with a broad range prestained SDS-
PAGE protein standard (Bio-Rad, Munich, Germany).
Proteins were then transferred to Protean BA 83 nitrocel-
lulose membranes (Schleicher & Schuell, Dassel, Ger-
many) by electroblotting (Bio-Rad). The blots were
blocked overnight and then incubated with either poly-
clonal rabbit anti-mouse Fas (1:200), rabbit anti-mouse
FasL (1:200), rabbit anti-mouse Bax (1:300), or mono-
clonal anti-mouse Bcl-2 (1:500) antibodies (Santa Cruz
Biotechnology, Heidelberg, Germany), and with a mono-
cloncal anti-β-actin antibody (clone AC-15, Sigma)
diluted 1:10,000, as internal control for ascertaining equal
loading of the bands. After incubation with HRP-labelled
secondary antibodies (Dako, Hamburg, Germany, and
Santa Cruz Biotechnology, Heidelberg, Germany), diluted
1:5,000, antibody binding was visualized by a non-radio-
active chemiluminescence technique using a commer-
cially available ECL® Western blotting kit (Amersham
Pharmacia Biotech, Freiburg, Germany). Equal transfer of
proteins to the blotting membrane was confirmed by pon-
ceau red staining (Sigma).

Statistical analysis

Statistical analysis was performed using commercially
available software (SPSS 9.0 for Windows™). Differences
in intracerebral gene expression levels and NSE serum lev-
els between the groups were determined by the unpaired
Student's t-test. The repeated measures analysis of vari-

ance (ANOVA) was used for assessing differences in neu-
rological scores (NSS). A P-value < 0.05 was considered
statistically significant.

Results
Neurological outcome

The assessment of of neurological tasks was performed by
two investigators who were blinded about the treatment
groups (Figure 1). Normal untreated mice ("nil") and
sham-operated control mice displayed a normal behavior,
with a range of NSS scores between 0–2 points in all con-
trol groups. In contrast, head-injured mice in both treat-
ment groups had a siginifcantly increased NSS at all time-
points assessed for up to 7 days after trauma, compared to
the control groups (P < 0.05, repeated measures ANOVA;
Figure 1). In the trauma cohorts, the baseline NSS at 1 h
was titrated by adjusting the falling height of the weight-

Neurological outcome after head injury in wild-type and CD59-/- miceFigure 1
Neurological outcome after head injury in wild-type 
and CD59-/- mice. The posttraumatic neurological impair-
ment was determined by a standardized 10-parameter "Neu-
rological Severity Score" (NSS) in normal untreated ("nil"), 
sham-operated, and head-injured mice from 1 h to 7 days 
after trauma (total: n = 134 mice). The neurological assess-
ment was performed in a blinded fashion by two different 
investigators. A maximal score of 10 points corresponds to a 
severe neurological impairment, while a score of 0 points 
reflects normal behavior. The graph shows the resultant 
median levels of the groups at different time-points. Normal 
untreated mice (n = 7 per group) and sham-operated mice (n 
= 30 per group) had normal neurological scores ranging from 
0–2 points, with no difference between wild-type and 
CD59a-/- mice. In head-injured mice (n = 30 per group), the 
baseline NSS was titrated to be in a similar range between 
head-injured and CD59a-/- mice at 1 h (P> 0.05). By 7 days 
after trauma, the CD59a-/- mice had a significantly worse out-
come compared to wild-type littermates, as reflected by a 
significantly increased NSS (*P < 0.05, repeated measures 
ANOVA). TBI, traumatic brain injury; WT, wild-type.

