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Absolute anabelian cuspidalizations of proper

hyperbolic curves
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Abstract

In this paper, we develop the theory of “cuspidalizations” of the
étale fundamental group of a proper hyperbolic curve over a finite or
nonarchimedean mixed-characteristic local field. The ultimate goal of
this theory is the group-theoretic reconstruction of the étale fundamental
group of an arbitrary open subscheme of the curve from the étale fun-
damental group of the full proper curve. We then apply this theory to
show that a certain absolute p-adic version of the Grothendieck Conjec-

ture holds for hyperbolic curves “of Belyi type”. This includes, in particu-
lar, affine hyperbolic curves over a nonarchimedean mixed-characteristic
local field which are defined over a number field and isogenous to a hy-
perbolic curve of genus zero. Also, we apply this theory to prove the
analogue for proper hyperbolic curves over finite fields of the version of
the Grothendieck Conjecture that was shown in [Tama].
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Introduction

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local of mixed characteristic; let U ⊆ X be an open subscheme
of X. Write ΠX for the étale fundamental group of X. In this paper, we study
the extent to which the étale fundamental group of U may be group-theoretically
reconstructed from ΠX .

In Section 1, we show that the abelian portion of the extension of ΠX

determined by the étale fundamental group of U may be group-theoretically
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reconstructed from ΠX [cf. Theorem 1.1, (iii)], and, moreover, that this con-
struction has certain remarkable rigidity properties [cf. Propositions 1.10, (i);
2.3, (i)].

In Section 2, we show that this abelian portion of the extension is sufficient
to reconstruct [in essence] the multiplicative group of the function field of X [cf.
Theorem 2.1, (ii)]. In the case of nonarchimedean [mixed-characteristic] local
fields, this already implies various interesting consequences in the context of the
absolute anabelian geometry studied in [Mzk5], [Mzk6], [Mzk8]. In particular,
it implies that the absolute p-adic version of the Grothendieck Conjecture [i.e.,
an absolute version of [a certain portion of] the relative result that appears
as the main result of [Mzk4]] holds for hyperbolic curves “of Belyi type” [cf.
Definition 2.3; Corollary 2.3]. This includes, in particular, hyperbolic curves “of
strictly Belyi type”, i.e., affine hyperbolic curves over a nonarchimedean [mixed-
characteristic] local field which are defined over a number field and isogenous
to a hyperbolic curve of genus zero. In particular, we obtain a new countable
class of “absolute curves” [in the terminology of [Mzk6]], whose absoluteness is,
in certain respects, reminiscent of the absoluteness of the canonical curves of
p-adic Teichmüller theory discussed in [Mzk6] [cf. Remark 30], but [in contrast
to the class of canonical curves] appears [at least from the point of view of
certain circumstantial evidence] unlikely to be Zariski dense in most moduli
spaces [cf. Remark 31].

Finally, in Section 3, we apply the theory of the weight filtration [cf., e.g.,
[Kane], [Mtm]], together with various generalities concerning free Lie algebras
[cf. the Appendix], to develop various “higher order generalizations” of the
theory of Sections 1, 2. In particular, we obtain various “higher order gen-
eralizations” of the “remarkable rigidity” referred to above [cf. Propositions
3.4, 3.6, especially Proposition 3.6, (iii)], which we apply to show that, relative
to the notation introduced above, the geometrically pro-l portion [where l is
a prime number invertible in k] of the étale fundamental group of U may be
recovered from ΠX , at least when U is obtained from X by removing a single
k-rational point [cf. Theorem 3.1]. This, along with the theory of Section 2,
allows one to verify the analogue for proper hyperbolic curves over finite fields
of the version of the Grothendieck Conjecture that was shown in [Tama] [cf.
Theorem 3.2].

Acknowledgements. I would like to thank Akio Tamagawa, Makoto
Matsumoto, and Seidai Yasuda for various useful comments. Also, I would
like to thank Yuichiro Hoshi for his careful reading of an earlier version of this
manuscript, which led to the discovery of various errors in this earlier version.

0. Notations and conventions

Numbers:

We shall denote by Ẑ the profinite completion of the additive group of
rational integers Z. If p is a prime number, then Zp denotes the ring of p-
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adic integers; Qp denotes its quotient field. We shall refer to as a p-adic local
field (respectively, nonarchimedean local field) any finite field extension of Qp

(respectively, a p-adic local field, for some p). A number field is defined to be a
finite extension of the field of rational numbers. If Σ is a set of prime numbers,
then we shall refer to a positive integer each of whose prime factors belongs
to Σ as a Σ-integer. We shall refer to a finite étale covering of schemes whose
degree is a Σ-integer as a Σ-covering. Also, we shall write Primes for the set
of all prime numbers.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let
us write

Gab

for the abelianization of G [i.e., the quotient of G by the closed subgroup of G
topologically generated by the commutators of G]. Let us write

ZG(H)
def
= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G;

NG(H)
def
= {g ∈ G | g · H · g−1 = H}

for the normalizer of H in G; and

CG(H)
def
= {g ∈ G | (g · H · g−1)

⋂
H has finite index in H, g · H · g−1}

for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H)
are subgroups of G; (ii) we have inclusions

H, ZG(H) ⊆ NG(H) ⊆ CG(H)

and (iii) H is normal in NG(H). If H = NG(H) (respectively, H = CG(H)),
then we shall say that H is normally terminal (respectively, commensurably
terminal) in G. Note that ZG(H), NG(H) are always closed in G, while CG(H)
is not necessarily closed in G.

If G1, G2 are Hausdorff topological groups, then an outer homomorphism
G1 → G2 is defined to be an equivalence class of continuous homomorphisms
G1 → G2, where two such homomorphisms are considered equivalent if they
differ by composition with an inner automorphism of G2. The group of outer
automorphisms of G [i.e., bijective bicontinuous outer homomorphisms G →
G] will be denoted Out(G). If G is center-free, then there is a natural exact
sequence:

1 → G → Aut(G) → Out(G) → 1

[where the homomorphism G → Aut(G) is defined by letting G act on G by
conjugation].
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If G is a profinite group such that, for every open subgroup H ⊆ G, we
have ZG(H) = {1}, then we shall say that G is slim. One verifies immediately
that G is slim if and only if every open subgroup of G is center-free [cf. [Mzk5],
Remark 0.1.3].

If G is a profinite group and Σ is set of prime numbers, then we shall say
that G is a pro-Σ group if the order of every finite quotient group of G is a
Σ-integer. If Σ = {l} is of cardinality one, then we shall refer to a pro-Σ group
as a pro-l group.

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves
of genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall
denote the moduli stack of r-pointed stable curves of genus g (where we as-
sume the points to be unordered) by Mg,r [cf. [DM], [Knud] for an exposition
of the theory of such curves; strictly speaking, [Knud] treats the finite étale
covering of Mg,r determined by ordering the marked points]. The open sub-
stack Mg,r ⊆ Mg,r of smooth curves will be referred to as the moduli stack of
smooth r-pointed stable curves of genus g or, alternatively, as the moduli stack
of hyperbolic curves of type (g, r).

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X →֒ Y → S as the composite of an
open immersion X →֒ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y, D) is unique up
to canonical isomorphism. (Indeed, when S is the spectrum of a field, this fact
is well-known from the elementary theory of algebraic curves. Next, we consider
an arbitrary connected normal S on which a prime l is invertible (which, by
Zariski localization, we may assume without loss of generality). Denote by
S′ → S the finite étale covering parametrizing orderings of the marked points
and trivializations of the l-torsion points of the Jacobian of Y . Note that
S′ → S is independent of the choice of (Y, D), since (by the normality of S), S′

may be constructed as the normalization of S in the function field of S′ (which
is independent of the choice of (Y, D) since the restriction of (Y, D) to the
generic point of S has already been shown to be unique). Thus, the uniqueness
of (Y, D) follows by considering the classifying morphism (associated to (Y, D))
from S′ to the finite étale covering of (Mg,r)Z[ 1

l
] parametrizing orderings of the

marked points and trivializations of the l-torsion points of the Jacobian [since
this covering is well-known to be a scheme, for l sufficiently large].) We shall
refer to Y (respectively, D; D) as the compactification (respectively, divisor of
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cusps; divisor of marked points) of X. A family of hyperbolic curves X → S is
defined to be a morphism X → S such that the restriction of this morphism
to each connected component of S is a family of hyperbolic curves of type (g, r)
for some integers (g, r) as above. A family of hyperbolic curves X → S of type
(0, 3) will be referred to as a tripod.

If X is a hyperbolic curve over a field K with compactification X ⊆ X,
then we shall write

Xcl; Xcl+

for the sets of closed points of X and X, respectively.
If XK (respectively, YL) is a hyperbolic curve over a field K (respectively,

L), then we shall say that XK is isogenous to YL if there exists a hyperbolic
curve ZM over a field M together with finite étale morphisms ZM → XK ,
ZM → YL. Note that in this situation, the morphisms ZM → XK , ZM → YL

induce finite separable inclusions of fields K →֒ M , L →֒ M . [Indeed, this
follows immediately from the easily verified fact that every subgroup G ⊆
Γ(Z,O×

Z ) such that G
⋃
{0} determines a field is necessarily contained in M×.]

If X is a generically scheme-like algebraic stack [i.e., an algebraic stack
which admits a “scheme-theoretically” dense open that is isomorphic to a
scheme] over a field K of characteristic zero that admits a [surjective] finite
étale [or, equivalently, finite étale Galois] covering Y → X, where Y is a hyper-
bolic curve over a finite extension of K, then we shall refer to X as a hyperbolic
orbicurve over K. [Although this definition differs from the definition of a “hy-
perbolic orbicurve” given in [Mzk6], Definition 2.2, (ii), it follows immediately
from a theorem of Bundgaard-Nielsen-Fox [cf., e.g., [Namba, Theorem 1.2.15,
p. 29]] that these two definitions are equivalent.] If X → Y is a dominant
morphism of hyperbolic orbicurves, then we shall refer to X → Y as a par-
tial coarsification morphism if the morphism induced by X → Y on associated
coarse spaces [cf., e.g., [FC, Chapter I, §4.10]] is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field of char-
acteristic zero; denote its étale fundamental group by ∆X . We shall refer to
the order of the [manifestly finite!] decomposition group of a closed point x of
X as the order of x. We shall refer to the [manifestly finite!] least common
multiple of the orders of the closed points of X as the order of X. Thus, it
follows immediately from the definitions that X is a hyperbolic curve if and
only if the order of X is equal to 1.

1. Maximal abelian cuspidalizations

Let X be a proper hyperbolic curve over a field k which is either finite or
nonarchimedean local. Write

dk

for the cohomological dimension of k. Thus, if k is finite (respectively, nonar-
chimedean local), then dk = 1 (respectively, dk = 2 [cf., e.g., [NSW, Chapter
7, Theorem 7.1.8, (i)]]). If k is finite (respectively, nonarchimedean local), we
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shall denote the characteristic of k (respectively, of the residue field of k) by p
and the number p (respectively, 1) by p†. Also, we shall write

Primes†
def
= Primes\(Primes

⋂
{p†})

[where Primes is the set of all prime numbers [cf. Section 0]; the intersection
is taken in the “ambient set” Z].

Let Σ be a set of prime numbers that contains at least one prime number
that is invertible in k. Write

Σ′ def
= Σ\(Σ

⋂
{p}); Σ† def

= Σ\(Σ
⋂

{p†})

[where the intersections are taken in the “ambient set” Z]. Denote by Ẑ′ the

maximal pro-Σ′ quotient of Ẑ and by Ẑ† the maximal pro-Σ† quotient of Ẑ.
If k is an algebraic closure of k, then we shall denote the result of base-

changing objects over k to k by means of a subscript “k”. Any choice of a
basepoint of X determines an algebraic closure k of k, and hence an exact
sequence

1 → π1(Xk) → π1(X) → Gk → 1

where Gk
def
= Gal(k/k); π1(X), π1(Xk) are the étale fundamental groups of X,

Xk, respectively. Write ∆X for the maximal pro-Σ quotient of π1(Xk) and

ΠX
def
= π1(X)/Ker(π1(Xk) ։ ∆X). Thus, we have an exact sequence:

1 → ∆X → ΠX → Gk → 1

Similarly, if we write X × X
def
= X ×k X, then we obtain [by considering the

maximal pro-Σ quotient of π1((X × X)k)] an exact sequence

1 → ∆X×X → ΠX×X → Gk → 1

where ΠX×X (respectively, ∆X×X) may be identified with ΠX ×Gk
ΠX (respec-

tively, ∆X × ∆X). Let ΠZ ⊆ ΠX×X be an open subgroup that surjects onto

Gk. Write Z → X × X for the corresponding covering; ∆Z
def
= Ker(ΠZ ։ Gk).

Proposition 1.1 (Group-theoreticity of Étale Cohomology). Let Ẑ†

։ A be a finite quotient, and N a finite A-module equipped with a con-
tinuous ∆X- (respectively, ΠX-; ∆Z-; ΠZ-) action. Then for i ∈ Z, the natural
homomorphism

Hi(∆X , N) → Hi
ét(Xk, N) (respectively, Hi(ΠX , N) → Hi

ét(X, N);

Hi(∆Z , N) → Hi
ét(Zk, N); Hi(ΠZ , N) → Hi

ét(Z, N))

is an isomorphism.
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Proof. In light of the Leray spectral sequence for the surjections ΠX ։

Gk, ΠZ ։ Im(ΠZ) ⊆ ΠX [i.e., where “Im(−)” denotes the image via the
natural homomorphism associated to one of the projections Z → X × X →
X], it suffices to verify the asserted isomorphism in the case of ∆X . If Y →
Xk is a connected finite étale Galois Σ-covering, then the associated Leray
spectral sequence has “E2-term” given by the cohomology of Gal(Y/X) with
coefficients in the étale cohomology of Y and abuts to the étale cohomology
of Xk. By allowing Y to vary, one then verifies immediately that it suffices to
verify that every étale cohomology class of Y [with coefficients in N ] vanishes
upon pull-back to some [connected] finite étale Σ-covering Y ′ → Y . Moreover,
by passing to an appropriate Y , one reduces immediately to the case where
N = A, equipped with the trivial ΠX-action. Then the vanishing assertion in
question is a tautology for “H1”; for “H2”, it suffices to take Y ′ → Y so that
the degree of Y ′ → Y annihilates A [cf., e.g., the discussion at the bottom of
[FK, p. 136]].

Set:

MX
def
= HombZ†(H

2(∆X , Ẑ†), Ẑ†); Mk
def
= HombZ†(H

dk(Gk, M
⊗dk−1
X ), M

⊗dk−1
X )

Thus, Mk, MX are free Ẑ†-modules of rank one; MX is isomorphic as a Gk-
module to Ẑ†(1) [where the “(1)” denotes a “Tate twist” — i.e., Gk acts on Ẑ†(1)

via the cyclotomic character]; Mk is isomorphic as a Gk-module to Ẑ†(dk −
1). [Indeed, this follows from Proposition 1.1; Poincaré duality [cf., e.g., [FK,

Chapter II, Theorem 1.13]]; the fact, in the finite field case, that Gk
∼= Ẑ

[together with an easy computation of the group cohomology of Ẑ]; the well-
known theory of the cohomology of nonarchimedean local fields [cf., e.g., [NSW,
Chapter 7, Theorem 7.2.6]]].

Remark 1. Note that for any open subgroup ΠX′ ⊆ ΠX [which we
think of as corresponding to a finite étale covering X ′ → X], we obtain a
natural isomorphism

MX
∼
→ MX′

by applying the functor HombZ†(−, Ẑ†) to the induced morphism on group coho-

mology H2(∆X , Ẑ†) → H2(∆X′ , Ẑ†) [where ∆X′
def
= Ker(ΠX′ → Gk)] and di-

viding by [∆X : ∆X′ ]. [One verifies easily that this does indeed yield an isomor-
phism — cf., e.g., the discussion at the bottom of [FK, p. 136]]. Moreover, rela-

tive to the tautological isomorphisms H2(∆X , MX) ∼= Ẑ†, H2(∆X′ , MX′) ∼= Ẑ†,
the isomorphism MX

∼
→ MX′ just constructed induces [via the restriction mor-

phism on group cohomology] the morphism Ẑ† → Ẑ† given by multiplication
by [∆X : ∆X′ ]. Similarly, if k′ is the base field of X ′, then we obtain a natural
isomorphism

Mk
∼
→ Mk′

by applying the natural isomorphism MX
∼
→ MX′ just constructed and the dual

of the natural pull-back morphism on group cohomology and then dividing by
[k′ : k] [cf., e.g., [NSW, Chapter 7, Corollary 7.1.4]].
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Proposition 1.2 (Top Cohomology Modules).

(i) There are natural isomorphisms:

Hdk(Gk, Mk) ∼= Ẑ†; H2(∆X , MX) ∼= Ẑ†; Hdk+2(ΠX , MX ⊗ Mk) ∼= Ẑ†

H4(∆Z , M⊗2
X ) ∼= Ẑ†; Hdk+4(ΠZ , M⊗2

X ⊗ Mk) ∼= Ẑ†

(ii) There is a unique isomorphism MX
∼
→ Ẑ†(1) such that the image of 1 ∈ Ẑ†

maps via the composite of the isomorphism Ẑ† ∼= H2(∆X , MX) of (i) with

the isomorphism H2(∆X , MX)
∼
→ H2(∆X , Ẑ†(1)) induced by the isomorphism

MX
∼
→ Ẑ†(1) in question to the [first] Chern class of a line bundle of degree 1

on Xk.

Proof. Assertion (i) follows from the definitions; the Leray spectral se-
quence for the surjections ΠX ։ Gk, ΠZ ։ Im(ΠZ) ⊆ ΠX [i.e., where “Im(−)”
denotes the image via the natural homomorphism associated to one of the
projections Z → X × X → X]. Assertion (ii) is immediate from the defini-
tions.

Proposition 1.3 (Duality). For i ∈ Z, let Ẑ†
։ A be a finite quo-

tient, and N a finite A-module.

(i) Suppose that N is equipped with a continuous Gk-action. Then the pairing

Hi(Gk, N) × Hdk−i(Gk, HomA(N, Mk ⊗ A)) → A

determined by the cup product in group cohomology and the natural isomor-
phisms of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(Gk, N)
∼
→ HomA(Hdk−i(Gk, HomA(N, Mk ⊗ A)), A)

(ii) Suppose that N is equipped with a continuous ΠX- (respectively, ∆X -; ΠZ-;
∆Z-) action. Then the pairing

Hi(ΠX , N) × Hdk+2−i(ΠX , HomA(N, MX ⊗ Mk ⊗ A)) → A

(respectively, Hi(∆X , N) × H2−i(∆X , HomA(N, MX ⊗ A)) → A;

Hi(ΠZ , N) × Hdk+4−i(ΠZ , HomA(N, M⊗2
X ⊗ Mk ⊗ A)) → A;

Hi(∆Z , N) × H4−i(∆Z , HomA(N, M⊗2
X ⊗ A)) → A)
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determined by the cup product in group cohomology and the natural isomor-
phisms of Proposition 1.2, (i), determines an isomorphism as follows:

Hi(ΠX , N)
∼
→ HomA(Hdk+2−i(ΠX , HomA(N, MX ⊗ Mk ⊗ A)), A)

(respectively, Hi(∆X , N)
∼
→ HomA(H2−i(∆X , HomA(N, MX ⊗ A)), A);

Hi(ΠZ , N)
∼
→ HomA(Hdk+4−i(ΠZ , HomA(N, M⊗2

X ⊗ Mk ⊗ A)), A);

Hi(∆Z , N)
∼
→ HomA(H4−i(∆Z , HomA(N, M⊗2

X ⊗ A)), A))

Proof. Assertion (i) follows immediately from the fact that Gk
∼= Ẑ [to-

gether with an easy computation of the group cohomology of Ẑ] in the finite
field case; [NSW, Chapter 7, Theorem 7.2.6], in the nonarchimedean local field
case. Assertion (ii) then follows from assertion (i); the Leray spectral sequences
associated to ΠX ։ Gk, ΠZ ։ Im(ΠZ) ⊆ ΠX [i.e., where “Im(−)” denotes
the image via the natural homomorphism associated to one of the projections
Z → X × X → X]; Proposition 1.1; Poincaré duality [cf., e.g., [FK, Chapter
II, Theorem 1.13]].

Proposition 1.4 (Automorphisms of Cyclotomic Extensions).

(i) We have: H0(Gk, H1(∆X , MX)) = 0.

(ii) There are natural isomorphisms

H1(ΠX , MX)
∼
→ H1(Gk, MX)

∼
→ (k×)

∧

H1(ΠZ , MX)
∼
→ H1(Gk, MX)

∼
→ (k×)

∧

— where the first isomorphisms in each line are induced by the surjections
ΠX ։ Gk, ΠZ ։ Gk; the second isomorphisms in each line are induced by the
isomorphism of Proposition 1.2, (ii), and the Kummer exact sequence; (k×)

∧

is the maximal pro-Σ†-quotient of k×.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis
for abelian varieties over finite fields” [cf., e.g., [Mumf, p. 206]] in the finite
field case; [Mzk8, Lemma 4.6], in the nonarchimedean local field case. The
first isomorphisms of assertion (ii) follow immediately from assertion (i) and
the Leray spectral sequences associated to ΠX ։ Gk, ΠZ ։ Gk; the sec-
ond isomorphisms follow immediately from consideration of the Kummer exact
sequence for Spec(k).

Definition 1.1.

(i) Let H be a profinite group equipped with a homomorphism H → ΠX . Then
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we shall refer to the kernel IH of H → ΠX as the cuspidal subgroup of H [rel-
ative to H → ΠX ]. We shall say that H is cuspidally abelian (respectively,
cuspidally pro-Σ∗ [where Σ∗ is a set of prime numbers]) [relative to H → ΠX ]
if IH is abelian (respectively, a pro-Σ∗ group). If H is cuspidally abelian, then
observe that H/IH acts naturally [by conjugation] on IH ; we shall say that H is
cuspidally central [relative to H → ΠX ] if this action of H/IH on IH is trivial.
Also, we shall use similar terminology to the terminology just introduced for
H → ΠX when ΠX is replaced by ∆X , ΠX×X , ∆X×X .

(ii) Let H be a profinite group; H1 ⊆ H a closed subgroup. Then we shall

refer to as an H1-inner automorphism of H an inner automorphism induced
by conjugation by an element of H1. If H ′ is also a profinite group, then we
shall refer to as an H1-outer homomorphism H ′ → H an equivalence class
of homomorphisms H ′ → H, where two such homomorphisms are considered
equivalent if they differ by composition by an H1-inner automorphism. If H
is equipped with a homomorphism H → Gk [cf., e.g., the various groups in-

troduced above], and H1
def
= Ker(H → Gk), then we shall refer to an H1-inner

automorphism (respectively, H1-outer homomorphism) as a geometrically in-
ner automorphism (respectively, geometrically outer homomorphism). If H is
equipped with a structure of extension of some other profinite group H0 by a
finite product H1 of copies of MX , or, more generally, a projective limit H1

of such finite products, then we shall refer to an H1-inner automorphism (re-
spectively, H1-outer homomorphism) as a cyclotomically inner automorphism
(respectively, cyclotomically outer homomorphism). If H is equipped with a
homomorphism to ΠX , ∆X , ΠX×X , or ∆X×X [cf. the situation of (i)], and
H1 is the kernel of this homomorphism, then we shall refer to an H1-inner
automorphism (respectively, H1-outer homomorphism) as a cuspidally inner
automorphism (respectively, cuspidally outer homomorphism).

Next, let

ΠX′ ⊆ ΠX

be an open normal subgroup, corresponding to a finite étale Galois covering
X ′ → X. Set

ΠZ′
def
= ΠX′×X′ · ΠX ⊆ ΠX×X

[where we regard ΠX as a subgroup of ΠX×X via the diagonal map]; write
Z ′ → X × X for the covering determined by ΠZ′ . Thus, it is a tautology that
the diagonal morphism ι : X →֒ X × X lifts to a morphism

ι′ : X →֒ Z ′

which induces the inclusion ΠX →֒ ΠZ′ on fundamental groups. If Z → X × X
is a connected finite étale covering arising from an open subgroup of ΠX×X ,
write:

UX×X
def
= (X × X)\ι(X); UZ

def
= (UX×X) ×(X×X) Z
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Denote by ∆UX×X
the maximal cuspidally [i.e., relative to the natural map

to π1((X × X)k)] pro-Σ† quotient of the maximal pro-Σ quotient of the tame
fundamental group of (UX×X)k [where “tame” is with respect to the divisor
ι(X) ⊆ X × X] and by ΠUX×X

the quotient π1(UX×X)/Ker(π1((UX×X)k) ։

∆UX×X
); write ΠUZ

⊆ ΠUX×X
for the open subgroup corresponding to the

finite étale covering UZ → UX×X .

Proposition 1.5 (Characteristic Class of the Diagonal).

(i) The pull-back morphism arising from the natural inclusion

ΠX →֒ ΠZ′ (⊆ ΠX×X = ΠX ×Gk
ΠX)

composed with the natural isomorphism of Proposition 1.2, (i), determines a
homomorphism

Hdk+2(ΠZ′ , MX ⊗ Mk) → Hdk+2(ΠX , MX ⊗ Mk)
∼
→ Ẑ†

hence [by Proposition 1.3, (ii)] a class

ηdiag
Z′ ∈ H2(ΠZ′ , MX)

which is equal to the étale cohomology class associated to ι′(X) ⊆ Z ′, or, alter-
natively, the [first] Chern class of the line bundle OZ′(ι′(X)).

(ii) Denote by

L×
diag[Z

′] → Z ′

the complement of the zero section in the geometric line bundle [i.e., Gm-torsor]
determined by OZ′(ι′(X)), by ∆

L
×
diag

[Z′] the maximal cuspidally pro-Σ† quotient

of the maximal pro-Σ quotient of the tame fundamental group of (L×
diag[Z

′])k

[where “tame” is with respect to the divisor determined by the complement of
the Gm-torsor L×

diag[Z
′] in the naturally associated P1-bundle], and by Π

L
×
diag

[Z′]

the quotient π1(L
×
diag[Z

′])/Ker(π1((L
×
diag[Z

′])k) ։ ∆
L
×
diag

[Z′]). Then [in light of

the isomorphism of Proposition 1.2, (ii)] we have a natural exact sequence

1 → MX → Π
L
×
diag

[Z′] → ΠZ′ → 1

whose associated extension class is equal to the class ηdiag
Z′ .

(iii) The global section of OZ′(ι′(X)) over Z ′ determined by the natural inclu-

sion OZ′ →֒ OZ′(ι′(X)) defines a morphism

UZ′ → L×
diag[Z

′]

over Z ′ which induces a surjective homomorphism of groups over ΠZ′ :

ΠUZ′ ։ Π
L
×
diag

[Z′]
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Proof. Assertion (i) follows immediately from Propositions 1.1, 1.2, 1.3,
together with well-known facts concerning Chern classes and associated cycles
in étale cohomology [cf., e.g., [FK, Chapter II, Definition 1.2, Proposition 2.2]].
Assertion (ii) follows from Proposition 1.1; [Mzk7, Definition 4.2, Lemmas 4.4,
4.5]. Assertion (iii) follows from [Mzk8, Lemma 4.2], by considering fibers over
one of the two natural projections ΠZ′ → ΠX×X ։ ΠX . [Here, we note that
although in [Mzk7, §4]; [Mzk8], the base field is assumed to be of characteristic
zero, one verifies immediately that the same arguments as those applied in loc.
cit. yield the corresponding results in the finite field case — so long as we
restrict the coefficients of the cohomology modules in question to modules over
Ẑ†.]

Definition 1.2.

(i) We shall refer to a covering Z ′ → X × X as in the above discussion as the

diagonal covering associated to the covering X ′ → X. We shall refer to an
extension of profinite groups

1 → MX → D′ → ΠZ′ → 1

whose associated extension class is the class ηdiag
Z′ of Proposition 1.5, (i), as a

fundamental extension [of ΠZ′ ]. In the following (ii) — (iv), we shall assume
that 1 → MX → D → ΠX×X → 1 is a fundamental extension.

(ii) Let x, y ∈ X(k); write Dx, Dy ⊆ ΠX for the associated decomposition

groups [which are well-defined up to conjugation by an element of ∆X — cf.
Remark 2 below]. Now set:

Dx
def
= D|Dx×Gk

ΠX
; Dx,y

def
= D|Dx×Gk

Dy

Thus, Dx (respectively, Dx,y) is an extension of ΠX (respectively, Gk) by MX .
Similarly, if D =

∑
i mi · xi, E =

∑
j nj · yj are divisors on X supported on

points that are rational over k, then set:

DD
def
=

∑

i

mi · Dxi
; DD,E

def
=

∑

i,j

mi · nj · Dxi,yj

[where the sums are to be understood as sums of extensions of ΠX or Gk by
MX — i.e., the sums are induced by the additive structure of MX ]. Also, we

shall write C
def
= −D|ΠX

[where we regard ΠX as a subgroup of ΠX×X via the
diagonal map]. [Thus, C is an extension of ΠX by MX whose extension class is
the Chern class of the canonical bundle of X.]

(iii) Let S ⊆ X(k) be a finite subset. Then we shall write

DS
def
=

∏

x∈S

Dx



Absolute anabelian cuspidalizations of proper hyperbolic curves 463

[where the product is to be understood as the fiber product over ΠX ]. Thus,
DS is an extension of ΠX by a product of copies of MX indexed by elements of
S. We shall refer to DS as a maximal abelian S-cuspidalization [of ΠX at S].
Observe that if T ⊆ X(k) is a finite subset such that S ⊆ T , then we obtain a
natural projection morphism DT → DS .

(iv) We shall refer to a homomorphism

ΠUX×X
→ D

over ΠX×X as a fundamental section if, for some isomorphism of D with Π
L
×
diag

that induces the identity on ΠX×X , MX , the resulting composite homomor-
phism ΠUX×X

→ Π
L
×
diag

is the homomorphism of Proposition 1.5, (iii).

Remark 2. Relative to the situation in Definition 1.2, (ii), conjuga-
tion by elements δ ∈ ∆X induces isomorphisms between the different possible
choices of “Dx”, all of which lie over the isomorphism between any of these
choices and Gk induced by the projection ΠX ։ Gk. Moreover, by lifting
(δ, 1) ∈ ∆X×X ⊆ ΠX×X to an element δD ∈ D, and conjugating by δD, we
obtain natural isomorphisms between the various resulting “Dx’s” which in-
duce the identity on the quotient group Dx ։ ΠX , as well as on the subgroup
MX ⊆ Dx. Note that this last property [i.e., of inducing the identity on ΠX ,
MX ] holds precisely because we are working with δ ∈ ∆X ⊆ ΠX , as opposed to
an arbitrary “δ ∈ ΠX”.

Remark 3. By Proposition 1.4, (ii), if E is any profinite group extension
of ΠX (respectively, Gk; an open subgroup ΠZ ⊆ ΠX×X that surjects onto Gk)
by MX , then the group of cyclotomically outer automorphisms of the extension
E [i.e., that induce the identity on ΠX (respectively, Gk; ΠZ) and MX ] may
be naturally identified with (k×)

∧
. In particular, in the context of Definition

1.2, (iv), any two fundamental sections of D differ, up to composition with a
cyclotomically inner automorphism of D, by a “(k×)

∧
-multiple”.

Next, if k is nonarchimedean local, then set G†
k

def
= Gk; if k is finite, then

write G†
k ⊆ Gk for the maximal pro-Σ† subgroup of Gk [so G†

k
∼= Ẑ†]. Also, we

shall use the notation

Π†
(−)

def
= Π(−) ×Gk

G†
k ⊆ Π(−)

[where “(−)” is any smooth, geometrically connected scheme over k, with arith-
metic fundamental group Π(−) ։ Gk].

Proposition 1.6 (Basic Properties of Maximal Abelian Cuspidalizations).
Let

1 → MX → D → ΠX×X → 1
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be a fundamental extension; φ : ΠUX×X
։ D a fundamental section;

S ⊆ X(k) a finite subset. Then:

(i) The profinite groups ∆X×X , ∆X , as well as any profinite group extension

of Π†
X×X or Π†

X by a [possibly empty] finite product of copies of MX is slim

[cf. Section 0]. In particular, the profinite group D†
S

def
= DS ×Gk

G†
k is slim.

(ii) For x ∈ X(k), write Ux
def
= X\{x}. Denote by ∆Ux

the maximal cuspidally

[i.e., relative to the natural map to π1((Ux)k)] pro-Σ† quotient of the maxi-
mal pro-Σ quotient of the tame fundamental group of (Ux)k [where “tame” is
with respect to the complement of Ux in X] and by ΠUx

the quotient given by
π1(Ux)/Ker(π1((Ux)k) ։ ∆Ux

). Then the inverse image via either of the natu-
ral projections ΠUX×X

։ ΠX of the decomposition group Dx ⊆ ΠX is naturally

isomorphic to ΠUx
. In particular, ∆UX×X

, Π†
UX×X

are slim.

(iii) For S ⊆ X(k) a finite subset, write:

US
def
=

∏

x∈S

Ux

[where the product is to be understood as the fiber product over X]. Denote
by ∆US

the maximal cuspidally [i.e., relative to the natural map to π1((US)k)]
pro-Σ† quotient of the maximal pro-Σ quotient of the tame fundamental group
of (US)k [where “tame” is with respect to the complement of US in X], and by

ΠUS
the quotient π1(US)/Ker(π1((US)k) ։ ∆US

). Then ∆US
, Π†

US
are slim.

Forming the product of the specializations of φ to the various Dx ×Gk
ΠX ⊆

ΠX×X yields homomorphisms

ΠUS
→

∏

x∈S

ΠUx
→ DS

[where the product is to be understood as the fiber product over ΠX ]. Moreover,
the composite morphism ΠUS

→ DS is surjective; the resulting quotient of

∆US

def
= Ker(ΠUS

։ Gk) is the maximal cuspidally central quotient of
∆US

, relative to the surjection ∆US
։ ∆X .

(iv) The quotient of ∆UX×X

def
= Ker(ΠUX×X

։ Gk) determined by φ : ΠUX×X
։

D is the maximal cuspidally central quotient of ∆UX×X
, relative to the

surjection ∆UX×X
։ ∆X×X .

Proof. Assertion (i) follows immediately from the slimness of Π†
X , ∆X [cf.,

e.g., [Mzk5, Theorem 1.1.1, (ii)]; the proofs of [Mzk5, Lemmas 1.3.1, 1.3.10]],

together with the [easily verified] fact that G†
k acts faithfully on MX via the

cyclotomic character. Next, we consider assertion (ii). The portion of assertion



Absolute anabelian cuspidalizations of proper hyperbolic curves 465

(ii) concerning ΠUx
follows immediately from the existence of the “homotopy

exact sequence associated to a family of curves” [cf., e.g., [Stix, Proposition

2.3]]. The slimness assertion then follows from assertion (i) [applied to Π†
X ]

and the slimness of ∆Ux
[cf. the proofs of [Mzk5, Lemmas 1.3.1, 1.3.10]]. As

for assertion (iii), the slimness of ∆US
, Π†

US
follows via the arguments given

in the proofs of [Mzk5, Lemmas 1.3.1, 1.3.10]. The existence of homomor-
phisms ΠUS

→
∏

x∈S ΠUx
→ DS as asserted is immediate from the definitions,

assertion (ii). For x ∈ S, write

Dx[US ] ⊆ ΠUS

for the decomposition group of x; Ix[US ] ⊆ Dx[US ] for the inertia subgroup.
Now it is immediate from the definitions that Ix[US ] maps isomorphically onto
the copy MX in DS corresponding to the point x. This implies the desired
surjectivity. Since, moreover, it is immediate from the definitions that the
cuspidal subgroup of any cuspidally central quotient of ∆US

is generated by
the image of the Ix[US ], as x ranges over the elements of S, the final assertion
concerning the maximal cuspidally central quotient of ∆US

follows immediately.
Assertion (iv) follows by a similar argument to the argument applied to the final
portion of assertion (iii).

Next, let Z ′ → X × X (respectively, Z′′ → X × X; Z∗ → X × X) be the
diagonal covering associated to a covering X ′ → X (respectively, X ′′ → X;
X∗ → X) arising from an open subgroup of ΠX ; denote by ι′ : X →֒ Z ′

(respectively, ι′′ : X →֒ Z ′′; ι∗ : X →֒ Z∗) the tautological lifting of the diagonal
embedding ι : X →֒ X × X and by k′ (respectively, k′′; k∗) the extension of k
determined by X ′ (respectively, X ′′; X∗). Assume, moreover, that the covering
X ′′ → X factors as follows:

X ′′ → X ′ → X∗ → X

Thus, we obtain a factorization Z′′ → Z ′ → Z∗ → X × X. Let

1 → MX → D′′ → ΠZ′′ → 1

be a fundamental extension of ΠZ′′ .
Write

1 → MX → D′′
X′′×X′′ → ΠX′′×X′′ → 1

for the pull-back of the extension D′′ via the inclusion ΠX′′×X′′ ⊆ ΠZ′′ . Now
if we think of ΠX×X or ΠX′′×X′′ as only being defined up to ∆X′′ × {1}-inner
automorphisms, then it makes sense, for δ ∈ ∆X/∆X′′ to speak of the pull-back
of the extension D′′

X′′×X′′ via δ × 1:

1 → MX → (δ × 1)∗D′′
X′′×X′′ → ΠX′′×X′′ → 1

In particular, we may form the fiber product over ΠX′′×X′′ :

SX′′/X∗(D′′)X′′×X′′
def
=

∏

δ∈∆X∗/∆X′′

(δ × 1)∗D′′
X′′×X′′
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Thus, SX′′/X∗(D′′)X′′×X′′ is an extension of ΠX′′×X′′ by a product of copies of
MX indexed by ∆X∗/∆X′′ ; SX′′/X∗(D′′)X′′×X′′ admits a tautological ∆X′′ ×
{1}-outer [more precisely: a (∆X′′ × {1}) ×ΠX′′×X′′ SX′′/X∗(D′′)X′′×X′′-outer]
action by the finite group ∆X∗/∆X′′ ∼= (∆X∗/∆X′′) × {1}. Moreover, the
natural outer action of Gal(X ′′/X) ∼= Gal((X ′′ × X ′′)/Z ′′) ∼= ΠX/ΠX′′ on
ΠX′′×X′′ [arising from the diagonal embedding ΠX →֒ ΠZ′′ ] clearly lifts to
an outer action of Gal(X ′′/X) on SX′′/X∗(D′′)X′′×X′′ , which is compatible,
relative to the natural action of Gal(X ′′/X) on ∆X∗/∆X′′ by conjugation,
with the ∆X′′ × {1}-outer action of ∆X∗/∆X′′ on SX′′/X∗(D′′)X′′×X′′ . Thus,
in summary, the natural isomorphism

{
(∆X∗/∆X′′) × {1}

}
⋊ Gal(X ′′/X) ∼= Gal((X ′′ × X ′′)/Z∗)

determines a homomorphism Gal((X ′′ × X ′′)/Z∗) → Out(SX′′/X∗(D′′)X′′×X′′)
via which we may pull-back the extension “1 → (−) → Aut(−) → Out(−) →
1” [cf. Section 0; Proposition 1.6, (i)] for SX′′/X∗(D′′)X′′×X′′ to obtain an
extension

1 →
∏

∆X∗/∆X′′

MX → SX′′/X∗(D′′) → ΠZ∗ → 1

in which ΠZ∗ is only determined up to ∆X′′ ×{1}-inner automorphisms. Note,
moreover, that every cyclotomically outer automorphism of the extension D′′

— i.e., an element of (k×)
∧

[cf. Remark 3] — induces a cyclotomically outer
automorphism of SX′′/X∗(D′′). In particular, we have a natural cyclotomically

outer action of (k×)
∧

on SX′′/X∗(D′′).
Next, let us push-forward the extension SX′′/X∗(D′′) just constructed via

the natural surjection

∏

∆X∗/∆X′′

MX ։

∏

∆X∗/∆X′

MX

[which induces the identity morphism MX → MX between the various factors
of the domain and codomain], so as to obtain an extension TrX′′/X′:X∗(D′′) as
follows:

1 →
∏

∆X∗/∆X′

MX → TrX′′/X′:X∗(D′′) → ΠZ∗ → 1

[in which ΠZ∗ is only determined up to ∆X′′ × {1}-inner automorphisms].

Proposition 1.7 (Symmetrizations and Traces). In the notation of the
discussion above:

(i) The extension TrX′′/X′:X′(D′′) of ΠZ′ by MX is a fundamental extension

of ΠZ′ .
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(ii) There is a natural commutative diagram:

1 −→
∏

∆X/∆X′′

MX −→ SX′′/X(D′′) −→ ΠX×X −→ 1

�
�

�id

1 −→
∏

∆X/∆X′

MX −→ SX′/X(TrX′′/X′:X′(D′′)) −→ ΠX×X −→ 1

[which is well-defined up to ∆X′ × {1}-inner automorphisms — cf. Remark 4
below].

(iii) Relative to the commutative diagram of (ii), the natural cyclotomically

outer action of (k×)
∧

on SX′′/X(D′′) lies over the composite of the map (k×)
∧
→

(k×)
∧

given by raising to the [∆X′ : ∆X′′ ]-power with the natural cyclotom-
ically outer action of (k×)

∧
on SX′/X(TrX′′/X′:X′(D′′)). In particular, if N

is a positive integer that divides [∆X′ : ∆X′′ ], then the natural cyclotomically
outer action of an element of (k×)

∧
on SX′′/X(D′′) lies over the cyclotomically

outer action of an element of {(k×)
∧
}N on SX′/X(TrX′′/X′:X′(D′′)).

Proof. To verify assertion (i), observe that it is immediate from the defi-
nitions that

ι′(X) ×Z′ (X ′′ × X ′′) ⊆ X ′′ × X ′′

is equal to the ∆X′/∆X′′-orbit of ι′′(X) ×Z′′ (X ′′ × X ′′) ⊆ X ′′ × X ′′. Now
assertion (i) follows by translating this observation into the language of étale
cohomology classes associated to subvarieties; assertions (ii), (iii) follow for-
mally from assertion (i) and the definitions of the various objects involved.

Remark 4. Relative to the commutative diagram of Proposition 1.7,
(ii), note that, although SX′/X(TrX′′/X′:X′(D′′)) is, by definition, only well-
defined up to ∆X′ ×{1}-inner automorphisms, the push-forward of SX′′/X(D′′)
by

∏

∆X/∆X′′

MX →
∏

∆X/∆X′

MX

is well-defined up to ∆X′′ ×{1}-inner automorphisms. That is to say, the push-
forward extension implicit in this commutative diagram furnishes a canonically
more rigid version of the extension SX′/X(TrX′′/X′:X′(D′′)).

Definition 1.3.

(i) We shall refer to the extension SX′′/X∗(D′′) [of ΠZ∗ ] constructed from the

fundamental extension D′′ as the [X ′′/X∗-]symmetrization of D′′, or, alterna-
tively, as a symmetrized fundamental extension. We shall refer to the extension
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TrX′′/X′:X∗(D′′) [of ΠZ∗ ] constructed from the fundamental extension D′′ as
the [X ′′/X ′ : X∗-]trace of D′′, or, alternatively, as a trace-symmetrized funda-
mental extension.

(ii) If D′ is a fundamental extension of ΠZ′ , then we shall refer to as a morphism

of trace type any morphism

SX′′/X(D′′) → SX′/X(D′)

obtained by composing the morphism

SX′′/X(D′′) → SX′/X(TrX′′/X′:X′(D′′))

of Proposition 1.7, (ii), with a morphism

SX′/X(TrX′′/X′:X′(D′′)) → SX′/X(D′)

arising [by the functoriality of the construction of “SX′/X(−)”] from an isomor-

phism of [fundamental] extensions TrX′′/X′:X′(D′′)
∼
→ D′ of ΠZ′ by MX [which

induces the identity on ΠZ′ , MX ].

(iii) We shall refer to as a pro-symmetrized fundamental extension any compat-

ible system [indexed by the natural numbers]

. . . ։ Si ։ . . . ։ Sj ։ . . . ։ ΠX×X

of morphisms of trace type [up to inner automorphisms of the appropriate
type] between symmetrized fundamental extensions, where Si is the Xi/X-
symmetrization of a fundamental extension of ΠZi

; Zi is the diagonal covering
associated to an open normal subgroup ΠXi

⊆ ΠX ; the intersection of the ΠXi

is trivial. In this situation, we shall refer to the inverse limit profinite group

S∞
def
= lim

←−
i

Si

as the limit of the pro-symmetrized fundamental extension {Si}; any profinite
group S∞ arising in this fashion will be referred to as a pro-fundamental exten-
sion [of ΠX×X ].

(iv) Let S ⊆ X(k) be a finite subset; S ′ an X ′/X-symmetrization of a funda-

mental extension D′ of ΠZ′ . Then we shall write

S ′
S

def
=

∏

x∈S

S ′
Dx×Gk

ΠX

[where the product is to be understood as the fiber product over ΠX ]. Thus,
S ′

S is an extension of ΠX by a product of copies of MX . Similarly, given a
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projective system {Si} as in (iii), we obtain a projective system {(Si)S}, with
inverse limit:

(S∞)S

We shall refer to (S∞)S as a maximal abelian S-pro-cuspidalization [of ΠX at
S]. Observe that if T ⊆ X(k) is a finite subset such that S ⊆ T , then we obtain
a natural projection morphism (S∞)T → (S∞)S .

Remark 5. Let D be as in Definition 1.2, (iii); S ′, {Si}, S∞ as in
Definition 1.3, (iii), (iv). Then observe that it follows from Proposition 1.6, (i),

that the “daggered versions” D†, (S ′)†, S†
i , and S†

∞ [i.e., the result of applying

“×Gk
G†

k” to D, S ′, Si, and S∞] are slim. In particular, if S ⊆ Xcl is any finite
set of closed points of X, then we may form the objects

D†
S ; (S ′)†S; (Si)

†
S; (S∞)†S

by passing to a Galois covering XkS
→ X [i.e., the result of base-changing X

to some finite Galois extension kS of k] such that the closed points of XkS
that

lie over points of S are rational over kS ; forming the various objects in question
over XkS

[cf. Definition 1.2, (iii); Definition 1.3, (iv)]; and, finally, “descending

to X” via the natural outer action of Gk/G†
kS

on the various objects in question
[cf. the exact sequence “1 → (−) → Aut(−) → Out(−) → 1” of §0; the slimness
mentioned above]. Thus, in the remainder of this paper, we shall often speak
of the various objects defined in Definition 1.2, (iii); Definition 1.3, (iv), even
when the points of the finite set S are not necessarily rational over k.

Before proceeding, we note the following:

Lemma 1.1 (Conjugacy Estimate). Let H ⊆ ∆X be a normal open
subgroup; a ∈ ∆X/H an element not equal to the identity; N a Σ†-integer
[cf. Section 0]. Then there exists a normal open subgroup H ′ ⊆ ∆X contained
in H such that for any normal open subgroup H ′′ ⊆ ∆X contained in H ′ and
any a′′ ∈ ∆X/H ′′ that lifts a, the cardinality of the H-conjugacy class

Conj(a′′, H ′′) ⊆ ∆X/H ′′ of a′′ in ∆X/H ′′ is divisible by N .

Proof. In the notation of the statement of Lemma 1.1, let us denote by
Z(a′′, H ′′) ⊆ H the subgroup of elements δ ∈ H such that δ · a′′ · δ−1 = a′′ in
∆X/H ′′. Then it is immediate that if a′ is the image of a′′ in ∆X/H ′, then
Z(a′′, H ′′) ⊆ Z(a′, H ′), so the cardinality of Conj(a′′, H ′′) ∼= H/Z(a′′, H ′′) is
divisible by the cardinality of Conj(a′, H ′) ∼= H/Z(a′, H ′). Thus, it suffices to
find a normal open subgroup H ′ ⊆ H such that for any a′ ∈ ∆X/H ′ that lifts
a, the cardinality of Conj(a′, H ′) is divisible by N .

To this end, let us consider, for some prime number l ∈ Σ†, the maximal
pro-l quotient H[l] of the abelianization Hab of H. Note that ∆X/H acts by
conjugation on Hab, H[l]. Now I claim that there exists a [nonzero] hl ∈ H[l]
such that a(hl) �= hl. Indeed, if this claim were false, then it would follow
that a acts trivially on H[l]. But since a induces a nontrivial automorphism



470 Shinichi Mochizuki

of the covering of Xk determined by H, it follows that a induces a nontrivial
automorphism of the l-power torsion points of the Jacobian of Xk [since these
points are Zariski dense in this Jacobian] — a contradiction. This completes
the proof of the claim.

Now let j ∈ H be an element that lifts the various hl obtained above for
the [finite collection of] primes l that divide N ; let aX ∈ ∆X be an element that
lifts a. Then observe that for some integer power M of N that is independent
of the choice of aX , the image of jn · aX · j−n · a−1

X in Hab ⊗ (Z/MZ) is

nonzero, for n ∈ Ẑ with nonzero image in Ẑ/N · Ẑ. Thus, if we take H ′ equal
to the inverse image of M · Hab in H(⊆ ∆X), we obtain that the intersection

of the subgroup j
bZ ⊆ H with Z(a′, H ′) [where a′ ∈ ∆X/H ′ lifts a] does not

contain jn, for n ∈ Ẑ with nonzero image in Ẑ/N · Ẑ. But this implies that the

intersection (j
bZ)

⋂
Z(a′, H ′) ⊆ jN ·bZ, hence that [H : Z(a′, H ′)] is divisible by

N , as desired.