Nil_WT Sham_WT SHT_WT

Nil_CD59 Sham_CD59 SHT_CD59
� � �

*
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drop device (see methods section), in order to achieve a
similar range of initial injury severity between wild-type
(median levels 5.7) and CD59a-/- mice (median levels
6.1). A spontaneous, physiological neurological recovery
was seen in both treatment groups over time, as reflected
by a decreased NSS at 7 days compared to 1 h after TBI. By
7 days, the head-injured wild-type mice showed a signifi-
cantly decreased NSS, compared to the knockout animals,
implying a more severe neurological impairment in the
absence of CD59a at one week after trauma (median lev-
els 1.7 in wild-type vs. 3.4 in CD59a-/- mice; P < 0.05; Fig-
ure 1).

NSE serum levels

The quantification of NSE levels in serum samples, as a
standard marker of neuronal injury [22], revealed non-
detectable levels (below the sensitivity of the ELISA at 1
pg/ml) in sham-operated wild-type and CD59a-/- mice, at
all time-points assessed (Figure 2). In contrast, NSE serum
levels were detectable in head-injured mice at 4 h and 24
h, but not at 7 days after trauma. In CD59a-/- mice, the
mean NSE levels were significantly higher at 4 h (369.5 vs.
132.8 pg/ml) and 24 h (58.0 vs. 7.5 pg/ml) after trauma,
compared to wild-type littermates (P < 0.05; Figure 2).

Neuronal cell death

As previously described for this experimental model
[24,25], head-injured wild-type mice exhibited a massive
destruction of their cortical neuronal layers at the contu-
sion site, as determined by immunohistochemistry using
a specific anti-NeuN Ab as a neuronal marker. Figure 3
depicts the different anatomic regions assessed in coronal
brain tissue sections. The histological investigation of
intracerebral cell death by TUNEL histochemistry revealed
a dramatic increase in TUNEL-positive neurons in the
injured left hemispheres of wild-type mice, from 4 hours
to 7 days after trauma (Figure 4, representative stainings
for t = 24 h). In accordance with previously published
findings [23,24], TUNEL-positive neurons were detected
within the contusion zone (Figure 4) and the hippocam-
pus (data not shown) of the injured hemisphere of wild-
type mice for up to 7 days after trauma. Head-injured
CD59a-/- mice showed a massive increase in the extent of
brain tissue destruction and TUNEL-positive cells around
the contusion site and in the ipsilateral cortex at 24 h (Fig-
ure 4), for up to 7 days after trauma (data not shown).

Serum levels of neuron-specific enolase (NSE), a marker of neuronal cell deathFigure 2
Serum levels of neuron-specific enolase (NSE), a 
marker of neuronal cell death. NSE protein levels were 
quantified in serum samples by ELISA, as described in the 
methods section. In sham-operated wild-type and CD59a-/- 

mice, NSE was not detectable in any sample at any time-
point, i.e. below the sensitivity of the assay at 1 pg/ml. In con-
trast, NSE serum levels were significantly elevated at 4 h and 
24 h after trauma, both in wild-type and CD59a-/- mice, com-
pared to sham-operated controls. In addition, the NSE serum 
levels were significantly higher at both time-points in head-
injured CD59a-/- mice, compared to wild-type littermates (*P 
< 0.05 for t = 4 h, **P < 0.05 for t = 24 h). This implies a 
greater extent of neuronal cell death in the genetic absence 
of Cd59a. NSE was not detectable in head-injured mice at 7 
days. Data are shown as mean ± SEM for n = 3 per group and 
time-point. TBI, traumatic brain injury; WT, wild-type.
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Schematic depiction of the anatomic regions of interest in coronal brain tissue sections from injured mouse brainsFigure 3
Schematic depiction of the anatomic regions of inter-
est in coronal brain tissue sections from injured 
mouse brains. Closed head injury was applied to the left 
hemisphere, as described in detail in the methods section. 
The right (contralateral) hemisphere served as internal nega-
tive control. The anatomic regions representing the tissue 
sections analyzed by TUNEL histochemistry in figure 4, 
include: (1) Contusion site in the left hemisphere; (2) Hip-
pocampus; (3) Remote cortex in the ipsilateral hemisphere.
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Exacerbated brain tissue destruction and neuronal cell death in head-injured CD59-/- miceFigure 4
Exacerbated brain tissue destruction and neuronal cell death in head-injured CD59-/- mice. Microphotographs 
show adjacent cryosections of 8 μm thickness of left (injured) brain hemispheres harvested at 24 h after closed head injury 
each from a representative wild-type (upper panel) and a CD59a-/- (lower panel) mouse. Cellular signals were visualized by flu-
orescence microscopy. The left columns represent the DAPI nuclear stain which reveals the cellular distribution and morphol-
ogy of all cells present in the resultant sections. TUNEL histochemistry was performed on adjacent sections (right columns) to 
reveal the distribution and morphology of cell death. TUNEL-positive cells were mainly detected within the contusion zone of 
head-injured wild-type mice. In contrast, the number of TUNEL-positive cells was clearly augmented in the contusion zone of 
CD59a-/- mice, and remote cell death was detected in cortical layers of the ipsilateral hemisphere and in the hippocampus. 
Neurons were identified as the main cellular source of TUNEL-positive cell types by immunostaining of adjacent brain sections 
using anti-NeuN as primary antibody, a neuron-specific cell marker (bottom panels). Uninjured, i.e. sham-operated or 
untreated, CD59-/- mice did not show any positive TUNEL signals in brain sections (data not shown). These data imply an 
increased amount of cell death and tissue destruction in brain-injured CD59-/- mice, compared to wild-type animals. Original 
magnifications: 100×.
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Sham-operated or untreated CD59-/- mice did not show
any positive TUNEL signals in any brain section (data not
shown). The immunohistochemical staining of adjacent
brain sections by specific cell markers for neurons (anti-
NeuN), astrocytes (anti-GFAP), microglia and infiltrating
leukocytes (anti-CD11b), revealed that neurons were the
predominant TUNEL-positive cell type in all sections
taken from the injured hemispheres of wild-type and
CD59a-/- mice. TUNEL-positive cells were furthermore
confirmed as neurons by their typical cellular size, mor-
phology, and position in typical neuronal layers (Figure
4). As previously described, TUNEL-positive cells and the
extent of cortical tissue destruction were less apparent in
the contralateral (right) hemisphere as compared to the
injured (left) hemisphere at all time-points assessed after
trauma, in both groups [23,24]. The representative micro-
photographs shown in Figure 3 were highly reproducible
in all tissue sections and animals throughout this study.

Mediators of apoptosis

Homogenized brain tissue samples were analyzed by real-
time RT-PCR and Western blotting for gene and protein
expression of Fas, FasL, Bax and Bcl-2. A significant upreg-
ulation of Fas mRNA was detected in head-injured wild-
type and CD59a-/- mice at t = 4 h, compared to sham-oper-
ated controls (n = 6 per group and time-point, P < 0.05,
unpaired Student's t-test; Figure 5). In addition, the gene
for the mitochondrial ant-apoptotic mediator Bcl-2 was
significantly upregulated in injured brains of wild-type
mice, compared to sham-operated controls, at all time-
points assessed (P < 0.05; Figure 5). Head-injured CD59a-

/- mice showed a trend towards decreased Bcl-2 expression
at all time-points after trauma, which however was not
statistically significant (P > 0.05; Figure 5). No significant
differences in Fas, FasL, Bax and Bcl-2 expression in brains
of wild-type vs. CD59a-/- mice were detected at any time-
point for up to 7 days after trauma, either at the gene (Fig-
ure 5) or protein level (Figure 6; representative Western
blot experiments). However, Bax protein expression
appeared to be moderately upregulated in CD59a-/- mice
4 h after trauma, when compared to wild-type littermates.
The digital quantification of protein bands on Western
blot membranes did not reveal any statistically significant
differences between the groups at any time-point (n = 3
per group and time-point, P > 0.05; data not shown).