Next, we consider the following fundamental extensions of ΠZ′′ , ΠZ′ :

D′′ def
= Π

L
×
diag

[Z′′]; D′ def
= TrX′′/X′:X′(D′′)

[cf. Proposition 1.5, (ii)]. Note that in this situation, it follows immediately
from the definitions that we obtain a natural isomorphism D′ ∼

→ Π
L
×
diag

[Z′],

which we shall use in the following discussion to identify D′, Π
L
×
diag

[Z′]. Thus,

we have fundamental sections:

ΠUZ′′ ։ D′′; ΠUZ′ ։ D′

[cf. Proposition 1.5, (iii)]. In particular, by pulling back from Z ′′ to X ′′ × X ′′,
we obtain a surjection:

ΠUX′′×X′′ ։ D′′
X′′×X′′

Now if we apply the natural outer (∆X/∆X′′) × {1}-action on ΠUX′′×X′′ to

this surjection, it follows from the definition of “SX′′/X(D′′)” that we obtain a
natural homomorphism

ΠUX′′×X′′ ։ SX′′/X(D′′)X′′×X′′

which is easily verified [cf. Proposition 1.6, (ii), (iii)] to be surjective. Since,
moreover, the construction of this surjective homomorphism is manifestly com-
patible with the outer actions of Gal(X ′′/X) on both sides, we thus obtain a
natural surjection:

ΠUX×X
։ SX′′/X(D′′)

Now let us denote by

DX ⊆ ΠUX×X

the decomposition group of the subvariety ι(X) ⊆ X × X. [Thus, DX is well-
defined up to conjugation; here, we assume that we have chosen a conjugate
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that maps to the image of the diagonal embedding ΠX →֒ ΠX×X via the natural
surjection ΠUX×X

։ ΠX×X .] Observe that we have a natural exact sequence

1 → IX → DX → ΠX → 1

[where IX — i.e., the inertia subgroup of DX — is defined so as to make the
sequence exact], together with a natural isomorphism IX

∼= MX . Also, we shall

write DX′
def
= DX

⋂
ΠUX′×X′ ; DX′′

def
= DX

⋂
ΠUX′′×X′′ . Since the construction

just carried out for double primed objects may also be carried out for single
primed objects, we thus obtain the following:

Proposition 1.8 (Symmetrized Fundamental Sections). In the notation
of the discussion above:

(i) There is a natural commutative diagram:

DX ⊆ ΠUX×X
։ SX′′/X(D′′)

�id

�id

�

DX ⊆ ΠUX×X
։ SX′/X(D′)

[where the vertical arrow on the right is the morphism in the diagram of Propo-
sition 1.7, (ii)].

(ii) Denote by means of a subscript X ′′ the result of pulling back extensions of

ΠX×X , ΠZ′′ , ΠX′′×X′′ to ΠX′′ [via the diagonal inclusion]. Then the projection
[cf. the fiber product defining SX′′/X(D′′)] to the factor labeled “∆X′′/∆X′′”
detemines a natural surjection

ζ ′′ : SX′′/X(D′′)X′′ ։ D′′
X′′

whose restriction to DX′′ [i.e., relative to the arrows in the first line of the
commutative diagram of (i)] defines an isomorphism DX′′

∼
→ D′′

X′′ . Moreover,
the cuspidal subgroup of DX′′ maps isomorphically onto the factor of MX in
SX′′/X(D′′) labeled “∆X′′/∆X′′”. In particular, if we denote by

SX′′/X(D′′) 	=

the quotient of SX′′/X(D′′) by this factor of MX , then ζ ′′ determines a surjec-
tion

ζ ′′	= : SX′′/X(D′′) 	=X′′ ։ ΠX′′

whose restriction to the quotient DX′′ ։ ΠX′′ is equal to the identity ΠX′′
∼
→

ΠX′′ [up to geometric inner automorphisms]. Thus, we have a natural com-
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mutative diagram [well-defined up to geometric inner automorphisms]

DX′′ →֒ SX′′/X(D′′)X′′
ζ′′

−→ D′′
X′′

�
�

�

ΠX′′ →֒ SX′′/X(D′) 	=X′′

ζ′′
�=

−→ ΠX′′

in which the two horizontal composites are isomorphisms; the vertical arrows
are surjections; both squares are cartesian.

(iii) If we carry out the construction of (ii) for the single primed objects, then

the commutative diagram of (i) induces a natural commutative diagram

[well-defined up to geometric inner automorphisms]:

ΠX′′ →֒ SX′′/X(D′′) 	=X′′

ζ′′
�=

−→ ΠX′′

�
�

�

ΠX′ →֒ SX′/X(D′) 	=X′

ζ′
�=

−→ ΠX′

Moreover, there is a natural outer action of Gal(X ′′/X) (respectively,
Gal(X ′/X)) on the first (respectively, second) line of this diagram; these outer
actions are compatible with one another.

(iv) When considered up to cyclotomically inner automorphisms, the sections

of ζ ′′	= form a torsor over the group

∏

(∆X/∆X′′ )\(∆X′′/∆X′′ )

((k′′)×)
∧

[where the “\” denotes the set-theoretic complement]. The Gal(X ′′/X)-equi-

variant sections of ζ ′′	= form a torsor over the Gal(X ′′/X)-invariant subgroup
of this group. Similar statements hold for the single primed objects.

(v) The double and single primed torsors of equivariant sections of (iv) are

related, via the right-hand square of the diagram of (iii), by a homomorphism

{ ∏

(∆X/∆X′′ )\(∆X′′/∆X′′ )

((k′′)×)
∧
}Gal(X′′/X)

→

{ ∏

(∆X/∆X′ )\(∆X′/∆X′ )

((k′)×)
∧
}Gal(X′/X)

[where the superscripts denote the result of taking invariants with respect to the
action of the superscripted group] that satisfies the following property:
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An element ξ′′ of the domain maps to an element of the codomain
whose component in the factor labeled a′ ∈ ∆X/∆X′ is a product of
elements of ((k′)×)

∧
of the form Nk′

a′′/k′(λ′′)n′′

.

Here, a′′ ∈ (∆X/∆X′′)\(∆X′/∆X′′) maps to a′ in ∆X/∆X′ ; λ′′ ∈ ((k′′)×)
∧

is the component of ξ′′ in the factor labeled a′′; k′
a′′ is an intermediate field

extension between k′ and k′′ such that λ′′ ∈ ((k′
a′′)×)

∧
; Nk′

a′′/k′ : ((k′
a′′)×)

∧
→

((k′)×)
∧

is the norm map; n′′ is the cardinality of the ∆X′-conjugacy class

of a′′ in (∆X/∆X′′). In particular, by Lemma 1.1 [where we take “H” to be
∆X′ , “H ′′” to be ∆X′′ ], for a given ∆X′ , if, for a given positive integer N , ∆X′′

is “sufficiently small”, then an arbitrary Gal(X ′′/X)-equivariant section of
ζ ′′	= lies over the canonical section of ζ ′	= given in (iii), up to the cyclotomically
outer action of some N-th power of an element of the single primed version of
the group exhibited in the display of (iv).

Proof. All of these assertions follow immediately from the definitions
[and, in the case of assertion (iv), Proposition 1.4, (ii)].

Definition 1.4. Let D′ be a fundamental extension of ΠZ′ ; {Si} a pro-
symmetrized fundamental extension, with limit S∞ [cf. Definition 1.3, (iii)].

(i) We shall refer to as a symmetrized fundamental section a homomorphism

ΠUX×X
։ SX′/X(D′)

obtained by composing the surjection ΠUX×X
։ SX′/X(D′) of Proposition 1.8,

(i), with the isomorphism SX′/X(D′)
∼
→ SX′/X(D′) induced by an isomorphism

D′ ∼
→ D′ of fundamental extensions of ΠZ′ by MX [which induces the identity

on ΠZ′ , MX ]. We shall refer to an inclusion

DX →֒ SX′/X(D′)

obtained by restricting a symmetrized fundamental section to DX ⊆ ΠUX×X

[cf. Proposition 1.8, (i)] as a fundamental inclusion.

(ii) We shall refer to a compatible system of symmetrized fundamental sections

ΠUX×X
→ Si as a pro-symmetrized fundamental section and to the resulting

limit homomorphism ΠUX×X
→ S∞ as a pro-fundamental section. Similarly,

we have a notion of “pro-fundamental inclusions”.

Remark 6. Thus, by the above discussion, if we take the “Si” to be the
symmetrizations of the Π

L
×
diag

[Z′] as in Proposition 1.5, (ii), then we obtain nat-

ural pro-fundamental sections and pro-fundamental inclusions [cf. Proposition
1.8, (i), (ii), (iii)].



474 Shinichi Mochizuki

Proposition 1.9 (Maximal Cuspidally Abelian Quotients). Let {Si}
be a pro-symmetrized fundamental extension, with limit S∞ [cf. Defi-
nition 1.3, (iii)] and pro-fundamental section ΠUX×X

։ S∞ [cf. Definition
1.4, (ii)]; S ⊆ Xcl a finite set of closed points [cf. Remark 5]. Then:

(i) The pro-fundamental section ΠUX×X
։ S∞ determines a surjection

ΠUS
։ (S∞)S

[cf. Proposition 1.6, (iii)]. The resulting quotient of ∆US
(respectively, ΠUS

)
is the maximal cuspidally abelian quotient ∆US

։ ∆c-ab
US

(respectively,

ΠUS
։ Πc-ab

US
) of ∆US

(respectively, ΠUS
).

(ii) The quotient of ∆UX×X
(respectively, ΠUX×X

) induced by the pro-funda-

mental section ΠUX×X
։ S∞ is the maximal cuspidally abelian quotient

[which we shall denote by] ∆UX×X
։ ∆c-ab

UX×X
(respectively, ΠUX×X

։ Πc-ab
UX×X

)

of ∆UX×X
(respectively, ΠUX×X

).

Proof. Indeed, this follows as in the proof of Proposition 1.6, (iii), (iv),
by observing that the cuspidal subgroup of the maximal cuspidally abelian
quotient of ∆US

(respectively, ∆UX×X
) is naturally isomorphic to the inverse

limit of the cuspidal subgroups of the maximal cuspidally central quotients of
the ∆US

×∆X
∆X′ (⊆ ∆US

) (respectively, ∆UX′×X′ ) [as ∆X′ ⊆ ∆X ranges over
the open normal subgroups of ∆X ].

Proposition 1.10 (Automorphisms and Commensurators). Let {Si}
be a pro-symmetrized fundamental extension, with limit S∞ [cf. Defi-
nition 1.3, (iii)] and pro-fundamental inclusion DX →֒ S∞ [cf. Definition
1.4, (ii)]. Then:

(i) Any automorphism α of the profinite group Πc-ab
UX×X

which

(a) is compatible with the natural surjection Πc-ab
UX×X

։ ΠX×X and induces
the identity on ΠX×X ;

(b) preserves the image of MX
∼= IX ⊆ DX via the natural inclusion

DX →֒ Πc-ab
UX×X

is cuspidally inner.

(ii) ΠX (respectively, ∆X) is commensurably terminal [cf. Section 0] in

ΠX×X (respectively, ∆X×X).

(iii) DX is commensurably terminal in Si, S∞
∼= Πc-ab

UX×X
.
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Proof. First, we verify assertion (i). By Proposition 1.9, (ii), we have a
natural isomorphism Πc-ab

UX×X

∼
→ S∞, so we may think of α as an automorphism

of S∞. In light of (a); Proposition 1.6, (iii), it follows that α is compatible with
the natural surjections S∞ ։ Si. Write αi for the automorphism of Si induced
by α. By (a), (b), it follows that αi is an automorphism of the extension Si of
ΠX×X by a product of copies of MX which induces the identity on both ΠX×X

and the product of copies of MX [cf. the definition by a certain fiber product of
the symmetrized fundamental extension Si]. [Here, we note that the fact that αi

induces the identity on each copy of MX follows by considering the non-torsion
[cf. Propositions 1.2, (ii); 1.5, (i), (ii)] extension class determined by that copy
of MX [which is preserved by αi!], together with the fact that αi induces the
identity on the second cohomology groups of open subgroups of ∆X×X with
coefficients in MX .] Thus, up to cyclotomically inner automorphisms, αi arises

from a collection of elements of (k×
i )

∧
, where ki is some finite Galois extension

of k [cf. Proposition 1.4, (ii)], one corresponding to each copy of MX . Moreover,
since these copies of MX are permuted by the action of ΠX×X by conjugation, it
follows that [up to cyclotomically inner automorphisms] αi arises from a single

element of (k×
i )

∧
, which in fact belongs to (k×)

∧
(⊆ (k×

i )
∧
) [as one sees by

considering the conjugation action via the “Gk portion” of ΠX×X ]. On the
other hand, since the αi form a compatible system of automorphisms of the Si,
it follows from Proposition 1.7, (iii), that this element of (k×)

∧
must be equal

to 1, as desired.
Next, to verify assertion (ii), let us observe that it suffices to show that

∆X is commensurably terminal in ∆X×X . But this follows immediately from
the fact that ∆X is slim [cf. Proposition 1.6, (i)]. Finally, we consider assertion
(iii). Clearly, it suffices to show that DX is commensurably terminal in Si.
By assertion (ii), to verify this commensurable terminality, it suffices to show
that the [manifestly abelian] cuspidal subgroup Hi ⊆ Si [i.e., relative to the
natural surjection Si ։ ΠX×X ] satisfies the following property: Every h ∈ Hi

such that hδ − h ∈ DX , for all δ in some open subgroup J of DX , satisfies
h ∈ DX . But this property follows immediately [cf. the definition by a certain
fiber product of the symmetrized fundamental extension Si] from the fact that,
for J sufficiently small, the J-module Hi/(DX

⋂
Hi) is isomorphic to a direct

product of a finite number of copies of MX .

The following result is the main result of the present Section 1:

Theorem 1.1 (Reconstruction of Maximal Cuspidally Abelian Quotients).
Let X, Y be hyperbolic curves over a finite or nonarchimedean local

field; denote the base fields of X, Y by kX , kY , respectively. Let ΣX (re-
spectively, ΣY ) be a set of prime numbers that contains at least one prime
number that is invertible in kX (respectively, kY ); write ∆X (respectively, ∆Y )

for the maximal cuspidally pro-Σ†
X (respectively, pro-Σ†

Y ) quotient of the

maximal pro-ΣX (respectively, pro-ΣY ) quotient of the tame fundamen-

tal group of XkX
(respectively, YkY

) [where “tame” is with respect to the
complement of XkX

(respectively, YkY
) in its canonical compactification], and
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ΠX (respectively, ΠY ) for the corresponding quotient of the étale fundamental
group of X (respectively, Y ). Let

α : ΠX
∼
→ ΠY

be an isomorphism of profinite groups. Then:

(i) We have Σ†
X = Σ†

Y ; write Σ† def
= Σ†

X = Σ†
Y . Moreover, kX is a finite field

if and only if kY is; α preserves the decomposition groups of cusps; X is
of type (g, r) [where g, r ≥ 0 are integers such that 2g−2+r > 0] if and only if
Y is of type (g, r). Finally, if kX , kY are nonarchimedean local, then their
residue characteristics coincide.

(ii) α is compatible with the natural quotients ΠX ։ GkX
, ΠY ։ GkY

.

(iii) Assume that X, Y are proper. Denote by ΠUX×X
։ Πc-ab

UX×X
, ΠUY ×Y

։

Πc-ab
UY ×Y

the maximal cuspidally [i.e., relative to the natural surjections ΠUX×X

։ ΠX×X , ΠUY ×Y
։ ΠY ×Y ] abelian quotients [cf. Proposition 1.9]. Then

there is a commutative diagram [well-defined up to cuspidally inner auto-

morphisms]

Πc-ab
UX×X

αc-ab

−→ Πc-ab
UY ×Y

�
�

ΠX×X
α×α
−→ ΠY ×Y

— where, the horizontal arrows are isomorphisms which are compatible with
the natural inclusions DX →֒ Πc-ab

UX×X
, DY →֒ Πc-ab

UY ×Y
[cf. Proposition 1.8,

(i)]; the vertical arrows are the natural surjections. Finally, the correspondence

α 	→ αc-ab

is functorial [up to cuspidally inner automorphisms] with respect to α.

Proof. First, we consider assertions (i), (ii). Note that kX is finite if and
only if, for every open subgroup H ⊆ ΠX , the quotient of the abelianization
Hab by the closure of the torsion subgroup of Hab is topologically cyclic [cf.
[Tama, Proposition 3.3, (ii)]]; a similar statement holds for kY , ΠY . Thus, kX

is finite if and only if kY is. Now suppose that kX , kY are finite. Then assertion
(ii) also follows from [Tama, Proposition 3.3, (ii)]. The fact that Σ†

X = Σ†
Y then

follows from the following observation: The subset Σ†
X ⊆ Primes is the subset

on which the function

Primes ∋ l 	→ dimQl
((∆X)ab ⊗ Ql)
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attains its maximum value [cf. [Tama, Proposition 3.1]]; a similar statement
holds for Y . Now by considering the respective outer actions of GkX

, GkY
on

the maximal pro-l quotients of ∆X , ∆Y , for some l ∈ Σ†, we obtain that α
preserves the decomposition groups of cusps [hence that X is of type (g, r) if
and only if Y is of type (g, r)], by [Mzk9, Corollary 2.7, (i)]. This completes
the proof of assertions (i), (ii) in the finite field case.

Next, let us assume that kX , kY are nonarchimedean local. Then the
portion of assertion (i) concerning ΣX = Σ†

X , ΣY = Σ†
Y follows by considering

the cohomological dimension of ΠX , ΠY — cf., e.g., Proposition 1.3, (ii) [in the

proper case]. As for assertion (ii), if the cardinality of Σ
def
= Σ† is ≥ 2, then

assertion (ii) follows from the evident pro-Σ analogue of [Mzk5, Lemma 1.3.8];
if the cardinality of Σ is 1, then assertion (ii) follows from Lemma 1.2, (c), (d)
below. Now the portion of assertion (i) concerning the residue characteristics
of kX , kY follows from assertion (ii) and [Mzk5, Proposition 1.2.1, (i)]; the fact
that α preserves the decomposition groups of cusps [hence that X is of type
(g, r) if and only if Y is of type (g, r)] follows from [Mzk9, Corollary 2.7, (i)].
This completes the proof of assertions (i), (ii) in the nonarchimedean local field
case.

Finally, we consider assertion (iii). It follows from the definitions that α
induces an isomorphism MX

∼
→ MY . If, moreover, Z ′

X → X, Z ′
Y → Y are

diagonal coverings corresponding to [connected] finite étale Galois coverings
X ′ → X, Y ′ → Y that arise from open subgroups of ΠX , ΠY that correspond
via α, then α induces an isomorphism of group cohomology modules

H2(ΠZ′
X

, MX)
∼
→ H2(ΠZ′

Y
, MY )

that preserves the extension classes associated to fundamental extensions of
ΠZ′

X
, ΠZ′

Y
[cf. Proposition 1.5, (i)]. In particular, if D′ (respectively, E ′)

is a fundamental extension of ΠZ′
X

(respectively, ΠZ′
Y
), then α induces an

isomorphism

D′ ∼
→ E ′

which is compatible with the morphisms MX
∼
→ MY , ΠZ′

X

∼
→ ΠZ′

Y
already

induced by α, and, moreover, uniquely determined, up to cyclotomically inner
automorphisms, and the action of (k×

X)
∧

(respectively, (k×
Y )

∧
) [cf. Proposition

1.4, (ii)]. On the other hand, by allowing X ′, Y ′ to vary, taking symmetriza-
tions of the fundamental extensions involved [which may be constructed entirely
group-theoretically!], and making use of the vertical morphism in the center of
the diagram of Proposition 1.7, (ii) [again an object which may be constructed
entirely group-theoretically!], it follows from Proposition 1.7, (iii), that the inde-

terminacy of the isomorphism D′ ∼
→ E ′ arising from the action of (k×

X)
∧
, (k×

Y )
∧

“converges to the identity indeterminacy” [i.e., by taking D′ ∼
→ E ′ to arise as

just described from an isomorphism of fundamental extensions D′′ ∼
→ E ′′ as-

sociated to [connected] finite étale coverings X ′′ → X ′, Y ′′ → Y ′ [that arise
from open subgroups of ΠX , ΠY that correspond via α], where the open sub-
groups ΠX′′ ⊆ ΠX′ , ΠY ′′ ⊆ ΠY ′ are sufficiently small]. Thus, in light of the
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manifest functoriality of the vertical morphism in the center of the diagram of
Proposition 1.7, (ii) [the detailed explication of which, in terms of various com-
mutative diagrams, is a routine task which we leave to the reader!], we obtain
an isomorphism

{Si}
∼
→ {Tj}

of pro-symmetrized fundamental extensions [cf. Definition 1.3, (iii)] of ΠX×X ,
ΠY ×Y , respectively, which arises from α and is completely determined up to
cyclotomically inner automorphisms. Here, we pause to note that although
in the construction of the symmetrization of a fundamental extension D′ (re-
spectively, E ′), one must, a priori, contend with a certain indeterminacy with
respect to ∆X′ × {1}- (respectively, ∆Y ′ × {1}-)inner automorphisms [cf., e.g.,
Proposition 1.7, (ii)], in fact, by allowing X ′, Y ′ to vary, this indeterminacy
also “converges to the identity indeterminacy” [cf. Remark 4].

Thus, in summary, α induces an isomorphism [well-defined up to cyclo-
tomically [or, alternatively, cuspidally] inner automorphisms]

S∞
∼
→ T∞

of pro-fundamental extensions of ΠX×X , ΠY ×Y , respectively. Moreover, by
applying the fact that the left-hand square of the commutative diagram of
Proposition 1.8, (ii), is cartesian, together with the fact that the “canonical
section” of “ζ ′	=” that appears in Proposition 1.8, (iii), is completely determined
[cf. Proposition 1.8, (v); Lemma 1.1] by the condition that it lie under an
arbitrary “equivariant section” [cf. Proposition 1.8, (iv)] of the “ζ ′′	=” associated
to coverings “X ′′ → X ′” arising from arbitrarily small open subgroups ΠX′′ ⊆
ΠX , it follows that the isomorphism S∞

∼
→ T∞ just obtained is compatible

with the pro-fundamental inclusions DX →֒ S∞, DY →֒ T∞. In particular, by
Proposition 1.9, (ii) [cf. also Proposition 1.8, (i)], we conclude that α induces
an isomorphism [well-defined up to cuspidally inner automorphisms]

(S∞
∼= ) Πc-ab

UX×X

∼
→ Πc-ab

UY ×Y
( ∼= T∞)

which is compatible with the natural inclusions DX →֒ Πc-ab
UX×X

, DY →֒ Πc-ab
UY ×Y

.
Finally, the functoriality of this isomorphism follows from the naturality of its
construction.

Remark 7. It follows immediately from the naturality of the construc-
tions used in the proof of Theorem 1.1, (iii), that when “α” arises from an
isomorphism of schemes X

∼
→ Y , the resulting αc-ab of Theorem 1.1, (iii), co-

incides with the morphism induced on fundamental groups by the resulting
isomorphism of schemes UX×X

∼
→ UY ×Y .

Lemma 1.2 (Normal Subgroups of Local Absolute Galois Groups). Let
k be a nonarchimedean local field of residue characteristic p; write Gk for
the absolute Galois group of k. Also, let us write I ⊆ Gk for the inertia

subgroup of Gk and W ⊆ I for the wild inertia subgroup. [Here, we recall
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that W is the unique Sylow pro-p subgroup of I]. Let H ⊆ Gk be a closed

subgroup that satisfies [at least] one of the following four conditions:

(a) H is a finite group.

(b) H commutes with W .

(c) H is a pro-prime-to-p group [i.e., the order of every finite quotient
group of H is prime to p] that is normal in Gk.

(d) H is a topologically finitely generated pro-p group that is nor-

mal in Gk.

Then H = {1}.

Proof. Indeed, suppose that H satisfies condition (a). Then the fact that
H = {1} follows from [NSW, Corollary 12.1.3, Theorem 12.1.7]. Now suppose
that H satisfies condition (b). Then by the well-known functorial isomorphism
[arising from local class field theory] between the additive group underlying a
finite field extension of k that corresponds to an open subgroup J ⊆ Gk and
the tensor product with Qp of the image of W

⋂
J in the abelianization Jab,

it follows immediately that the conjugation action of H on W is nontrivial,
whenever H is nontrivial. Thus we conclude again that H = {1}. Next,
suppose that H satisfies condition (c). Then since H, W are both normal in
Gk, it follows [by considering commutators of elements of H with elements of
W ] that arbitrary elements of H commute with arbitrary elements of W . In
particular, H satisfies condition (b), so we conclude yet again that H = {1}.

Finally, we assume that H is nontrivial and satisfies condition (d). Then I
claim that H has trivial image Im(H) in Gk/W . Indeed, since I/W , Im(H) are
normal in Gk/W , and, moreover, I/W is pro-prime-to-p, it follows that these
two groups commute. On the other hand, since, as is well-known, Gk/I acts
faithfully [by conjugation, via the cyclotomic character] on I/W , it thus follows
that Im(H) is trivial, as asserted. Thus, H ⊆ W . Since [as in well-known —
cf., e.g., the proof of [Mzk4, Lemma 15.6]] W is a free pro-p group of infinite
rank, we thus conclude that there exists an open subgroup U ⊆ W [so U is also
a free pro-p group of infinite rank] containing H such that the natural map

Hab ⊗ Fp → Uab ⊗ Fp

is injective, but not surjective. Then it follows immediately from the well-known
theory of free pro-p groups that there exists a set of free topological generators
{ξi}i∈I [so the index set I is infinite] of U such that for some finite subset J ⊆ I,
the elements {ξj}j∈J lie in and topologically generate H. On the other hand,
since H is normal in U , it follows from the well-known structure of free pro-p
groups that we obtain a contradiction. This completes the proof of Lemma
1.2.
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Remark 8. The author would like to thank A. Tamagawa for informing
him of the content of Lemma 1.2.

Definition 1.5. In the situation of Theorem 1.1, (i), (ii), suppose fur-

ther that ΣX = ΣY ; write Σ
def
= ΣX = ΣY .

(i) If, for every finite étale covering X ′ → X of X arising from an open subgroup

ΠX′ ⊆ ΠX , it holds that the map from (X ′)cl+ [cf. Section 0] to conjugacy
classes of closed subgroups of ΠX′ given by assigning to a closed point its asso-
ciated decomposition group is injective, then we shall say that X is Σ-separated.

(ii) If the map induced by α on closed subgroups of ΠX , ΠY induces a bijection

between the decomposition groups of the points of Xcl+, Y cl+, then we shall
say that α is quasi-point-theoretic. If α is quasi-point-theoretic, and, moreover,
X, Y are Σ-separated — in which case α induces bijections

Xcl ∼
→ Y cl; Xcl+ ∼

→ Y cl+

— then we shall say that α is point-theoretic.