Discussion
The present study was designed to evaluate the role of the
complement regulatory molecule CD59a in the posttrau-
matic neuropathology after experimental closed head
injury in mice. We sought to test the hypothesis that mice
deficient in the Cd59a gene (CD59a-/-) would display a
significantly increased susceptibility to complement-
mediated secondary brain injury with regard to the extent
of posttraumatic neurological impairment and neuronal

cell death. CD59a-/- mice had a significantly impaired neu-
rological outcome 7 days after experimental closed head
injury, compared to wild-type controls. This neurological
deterioration occurred despite equal titration of initial
severity of injury, as determined by a similar baseline NSS
in wild-type and CD59a-/- mice 1 h after trauma (5.7 vs.
6.1 points, mean NSS at 1 h; Figure 1). Strikingly, the
titrated weight drop falling height required to induce a
similar severity of injury was significantly less in the
knockout mice (1.7 cm) than in wild-type mice (2.6 cm),
implying an intrinsically increased baseline susceptibility
to brain injury in CD59a-/- mice. Aside from the clinical
deterioration within 7 days, CD59a-/- mice also showed a
significant exacerbation of neuronal cell loss in the
injured brain, as determined by (a) increased serum levels
of NSE – an established marker of neuronal cell death –
compared to wild-type mice (Figure 2), and (b) increased
neuronal cell death and brain tissue destruction in TUNEL
histochemistry experiments (Figure 4).

Since programmed cell death represents an important
mechanism of secondary neuronal cell death after head
injury, and since complement and the MAC have been
associated with neuronal apoptosis [10,26,27], we sought
to further investigate the expression of apoptotic media-
tors in injured brains of wild-type and CD59a-/- mice.
Interestingly, there was no significant difference in intrac-
erebral expression of pro- (Fas, FasL, Bax) or anti-apop-
totic mediators (Bcl-2) at the gene and protein level
between CD59a-/- and wild-type mice, at any time-point
investigated after trauma (Figures 5 and 6). These findings
suggest that the exacerbated induction of neuronal cell
death in injured brains of CD59a-/- mice may reflect direct
MAC-mediated cellular lysis in large part, as opposed to
indirect cell death mechanisms by differential regulation
of apoptotic mediators. However, this notion remains
speculative and requires further investigation of the
detailed, molecular mechanisms of posttraumatic neuro-
nal cell loss in head-injured CD59a-/- mice.

The complement system has been implicated for more
than a decade in the pathophysiology of traumatic brain
injury by contributing to neuroinflammation and second-
ary neuronal cell death [2]. However, the exact cellular
and molecular mechanisms of complement-mediated
neuropathology after head injury remain far from being
fully understood. Recent studies have determined that all
three activation pathways (i.e. classical, alternative, and
lectin) are involved in the pathophysiology of posttrau-
matic complement activation in the injured brain
[23,24,28,29]. Interestingly, the terminal complement
pathway which leads to generation of the MAC (C5b-9),
also termed the "killer molecule of complement" [30], has
received less attention in recent research in the field of
traumatic brain injury.
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We have previously shown that soluble MAC levels are
significantly increased in the intrathecal compartment of
patients with severe head injuries, and were associated
with the extent of posttraumatic blood-brain barrier
(BBB) dysfunction [3]. Other groups have shown that the
MAC is a potent inducer of intracerebral neuropathology
and neuroinflammation, by mediating the upregulation
of adhesion molecules and leukocyte infiltration in the

subarachnoid space and cerebral parenchyma within a
few hours of intracerebroventricular MAC injection [31].
In addition, MAC injection into hippocampus was shown
to evoke seizures and neurocytotoxicity [32]. A different
study used an in vitro model of BBB damage and revealed
that the co-incubation of normal human cerebrospinal
fluid with normal serum from healthy donors resulted in
complement activation and soluble MAC (sC5b-9) forma-