(iii) Suppose further that we are in the finite field case. Then we shall say

that α is Frobenius-preserving if the isomorphism GkX

∼
→ GkY

induced by α
[cf. Theorem 1.1, (ii)] maps the Frobenius element of GkX

to the Frobenius
element of GkY

.

Remark 9. In the finite field case, when Σ† = Primes†, the Frobenius
element of GkX

may be characterized as in [Tama, Proposition 3.4, (i), (ii)]; a
similar statement holds for the Frobenius element of GkY

. [Moreover, in the
proper case, the Frobenius element of GkX

may be characterized as the element
of GkX

that acts on MX via multiplication by the cardinality of kX , i.e., the
cardinality of H1(GkX

, MX) plus 1.] Thus, when Σ† = Primes†, any α as in
Theorem 1.1, (i), (ii), is automatically Frobenius-preserving.

Remark 10. Let us suppose that we are in the situation of Definition
1.5, and that the base fields kX , kY are finite. Let us refer to as a quasi-section
[of ΠX ։ GkX

] any closed subgroup D ⊆ ΠX [i.e., such as a decomposition
group of a point ∈ Xcl] that maps isomorphically onto an open subgroup of
GkX

. Let us refer to a quasi-section of ΠX ։ GkX
as a subdecomposition group

if it is contained in some decomposition group of a point ∈ Xcl. Then:

(i) Since X is not necessarily Σ-separated, it is not necessarily the case that

decomposition groups of points ∈ Xcl are commensurably terminal in ΠX [cf.
Proposition 2.3, (ii), below]. On the other hand, if D ⊆ ΠX is a quasi-section,

and we write E
def
= CΠX

(D) ⊆ ΠX for the commensurator of D in ΠX [cf.
Section 0], then one verifies immediately E is also a quasi-section. [Indeed,
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by considering the projection ΠX ։ GkX
, it follows immediately that every

element of E centralizes some open subgroup D′ ⊆ D; on the other hand, by
considering the well-known properties of the action of open subgroups of Gk

on abelianizations of open subgroups of ∆X [i.e., more precisely, the “Riemann
hypothesis for abelian varieties over finite fields” — cf., e.g., [Mumf, p. 206]],
it follows that every centralizer of D′ in ∆X is trivial, i.e., that E

⋂
∆X = {1}.]

(ii) It is immediate that any maximal subdecomposition group of ΠX is, in fact,

a decomposition group of some point ∈ Xcl. On the other hand, since X is
not necessarily Σ-separated, it is not clear whether or not every decomposition
group of a point ∈ Xcl is necessarily a maximal subdecomposition group. If X,
Y are Σ-separated, then the arguments of [Tama, Corollary 2.10, Proposition
3.8], yield a “group-theoretic” characterization of the subdecomposition groups
[hence also of the maximal subdecomposition groups, i.e., the decomposition
groups of points ∈ Xcl] of ΠX , ΠY in terms of the actions of the Frobenius
elements. That is to say, if X, Y are Σ-separated, then any Frobenius-preserving
isomorphism α is [quasi-]point-theoretic.

(iii) Nevertheless, as was pointed out to the author by A. Tamagawa, even if

X, Y are not necessarily Σ-separated, it is still possible to conclude, essentially
from the arguments of [Tama, Corollary 2.10, Proposition 3.8], that:

Any Frobenius-preserving isomorphism α is quasi-point-theoretic.

Indeed, it suffices to give a “group-theoretic” characterization of the quasi-
sections D ⊆ ΠX which are decomposition groups of points ∈ Xcl. We may
assume [for simplicity] without loss of generality that X, Y are proper. Write

E
def
= CΠX

(D); kD, kE for the finite extension fields of kX determined by
D, E. Let H ⊆ ∆X be a characteristic open subgroup; denote by Y → X
the covering determined by the open subgroup E · H ⊆ ΠX . Then it follows
immediately from the definition of a “decomposition group” that it suffices to
give a “group-theoretic” criterion for the condition that Y (kD) contain a point
whose field of definition [which is, a priori, some subextension in kD of kE ] is
equal to kD. In [Tama], the Lefschetz trace formula is applied to compute the
cardinality of Y (kD). On the other hand, if we use the superscript “fld-def” to
denote the subset of points whose field of definition is equal to the field given
in parentheses, and “|− |” to denote the cardinality of a finite set, then for any
subextension k′ ⊆ kD of kE , we have

|Y (k′)| =
∑

k′′

|Y (k′′)fld-def|

[where k′′ ⊆ k′ ranges over the subextensions of kE ]. In particular, by apply-
ing induction on [k′ : kE ], one concludes immediately from the above formula
that |Y (k′)fld-def| may be computed from |Y (k′′)| for subextensions k′′ ⊆ k′

of kE [while |Y (k′′)| may be computed, as in [Tama], from the Lefschetz trace
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formula]. This yields the desired “group-theoretic” characterization of the de-
composition groups of ΠX .

Remark 11. Note that in the finite field case, if α as in Theorem 1.1,
(i), (ii), is Frobenius-preserving, then the cardinalities, hence also the char-
acteristics, of kX , kY coincide. Indeed, this follows immediately by reducing
to the proper case via Theorem 1.1, (i), and considering the actions of GkX

,
GkY

[cf. Theorem 1.1, (ii)] on MX , MY [which are compatible relative to the
isomorphism MX

∼
→ MY induced by α].

Now we return to the notation of the discussion preceding Theorem 1.1.
Observe that the automorphism

τ : X × X → X × X

given by switching the two factors induces an outer automorphism of ΠUX×X
.

Moreover, by choosing the basepoints used to form the various fundamental
groups involved in an appropriate fashion, it follows that there exists an auto-
morphism

Πτ : ΠUX×X
→ ΠUX×X

among those automorphisms induced by τ [i.e., all of which are related to one
another by composition with an inner automorphism] which induces the auto-
morphism on ΠX×X = ΠX×Gk

ΠX given by switching the two factors; preserves
the subgroup DX ⊆ ΠUX×X

; and preserves and induces the identity automor-
phism on the subgroup IX ⊆ DX (⊆ ΠUX×X

). Note that by the slimness of
Proposition 1.6, (i), together with the well-known commensurable terminality
of DX ⊆ ΠUX×X

in ΠUX×X
[cf., e.g., [the proof of] [Mzk5, Lemma 1.3.12]],

it follows that, at least when Σ = Primes, these three conditions [are more
than sufficient to] uniquely determine Πτ , up to composition with an inner au-
tomorphism arising from IX ; one then obtains a natural Πτ for arbitrary Σ
[well-defined up to composition with an inner automorphism arising from IX ]
by taking the automorphism induced on the appropriate quotients by “Πτ in
the case Σ = Primes”.

Proposition 1.11 (Switching the Two Factors). The automorphism

Πc-ab
τ : Πc-ab

UX×X
→ Πc-ab

UX×X

induced by Πτ is the unique automorphism of the profinite group Πc-ab
UX×X

, up to
composition with a cuspidally inner automorphism, that satisfies the following
two conditions: (a) it preserves the quotient Πc-ab

UX×X
։ ΠX×X and induces on

this quotient the automorphism on ΠX×X = ΠX ×Gk
ΠX given by switching

the two factors; (b) it preserves the image of IX ⊆ DX →֒ Πc-ab
UX×X

.

Proof. This follows immediately from Proposition 1.10, (i).
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2. Points and functions

We maintain the notation of §1 [i.e., the discussion preceding Theorem
1.1]. If x ∈ Xcl, then we shall denote by

Dx ⊆ ΠX

the decomposition group of x [well-defined up to conjugation in ΠX ]. If x ∈
X(k), then Dx determines a section sx : Gk → ΠX [which is well-defined as a
geometrically outer homomorphism].

Next, let S ⊆ Xcl be a finite set. If n is a Σ†-integer [cf. Section 0], then
the Kummer exact sequence

1 → µn → Gm → Gm → 1

[where Gm → Gm is the n-th power map; µn is defined so as to make the
sequence exact] on the étale site of X determines a homomorphism Pic(X) →
H2(∆X , µn) [where Pic(X) is the Picard group of X]. Now there is a unique
isomorphism

µn
∼
→ MX/n · MX

such that the homomorphism Pic(X) → H2(∆X , µn) sends line bundles of
degree 1 to the element determined by 1 ∈ Z/nZ via the composite of the
induced isomorphism H2(∆X , µn)

∼
→ H2(∆X , MX/n·MX) with the tautological

isomorphism H2(∆X , MX/n · MX)
∼
→ Z/nZ [cf. Proposition 1.2, (i)]. In the

following discussion, we shall identify µn with MX/n·MX via this isomorphism.
If we consider the Kummer exact sequence on the étale site of US ⊆ X

[and pass to the inverse limit with respect to n], then we obtain a natural
homomorphism

Γ(US ,O×
US

) → H1(ΠUS
, MX)

[where we note that here, it suffices to consider the group cohomology of ΠUS

[i.e., as opposed to the étale cohomology of US ], since the extraction of n-th
roots of an element of Γ(US ,O×

US
) yields finite étale coverings of US that corre-

spond to open subgroups of ΠUS
] which is injective [since the abelian topolog-

ical group Γ(US ,O×
US

) is clearly topologically finitely generated and free of p†-

torsion, hence injects into its prime-to-p† completion] whenever Σ† = Primes†.
In particular, by allowing S to vary, we obtain a natural homomorphism

K×
X → lim

−→

S

H1(ΠUS
, MX)

[where KX is the function field of X; the direct limit is over all finite subsets
S of Xcl] which is injective whenever Σ† = Primes†.

Proposition 2.1 (Kummer Classes of Functions). If S ⊆ Xcl is a fi-
nite subset, write

∆US
։ ∆c-ab

US
։ ∆c-cn

US
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for the maximal cuspidally abelian and maximal cuspidally central quo-
tients, respectively, and

ΠUS
։ Πc-ab

US
։ Πc-cn

US

for the corresponding quotients of ΠUS
. If x ∈ Xcl, then let us write

Dx[US ] ⊆ ΠUS

for the decomposition group of x in ΠUS
[which is well-defined up to con-

jugation in ΠUS
] and Ix[US ] ⊆ Dx[US ] for the inertia subgroup. [Thus, when

x ∈ S, we obtain [cf. Proposition 1.5, (ii), (iii)] a natural isomorphism of MX

with Ix[US ]
def
= Dx[US ]

⋂
∆US

.]

(i) The natural surjections induce isomorphisms as follows:

H1(Πc-cn
US

, MX)
∼
→ H1(Πc-ab

US
, MX)

∼
→ H1(ΠUS

, MX)

In particular, we obtain natural homomorphisms as follows:

Γ(US ,O×
US

) → H1(Πc-cn
US

, MX)
∼
→ H1(Πc-ab

US
, MX)

∼
→ H1(ΠUS

, MX)

K×
X → lim

−→

S

H1(Πc-cn
US

, MX)
∼
→ lim

−→

S

H1(Πc-ab
US

, MX)
∼
→ lim

−→

S

H1(ΠUS
, MX)

These natural homomorphisms are injective whenever Σ† = Primes†.

(ii) Suppose that S ⊆ X(k) is a finite subset. Then restricting cohomology

classes of ΠUS
to the various Ix[US ], for x ∈ S, yields a natural exact sequence

1 → (k×)
∧
→ H1(ΠUS

, MX) →
( ⊕

x∈S

Ẑ†
)

[where we identify HombZ†(Ix[US ], MX) with Ẑ†]. Moreover, the image [via the

natural homomorphism given in (i)] of Γ(US ,O×
US

) in H1(ΠUS
, MX)/(k×)

∧
is

equal to the inverse image in H1(ΠUS
, MX)/(k×)

∧
of the submodule of

( ⊕

x∈S

Z

)
⊆

( ⊕

x∈S

Ẑ†
)

determined by the principal divisors [with support in S]. A similar statement
holds when “ΠUS

” is replaced by “Πc-ab
US

” or “Πc-cn
US

”.

(iii) If f ∈ Γ(US ,O×
US

), write

κc-cn
f ∈ H1(Πc-cn

US
, MX); κc-ab

f ∈ H1(Πc-ab
US

, MX); κf ∈ H1(ΠUS
, MX)
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for the associated Kummer classes. If x ∈ Xcl\S, then Dx[US ] maps, via the
natural surjection ΠUS

։ Gk, isomorphically onto the open subgroup Gk(x) ⊆
Gk [where k(x) is the residue field of X at x]. Moreover, the images of the
pulled back classes

κc-cn
f |Dx[US ] = κc-ab

f |Dx[US ] = κf |Dx[US ] ∈ H1(Dx[US ], MX)
∼
→ H1(Gk(x), MX)
∼
→ (k(x)×)

∧

in (k(x)×)
∧

are equal to the image in (k(x)×)
∧

of the value of f at x.

Proof. Assertion (i) follows immediately from the definitions. The exact
sequence of assertion (ii) follows immediately from Proposition 1.4, (ii). The
characterization of the image of Γ(US ,O×

US
) is immediate from the definitions

and the exact sequence of assertion (ii). Assertion (iii) follows immediately
from the definitions and the functoriality of the Kummer class.

Remark 12. If, in the situation of Proposition 2.1, (iii), we think of the
extension of Πc-cn

US
of ΠX as being given by the extension DS [cf. Proposition

1.6, (iii)], where D is a fundamental extension of ΠX×X that appears as a
quotient of ΠUX×X

[hence is “rigid” with respect to the action of (k×)
∧

— cf.
Proposition 1.7, (iii); the proof of Theorem 1.1, (iii)], then it follows that the
image of Dx[US ] in Πc-cn

US
may be thought of as the image of Dx[US ] in DS .

If, moreover, we assume, for simplicity, that x ∈ X(k), S ⊆ X(k), then this
image of Dx[US ] in DS amounts to a section of DS ։ ΠX ։ Gk lying over
the section sx of ΠX ։ Gk. Since DS is defined as a certain fiber product,
this section is equivalent to a collection of sections [regarded as cyclotomically
outer homomorphisms]

γy,x : Gk → Dy,x

[where y ranges over the points of S]. [Here, we note that it is immediate from
the definitions that, as the notation suggests, γy,x depends only on x, y — i.e.,
that γy,x is independent of the choice of S.] That is to say, from this point of
view, Proposition 2.1, (iii), may be regarded as stating that:

The image in (k×)
∧

= (k(x)×)
∧

of the value of a function ∈
Γ(US ,O×

US
) at x ∈ X(k) may be computed from its Kummer class,

as soon as one knows the sections γy,x : Gk → Dy,x, for y ∈ S.

Also, before proceeding, we note that an arbitrary section of Dy,x ։ Gk differs
[as a cyclotomically outer homomorphism] from γy,x by the action of an element

of H1(Gk, MX)
∼
→ (k×)

∧
. Thus, the datum of “γy,x” may be regarded as a

trivialization of a certain (k×)
∧
-torsor.

Remark 13. The finite field portion of Proposition 2.1 may be regarded
as the evident finite field analogue of [a certain portion of] the theory of [Mzk8,
§4]. Also, we observe that the approach of “reconstructing the function field of
the curve via Kummer theory, as opposed to class field theory [as was done in
[Tama], [Uchi]]” has the advantage of being applicable to nonarchimedean local
fields, as well as to finite fields.
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Definition 2.1. For x, y ∈ X(k), we shall refer to the section [regarded
as a cyclotomically outer homomorphism]

γy,x : Gk → Dy,x

as the Green’s trivialization of D at (y, x). If D is a divisor on X supported in
the subset of k-rational points X(k) ⊆ Xcl, then multiplication of the various
Green’s trivializations for the points in the support of D determines a section
[regarded as a cyclotomically outer homomorphism]

γD,x : Gk → DD,x

which we shall refer to as the Green’s trivialization of D at (D, x). [Note that
the definition of γD,x generalizes immediately to the case where the divisor D,
but not necessarily the points in its support, is rational over k — cf. Remark
5.]

Remark 14. The terminology of Definition 2.1, is intended to suggest
the similarity between the γy,x of the present discussion and the “Green’s
functions” that occur in the theory of bipermissible metrics — cf., e.g., [MB,
§4.11.4].

Remark 15. Note that the Green’s trivializations are symmetric with
respect to the involution of D induced by the automorphism Πc-ab

τ of Proposi-
tion 1.11. Indeed, relative to the natural projections

ΠUX×X
։ Πc-ab

UX×X
։ D

the Green’s trivialization at (y, x) is simply the section of D ։ Gk arising [by
composition] from the section of ΠUX×X

։ Gk determined by the decomposi-
tion group of the point (y, x) ∈ UX×X(k). Thus, the asserted symmetry of the
Green’s trivializations follows from the fact that Πc-ab

τ is compatible with Πτ ,
together with the evident fact that [by “transport of structure”] Πτ maps the
decomposition group of (y, x) ∈ UX×X(k) isomorphically onto the decomposi-
tion group of (x, y) ∈ UX×X(k).

If d ∈ Z, denote by Jd the subscheme of the Picard scheme of X that

parametrizes line bundles of degree d; write J
def
= J0. Thus, Jd is a torsor

over J . Note that there is a natural morphism X → J1 [given by assigning
to a point of X the line bundle of degree 1 determined by the point]. Thus,
the basepoint of X [already chosen in Section 1] determines a basepoint of J1.
At the level of “geometrically pro-Σ” étale fundamental groups, this morphism
induces a surjective homomorphism

ΠX ։ ΠJ1

whose kernel is the kernel of the maximal abelian quotient ∆X ։ ∆ab
X . In

particular, for x ∈ X(k), the section sx determines a section tx : Gk → ΠJ1 .
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Note that applying the “change of structure group” given by the “multiplication
by d map” on J to the J-torsor J1 yields the J-torsor Jd. [Indeed, this follows
by considering the group structure of the Picard scheme.] Thus, we obtain a
morphism J1 → Jd whose induced morphism on fundamental groups

ΠJ1 → ΠJd

determines an isomorphism of ΠJd with the push-forward of the extension ΠJ1

[i.e., of Gk by ∆J1
∼= ∆ab

X ] via the homomorphism ∆ab
X → ∆ab

X given by mul-
tiplication by d. When d ≥ 1, the group structure on the Picard scheme also
determines a morphism

∏
ΠJ1 → ΠJd

[where the product is a fiber product over Gk of d factors of ΠJ1 ] which de-
termines an isomorphism of ΠJd with the push-forward of the extension con-
stituted by the fiber product via the homomorphism

∏
∆ab

X → ∆ab
X [i.e., from

a product of d copies of ∆ab
X to ∆ab

X given by adding up the d components].
Moreover, one verifies immediately that when d ≥ 1, these two constructions
of “ΠJd” from ΠJ1 yield groups that are naturally isomorphic.

Thus, by applying the various homomorphisms induced on fundamental
groups by the group structure of the Picard scheme, it follows that if D is
any divisor of degree d on X whose support lies in the set of k-rational points
X(k) ⊆ Xcl, then D determines a section

tD : Gk → ΠJd

which may be constructed entirely group-theoretically from the “tx”, where
x ∈ X(k) ranges over the points in the support of D. In particular, if D is of
degree 0, then the section tD : Gk → ΠJ may be compared with the identity
section of ΠJ to obtain a cohomology class:

ηD ∈ H1(Gk, ∆ab
X )

Now we have the following well-known result:

Proposition 2.2 (Points and Galois Sections). Suppose that Σ =
Primes. Then, in the notation of the above discussion:

(i) The divisor D is principal if and only if ηD = 0.

(ii) The map x 	→ Dx from Xcl to conjugacy classes of closed subgroups of ΠX

is injective, i.e., X is Primes-separated.

Proof. First, we consider assertion (i). By well-known general nonsense
[cf., e.g., [Naka, Claim (2.2)]; [NTs, Lemma (4.14)]; [Mzk4, the Remark pre-
ceding Definition 6.2]], there is a natural isomorphism

H1(k, ∆ab
X )

∼
→ J(k)∧ (⊇ J(k))
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[where the “∧” denotes the profinite completion] which maps ηD to the ele-
ment of J(k) determined by D. [Here, we recall that this natural isomorphism
arises by considering the long exact sequence obtained by applying the functors
H∗(Gk,−) to the short exact sequence of Gk-modules

1 → J(k)[n] → J(k) → J(k) → 1

— where n is a positive integer; the morphism J(k) → J(k) is the “multipli-
cation by n map”; J(k)[n] is defined so as to make the sequence exact.] Thus,
assertion (i) follows immediately.

To prove assertion (ii), it suffices [by possibly base-changing to a finite ex-
tension of k] to verify that two points x1, x2 ∈ X(k) that induce ∆X -conjugate
sections sx1

, sx2
are necessarily equal [cf. also [Tama, Corollary 2.10]]. But

this follows formally from assertion (i), by considering the divisor x1 − x2 [and
the well-known fact that the natural morphism X → J1 considered above is an
embedding].

Remark 16. From the point of view of Definition 1.2, (ii), the reader
may feel tempted to expect that [still under the assumption that Σ = Primes]
D is principal if and only if the extension DD of ΠX [by MX ] is trivial [i.e.,
determines the zero class in H2(ΠX , MX)]. When k is nonarchimedean local, it
is not difficult to verify, using Proposition 2.2, (i), that this is indeed the case.
On the other hand, when k is finite, although this condition for principality
is easily verified to be necessary, it is not, however, sufficient, since it only
involves the “prime-to-p† portion” of the point of J(k) determined by D.

Definition 2.2. In the situation of Theorem 1.1, (iii), suppose further

that (Σ
def
=) ΣX = ΣY , and that α is point-theoretic. Let S ⊆ Xcl be a [not

necessarily finite] subset that corresponds via the bijection Xcl ∼
→ Y cl induced

by [the point-theoreticity of] α to a subset T ⊆ Y cl.

(i) Write D (respectively, E) for the fundamental extension of ΠX×X (respec-

tively, ΠY ×Y ) that arises as the quotient of Πc-ab
UX×X

(respectively, Πc-ab
UY ×Y

) by

the kernel of the maximal cuspidally central quotient ∆c-ab
UX×X

։ ∆c-cn
UX×X

(re-

spectively, ∆c-ab
UY ×Y

։ ∆c-cn
UY ×Y

) [cf. Proposition 1.6, (iv)]. Thus, αc-ab induces
an isomorphism:

αc-cn : D
∼
→ E

We shall say that α is (S, T )-locally Green-compatible if, for every pair of points
(x1, x2) ∈ X(kX)×X(kX) corresponding via the bijection induced by α to a pair
of points (y1, y2) ∈ Y (kY )×Y (kY ), such that x2 ∈ S, y2 ∈ T , the isomorphism

Dx1,x2

∼
→ Ey1,y2

[obtained by restricting αc-cn] is compatible with the Green’s trivializations.
We shall say that α is (S, T )-locally degree zero (respectively, (S, T )-locally
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principally) Green-compatible if, for every x ∈ X(kX)
⋂

S and every divisor
of degree zero (respectively, principal divisor) D supported in X(kX) ⊆ Xcl

corresponding via the bijection induced by α to a pair (y, E) of Y [so y ∈
Y (kY )

⋂
T ], the isomorphism

DD,x
∼
→ EE,y

is compatible with the Green’s trivializations.

(ii) We shall say that α is totally (S, T )-locally Green-compatible (respectively,

totally (S, T )-locally degree zero Green-compatible; totally (S, T )-locally prin-
cipally Green-compatible) if, for all pairs of connected finite étale coverings
X ′ → X, Y ′ → Y that arise from open subgroups of ΠX , ΠY that correspond
via α, the isomorphism

ΠX′
∼
→ ΠY ′

induced by α is (S′, T ′)-locally Green-compatible (respectively, (S′, T ′)-locally
degree zero Green-compatible; (S′, T ′)-locally principally Green-compatible),
where S′ ⊆ (X ′)cl, T ′ ⊆ (Y ′)cl are the inverse images in X ′, Y ′ of S, T ,
respectively.

(iii) With respect to the terminology introduced in (i), (ii), when S = Xcl, T =

Y cl, then we shall replace the phrase “(S, T )-locally” by the phrase “globally”.

Remark 17. In the situation of Definition 2.2, if X ′ → X, Y ′ → Y
are connected finite étale coverings that arise from open subgroups of ΠX , ΠY

that correspond via α; D
∼
→ E is the isomorphism of fundamental extensions of

ΠX×X , ΠY ×Y that arises from the isomorphism αc-ab of Theorem 1.1, (iii); and
the points x1, x2 (respectively, y1, y2) are ∆X - (respectively, ∆Y -) conjugate,
then it follows immediately from the compatibility of αc-ab with the natural
inclusions DX →֒ Πc-ab

UX×X
, DY →֒ Πc-ab

UY ×Y
[cf. Theorem 1.1, (iii)] that the

isomorphism Dx1,x2

∼
→ Ey1,y2

is automatically compatible with the Green’s triv-
ializations. [Indeed, this follows from the easily verified fact that the Green’s
trivializations in this case are, in essence, specializations of conjugates of the
“canonical sections of ζ ′	=” of Proposition 1.8.] Unfortunately, however, the au-
thor is unable, at the time of writing, to see how to generalize the argument
applied in the proof of Theorem 1.1, (iii), involving Lemma 1.1; Proposition
1.8, (v), so as to cover the case where the points x1, x2 (respectively, y1, y2)
fail to be ∆X - (respectively, ∆Y -) conjugate.

Remark 18. It is immediate that (S, T )-local Green-compatibility
(respectively, (S, T )-local degree zero Green-compatibility) implies (S, T )-local
degree zero Green-compatibility (respectively, (S, T )-local principal Green-
compa-tibility), and that total (S, T )-local Green-compatibility (respectively,
total (S, T )-local degree zero Green-compatibility) implies total (S, T )-local de-
gree zero Green-compatibility (respectively, total (S, T )-local principal Green-
compa-tibility).
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Theorem 2.1 (Reconstruction of Functions). In the situation of The-

orem 1.1, (iii), suppose further that (Σ
def
=) ΣX = ΣY , and that α is point-

theoretic. Then:

(i) Let S ⊆ Xcl, T ⊆ Y cl be finite subsets that correspond via the bijection

Xcl ∼
→ Y cl induced by α. Then α, αc-ab induce isomorphisms [well-defined

up to cuspidally inner automorphisms]

Πc-ab
US

∼
→ Πc-ab

VT

[where VT
def
= Y \T ] lying over α, which are functorial with respect to α and

S, T , as well as with respect to passing to connected finite étale coverings

of X, Y [that do not necesarily arise from open subgroups of ΠX , ΠY !].

(ii) Suppose that Σ = Primes. Then the bijection Xcl ∼
→ Y cl induced by α

induces a bijection between the groups of principal divisors on X, Y . This
bijection, together with the isomorphisms of (i), induces a compatible iso-

morphism

K×
X · (k×

X)
∧ ∼
→ K×

Y · (k×
Y )

∧

between the push-forwards of the multiplicative groups associated to the func-

tion fields of X, Y , relative to the homomorphisms k×
X →֒ (k×

X)
∧
, k×

Y →֒

(k×
Y )

∧
.

Proof. Assertion (i) follows immediately by “specializing to S, T” the iso-
morphism of Theorem 1.1, (iii) [cf. also Proposition 1.9, (i), (ii); the definitions
of the various objects involved]. [Here, we note that the functoriality asserted
in assertion (i), which is somewhat stronger than the functoriality asserted in
Theorem 1.1, (iii), follows from the definitions, together with the naturality of
the constructions applied in the proof of Theorem 1.1, (iii) — cf., e.g., the dia-
gram of Proposition 1.7, (ii).] Assertion (ii) follows immediately from assertion
(i); Proposition 2.2, (i); Proposition 2.1, (i), (ii).

Remark 19. In fact, the crucial isomorphism Πc-ab
US

∼
→ Πc-ab

VT
of Theo-

rem 2.1, (i), may also be constructed, in the finite field case, via the techniques
to be introduced in Section 3 [although we shall not discuss this approach in
detail; cf., however, the proof of Theorem 3.1]. On the other hand, observe that
unlike the techniques of Section 3, the techniques of Section 1 [in particular,
the proof of Theorem 1.1, (iii), via Propositions 1.7, 1.8] apply to situations
[e.g., the case of nonarchimedean local fields!] where the weight filtration [cf.
Section 3] does not admit a Galois-invariant splitting. Indeed, the techniques
of Section 1, essentially only require that the Galois cohomology of the base
field admit a natural duality pairing. Moreover, even in the finite field case, in
light of the importance of this isomorphism Πc-ab

US

∼
→ Πc-ab

VT
in the theory of the

present paper, it is of interest to see that this isomorphism may be constructed
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via two fundamentally different approaches. Finally, although the techniques
of Section 3 are better suited to the reconstruction of the Green’s trivializa-
tions, they have the drawback that they depend essentially on the choice of a
“basepoint” x∗ ∈ X(k). Thus, it is of interest to know that this isomorphism
may be constructed [i.e., via the techniques of Section 1] “cohomologically” [cf.
Proposition 1.5, (i)] without making such a choice.

Remark 20. In the case of nonarchimedean local fields, it is natural to
ask, in the style of [Mzk8, §4], whether or not various “canonical integral struc-
tures” on the extensions Dx,y [where x, y ∈ X(k)] of Gk by MX are preserved
by arbitrary isomorphisms of arithmetic fundamental groups. When x �= y,
such a canonical integral structure is determined by the Green’s trivialization;
when x = y, such a canonical integral structure is determined by the integral
structure [in the usual sense of scheme theory] on the canonical sheaf of the
stable model of the curve [when the curve has stable reduction] — cf. [Mzk8,
§4].

Before proceeding, we note the following “analogue for Πc-ab
US

” of Proposi-
tion 1.10, (i):

Proposition 2.3 (Automorphisms and Commensurators). Let Πc-ab
US

be as in Proposition 2.1. For x ∈ S, write Dx[US ] →֒ Πc-ab
US

for the natural
inclusion. Then:

(i) Any automorphism α of the profinite group Πc-ab
US

which

(a) is compatible with the natural surjection Πc-ab
US

։ ΠX and induces the
identity on ΠX ;

(b) for each x ∈ S, preserves the image of MX
∼= Ix[US ] ⊆ Dx[US ] via the

natural inclusion Dx[US ] →֒ Πc-ab
US

is cuspidally inner.

(ii) Suppose that X is Σ-separated. Then for x ∈ S, Dx is commensurably

terminal in ΠX .

(iii) Suppose that X is Σ-separated. Then the image of Dx[US ] →֒ Πc-ab
US

is

commensurably terminal in Πc-ab
US

.

Proof. First, we observe that assertion (ii) follows formally from the def-
inition of a “decomposition group” and “Σ-separated”. Thus, assertion (i)
(respectively, (iii)) follows by an argument which is entirely similar to the ar-
gument that was used to prove assertion (i) (respectively, (iii)) of Proposition
1.10.
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Remark 21. In the situation of Definition 2.2, suppose that S, T are
finite, and that α arises from an isomorphism

ΠUS

∼
→ ΠVT

which is point-theoretic [or, equivalently, quasi-point-theoretic] — a condition
that is automatically satisfied in the finite field case whenever α is Frobenius-
preserving [cf. Remark 10]. Then observe that, [in light of our point-theoreticity
assumption] it follows from Proposition 2.3, (i), that the resulting induced
isomorphism

Πc-ab
US

∼
→ Πc-ab

VT

coincides [up to cuspidally inner automorphisms] with the isomorphism of Theo-
rem 2.1, (i). Thus, in light of Remark 15, it follows formally from the definitions
that α is totally (S, T )-locally Green-compatible.

Corollary 2.1 (Point-theoretic Green-compatible Isomorphisms). In the

situation of Theorem 1.1, (iii), assume further that (Σ
def
=) ΣX = ΣY =

Primes, and that α is point-theoretic and totally (S, T )-locally princi-

pally Green-compatible, for some nonempty subsets S ⊆ Xcl, T ⊆ Y cl

which correspond via the bijection Xcl ∼
→ Y cl induced by α. Then α arises

from a uniquely determined commutative diagram of schemes

X̃
∼
→ Ỹ

�
�

X
∼
→ Y

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups ΠX , ΠY .

Proof. Corollary 2.1 follows immediately — i.e., by “specializing func-
tions to points” — from the definitions; Theorem 2.1, (ii); Proposition 2.1,
(iii); Remark 12; and [Tama, Lemma 4.7]. Here, we note that, in the present
situation, the isomorphism

K×
X · (k×

X)
∧ ∼
→ K×

Y · (k×
Y )

∧

of Theorem 2.1, (ii), necessarily induces an isomorphism K×
X

∼
→ K×

Y [cf. the

assumption that Σ† = Primes†]. Indeed, this is immediate in the finite field
case. In the nonarchimedean local field case, it follows via the arguments applied
in the proof of [Mzk8, Theorem 4.10]: That is to say, we assume for simplicity
that S ⊆ X(kX); then if f ∈ K×

X , and x ∈ S is a point that does not lie in the
divisor of zeroes and poles of f , then let us observe that the subset

f · k×
X ⊆ f · (k×

X)
∧



Absolute anabelian cuspidalizations of proper hyperbolic curves 493

may be characterized as the subset of elements whose values [cf. Proposition

2.1, (iii)] at x lie in k×
X ⊆ (k×

X)
∧
. Note that since, for a given x1 ∈ S, there

clearly exist f ∈ K×
X [at least after possibly passing to an appropriate connected

finite étale covering of X] that have a zero or pole at x1 but not at some other
x ∈ S, this observation allows us to recover the canonical discrete structure
[cf. [Mzk8, Definition 4.1, (iii)]; the proof of [Mzk8, Theorem 4.10]] on the
decomposition groups in Πc-ab

US1
[where S1 ⊆ Xcl is an arbitrary finite subset

containing S, which corresponds, say, to a subset T1 ⊆ Y cl that contains T ] at
arbitrary points [i.e., arbitrary “x1”] of S. Thus, by applying this canonical
discrete structure [as in the proof of [Mzk8, Theorem 4.10]], we may recover
the subset

f · k×
X ⊆ f · (k×

X)
∧

for arbitrary f ∈ K×
X [i.e., even f that have a zero or pole at every point of S]

as the subset of elements for which the restriction to each point x of S either
lies in k×

X ⊆ (k×
X)

∧
or [when the element in question has a zero or pole at x]

is compatible with the canonical discrete structure at x. Since this characteri-
zation of the subset f · k×

X ⊆ f · (k×
X)

∧
is manifestly compatible [in light of the

Green-compatibility assumption on α] with the isomorphisms Πc-ab
US1

∼
→ Πc-ab

VT1

induced by α, we thus conclude that the isomorphism

K×
X · (k×

X)
∧ ∼
→ K×

Y · (k×
Y )

∧

of Theorem 2.1, (ii), maps the subset K×
X ⊆ K×

X · (k×
X)

∧
onto the subset K×

Y ⊆

K×
Y · (k×

Y )
∧
, as desired.

Remark 22. Suppose, in the situation of Corollary 2.1, that S = Xcl,
T = Y cl. Then unlike the situation discussed in [Tama], one has the freedom
to evaluate functions at arbitrary points of the entire sets Xcl, Y cl, as opposed
to just certain restricted subsets S ⊆ Xcl, T ⊆ Y cl. Thus, instead of applying
[Tama, Lemma 4.7], one may instead apply the somewhat easier argument
implicit in [Uchi, §3, Lemmas 8–11] [which is used to treat the function field
case].

Thus, in light of Remark 21 [together with the portion of Theorem 1.1,
(i), concerning the preservation of decomposition groups of cusps], Corollary 2.1
implies the following result, in the affine case:

Corollary 2.2 (Point-theoretic Isomorphisms in the Affine Case). Let
U , V be affine hyperbolic curves over a finite or nonarchimedean lo-

cal field. Suppose that Σ = Primes. Write ∆U (respectively, ∆V ) for the
maximal cuspidally pro-Σ† quotient of the maximal pro-Σ quotient

of the tame geometric fundamental group of U (respectively, V ) [where “tame”
is with respect to the complement of U (respectively, V ) in its canonical com-
pactification], and ΠU (respectively, ΠV ) for the corresponding quotient of the
étale fundamental group of U (respectively, V ). Then any point-theoretic



494 Shinichi Mochizuki

isomorphism

β : ΠU
∼
→ ΠV

arises from a uniquely determined commutative diagram of schemes

Ũ
∼
→ Ṽ

�
�

U
∼
→ V

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups ΠU , ΠV .

Remark 23. In light of the results of [Tama] [cf. Remarks 9, 10], Corol-
lary 2.2 is only truly of interest in the case of nonarchimedean local fields.

Definition 2.3. Suppose that k is a nonarchimedean local field.

(i) A [necessarily affine] hyperbolic curve U over k will be said to be of strictly

Belyi type if it is defined over a number field and isogenous [cf. Section 0] to a
hyperbolic curve of genus zero.

(ii) A [necessarily affine] hyperbolic curve U over k will be said to be of Belyi

type if it is defined over a number field, and, moreover, for some positive integer
m, there exists a finite sequence

U = U1 � U2 � . . . � Um−1 � Um

of hyperbolic orbicurves [cf. Section 0] Uj such that Um is a tripod [cf. Section
0], and, moreover, for each j = 1, . . . , m− 1, Uj+1 is related to Uj in one of the
following ways:

(a) there exists a finite étale morphism Uj+1 → Uj [i.e., “Uj+1 is a finite
étale covering of Uj”];

(b) there exists a finite étale morphism Uj → Uj+1 [i.e., “Uj+1 is a finite
étale quotient of Uj”];

(c) there exists an open immersion Uj →֒ Uj+1 [i.e., in the terminology of
[Mzk8], “Uj+1 is a [hyperbolic] partial compactification of Uj”];

(d) there exists a partial coarsification morphism [cf. Section 0] Uj → Uj+1

[i.e., “Uj+1 is a partial coarsification of Uj”].



Absolute anabelian cuspidalizations of proper hyperbolic curves 495

(iii) A [necessarily affine] hyperbolic curve U over k will be said to be of quasi-
Belyi type if it is defined over a number field and admits a connected finite
étale covering V → U such that V admits a [not necessarily finite or étale!]
dominant morphism V → W to a tripod W .

Remark 24. It is immediate that every hyperbolic curve of strictly Be-
lyi type is also of Belyi type [as the terminology suggests]. Moreover, one verifies
easily by “induction on m” [where “m” is as in Definition 2.3, (ii)] that every
hyperbolic curve of Belyi type is also of quasi-Belyi type [as the terminology
suggests]. It is not difficult to see that there exist [multiply] punctured elliptic
curves that are of Belyi type, but not of strictly Belyi type [cf. Remark 31
below]. On the other hand, it is not clear to the author at the time of writing
whether or not there exist hyperbolic curves of quasi-Belyi type that are not
of Belyi type.

Remark 25. Hyperbolic curves of strictly Belyi type are precisely the
sort of curves considered in [Mzk8, Corollaries 2.8, 3.2].

Remark 26. The author would like to thank A. Tamagawa for useful
discussions concerning Definition 2.3, (ii), especially Definition 2.3, (ii), (d).

Proposition 2.4 (Decomposition Groups of Curves of Quasi-Belyi Type).
Let U (respectively, V ) be a hyperbolic curve over a nonarchimedean local
field. Denote the base field of U (respectively, V ) by kU (respectively, kV ), the
étale fundamental group of U (respectively, V ) by ΠU (respectively, ΠV ) [i.e.,
“we take Σ = Primes”]. Let

β : ΠU
∼
→ ΠV

be an isomorphism of profinite groups. Then:

(i) If U is of quasi-Belyi type, then the closed points of “DLoc-type” [in

the sense of [Mzk8, Definition 2.4]] are p
U
-adically dense [where pU is the

residue characteristic of kU ] in U(kU ).

(ii) If U is of quasi-Belyi type, then β maps every decomposition group of a

closed point of U isomorphically onto a decomposition group of a closed point
of V .

(iii) If both U , V are of quasi-Belyi type, then β is point-theoretic.

(iv) If U is of Belyi type, then so is V .

Proof. The proof of assertion (i) is similar to the proof of [Mzk8, Corollary
2.8]: That is to say, in the terminology of loc. cit., it follows formally from the
fact that U is of quasi-Belyi type that the “algebraic” closed points [i.e., closed
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points defined over a number field, which are manifestly pU -adically dense in
U(kU )] of U are of “DLoc-type” [cf. the proof of [Mzk8, Corollary 2.8]]: Indeed,
it suffices to consider the following commutative diagram of hyperbolic curves,
whose existence follows from the assumption that U is of quasi-Belyi type:

V ′ −→ W ′ →֒ U ′ −→ U

�
�

U ←− V −→ W

Here, the “hooked arrow →֒” is an open immersion; all of the “non-hooked

arrows” except for V → W , V ′ → W ′ are finite étale morphisms; V → W ,
V ′ → W ′ are dominant; the finite étale morphism U ′ → U is obtained by a base-
change to a finite extension of the base field kU ; and W is a tripod [so W ′ → W
is a “Belyi map”]. Note that the composite arrow V ′ → W ′ →֒ U ′ → U may
be thought of as an arrow in the category DLockU

(U) of [Mzk8, §2]. Observe,
moreover, that the arrow W ′ →֒ U ′ may be chosen to have arbitrarily designated
algebraic closed points in the complement of its image. Thus, we conclude that
this diagram exhibits the [arbitrarily designated] algebraic closed points in the
complement of the image of W ′ →֒ U ′ → U as points of DLoc-type, as desired.
This completes the proof of assertion (i).

In light of assertion (i) [applied to the various connected finite étale cov-
erings of U ], the proof of assertion (ii) is entirely similar to the proof of [Mzk8,
Corollary 3.2]: That is to say, by [Mzk8, Corollary 2.5], it follows that β maps
decomposition groups of DLoc-type of U to decomposition groups of DLoc-type
of V . Thus, assertion (ii) follows by applying [Mzk8, Lemma 3.1] [where the
density statement of assertion (i) concerning points of DLoc-type allows one to
replace the “algebraicity” condition of [Mzk8, Lemma 3.1, (iii)], by the condi-
tion that the points in question be of DLoc-type]. Finally, assertion (iii) follows
formally from assertion (ii) [and Proposition 2.2, (ii)].

Finally, we consider assertion (iv). First, I claim that by applying the
isomorphism β [and thinking of hyperbolic orbicurves as being represented by
their associated étale fundamental groups], one may transform the sequence

U = U1 � U2 � . . . � Um−1 � Um

of Definition 2.3, (ii), into a sequence

V = V1 � V2 � . . . � Vm−1 � Vm

that also satisfies the conditions of Definition 2.3, (ii), in such a way that we
also obtain compatible isomorphisms βj : ΠUj

∼
→ ΠVj

[where j = 1, . . . , m;
β1 = β]. Indeed, we reason by induction on m. If [for j = 1, . . . , m− 1] Uj+1 is
related to Uj as in (a) [of Definition 2.3, (ii)], then it is immediate [by thinking
in terms of open subgroups of ΠUj

, ΠVj
] that one may construct [from Vj ] a
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Vj+1 related to Vj as in (a). If Uj+1 is related to Uj as in (b) (respectively, (c)),
then it follows from [Mzk6, Theorem 2.4] (respectively, [Mzk8, Theorem 1.3,
(iii)] [cf. also [Mzk8, Theorem 2.3]]), that one may construct [from Vj ] a Vj+1

related to Vj as in (b) (respectively, (c)). If Uj+1 is related to Uj as in (d), then
ΠUj+1

is obtained from ΠUj
by forming the quotient of ΠUj

by the closed normal
subgroup of ΠUj

generated by some finite collection of elements of ∆Uj
that

belong to the decomposition groups of points of Uj in ∆Uj
. Thus, by Lemma 2.1,

(v), below, we conclude that the quotient ΠUj
։ ΠUj+1

determines a quotient
ΠVj

։ ΠVj+1
that corresponds to a partial coarsification Vj → Vj+1, as desired.

Finally, if Um is a tripod, the existence of the isomorphism ΠUm

∼
→ ΠVm

implies
that Vm is also a tripod [cf. [Mzk5, Lemma 1.3.9]]. This completes the proof of
the claim.

Thus, to complete the proof of assertion (iv), it suffices to verify that V is
defined over a number field. But observe that since U is defined over a number
field, there exists a diagram of hyperbolic curves [i.e., in essence, a “Belyi map”]

Um ←− U ′
m →֒ U ′ −→ U

where the “hooked arrow →֒” is an open immersion; the “non-hooked arrows”
are finite étale morphisms; and the finite étale morphism U ′ → U is obtained by
a base-change to a finite extension of the base field kU . Now the isomorphisms
ΠUm

∼
→ ΠVm

, ΠU
∼
→ ΠV allow us to transform [cf. [Mzk8, Theorem 2.3 and its

proof]] this diagram into a similar diagram

Vm ←− V ′
m →֒ V ′ −→ V

whose existence [since Vm is also a tripod!] shows that V is also defined over a
number field, as desired. This completes the proof of assertion (iv).

Remark 27. Note that the essential reason that the author is unable
to prove the stronger statement of Proposition 2.4, (iv), in the quasi-Belyi
case is that, in the notation of the proof of Proposition 2.4, (i), it is unclear
how to construct [at the level of arithmetic fundamental groups] the dominant
morphism V → W from V . That is to say, unlike the situation involving the
operations of Definition 2.3, (ii), (a), (b), (c), (d), it is by no means clear how to
construct, via purely group-theoretic operations, the quotient of an arithmetic
fundamental group arising from an arbitrary dominant morphism.

Lemma 2.1 (Finite Subgroups of Fundamental Groups of Orbicurves).
Let W be a hyperbolic orbicurve over an algebraically closed field of char-
acteristic zero; ΣW a nonempty set of prime numbers. Denote the maximal
pro-ΣW quotient of the étale fundamental group of W by ∆W ; suppose that
W admits a finite étale covering by a hyperbolic curve that arises from an
open subgroup of ∆W . Let A ⊆ ∆W (respectively, B ⊆ ∆W ) be the decom-

position group [well-defined up to conjugation in ∆W ] of a closed point wA

(respectively, wB) of W ; suppose that wA �= wB. Then:
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(i) A, B are cyclic.

(ii) A
⋂

B = {1}. In particular, if A �= {1}, then A is normally terminal in

∆W .

(iii) The order of every finite cyclic closed subgroup C ⊆ ∆W divides the

order of W [cf. Section 0].

(iv) Every finite nontrivial closed subgroup C ⊆ ∆W is contained in a

decomposition group of a unique closed point of W .

(v) The nontrivial decomposition groups of closed points of W may be charac-

terized as the maximal finite nontrivial closed subgroups of ∆W .

Proof. Assertion (i) follows immediately from the well-known [and easily
verified] fact that the absolute Galois group of a complete discrete valuation
field with algebraically closed residue field of characteristic zero is cyclic.

Next, we consider assertion (ii). Let C ⊆ A
⋂

B be a subgroup of prime
order l ∈ ΣW . Now consider a normal open subgroup H ⊆ ∆W such that
the covering WH → W determined by H is a hyperbolic curve. Note that
this implies that A

⋂
H = B

⋂
H = C

⋂
H = {1} [cf., e.g., assertion (iii),

which will be proven below without applying the present assertion (ii)]. Write
WH → WC → W for the covering determined by the open subgroup C · H ⊆
∆W . Observe that there exist closed points w′

A, w′
B of WC that lift wA, wB,

respectively, and whose decomposition groups [well-defined up to conjugation
in C ·H] are equal to C. Note that since WH is a hyperbolic curve, and C is of
prime order l, it follows that the order of every closed point of WC is equal to
either 1 or l. Now if WC is affine, then let v be a cusp of WC . If WC is proper
and admits ≥ 3 points of order l, then let v be a point of WC of order l such
that v �= w′

A, w′
B. Note that if WC is proper and admits ≤ 2 points of order l,

then it follows from the hyperbolicity assumption that the coarsification of WC

is a proper smooth curve of genus ≥ 1; thus, by replacing H by an appropriate
open subgroup of H, one verifies immediately that one may assume without loss
of generality that either WC is affine or WC admits ≥ 3 points of order l. Now
observe that WC admits a finite étale cyclic covering W ′

C → WC of degree l
which is étale over the compactification of the coarsification of WC , except over
the points in the compactification of the coarsification of WC corresponding
to v, w′

B, over which W ′
C is totally ramified. In particular, it follows that any

point of W ′
C lying over w′

A (respectively, w′
B) is of order l (respectively, 1), thus

contradicting the observation that the decomposition groups [well-defined up
to conjugation in C · H] of w′

A, w′
B are equal to C. This completes the proof

that A
⋂

B = {1}. By applying this fact to arbitrary finite étale coverings of
W , it follows formally [cf. Proposition 2.3, (ii)] that A is normally terminal in
∆W , whenever A �= {1}.
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Next, we consider assertion (iii). Denote the order of W by n. Now if
C ⊆ ∆W is a nontrivial finite cyclic closed subgroup, then there exists a normal
open subgroup N ⊆ ∆W such that C

⋂
N = {1}. In particular, it follows that

if we take H
def
= C · N [so H ⊆ ∆W is an open subgroup], then the natural

map C → Hab is injective. On the other hand, if we denote by WH → W
the covering determined by H, then it is clear that the order of WH divides
n, hence that Hab is an extension of a torsion-free profinite abelian group by
a finite abelian group annihilated by n. Thus, we conclude from the injection
C →֒ Hab that the order of C divides n, as desired. This completes the proof
of assertion (iii).

Next, we consider assertion (iv). First, let us observe that uniqueness
follows formally from assertion (ii). Next, let us verify assertion (iv) under the
further assumption that C is solvable. By induction on the order of C, we may
assume that [at least] one of the following conditions is satisfied: (a) C is an
extension of a group of prime order by a nontrivial subgroup C1 ⊆ C which is
contained in the decomposition group A; (b) C is of prime order l ∈ ΣW . If (a)
is satisfied, then by replacing W by a finite étale covering of W determined by
a suitable open subgroup containing C, we may assume that (C1 ⊆) A ⊆ C.
Thus, if A �= C, then A = C1 is normal in C. But this implies, by the normal
terminality portion of assertion (ii), that A = C, a contradiction. Thus, (a)
implies that C ⊆ A. If (b) is satisfied, then we argue as follows: Observe that
by assertion (iii), every open subgroup H ⊆ ∆W that contains C determines
a finite étale covering WH → W such that the order of WH is divisible by l.
Write

Stackl(WH)

for the set of closed points of WH whose order is divisible by l. Now observe
that since the order of WH is divisible by the prime number l, it follows that
Stackl(WH) is nonempty. Since the set Stackl(WH) is finite and nonempty, we
thus conclude that, if we allow H to vary [among open subgroups H ⊆ ∆W

that contain C], then the inverse limit

lim
←−

H

Stackl(WH)

is nonempty. But, unraveling the definitions, this means precisely that C con-
tains the decomposition group D associated to some compatible system of
points of the sets Stackl(WH). Since D is of order divisible by l, we thus
conclude that D = C, as desired. This completes the proof of assertion (iv) for
C solvable. On the other hand, a well-known theorem from the theory of finite
groups asserts that a finite group in which every Sylow subgroup is cyclic is
solvable [cf. [Scott, p. 356]]. Thus, in light of assertion (i), we conclude that
assertion (iv) for C solvable implies assertion (iv) for C arbitrary.