Regulation of intracerebral gene expression for apoptotic mediatorsFigure 5
Regulation of intracerebral gene expression for apoptotic mediators. Total RNA was extracted from homogenized 
murine brains (injured left hemispheres) at 4 h, 24 h, and 7 days after sham surgery or experimental head injury. Gene expres-
sion levels of Fas, FasL, Bax and Bcl-2 were determined by semi-quantitative two-step real-time RT-PCR, as described in the 
methods section. A significant induction of Fas gene expression was detected at 4 h in both trauma groups, compared to sham-
operated controls (*P < 0.05, unpaired Student's t-test). In addition, head-injured wild-type mice showed a significant induction 
of Bcl-2 expression at all time-points after trauma, compared to sham-operated controls (*P < 0.05). No significant differences 
between head-injured wild-type and CD59a-/- mice were detected for any gene at any time-point. Data are shown as mean ± 
SEM for n = 6 per group and time-point. TBI, traumatic brain injury; WT, wild-type.
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tion [33]. Mead et al. described a crucial role of the MAC
in contributing to demyelination and axonal injury in
studies of EAE in C6-deficient mice [9]. In a model of
experimental weight-drop head injury in rats, comple-
ment C9 deposition was demonstrated around the cere-
bral contusion site, implying MAC deposition in injured
brain tissue [34].

The complement regulatory molecule CD59 is a GPI-
anchored molecule which controls MAC assembly in cel-
lular membranes and thus protects from homologous cell
lysis after complement activation [5]. CD59a has been
described as the primary regulator of MAC assembly in the
mouse, since mice have a testis-restricted CD59b expres-
sion [13]. We have recently described a significant induc-
tion of Cd59a gene upregulation in the injured mouse
brains, using the same experimental closed head injury
model as in the present study [25]. It appears that the
upregulation of CD59a in injured brains represents a feed-
back mechanism aimed at protecting neurons from acci-
dental homologous cell lysis related to posttraumatic
complement activation [2]. However, in the complex set-
ting of head injury-induced neuroinflammation, the
shedding of the GPI-anchored glycoprotein CD59 from

cell surfaces by activation of phospholipases, such as PI-
PLC, may render neurons vulnerable to complement
mediated attack, independent of upregulation of the Cd59
gene, as briefly described in the introduction [2,5,11,25].

CD59a-/- mice which lack the Cd59a gene [16] provide an
excellent in vivo model to test the relevance of the terminal
complement pathway in contributing to secondary neu-
ropathology after traumatic brain injury. Recent experi-
mental studies revealed that CD59a-/- mice are more
susceptible to ischemia/reperfusion injuries [35] and to
disease severity, myelin loss and axonal damage after EAE
[15]. The latter study showed that areas of myelin loss and
axonal damage in spinal cords of CD59a-/- mice were asso-
ciated with MAC deposition, implicating the complement
MAC as a crucial mediator of neuropathology of this
autoimmune disease [15]. The findings of exacerbated
neurological impairment and increased neuronal cell loss
in our current study on experimental closed head injury
concur with the previous findings in the EAE model [15]
and further underline the importance of the complement
MAC in the pathophysiology of inflammatory central
nervous system (CNS) disorders.

Traumatic brain injury is currently still lacking a specific
pharmacological therapy designed to avoid induction of
secondary brain injuries and delayed neuronal cell death
[36]. However, in the field of therapeutic complement
inhibitor development, there have been significant
advances in recent years [37-40]. While some of these
inhibitors have been successfully tested in experimental
head injury models [24,25,41], the "bench-to-bedside"
extrapolation to clinical applications in head injured
patients has yet to be accomplished [36]. In this regard,
the identification of human CD59 complement binding
interfaces, as well as the recent development of human
soluble mutant CD59-based compounds, which have
been shown to exert an up to 3-fold increased comple-
ment inhibitory activity [42], may represent a promising
future strategy for attenuating the terminal complement
pathway-mediated neuropathology and the extent of sec-
ondary brain damage in head-injured patients.
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