Finally, we observe that assertion (v) follows formally from assertions (ii),
(iv).

Remark 28. The author would like to thank A. Tamagawa for inform-
ing him of Lemma 2.1 and, in particular, of the theorem on finite groups that
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was applied in the proof of Lemma 2.1, (iv).

We are now ready to state the following “absolute p-adic version of the
Grothendieck Conjecture” for hyperbolic curves of Belyi or quasi-Belyi type:

Corollary 2.3 (Curves of Belyi or Quasi-Belyi Type). Let U (respec-
tively, V ) be a hyperbolic curve over a nonarchimedean local field. Denote
the base field of U (respectively, V ) by kU (respectively, kV ), the étale funda-
mental group of U (respectively, V ) by ΠU (respectively, ΠV ) [i.e., “we take
Σ = Primes”]. Suppose further that at least one of the following conditions
holds:

(a) both U and V are of quasi-Belyi type;

(b) either U or V [but not necessarily both!] is of Belyi type.

Then any isomorphism of profinite groups

β : ΠU
∼
→ ΠV

arises from a uniquely determined commutative diagram of schemes

Ũ
∼
→ Ṽ

�
�

U
∼
→ V

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale coverings determined by the profinite groups ΠU , ΠV .

Proof. In light of Proposition 2.4, (iii), (iv) [cf. also Remark 24], Corollary
2.3 follows formally from Corollary 2.2.

Remark 29. Note that in the proof of Proposition 2.4, Corollary 2.3, it
is necessary, in the quasi-Belyi case, to apply the full “Hom version” of [Mzk4,
Theorem A]. This differs from the situation of [Mzk8, Corollaries 2.8, 3.2] —
i.e., where one only treats hyperbolic curves of strictly Belyi type — or, indeed,
of the portion of Proposition 2.4, Corollary 2.3, that concerns curves of Belyi
type, in which the “isomorphism version” of [Mzk4, Theorem A], suffices [cf.
[Mzk8, Remark 2.8.1]].

Thus, in the terminology of [Mzk6, Definition 3.7], the portion of Corollary
2.3 concerning hyperbolic curves of Belyi type admits the following formal
consequence:

Corollary 2.4 (Absoluteness of Curves of Belyi Type). Every hyperbolic
curve of Belyi type over a nonarchimedean local field is absolute.
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Remark 30. It is interesting to note that the essential property that
underlies the absoluteness of Corollary 2.4 is the existence of a Belyi map [since
the curve is defined over a number field], which, in the context of the theory
of [Mzk8, §2], may be regarded as a sort of endomorphism of the curve. From
this point of view, Corollary 2.4 is reminiscent of [Mzk6, Corollary 3.8], which
states that the “canonical curves” of p-adic Teichmüller theory are absolute.
Indeed, from the point of view of the theory of [Mzk2], this canonicality may be
regarded as the existence of a sort of “Frobenius endomorphism” of the curve.
It is also interesting to note that both of these results assert that every member
of some countable collection of nonarchimedean hyperbolic curves is absolute.

Remark 31. In the context of Remark 30, it is interesting to note that,
unlike the canonical curves discussed in [Mzk6, §3], the set of points determined
by the hyperbolic curves of strictly Belyi type fails, for all pairs (g, r) such that
2g − 2 + r ≥ 3, g ≥ 1, to be Zariski dense in the moduli stack of hyperbolic
curves of type (g, r). Indeed, this follows immediately from [Mzk1, Theorem B].
On the other hand, it is not clear to the author at the time of writing whether or
not the set of points determined by the hyperbolic curves of Belyi (respectively,
quasi-Belyi) type is Zariski dense in the moduli stack of hyperbolic curves of
type (g, r) [when, say, 2g−2+r ≥ 3, g ≥ 2]. Note, however, that when g = 0, 1,
[one verifies easily that] every hyperbolic curve of type (g, r) that is defined over
a number field is automatically of Belyi type.

3. Maximal Pro-l cuspidalizations

In this section, we apply the theory of the weight filtration [cf. [Kane],
[Mtm]], together with various generalities concerning free Lie algebras [cf. the
Appendix], to construct, in the finite field case, “maximal cuspidally pro-l cus-
pidalizations” [cf. Theorem 3.1], whose existence implies, under quite general
conditions [cf. Corollary 3.1 below], that an isomorphism “α” as in Theorem
1.1, (iii), is always totally globally Green-compatible.

In the following discussion, we maintain the notation of Section 2, and
assume further throughout the present Section 3 that we are in the finite field
case.

Definition 3.1. Let l be a prime number; G, H, A topologically finitely
generated pro-l groups; φ : H → A a [continuous] homomorphism. Suppose
further that A is abelian, and that G is an l-adic Lie group [cf., e.g., [Serre,
Chapter V, §7, §9], for basic facts concerning l-adic Lie groups].

(i) We shall refer to as the φ-central filtration on H the filtration defined as
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follows:

H(1)
def
= H

H(2)
def
= Ker(φ)

H(m)
def
=

(
the subgroup topologically generated by the commutators

[H(a), H(b)], where a + b = m, ∀ m ≥ 3
)

Thus, in words, this filtration on H is the “fastest decreasing central filtration
among those central filtrations whose top quotient factors through φ”. We shall
say that H is φ-nilpotent if H(m) = {1} for sufficiently large m. If H is
φ-nilpotent when φ is taken to be the natural surjection H ։ Hab to its
abelianization Hab, then we shall say that H is nilpotent. In the following, for
a, b, n ∈ Z such that 1 ≤ a ≤ b, n ≥ 1, we shall write

H(a/b)
def
= H(a)/H(b)

and

Gr(H)(n)
def
=

⊕
m≥n

H(m/m + 1) ⊆ Gr(H)
def
= Gr(H)(1)

Gr(H)(a/b)
def
= Gr(H)(a)/Gr(H)(b)

and append a subscript Ql (respectively, Fl) to these objects to denote the result
of tensoring over Zl with Ql (respectively, Fl). Thus, Gr(H), GrQl

(H), GrFl
(H)

are graded Lie algebras over Zl, Ql, Fl, respectively; Gr(H)(n) ⊆ Gr(H) is a
[Lie algebra-theoretic] ideal. Also, if Z ∋ a ≥ 1, then we shall write:

H(a/∞)
def
= lim

←−

b

H(a/b)

[where b ranges over the integers ≥ a + 1].

(ii) We shall denote by Lie(G) the Lie algebra over Ql determined by G. If G

is nilpotent, then Lie(G) is a nilpotent Lie algebra over Ql, hence determines
a connected, unipotent linear algebraic group Lin(G), which we shall refer to
as the linear algebraic group associated to G. In this situation, there exists
[cf., e.g., Remark 33 below] a natural [continuous] homomorphism [with open
image]

G → Lin(G)(Ql)

[from G to the l-adic Lie group determined by the Ql-valued points of Lin(G)]
which is uniquely determined [since Lin(G) is connected and unipotent!] by the
condition that it induce the identity morphism on the associated Lie algebras.
In the situation of (i), if Z ∋ a ≥ 1, then we shall write:

Lie(H(a/∞))
def
= lim

←−

b

Lie(H(a/b)); Lin(H(a/∞))
def
= lim

←−

b

Lin(H(a/b))
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[where b ranges over the integers ≥ a + 1; we recall that it is well-known [or
easily verified] that each H(a/b) is an l-adic Lie group].

Now let us fix a prime number l ∈ Σ†. For S ⊆ X(k) a finite subset, let
us denote by

∆US
։ ∆

(l)
US

; ∆X ։ ∆
(l)
X

the maximal pro-l quotients and by

ΠUS
։ Π

(l)
US

; ΠX ։ Π
(l)
X

the quotients of ΠUS
, ΠX by the kernels of ∆US

։ ∆
(l)
US

, ∆X ։ ∆
(l)
X . [Here,

we recall that ∆US
, ΠUS

are as defined in Proposition 1.6, (ii), (iii).] Also, for
x ∈ Xcl, let us write

D(l)
x [US ] ⊆ Π

(l)
US

; I(l)
x [US ] ⊆ ∆

(l)
US

for the images of Dx[US ], Ix[US ] [notation as in Proposition 2.1], respectively,

in Π
(l)
US

.
Note that we have a natural surjection:

∆
(l)
US

։ ∆
(l)
X ։ (∆

(l)
X )ab

The cup product on the group cohomology of ∆
(l)
X determines an isomorphism

[cf. Proposition 1.3, (ii)]

Hom((∆
(l)
X )ab, M

(l)
X )

∼
→ (∆

(l)
X )ab

[where we write M
(l)
X

def
= MX ⊗ Zl], hence a natural Gk-equivariant injection

M
(l)
X →֒ ∧2 (∆

(l)
X )ab

whose image we denote by I
(l)
cup.

Definition 3.2. We shall refer to the central filtration

{∆
(l)
US

(m)}

on ∆
(l)
US

with respect to the natural surjection ∆
(l)
US

։ (∆
(l)
X )ab as the weight

filtration on ∆
(l)
US

[cf., e.g., [Mtm, §3, p. 200]].

Proposition 3.1 (Freeness and Centralizers). Let x ∈ S. Write Sx
def
=

S\{x}; r for the cardinality of S, g for the genus of X. For x′ ∈ S, let ζx′ be

a generator of I
(l)
x′ [US ]. By abuse of notation, we shall also denote by ζx′ the

image of ζx′ in ∆
(l)
US

(2/3). Then:
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(i) Gr(∆
(l)
US

) is a free Lie algebra over Zl [hence, in particular, is torsion-free

as a Zl-module] which is freely generated by 2g elements

α1, . . . , αg, β1, . . . , βg ∈ ∆
(l)
US

(1/2)

together with the ζx′ ∈ ∆
(l)
US

(2/3), for x′ ∈ Sx. Alternatively, for an appropriate

choice of the elements ζx′ , Gr(∆
(l)
US

) is the quotient of the free Lie algebra

generated by α1, . . . , αg, β1, . . . , βg, together with the ζx′ ∈ ∆
(l)
US

(2/3), for x′ ∈
S, by the single relation:

∑

x′∈S

ζx′ +

g∑

n=1

[αn, βn] = 0

At a more intrinsic level, this relation is a generator of the image of the natural

Gk-equivariant morphism

M
(l)
X →֒

( ⊕

x′∈S

I
(l)
x′ [US ]

)
⊕ I(l)

cup

[determined by the various natural isomorphisms M
(l)
X

∼
→ I

(l)
x′ [US ], M

(l)
X

∼
→ I

(l)
cup]],

whose codomain maps to Gr(∆
(l)
US

) via the natural Gk-equivariant mor-

phism
( ⊕

x′∈S

I
(l)
x′ [US ]

)
⊕ I(l)

cup → ∆
(l)
US

(2/3)

[determined by the natural inclusions I
(l)
x′ [US ] →֒ ∆

(l)
US

(2/3) and the bracket

operation ∧2 (∆
(l)
X )ab → ∆

(l)
US

(2/3)].

(ii) Let ξ be any of the elements α1, . . . , αg, β1, . . . , βg; ζx′ , where x′ ∈ Sx, of

(i). Then the centralizer in GrQl
(∆

(l)
US

) of [the image of] ξ [in GrQl
(∆

(l)
US

)] is

equal to Ql · ξ. In particular, the Lie algebra GrQl
(∆

(l)
US

) is center-free.

(iii) Let ξ be as in (ii). Then for m ≥ 1, the centralizer in ∆
(l)
US

(1/m + 2) of

[the image of] ξ [in ∆
(l)
US

(1/m+2)] is contained in the subgroup of ∆
(l)
US

(1/m+2)

generated by [the image of] ξ and ∆
(l)
US

(m/m + 2).

(iv) Let S∗ ⊆ S be a subset of S. Write

New
(l)
S∗

⊆ Gr(∆
(l)
US

)

for the sub-Lie algebra over Zl generated by the image of the restriction
( ⊕

x′∈S∗

I
(l)
x′ [US ]

)
⊆

( ⊕

x′∈S

I
(l)
x′ [US ]

)
→ ∆

(l)
US

(2/3)



Absolute anabelian cuspidalizations of proper hyperbolic curves 505

to the direct summands indexed by elements of S∗ of the morphism of (i), and

New
(l)
S∗

(a)
def
= Gr(∆

(l)
US

)(a)
⋂

New
(l)
S∗

; New
(l)
S∗

(a/b)
def
= New

(l)
S∗

(a)/New
(l)
S∗

(b) for

a, b ∈ Z such that 1 ≤ a ≤ b. Then, in the notation of (i), New
(l)
S∗

is a free

Lie algebra over Zl generated by the elements ζx′ , for x′ ∈ S∗. Moreover, the
[“new” and “co-new”] Zl-modules

New
(l)
S∗

(a/b); Cnw
(l)
S∗

(a/b)
def
= Gr(∆

(l)
US

)(a/b)/New
(l)
S∗

(a/b)

are free. In the following discussion, we shall write New
tor,(l)
S∗

(a/b)
def
=

New
(l)
S∗

(a/b) ⊗ Q/Z.

Proof. Assertion (i) (respectively, (ii)) is, in essence, the content of [Kane],
Proposition 1 (respectively, Proposition A.1, (ii), (iii)). Assertion (iii) follows
formally from assertion (ii). Finally, we consider assertion (iv). By Proposition
A.1, (iii), it follows that any free Lie algebra over Fl with ≥ 2 generators is
center-free. Thus, let M be the module determined by any faithful representa-
tion [e.g., when the cardinality of S∗ is ≥ 2, the adjoint representation] of the
free Lie algebra F over Fl in the formal generators ζx′ , where x′ ∈ S∗. Now

observe that we obtain an action of GrFl
(∆

(l)
US

) on M ′ def
= M ⊕ M as follows:

We let α2, . . . αg; β2, . . . βg; ζx′ , where x′ ∈ S0
def
= S\S∗, act by multiplication

by 0 on M ′. We let α1, β1 act on M ′ = M ⊕ M via the matrices

(
0

∑
x′∈S∗

ζx′

0 0

)
;

(
0 0
−1 0

)

respectively. Finally, we let ζx′ , where x′ ∈ S∗, act on M ′ via the following
matrix: (

ζx′ 0
0 −ζx′

)

Thus, [by assertion (i)] M ′ determines a representation of GrFl
(∆

(l)
US

) whose

restriction to the image of New
(l)
S∗

⊗Zl
Fl in GrFl

(∆
(l)
US

) determines [via the

natural surjection F ։ New
(l)
S∗

⊗Zl
Fl] a faithful representation of F . Thus,

we conclude that the natural surjection F ։ New
(l)
S∗

⊗Zl
Fl is an isomorphism,

and that New
(l)
S∗

⊗Zl
Fl injects into GrFl

(∆
(l)
US

). Assertion (iv) now follows
formally.

Remark 32. The author wishes to thank A. Tamagawa for pointing
out to him the content of Proposition 3.1, (i).

Remark 33. One way to verify the existence of the homomorphism
“G → Lin(G)(Ql)” of Definition 3.1, (ii), is to think of G as a quotient of a
free pro-l group of finite even rank F , whose associated “GrQl

(−)” is a center-
free free Lie algebra [cf. Proposition 3.1, (i), (ii), in the case of r = 1], hence
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determines an [infinite-dimensional, over Ql] faithful [cf. Proposition 3.1, (iii)]
unipotent representation [i.e., the adjoint representation — cf. the proof of
Proposition 3.1, (iv)] of F . More precisely, by Proposition 3.1, (iii), it follows
that there exists a unipotent linear representation ρF : F → GL(V ) on a
finite-dimensional Ql-vector space V such that Ker(ρF ) ⊆ Ker(F ։ G). But
this implies that F ։ G factors through a quotient F ։ Q ։ G such that
Q is nilpotent and admits an injective homomorphism of topological groups
ρQ : Q →֒ Qalg(Ql) [induced by ρF ], where Qalg is a connected, unipotent
algebraic group over Ql, such that ρQ is a local isomorphism, and Ker(ρQ) ⊆
Ker(Q ։ G). Thus, ρQ determines a structure of l-adic Lie group on Q such
that the morphism Lie(ρQ) induced by ρQ on Lie algebras is an isomorphism.
Moreover, the morphism induced by Q ։ G on Lie algebras factors through
Lie(ρQ), thus determining a homomorphism of [connected, unipotent] algebraic
groups Qalg → Lin(G) such that the resulting composite homomorphism Q →
Qalg(Ql) → Lin(G)(Ql) factors [cf. the induced morphisms on Lie algebras,
together with the fact that Lin(G)(Ql) has no torsion!] though G, thus yielding
a homomorphism G → Lin(G)(Ql), as desired.

Next, let us fix an x∗ ∈ S, as well as a choice of decomposition group

Dx∗
[US ] ⊆ ΠUS

[i.e., among the various ΠUS
-conjugates of this subgroup] associated to x∗.

[Thus, Dx∗
[US ] determines a specific subgroup [i.e., not just a conjugacy class

of subgroups] D
(l)
x∗ [US ] ⊆ Π

(l)
US

.] Recall that the natural exact sequences

1 → Ix∗
[US ] → Dx∗

[US ] → Gk → 1; 1 → I(l)
x∗

[US ] → D(l)
x∗

[US ] → Gk → 1

split. [Indeed, extracting roots of any local uniformizer of X at x∗ determines
such a splitting — cf., e.g., the discussion at the beginning of [Mzk8, §4]]. In
the following discussion, we shall fix a splitting

Gk → Dx∗
[US ]

of this exact sequence. Thus, this splitting determines a natural action of Gk

[by conjugation] on ∆
(l)
US

, hence also on

Lin
(l)
US

(a/b)
def
= Lin(∆

(l)
US

(a/b))(Ql); Lie
(l)
US

(a/b)
def
= Lie(∆

(l)
US

(a/b))

GrQl
(∆

(l)
US

)(a/b)

[where a, b ∈ Z; 1 ≤ a ≤ b]. Write

Fk ∈ Gk

for the Frobenius element of Gk. In the following, we shall denote the cardinality
of k by qk.
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Proposition 3.2 (Galois Invariant Splitting). Let a, b ∈ Z, 1 ≤ a ≤ b.

(i) The eigenvalues of the action of Fk on Lie
(l)
US

(a/a+1) are algebraic numbers

all of whose complex absolute values are equal to q
a/2
k [i.e., “of weight a”].

(ii) There is a unique Gk-equivariant isomorphism of Lie algebras

Lie
(l)
US

(a/b)
∼
→ GrQl

(∆
(l)
US

)(a/b)

which induces the identity isomorphism Lie
(l)
US

(c/c + 1)
∼
→ GrQl

(∆
(l)
US

)(c/c + 1),
for all c ∈ Z such that a ≤ c ≤ b − 1.

(iii) The isomorphism of (ii) together with the natural inclusions I
(l)
x [US ] →֒

∆
(l)
US

for x ∈ S [which are well-defined up to ∆
(l)
US

-conjugation] determine a
Gk-equivariant morphism

( ⊕

x∈S

I(l)
x [US ] ⊗ Ql

)
⊕ Lie

(l)
US

(1/2) → Lie
(l)
US

(1/∞)

which exhibits, in a Gk-equivariant fashion, Lie
(l)
US

(1/∞) as the quotient of the
completion [with respect to the filtration topology] of the free Lie algebra

generated by the finite dimensional Ql-vector space

( ⊕

x∈S

I(l)
x [US ] ⊗ Ql

)
⊕ Lie

(l)
US

(1/2)

[equipped with a natural grading, hence also a filtration, by taking the

I
(l)
x [US ] ⊗ Ql to be of weight 2, Lie

(l)
US

(1/2) to be of weight 1], by the single

relation determined by the image of the morphism

M
(l)
X ⊗ Ql →֒

( ⊕

x∈S

I(l)
x [US ] ⊗ Ql

)
⊕ (I(l)

cup ⊗ Ql)

of Proposition 3.1, (i), tensored with Ql.

(iv) For each g ∈ Lin
(l)
US

(1/∞), there exists a unique h ∈ Lin
(l)
US

(1/∞) such

that

Fk ◦ Inng = Innh ◦ Fk ◦ Innh−1

[where “Inn” denotes the inner automorphism of Lin
(l)
US

(1/∞) defined by con-
jugation by the subscripted element]. Moreover, when g lies in the image of

I
(l)
x∗ ⊗ Ql [which is stabilized by the action of Fk], h also lies in the image of

I
(l)
x∗ ⊗ Ql.
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Proof. Assertion (i) follows immediately from the “Riemann hypothesis
for abelian varieties over finite fields” — cf., e.g., [Mumf], p. 206. Assertion
(ii) (respectively, (iii); (iv)) follows formally from assertion (i) (respectively,
and Proposition 3.1, (i); and successive approximation of h with respect to the

natural filtration Lin
(l)
US

(a/∞) ⊆ Lin
(l)
US

(1/∞)).

Next, let

S∗ ⊆ S

be a subset such that x∗ ∈ S∗; S0
def
= S\S∗. In the following, we shall regard

Lin
(l)
US

(a/b) as being equipped with its natural l-adic topology. Thus, Gk acts

continuously on Lin
(l)
US

(a/b), Lie
(l)
US

(a/b), and we have natural Gk-equivariant
surjections:

Lin
(l)
US

(a/b) ։ Lin
(l)
US0

(a/b); Lie
(l)
US

(a/b) ։ Lie
(l)
US0

(a/b)

Let us write

Lin
(l)
US/US0

(a/b); Lie
(l)
US/US0

(a/b)

for the kernels of these surjections. In the following, to simplify the notation, we
shall often omit the superscript (l) from the objects “Lin(l)”, “Lie(l)”, “New(l)”,

“Newtor,(l)” introduced above and write:

LinUS
(a/b); LieUS

(a/b); LinUS0
(a/b); LieUS0

(a/b)

LinUS/US0
(a/b); LieUS/US0

(a/b); NewS∗
(a/b); Newtor

S∗
(a/b)

Also, we shall write:

NewQ
S∗

(a/b)
def
= NewS∗

(a/b) ⊗ Q; ∆Lie
US

def
= LinUS

(1/∞) ×LinUS0
(1/∞) ∆US0

Note that, for Z ∋ b ≥ 1, we have a natural Gk-equivariant inclusion

LinUS/US0
(b + 1/∞)

∼
→ LinUS/US0

(b + 1/∞) ×{1} {1}

→֒ LinUS
(1/∞) ×LinUS0

(1/∞) ∆US0
= ∆Lie

US

whose image forms a normal subgroup of ∆Lie
US

; write

∆Lie
US

։ ∆Lie≤b
US

for the quotient of ∆Lie
US

by this normal subgroup. Also, we have a natural
Gk-equivariant [composite] inclusion

NewQ
S∗

(b+1/b+2) →֒ LieUS/US0
(b+1/b+2)

∼
→ LinUS/US0

(b+1/b+2) →֒ ∆Lie≤b+1
US
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whose image forms a normal subgroup of ∆Lie≤b+1
US

; write

∆Lie≤b+1
US

։ ∆Lie≤b+
US

for the quotient of ∆Lie≤b+1
US

by this normal subgroup. Thus, we have natural
Gk-equivariant homomorphisms of topological groups:

∆US
→ ∆Lie

US
։ ∆Lie≤b+

US
։ ∆Lie≤b

US
։ ∆US0

[the last three of which are easily verified to be surjective]. Moreover, forming
the semi-direct product with Gk [via the natural actions of Gk] yields topological
groups and homomorphisms as follows:

ΠUS
→ ΠLie

US
։ ΠLie≤b+

US
։ ΠLie≤b

US
։ ΠUS0

Also, we note that we have natural exact sequences:

1 → LinUS/US0
(1/∞) → ∆Lie

US
→ ∆US0

→ 1

1 → LinUS/US0
(1/∞) → ΠLie

US
→ ΠUS0

→ 1

Definition 3.3.

(i) We shall refer to ∆Lie
US

(respectively, ΠLie
US

; ∆Lie≤b
US

; ΠLie≤b
US

; ∆Lie≤b+
US

; ΠLie≤b+
US

)

as the [l-adic] Lie-ification (respectively, Lie-ification; Lie-ification, truncated
to order b; Lie-ification, truncated to order b; Lie-ification, truncated to order
b+; Lie-ification, truncated to order b+) of ∆US

(respectively, ΠUS
; ∆US

; ΠUS
;

∆US
; ΠUS

) [over ∆US0
(respectively, ΠUS0

; ∆US0
; ΠUS0

; ∆US0
; ΠUS0

)].

(ii) Observe that it follows immediately from the definitions that, for Z ∋ b ≥ 1,

we have natural exact sequences

1 → NewQ
S∗

(b + 1/b + 2) → ∆Lie≤b+1
US

→ ∆Lie≤b+
US

→ 1

1 → NewQ
S∗

(b + 1/b + 2) → ΠLie≤b+1
US

→ ΠLie≤b+
US

→ 1

on which ΠLie≤b+1
US

acts naturally by conjugation. [Here, we note in passing
that it is immediate from the definitions that the submodule

NewS∗
(b + 1/b + 2) ⊆ NewQ

S∗
(b + 1/b + 2)

is contained in the image of ∆US
.] In particular, we obtain a natural inclusion:

NewS∗
(b + 1/b + 2) →֒ ∆Lie≤b+1

US
(⊆ ΠLie≤b+1

US
)
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We shall refer to the quotients of ∆Lie≤b+1
US

, ΠLie≤b+1
US

by the image of this

natural inclusion as the toral Lie-ifications ∆tor≤b+1
US

, Πtor≤b+1
US

of ∆US
, ΠUS

[over ∆US0
, ΠUS0

]. Thus, we have natural exact sequences

1 → Newtor
S∗

(b + 1/b + 2) → ∆tor≤b+1
US

→ ∆Lie≤b+
US

→ 1

1 → Newtor
S∗

(b + 1/b + 2) → Πtor≤b+1
US

→ ΠLie≤b+
US

→ 1

on which ΠLie≤b+1
US

acts naturally by conjugation.

(iii) Suppose that U ′
S′

0
→ US0

is a connected finite étale covering that arises

from an open subgroup ΠU ′

S′
0

⊆ ΠUS0
; write X ′ → X for the normalization of

X in U ′
S′

0
. Then we shall say that the [ramified] covering X ′ → X is (S, S0, Σ)-

admissible if every closed point of X ′ that lies over a point of S is rational over
the base field k′ of X ′, and, moreover, ΠU ′

S′
0

is a characteristic subgroup of

ΠUS0
.

Remark 34. Note that it follows immediately from the definition of
ΠLie

US
[cf. also Proposition 3.2, (iii)] that we obtain a natural subgroup

DLie
x∗

def
=

(
I(l)
x∗

[US ] ⊗ Q

)
⋊ Gk ⊆ ΠLie

US

which contains the image of the decomposition group Dx∗
[US ] ⊆ ΠUS

via
the natural homomorphism ΠUS

→ ΠLie
US

. Let us write, for Z ∋ b ≥ 1,

DLie≤b
x∗

⊆ ΠLie≤b
US

for the image of DLie
x∗

in ΠLie≤b
US

; ILie
x∗

def
= DLie

x∗

⋂
∆Lie

US
; ILie≤b

x∗

def
=

DLie≤b
x∗

⋂
∆Lie≤b

US
. [Also, we shall use similar notation when “b” is replaced by

“b+”.]

Proposition 3.3 (Center-freeness of Lie-ification). ∆Lie
US

is center-free.

Proof. Since ∆US0
is center-free [cf. Proposition 1.6, (iii)], and the nat-

ural morphism ∆Lie
US

→ ∆US0
is surjective, it suffices to verify that the cen-

tralizer in LinUS
(1/∞) of the image of ∆Lie

US
is trivial. But the image of ∆Lie

US

in LinUS
(1/∞) contains the image of ∆US

in LinUS
(1/∞). In particular, it

follows that the centralizer in question lies in the center of LinUS
(1/∞). Thus,

Proposition 3.3 follows from Proposition 3.1, (ii) [or, alternatively, (iii)].

Remark 35. Observe that changing the choice of splitting

Gk → Dx∗
[US ]

affects the image of the element Fk ∈ Gk via the composite of the inclusion
Gk →֒ ΠUS

with the morphisms

ΠUS
→ ΠLie

US
; ΠUS

→ ΠLie≤b
US

; ΠUS
→ ΠLie≤b+

US
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by conjugation by an element h ∈ ILie
x∗

, which, up to a denominator divid-
ing qk − 1, lies in the image of Ix∗

[US ] ⊆ ∆US
— cf. Proposition 3.2, (iv);

Proposition 3.3. In particular, it follows that changing the choice of split-
tings Gk → Dx∗

[US ] affects the Galois invariant splittings of Proposition 3.2,
(ii), by conjugation by h. Put another way, if we identify the “LinUS

(1/∞)”,
“LinUS0

(1/∞)” portions of ∆Lie
US

[cf. the definition of ∆Lie
US

] with the [l-adic
points of the pro-unipotent algebraic groups determined by the] correspond-
ing graded Lie objects “GrQl

(−)(1/∞)” via the Galois invariant splittings of
Proposition 3.2, (ii), then it follows that: Changing the choice of splitting
Gk → Dx∗

[US ] affects the images of the morphisms

ΠUS
→ ΠLie

US
; ΠUS

→ ΠLie≤b
US

; ΠUS
→ ΠLie≤b+

US

[where Z ∋ b ≥ 1] by conjugation by h.

In light of Proposition 3.3, we may apply the exact sequence “1 → (−) →
Aut(−) → Out(−) → 1” [cf. Section 0] to construct the following topological
group:

∆LIE
US

def
= lim

←−

X′

Aut(∆Lie
U ′

S′
) ×Out(∆Lie

U′
S′

) Gal(X ′
k
/Xk)

[where X ′ → X ranges over the (S, S0, Σ)-admissible coverings of X; U ′
S′ ⊆ X ′

is the open subscheme determined by the complement of the set S′ of closed
points of X ′ that lie over points of S]. Note that Gk acts naturally on ∆LIE

US
;

thus, we may form the semi-direct product of ∆LIE
US

with Gk to obtain a topo-

logical group ΠLIE
US

. Also, since the various ∆U ′

S′
0

[where U ′
S′

0
⊆ X ′ is the open

subscheme determined by the complement of the set S′
0 of closed points of X ′

that lie over points of S0] arising from the X ′ → X that appear in this inverse
limit are center-free [cf. Proposition 1.6, (iii)], the natural isomorphism

lim
←−

X′

Aut(∆U ′

S′
0

) ×Out(∆U′
S′
0

) Gal(X ′
k
/Xk)

∼
→ ∆US0

determines surjections ∆LIE
US

։ ∆US0
, ΠLIE

US
։ ΠUS0

.

Next, let us observe that, for Z ∋ b ≥ 1, the various quotients ∆Lie
U ′

S′
։

∆tor≤b+1
U ′

S′
։ ∆Lie≤b+

U ′
S′

։ ∆Lie≤b
U ′

S′
determine quotients of topological groups ∆LIE

US

։ ∆TOR≤b+1
US

։ ∆LIE≤b+
US

։ ∆LIE≤b
US

, ΠLIE
US

։ ΠTOR≤b+1
US

։ ΠLIE≤b+
US

։

ΠLIE≤b
US

. Thus, we obtain natural homomorphisms of topological groups:

∆US
→ ∆LIE

US
։ ∆TOR≤b+1

US
։ ∆LIE≤b+

US
։ ∆LIE≤b

US
։ ∆US0

ΠUS
→ ΠLIE

US
։ ΠTOR≤b+1

US
։ ΠLIE≤b+

US
։ ΠLIE≤b

US
։ ΠUS0

We shall denote by

∆≤b+
US

⊆ ∆LIE≤b+
US

; Π≤b+
US

⊆ ΠLIE≤b+
US

; ∆≤b
US

⊆ ∆LIE≤b
US

; Π≤b
US

⊆ ΠLIE≤b
US
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the respective images of ∆US
, ΠUS

via these natural homomorphisms. Thus,

one may think of ∆≤b
US

, Π≤b
US

as being a sort of “canonical integral structure” on

the “inverse limit truncated Lie-ifications” ∆LIE≤b
US

, ΠLIE≤b
US

.
Here, we note in passing, relative to the theory of Sections 1, 2, that

[it is immediate from the definitions that] when S = S∗ [so US0
= X], the

quotient ΠUS
։ Π≤2

US
is the maximal cuspidally pro-l abelian quotient of ΠUS

[cf. Proposition 1.9, (i)].
Next, let us observe that in the inverse limit used to define ∆LIE

US
, ΠLIE

US
,

the various “ILie
x∗

”, “DLie
x∗

” [cf. Remark 34] form a compatible system, hence
give rise to subgroups

ILIE
x∗

⊆ DLIE
x∗

⊆ ΠLIE
US

; ILIE≤b
x∗

⊆ DLIE≤b
x∗

⊆ ΠLIE≤b
US

together with natural exact sequences and isomorphisms [when b ≥ 2]

1 → ILIE
x∗

→ DLIE
x∗

→ Gk → 1

1 → ILIE≤b
x∗

→ DLIE≤b
x∗

→ Gk → 1

ILIE
x∗

∼= ILIE≤b
x∗

∼= I
(l)
x∗ [US ] ⊗ Q

[and similarly when “b” is replaced by “b+”]. Also, the images of the subgroups
Ix∗

[US ], Dx∗
[US ] of ΠUS

determine subgroups

I≤b
x∗

⊆ D≤b
x∗

⊆ Π≤b
US

[and similarly when “b” is replaced by “b+”].
In the following, let us write [cf. Proposition 3.1, (iv)]

CnwS∗
(a/b)

def
= Cnw

(l)
S∗

(a/b); CnwQ
S∗

(a/b)
def
= Cnw

(l)
S∗

(a/b) ⊗ Q

[where a, b ∈ Z, 1 ≤ a ≤ b].
Before proceeding, let us observe that [it is immediate from the definitions

that] the natural surjections

∆LIE≤1+
US

։ ∆LIE≤1
US

։ ∆US0
; ΠLIE≤1+

US
։ ΠLIE≤1

US
։ ΠUS0

are isomorphisms. On the other hand, for b ≥ 2, we have the following result:

Proposition 3.4 (Plus Liftings of Canonical Integral Structures). For
Z ∋ b ≥ 2:

(i) The natural surjections ∆≤b+
US

։ ∆≤b
US

, Π≤b+
US

։ Π≤b
US

are isomorphisms.

(ii) Any two liftings of the natural inclusion Π≤b
US

→֒ ΠLIE≤b
US

to inclusions

Π≤b
US

→֒ ΠLIE≤b+
US

differ by conjugation in ΠLIE≤b+
US

by a unique element of
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the kernel of ΠLIE≤b+
US

։ ΠLIE≤b
US

.

(iii) Any two liftings of the natural inclusion Π≤b
US

→֒ ΠLIE≤b
US

to inclusions

Π≤b
US

→֒ ΠLIE≤b+
US

whose images contain D≤b+
x∗

in fact coincide.

Proof. First, we consider assertion (i). It follows immediately from the
definitions that the kernel in question

Ker(∆≤b+
US

։ ∆≤b
US

) = Ker(Π≤b+
US

։ Π≤b
US

)

is contained in [and, in fact, equal to] the inverse limit

lim
←−

X′

CnwS′
∗
(b + 1/b + 2)

[where X ′ → X ranges over the (S, S0, Σ)-admissible coverings of X; S′
∗ (respec-

tively, S′) is the set of closed points of X ′ that lie over points of S∗ (respectively,
S)]. On the other hand, it follows from the definition of “CnwS′

∗
(b + 1/b + 2)”

that CnwS′
∗
(b + 1/b + 2) is generated by certain successive brackets of the var-

ious generators of the Lie algebra Gr(∆
(l)
U ′

S′
) [cf. Proposition 3.1, (i)] with the

property that at least one of the generators appearing in the successive bracket
is [in the notation of Proposition 3.1, (i)] either one of the [analogue for X ′

of the] “α1, . . . , αg, β1, . . . , βg” or one of the “ζx′”, where x′ ∈ S′
0

def
= S′\S′

∗.
Moreover, since, by taking ΠU ′′

S′′
0

⊆ ΠU ′

S′
0

to be sufficiently small, one may ar-

range that the image of ∆
(l)
U ′′

S′′
0

(1/3) in ∆
(l)
U ′

S′
0

(1/3) be contained in an arbitrarily

small open subgroup of ∆
(l)
U ′

S′
0

(1/3), it thus follows that the above inverse limit

vanishes. This completes the proof of assertion (i).
Next, let us observe that to prove assertion (ii), it suffices — in light of

the natural isomorphism

Ker(ΠLIE≤b+
US

։ ΠLIE≤b
US

)
∼
→ lim

←−

X′

CnwQ
S′
∗
(b + 1/b + 2)

[where X ′, S′
∗ are as above] — to show that

Hi(Π≤b
US

, CnwQ
S′
∗
(b + 1/b + 2)) = 0

for i = 0, 1, each S′
∗ as above. Since the action of ∆≤b

US
on CnwQ

S′
∗
(b + 1/b + 2)

clearly factors through a finite quotient of ∆≤b
US

։ ∆US0
, it thus suffices to

observe [by considering the Leray spectral sequence associated to the surjection

Π≤b
US

։ Gk] that the action of Fk on CnwQ
S′
∗
(b+1/b+2) is “of weight b+1 ≥ 3”,

while the action of Fk on (∆
(l)
U ′

S′
)ab is “of weight ≤ 2” [cf. Proposition 3.2, (i)].

This completes the proof of assertion (ii).
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Finally, we consider assertion (iii). First, let us observe that any two liftings

of the natural inclusion Π≤b
US

→֒ ΠLIE≤b
US

to inclusions Π≤b
US

→֒ ΠLIE≤b+
US

whose

images contain D≤b+
x∗

∼
→ D≤b

x∗
[since b ≥ 2] in fact coincide on D≤b

x∗
⊆ Π≤b

US
.

Thus, by assertion (ii), it suffices to verify that the submodule of Fk-invariants
of

Ker(ΠLIE≤b+
US

։ ΠLIE≤b
US

)

is zero. But in light of the natural isomorphism

Ker(ΠLIE≤b+
US

։ ΠLIE≤b
US

)
∼
→ lim

←−

X′

CnwQ
S′
∗
(b + 1/b + 2)

[where X ′, S′
∗ are as above], this follows from Proposition 3.2, (i). This com-

pletes the proof of assertion (iii).

Next, for Z ∋ b ≥ 1, let us denote by

∆≤b++
US

⊆ ∆TOR≤b+1
US

; Π≤b++
US

⊆ ΠTOR≤b+1
US

the respective images of ∆US
, ΠUS

via the natural homomorphisms considered
above and by

I≤b++
x∗

⊆ D≤b++
x∗

⊆ Π≤b++
US

the images of the subgroups Ix∗
[US ], Dx∗

[US ] of ΠUS
. Observe that it follows

from the definition of ∆TOR≤b+1
US

, ΠTOR≤b+1
US

[cf. also Proposition 3.1, (iv)]

that the natural surjections ∆≤b++
US

։ ∆≤b+
US

, Π≤b++
US

։ Π≤b+
US

are, in fact,
isomorphisms. Thus, by Proposition 3.4, (i), we obtain a commutative diagram
of natural homomorphisms

Π≤b+1
US

։ Π≤b++
US

∼
→ Π≤b+

US

∼
→ Π≤b

US

�
�

�
�

ΠLIE≤b+1
US

։ ΠTOR≤b+1
US

։ ΠLIE≤b+
US

։ ΠLIE≤b
US

[where the vertical arrows are the natural inclusions; all of the horizontal arrows
are surjections; the second two upper horizontal arrows are isomorphisms].
Moreover, it follows immediately from the definitions that the first square in
this commutative diagram is cartesian. That is to say, the subgroup Π≤b+1

US
⊆

ΠLIE≤b+1
US

may be thought of as the inverse image via the natural surjection

ΠLIE≤b+1
US

։ ΠTOR≤b+1
US

of the image of a certain lifting of the natural inclusion

Π≤b
US

→֒ ΠLIE≤b+
US

[cf. Proposition 3.4, (i)] to an inclusion Π≤b
US

→֒ ΠTOR≤b+1
US

.
Also, let us write:

Π≤b
US

[csp]
def
= Ker(Π≤b

US
։ ΠX)

Π≤b++
US

[csp]
def
= Ker(Π≤b++

US
։ ΠX)
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for the cuspidal subgroups of Π≤b
US

, Π≤b++
US

.
Next, following the pattern of Section 1, we relate the constructions made

so far to the fundamental groups ∆UX×X
, ΠUX×X

[cf. the discussion preceding
Proposition 1.5]. For simplicity, we assume from now on that:

S = S∗ = {x∗}

[so S0 = ∅]. Write Dx∗
[X] ⊆ ΠX for the image of Dx∗

[US ] via the natural
surjection ΠUS

։ ΠX . Then the projection ΠUX×X
։ ΠX to the second factor

determines a natural isomorphism

ΠUS

∼
→ ΠUX×X

×ΠX
Dx∗

[X]

[cf. Proposition 1.6, (ii)]. Moreover, this isomorphism determines a natural
isomorphism

(ΠUS
⊇) Dx∗

[US ]
∼
→ DX ×ΠX

Dx∗
[X] (⊆ DX ⊆ ΠUX×X

)

[where “DX” is as in the discussion preceding Proposition 1.8] which is compat-
ible with the natural inclusions Dx∗

[US ] →֒ ΠUS
, DX →֒ ΠUX×X

. Put another
way, Dx∗

[US ] [hence also Ix∗
[US ], Gk ⊆ Dx∗

[US ]] may be thought of as being
“simultaneously” a subgroup of both ΠUS

and DX . Thus, we obtain a natural
exact sequence

1 −→ ∆US
−→ ΠUX×X

−→ ΠX −→ 1

together with compatible inclusions

∆US
⊇ ∆U ′

S′
⊇ Ix∗

[US ] ⊆ Dx∗
[US ] ⊆ DX ⊆ ΠUX×X

[where X ′ → X is an (S, ∅, Σ)-admissible covering of X; U ′
S′ ⊆ X ′ is the open

subscheme determined by the complement of the set S′ of closed points of X ′

that lie over x∗]. Also, we shall write:

D∆
X

def
= DX

⋂
∆UX×X

⊆ ΠUX×X

In particular, we obtain natural actions [by conjugation] of DX on ∆US
, ∆U ′

S′

[as well as on the various objects naturally constructed from ∆US
, ∆U ′

S′
in the

above discussion], which we shall refer to as diagonal actions.

Proposition 3.5 (Characterization of the Diagonal Action). Suppose
that S = S∗ = {x∗}. Then in the notation and terminology of the above discus-
sion, the diagonal action of DX on LinU ′

S′
(1/∞) is completely determined

[i.e., as a continuous action of the topological group DX on the topological group
LinU ′

S′
(1/∞)] by the following conditions:

(a) the action is compatible with the natural action of Dx∗
[US ] ⊆ DX on

LinU ′
S′

(1/∞);
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(b) the action is compatible with the filtration {LinU ′
S′

(a/∞)} [where a ≥ 1

is an integer] on LinU ′
S′

(1/∞).

(c) the action coincides with the diagonal action of DX on the quotient

LinU ′
S′

(1/4) [cf. condition (b)] of LinU ′
S′

(1/∞).

Proof. First, I claim that it suffices to show that these conditions deter-

mine the action of the subgroup D∆
X′/X

def
= D∆

X ×∆X
∆X′ ⊆ D∆

X ⊆ DX on

LinU ′
S′

(1/∞). Indeed, once the action of D∆
X′/X is determined, it follows that

the action of

DX′/X
def
= DX ×ΠX

ΠX′ ⊆ Dx∗
[US ] · D∆

X′/X ⊆ DX

is determined [cf. condition (a)]. On the other hand, since ΠX′ is an open
normal subgroup of ΠX , it follows that DX′/X is an open normal subgroup of
DX . Thus, by considering the conjugation actions of DX on DX′/X and of
Im(DX) ⊆ LinU ′

S′
(1/∞) on Im(DX′/X) ⊆ LinU ′

S′
(1/∞) [i.e., of the group of

automorphisms of LinU ′
S′

(1/∞) induced by elements of DX on the group of

automorphisms of LinU ′
S′

(1/∞) induced by elements of DX′/X ], we conclude

that the action of DX on LinU ′
S′

(1/∞) is determined up to composition with

automorphisms of LinU ′
S′

(1/∞) that commute with the action of DX′/X and

[cf. condition (c)] induce the identity on the quotient LinU ′
S′

(1/4). Now let α

be an automorphism of LinU ′
S′

(1/∞) that commutes with the action of DX′/X

and induces the identity on the quotient LinU ′
S′

(1/4). Then α commutes with

some open subgroup of Gk ⊆ Dx∗
[US ] ⊆ DX , so α induces an automorphism of

LieU ′
S′

(1/∞) that is compatible with the splittings of Proposition 3.2, (ii). Since

Gr(∆
(l)
U ′

S′
) is generated by its elements “of weight ≤ 2” [cf. Proposition 3.1, (i)],

we thus conclude that α induces the identity automorphism of LieU ′
S′

(1/∞),
hence that α itself is the identity automorphism. This completes the proof of
the claim.

Next, let us observe that by condition (c) [cf. also Proposition 3.1, (i)],
the action of D∆

X′/X on LinU ′
S′

(1/∞) is unipotent, relative to the filtration of

condition (b). Thus, it follows [from the definition of “Lie(−)”] that the induced
action of D∆

X′/X on LieU ′
S′

(1/∞) determines an action of the Lie algebra

Lie(D∆
X′/X)

def
= Lie((D∆

X′/X)(l)(1/∞))

[where we write (D∆
X′/X)(l) for the maximal pro-l quotient of (D∆

X′/X)(l)] on

the Lie algebra LieU ′
S′

(1/∞). Moreover, to complete the proof of Proposition
3.5, it suffices to show that this Lie algebra action is the action arising from
the diagonal action. In fact, since this Lie algebra action is compatible [cf.
condition (a)] with the actions of Gk on Lie(D∆

X′/X), LieU ′
S′

(1/∞), it follows,
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by considering the induced eigenspace splittings [cf. Proposition 3.2, (ii)], that
[to complete the proof of Proposition 3.5] it suffices to show that the Lie algebra

action of Gr(D∆
X′/X)

def
= Gr(Lie(D∆

X′/X)) on Gr(∆
(l)
U ′

S′
) is the action arising

from the diagonal action. On the other hand, since Gr(D∆
X′/X), Gr(∆

(l)
U ′

S′
) are

generated by elements “of weight ≤ 2” [cf. Proposition 3.1, (i)], this follows
by observing that the Lie algebra action of the unique generator of Gr(D∆

X′/X)

“of weight 2” [which arises from Ix∗
[US ] ⊆ D∆

X′/X ] is determined by condition

(a), while the Lie algebra action of the generators of Gr(D∆
X′/X) “of weight

1” [which send elements of Gr(∆
(l)
U ′

S′
) “of weight ≤ 2” to elements of Gr(∆

(l)
U ′

S′
)

“of weight ≤ 3”] is determined by condition (c). This completes the proof of
Proposition 3.5.

Remark 36. Note that the conditions of Proposition 3.5 allow one to
characterize not only the diagonal action of DX on LinU ′

S′
(1/∞), but also

on ∆Lie
U ′

S′
, ΠLie

U ′
S′

, hence also on ∆LIE
US

, ΠLIE
US

[where we note that the diagonal

action of DX on Gal(X ′
k
/Xk) is simply the conjugation action arising from the

quotients DX ։ ΠX , ∆X ։ Gal(X ′
k
/Xk)].

Remark 37. Note that the groups LinU ′
S′

(1/4) of condition (c) of Propo-

sition 3.5 are, as groups equipped with the surjection LinU ′
S′

(1/4) ։ LinX′(1/4),

cuspidally abelian [i.e., the kernel of this surjection is abelian], hence may be
constructed from the maximal cuspidally abelian quotients ΠUX×X

։ Πc-ab
UX×X

of Theorem 1.1.

Proposition 3.6 (Extensions of Canonical Integral Structures). Sup-
pose that S = S∗ = {x∗} [cf. Remark 39 below]. Let b ≥ 1 be an integer. Then:

(i) Suppose that b = 1. Then any two liftings of the natural inclusion Π≤b
US

→֒

ΠLIE≤b+
US

to inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

differ by conjugation in ΠTOR≤b+1
US

by an element of the kernel of ΠTOR≤b+1
US

։ ΠLIE≤b+
US

.

(ii) Suppose that b ≥ 2. Then any two liftings of the natural inclusion Π≤b
US

→֒

ΠLIE≤b+
US

to inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

whose images contain I≤b++
x∗

differ

by conjugation in ΠTOR≤b+1
US

by an element of the kernel of ΠTOR≤b+1
US

։

ΠLIE≤b+
US

.

(iii) Let β be an automorphism of the profinite group Π≤b+1
US

that satisfies the

following two conditions: (a) β preserves and induces the identity on the quo-

tient Π≤b+1
US

։ Π≤b
US

; (b) β preserves the subgroup I≤b+1
x∗

⊆ Π≤b+1
US

. Then β is

a Ker(Π≤b+1
US

։ Π≤b
US

)-inner automorphism.
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(iv) Let δ ∈ Ker(ΠTOR≤b+1
US

։ ΠLIE≤b+
US

) be an element that is invariant un-

der the diagonal action of DX . Then if b = 1, then δ lies in the image of
Ix∗

[US ] ⊗ (Ql/Zl); if b ≥ 2, then δ is the identity element.

(v) Write

ΠUS
։ Π≤∞

US

def
= lim

←−

b

Π≤b
US

; ∆US
։ ∆≤∞

US

def
= lim

←−

b

∆≤b
US

for the the quotients of ΠUS
, ∆US

defined by the inverse limit of the Π≤b
US

, ∆≤b
US

and

ΠUX×X
։ Π≤∞

UX×X
; ∆UX×X

։ ∆≤∞
UX×X

for the quotients of ΠUX×X
, ∆UX×X

determined by the kernel in ∆US
⊆ ∆UX×X

⊆ ΠUX×X
[cf. the discussion preceding Proposition 3.5] of Ker(∆US

։ ∆≤∞
US

).

Then ΠUS
։ Π≤∞

US
(respectively, ∆US

։ ∆≤∞
US

; ΠUX×X
։ Π≤∞

UX×X
; ∆UX×X

։

∆≤∞
UX×X

) is the maximal cuspidally pro-l quotient of ΠUS
(respectively,

∆US
; ΠUX×X

; ∆UX×X
); moreover, (Π≤∞

US
)†, ∆≤∞

US
, (Π≤∞

UX×X
)†, ∆≤∞

UX×X
[where

the daggers denote the result of applying the operation “×Gk
G†

k”] are slim.

Proof. First, we consider assertions (i), (ii). Observe that, for Z ∋ b ≥ 1,

the difference of any two liftings of the natural inclusion Π≤b
US

→֒ ΠLIE≤b+
US

to

inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

determines a compatible collection of cohomology
classes

ηS′ ∈ H1(Π≤b
US

, Newtor
S′ (b + 1/b + 2))

[where X ′ → X ranges over the (S, ∅, Σ)-admissible coverings of X; S′ is the set
of closed points of X ′ that lie over x∗]. Since Newtor

S′ (b+1/b+2) = 0 whenever
b is even, we may assume for the remainder of the proof of assertions (i), (ii)
that b is odd.

Next, let us observe that by Proposition 3.2, (i), the zeroth cohomology
module

H0(Π≤b
US

, Newtor
S′ (b + 1/b + 2))

is finite. This finiteness implies that any [not necessarily compatible!] system

of sections of a compatible system of torsors over H0(Π≤b
US

, Newtor
S′ (b+1/b+2))

always admits a compatible cofinal subsystem. In light of the natural isomor-
phism

Ker(ΠTOR≤b+1
US

։ ΠLIE≤b+
US

)
∼
→ lim

←−

X′

Newtor
S′ (b + 1/b + 2))

[where X ′, S′ are as described above], we thus conclude that in order to show

that the two inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

differ by conjugation by an element

of Ker(ΠTOR≤b+1
US

։ ΠLIE≤b+
US

), it suffices to show that the ηS′ = 0.

Note that Π≤b
US

[csp] acts trivially on Newtor
S′ (b+1/b+2)). Now I claim that:



Absolute anabelian cuspidalizations of proper hyperbolic curves 519

Each ηS′ arises from a unique class [which, by abuse of notation,
we shall also denote by ηS′ ] in H1(ΠX , Newtor

S′ (b + 1/b + 2)).

Indeed, if b = 1, this claim follows from the fact that Π≤b
US

[csp] = {1} [cf. the
discussion preceding Proposition 3.4], so assume that b ≥ 2, and that we are in
the situation of assertion (ii). Now observe that since S = S∗ is of cardinality

one, it follows that Π≤b
US

[csp] (respectively, Π≤b++
US

[csp]) is topologically generated

by the Π≤b
US

- (respectively, Π≤b++
US

-) conjugates of I≤b
x∗

(respectively, I≤b++
x∗

).
Note, moreover, that it is immediate from the definitions that every element
of Ker(ΠTOR≤b+1

US
։ ΠLIE≤b+

US
) commutes with I≤b++

x∗
. In particular, it follows

that the images of Π≤b
US

[csp] via the two inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

under
consideration necessarily coincide. But this implies that each ηS′ arises from a
unique class in H1(ΠX , Newtor

S′ (b + 1/b + 2)), thus completing the proof of the
claim.

Next, [returning to the general situation involving both assertions (i) and
(ii)] let

X ′′ → X ′

be a morphism of (S, ∅, Σ)-admissible coverings of X. Write U ′′
S′′ ⊆ X ′′ for the

open subscheme determined by the complement of the set S′′ of closed points
of X ′′ that lie over points of S. Also, let us assume that the open subgroup
∆X′′ ⊆ ∆X′ arises from some open subgroup H ′′ ⊆ ∆ab

X′ that is preserved by
the action of ΠX . Thus, it follows that the covering X ′′

k
→ X ′

k
is abelian; write

Gal(X ′′/X ′)
def
= Gal(X ′′

k
/X ′

k
). For c a positive integer, set:

R′ def
= Zl; R′′

c
def
= Zl[c · Gal(X ′′/X ′)] ⊆ R′′ def

= Zl[Gal(X ′′/X ′)]

[where we write c ·Gal(X ′′/X ′) ⊆ Gal(X ′′/X ′) for the subgroup of the abelian
group Gal(X ′′/X ′) that arises as the image of multiplication by c]. Thus, R′′

(respectively, R′′; R′′
c ) is a commutative ring with unity whose underlying R′-

(respectively, R′′
c -; R′-) module is finite and free; moreover, R′′, R′′

c admit a
natural ΠX -action [induced by the conjugation action of ΠX on the subquotient
Gal(X ′′/X ′) of ΠX ]. Also, we shall denote by

ǫ′′c : R′′
c ։ R′; ǫ′′ : R′′

։ R′

the augmentations obtained by mapping all of the elements of Gal(X ′′/X ′) to
1.

Next, let us observe that S′, S′′ admit natural ΠX-actions with respect to
which we have natural isomorphisms of ΠX-modules [cf. Proposition 3.1, (i),
(iv)]

NewS′(2/3)
∼
→ R′[S′] ⊗ M

(l)
X ; NewS′′(2/3)

∼
→ R′[S′′] ⊗ M

(l)
X

which determine natural isomorphisms of ΠX-modules

NewS′(2c/2c + 1)
∼
→ Liec

R′(R′[S′] ⊗ M
(l)
X )

NewS′′(2c/2c + 1)
∼
→ Liec

R′(R′[S′′] ⊗ M
(l)
X )
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[cf. the notation of Proposition A.1] for integers c ≥ 1. In the following,
we shall identify the domains and codomains of these isomorphisms via these
isomorphisms.

Next, let us observe that the R′-module R′[S′′] admits a natural R′′-module
structure that is compatible with the ΠX -action on R′′, R′[S′′]. Note, moreover,
that R′[S′′] is a free R′′-module, and that we have a natural isomorphism

R′[S′′] ⊗R′′,ǫ′′ R′ ∼
→ R′[S′]

induced by the augmentation ǫ′′ : R′′
։ R′. Also, we observe that any choice

of representatives in S′′ of the ∆X′/∆X′′ = Gal(X ′′/X ′)-orbits of S′′ [where we
note that the set of such orbits may be naturally identified with S′] determines
an R′′-basis of R′[S′′], hence [by considering “Hall bases” — cf., e.g., [Bour,
Chapter II, §2.11]] an R′′-basis of Liec

R′′(R′[S′′]). Note that since the natu-
ral action of Gal(X ′′/X ′) on Liec

R′′(R′[S′′]) is compatible with the Lie algebra
structure, it follows that:

This natural action of Gal(X ′′/X ′) on Liec
R′′(R′[S′′]) is given by

composing the R′′-module structure action Gal(X ′′/X ′) →֒ R′′ with
the morphism c· : Gal(X ′′/X ′) → Gal(X ′′/X ′) given by multiplica-
tion by c.

In particular, this natural action of Gal(X ′′/X ′) on Liec
R′′(R′[S′′]) factors

through the quotient Gal(X ′′/X ′) ։ c · Gal(X ′′/X ′) and hence determines
on Liec

R′′(R′[S′′]) a structure of “induced” c · Gal(X ′′/X ′)-module [in the ter-
minology of the cohomology theory of finite groups]. Thus, we obtain natural,
ΠX-equivariant isomorphisms

R′[S′]
∼
→ R′[S′′]Gal(X′′/X′)

Liec
R′′(R′[S′′]) ⊗R′′

c ,ǫ′′c R′ ∼
→ Liec

R′′(R′[S′′])Gal(X′′/X′)

= Liec
R′′(R′[S′′])c·Gal(X′′/X′)

[where we use superscripts to denote the submodules of invariants with re-
spect to the action of the superscripted group]. Moreover, we observe that
relative to these natural isomorphisms, the restriction of the natural surjection
Liec

R′′(R′[S′′]) ։ Liec
R′′(R′[S′′]) ⊗R′′

c ,ǫ′′c
R′ to the submodule of Gal(X ′′/X ′)-

invariants induces the endomorphism of the module Liec
R′′(R′[S′′]) ⊗R′′

c ,ǫ′′c R′

given by multiplication by the order of c · Gal(X ′′/X ′).
Now let us write:

Newtor
S′′/S′(2c/2c + 1)

def
= Liec

R′′(R′[S′′] ⊗ M
(l)
X ) ⊗ (Ql/Zl)

Newtor
S′′/S′(2c/2c + 1)

def
= Newtor

S′′/S′(2c/2c + 1) ⊗R′′
c ,ǫ′′c R′

[where c ≥ 1 is an integer]. Then in light of the above observations [together
with Propositions A.1, (iv); 3.1, (iv)], we conclude the following:
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(A) The natural surjection of ΠX -modules

Newtor
S′′(b + 1/b + 2) ։ Newtor

S′ (b + 1/b + 2)

admits a factorization

Newtor
S′′(b + 1/b + 2) ։ Newtor

S′′/S′(b + 1/b + 2) ։ Newtor
S′′/S′(b + 1/b + 2)

։ Newtor
S′ (b + 1/b + 2)

[via morphisms of ΠX -modules]. Moreover, the natural action of ∆X′ on the
module Newtor

S′′/S′(b+1/b+2) factors through the quotient ∆X′ ։ Gal(X ′′/X ′)

։ c·Gal(X ′′/X ′) and determines on Newtor
S′′/S′(b+1/b+2) a structure of induced

c · Gal(X ′′/X ′)-module.

(B) The induced morphism on ∆X′-invariants

Newtor
S′′(b + 1/b + 2)∆X′ → Newtor

S′ (b + 1/b + 2)∆X′ = Newtor
S′ (b + 1/b + 2)

of the [first] natural surjection of (A) factors, in a ΠX-equivariant fashion,
through the endomorphism

Newtor
S′′/S′(b + 1/b + 2) → Newtor

S′′/S′(b + 1/b + 2)

[hence also through the endomorphism Newtor
S′ (b+1/b+2) → Newtor

S′ (b+1/b+2)]
given by multiplication by the order of c · Gal(X ′′/X ′).

Also, before proceeding, we make the following elementary observation
concerning the group cohomology of induced modules:

(C) Suppose that H ′′ = ln
′′

· ∆ab
X′ ⊆ ∆ab

X′ , where n′′ is a positive integer.
For M a finitely generated Zl-module [which we regard as equipped with the
trivial ∆X′ -action], write:

HX′
def
= H1(∆X′ , M ⊗ M

(l)
X )

HX′′
def
= H1(∆X′′ , M ⊗ M

(l)
X )

∼
→ H1(∆X′ , M [Gal(X ′′/X ′)] ⊗ M

(l)
X )

Then the “trace map”

TrH : HX′′ → HX′

— i.e., the map induced by the morphism of coefficients M [Gal(X ′′/X ′)] ։ M
that maps each element of Gal(X ′′/X ′) to 1 — factors through the endomor-
phism of HX′ given by multiplication by ln

′′

[cf. Remark 39 below].
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[Indeed, to verify (C), we recall that this trace map TrH is well-known
to be dual [via Poincaré duality — cf., e.g., [FK, pp. 135–136]] to the pull-
back morphism; we thus conclude that, relative to the natural isomorphisms
HX′′

∼
→ ∆ab

X′′ ⊗M , HX′
∼
→ ∆ab

X′ ⊗M [arising from Poincaré duality — cf., e.g.,
Proposition 1.3, (ii)], the trace map corresponds to the natural morphism

HX′′ = ∆ab
X′′ ⊗ M → ∆ab

X′ ⊗ M = HX′

induced by the inclusion ∆X′′ ⊆ ∆X′ — hence, by the definition of H ′′, fac-
tors through the endomorphism of HX′ given by multiplication by ln

′′

. This
completes the proof of (C).]

Next, let us suppose that we have been given morphisms of (S, ∅, Σ)-
admissible coverings of X

X ′′′ → X
′′′∗

→ X ′′ → X
′′∗

→ X ′

and write U ′′′
S′′′ ⊆ X ′′′, U

′′′∗

S′′′∗ ⊆ X
′′′∗

, U
′′∗

S′′∗ ⊆ X
′′∗

for the open subscheme

determined, respectively, by the complements of the sets S′′′, S
′′′∗

, S
′′∗

of closed
points of X ′′′, X

′′′∗

, X
′′∗

that lie over points of S. Also, let us assume that the
open subgroups ∆X′′′ ⊆ ∆X′ , ∆X′′′∗ ⊆ ∆X′ , ∆X′′ ⊆ ∆X′ , ∆X′′∗ ⊆ ∆X′ arise,
respectively, from open subgroups

H ′′′ = ln
′′′

· ∆ab
X′′∗ ⊆ H

′′′∗

= ln
′′′∗

· ∆ab
X′′∗ ⊆ ∆ab

X′′∗

H ′′ = ln
′′

· ∆ab
X′ ⊆ H

′′∗

= ln
′′∗

· ∆ab
X′ ⊆ ∆ab

X′

— where n
′′′∗ def

= n′′′ − c, n
′′∗ def

= n′′ − c; we suppose that n′′′ > 2c, n′′ > c
are “sufficiently large” positive integers, to be chosen below. Then we wish to
apply the theory developed above [in particular, the observations (A), (B), (C)]
by taking “X ′′ → X ′” in this theory to be various subcoverings of X ′′′ → X ′.

Now let us compute the cohomology of ΠX via the Leray spectral sequence
associated to the surjection ΠX ։ ΠX/∆X′′∗ . Suppose that c has been chosen

so that b + 1 = 2c. Then by applying (A) to the covering “X ′′ → X
′′∗

”
(respectively, “X ′′′ → X

′′∗

”), we conclude that ∆X′′∗ (respectively, ∆X′′′∗ )
acts trivially on Newtor

S′′/S′′∗ (b+1/b+2) (respectively, Newtor
S′′′/S′′∗ (b+1/b+2)).

Also, it follows immediately from the definitions that we have a natural ΠX-
equivariant surjection Newtor

S′′′/S′′∗ (b + 1/b + 2) ։ Newtor
S′′/S′′∗ (b + 1/b + 2).

Now, by applying (A) to the covering “X ′′′ → X
′′∗

” and (C) to the covering
“X

′′′∗

→ X
′′∗

”, we conclude that the ΠX-equivariant natural morphism

H1(∆X′′∗ , Newtor
S′′′/S′′∗ (b + 1/b + 2)) → H1(∆X′′∗ , Newtor

S′′/S′′∗ (b + 1/b + 2))

[which maps the image of ηS′′′ to the image of ηS′′ !] factors through a “trace
map” as in (C) for the covering “X

′′′∗

→ X
′′∗

”, hence in particular, through the
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endomorphism of H1(∆X′′∗ , Newtor
S′′/S′′∗ (b+1/b+2)) [a module whose submod-

ule of ΠX-invariants is finite, by Proposition 3.2, (i)] given by multiplication
by n

′′′∗

, in a ΠX-equivariant fashion. Thus, by taking n′′′ to be “sufficiently
large”, we conclude that the image of ηS′′ in H1(∆X′′∗ , Newtor

S′′/S′′∗ (b+1/b+2))
is zero.

Now I claim that the image of ηS′′ in

H1(∆X′ , Newtor
S′′/S′(b + 1/b + 2))

[obtained by applying the surjection

Newtor
S′′(b + 1/b + 2)) ։ Newtor

S′′/S′(b + 1/b + 2)

of (A) applied to the covering “X ′′ → X ′”] is zero. Indeed, note that it
follows immediately from the definitions that we have a natural surjection
Newtor

S′′/S′′∗ (b+1/b+2) ։ Newtor
S′′/S′(b+1/b+2) [induced, in effect, by the inclu-

sion Gal(X ′′/X
′′∗

) →֒ Gal(X ′′/X ′)]. Thus, since we have already shown that
the image of ηS′′ in the cohomology module H1(∆X′′∗ , Newtor

S′′/S′′∗ (b+1/b+2))

is zero, it follows immediately that the image of ηS′′ in H1(∆X′′∗ , Newtor
S′′/S′(b+

1/b + 2)) is zero, hence that the image in question in the claim arises from a
class

∈ H1(Gal(X
′′∗

/X ′), (Newtor
S′′/S′(b + 1/b + 2))∆X

′′∗ )

= H1(Gal(X
′′∗

/X ′), Newtor
S′′/S′(b + 1/b + 2)) = 0

[where the last cohomology module vanishes since, by (A) applied to the cov-
ering “X ′′ → X ′”, Newtor

S′′/S′(b + 1/b + 2) is an induced Gal(X
′′∗

/X ′)-module].
This completes the proof of the claim.

Thus, in summary, we conclude that the image of ηS′′ in the cohomology
module H1(ΠX , Newtor

S′′/S′(b + 1/b + 2)) arises from a unique class in

H1(ΠX/∆X′ , (Newtor
S′′/S′(b + 1/b + 2))∆X′ )

∼
→ H1(ΠX/∆X′ , Newtor

S′′/S′(b + 1/b + 2))

which maps to the unique class in

H1(ΠX/∆X′ , Newtor
S′ (b + 1/b + 2))

[a module which is finite, by Proposition 3.2, (i)] that gives rise to ηS′ via a
morphism that factors through the endomorphism given by multiplication by
the order of c · Gal(X ′′/X ′) [cf. (A), (B) applied to the covering “X ′′ → X ′”].
In particular, by taking n′′ to be “sufficiently large”, we may conclude that
ηS′ = 0, as desired. That is to say:

This completes the proof that the two inclusions Π≤b
US

→֒ ΠTOR≤b+1
US

differ by conjugation by an element of Ker(ΠTOR≤b+1
US

։ ΠLIE≤b+
US

).
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In particular, the proof of assertions (i), (ii) is complete.
Next, we consider assertion (iii). First, let us observe that when b = 1,

assertion (iii) follows immediately from [the “pro-l version” of the argument
applied to prove] Proposition 2.3, (i) [cf. the discussion preceding Proposition
3.4]. Thus, in the remainder of the proof of assertion (iii), we assume that b ≥ 2.

Note that since the elements of Ker(Π≤b+1
US

։ Π≤b
US

) manifestly commute with

the elements of I≤b+1
x∗

, it follows from conditions (a), (b), the fact that b ≥ 2,
and the assumption that S = S∗ is of cardinality one that β induces the identity
on Π≤b+1

US
[csp] [cf. the proof of assertion (ii) above]. Thus, to complete the proof

of assertion (iii), it suffices to show that the compatible system of classes

λS′ ∈ H1(ΠX , NewS′(b + 1/b + 2))

determined by β [cf. Proposition 3.4, (i); 3.1, (iv)] vanishes. Note that since

(∆
(l)
X )ab is of “weight ≤ 1”, and NewS′(b + 1/b + 2) is of “weight b + 1 ≥ 3” [cf.

Proposition 3.2, (i)], it follows immediately from the Leray spectral sequence
for ΠX ։ Gk that we have a natural isomorphism

H1(Gk, (NewS′(b + 1/b + 2))∆X )
∼
→ H1(ΠX , NewS′(b + 1/b + 2))

[where the superscript “∆X” denotes the ∆X -invariants] and that the module
H1(Gk, (NewS′(b + 1/b + 2))∆X ) is finite. Thus, to show that the λS′ = 0, it
suffices to show that the inverse limit

lim
←−

X′

(NewS′(b + 1/b + 2))∆X

[where X ′, S′ are as described in the proof of assertions (i), (ii)] is zero. But this
follows from observation (B) of the proof of assertions (i), (ii). This completes
the proof of assertion (iii).

Next, we consider assertion (iv). In light of the definition of ΠTOR≤b+1
US

,
it suffices to show that any compatible system of DX -invariant [relative to the
diagonal action of DX ] classes

κS′ ∈ Newtor
S′ (b + 1/b + 2)

[where X ′, S′ are as described in the proof of assertions (i), (ii)] lies in the
image of Ix∗

[US ] ⊗ (Ql/Zl) if b = 1 and vanishes if b ≥ 2. [Here, we note that
since Newtor

S′ (b + 1/b + 2) = 0 when b is even, we may assume without loss of
generality that b is odd.] To do this, let X ′, X ′′, S′, S′′ be as in (A), (B). Now
we would like to apply the theory of the Appendix [cf., especially, Theorem A.1]
to the present situation. To do this, it is necessary to specify the data “(i), (ii),
(iii), (vi), (vii), (viii), (ix), (x), (xi), (xii)” [cf. the discussion of the Appendix]
to which this theory is to be applied.

We take the “d” of Theorem A.1 to be such that 2d = b+1 [so the fact that
b is odd implies that d ≥ 2 whenever b ≥ 2] and the prime number “l” of “(i)”
to be the prime number l of the present discussion. We take the profinite group
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“∆” of “(ii)” to be the quotient of the group ∆X by the kernel of the quotient
(∆X ⊇) ∆X′ ։ ∆ab

X′ ։ ∆ab
X′⊗Zl; this group “∆” surjects onto ∆X/∆X′ , which

we take to be the quotient group “G” of “(ii)”, with kernel ∆ab
X′ ⊗ Zl, which

we take to be the subgroup “V ” of “(ii)”. Here, we recall that the condition
of “(ii), (c)” concerning the regular representation follows immediately from
[Milne, p. 187, Corollary 2.8] [cf. also [Milne, p. 187, Remark 2.9]], in light
of our assumption that X is proper hyperbolic, hence of genus ≥ 2. We take
the profinite group “Γ” of “(ix)” to be the image Gk′ ⊆ Gk of ΠX′ in Gk [so
“Γ” acts naturally on “∆”, “G”, “H”]. Thus, “∆Γ” may be thought of as a
quotient of ΠX ×Gk

Gk′ , hence also as a quotient of DX ×Gk
Gk′ . Note that by

consideration of “weights”, it follows that

(Newtor
S′ (b + 1/b + 2))Gk′

is finite, hence annihilated by some finite power of l, which we take to be
the number “N” of “(iii)”. We take the covering X ′′ → X ′ of (A), (B) to
be any (S, ∅, Σ)-admissible covering such that the resulting covering X ′′

k
→

X ′
k

is the covering determined by the resulting subgroup “ln · V ⊆ ∆” [cf.

the statement of Theorem A.1], so “J” may be identified with Gal(X ′′/X ′).
Next, we take the “G-torsor EG” of “(vi)” to be S′ and the “H-torsor EH” of
“(vii)” to be S′′; thus, the natural surjection S′′

։ S′ determines a surjection
“EH ։ EG” as in “(viii)”. Note that S′′ (respectively, S′) may be thought
of as a ∆U ′′

S′′
-orbit (respectively, ∆U ′

S′
-orbit) [via the action by conjugation]

of the conjugacy class of subgroups of ∆US
determined by Ix∗

[US ] ⊆ ∆US
.

In particular, it follows that the particular member of this conjugacy class
constituted by the subgroup Ix∗

[US ] ⊆ ∆US
determines a particular element

eH ∈ EH (respectively, eG ∈ EG) as in “(xi)”. Moreover, the diagonal action
of DX — hence also of DX ×Gk

Gk′ ⊆ DX — on ∆US
determines an action

of DX ×Gk
Gk′ ⊆ DX on EH , EG that fixes eH , eG, and [as is easily verified]

factors through the quotient “∆Γ” of DX ×Gk
Gk′ ։ ΠX ×Gk

Gk′ ; in particular,
we obtain continuous actions of “∆Γ” on “EG”, “EH” as in “(x)”. Finally, we

take the “Γ-module Λ” of “(xii)” to be the d-th tensor power of M
(l)
X ⊗ (Ql/Zl).

This completes the specification of the data necessary to apply Theorem A.1.
Thus, by applying Theorem A.1 to the composite of the second and third

surjections in the factorization of (A), we conclude that since κS′′ is DX -
invariant, it follows that

κS′′ ∈ Newtor
S′′(b + 1/b + 2)

maps to an element [i.e., κS′ ] of N ·Newtor
S′ (b+1/b+2)Gk′ = 0 when b ≥ 2 and

to an element [i.e., κS′ ] in the image of Ix∗
[US ] ⊗ (Ql/Zl) when b = 1. This

completes the proof of assertion (iv).
Finally, we consider assertion (v). It is immediate from the definitions that

the various quotients in question are cuspidally pro-l. That these quotients are
the maximal cuspidally pro-l quotients follows from the construction of ∆≤∞

US

and the easily verified fact that each ∆
(l)
U ′

S′
injects into Lin(∆

(l)
U ′

S′
(1/∞))(Ql).
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Finally, the asserted slimness follows from the fact that the profinite groups
in question may be written as inverse limits of profinite groups that admit

normal open subgroups [with trivial centralizers] — namely, “∆
(l)
U ′

S′
”, “(Π

(l)
U ′

S′
)†”,

“∆
(l)
UX′×X′

”, “(Π
(l)
UX′×X′

)†” — which are slim, by Proposition 1.6, (i), (iii) [which

implies that the quotients ∆
(l)
UX′×X′

։ ∆
(l)
X′ , (Π

(l)
UX′×X′

)† ։ (Π
(l)
X′)†, as well as

the kernels of these quotients, are slim].

Remark 38. Proposition 3.6, (iii), may be regarded as a “higher order,
pro-l analogue” of Proposition 2.3, (i).

Remark 39. It is important to note that if one omits [as was, mis-
takenly, done in an earlier version of this paper] the hypothesis that S0 = ∅,
then it no longer holds that the image of the trace map “TrH : HX′′ → HX′”
[appearing in the proof of Proposition 3.6, (i), (ii)] lies in ln · HX′ . Indeed,
this phenomenon may be understood by considering the trace map on first
étale cohomology modules with Zl-coefficients associated to the ln-th power
map Gm → Gm on the multiplicative group Gm over k — a map which, as an
easy computation reveals, is surjective.

We are now ready to prove the main technical result of the present Section
3:

Theorem 3.1 (Reconstruction of Maximal Cuspidally Pro-l Extensions).
Let X, Y be proper hyperbolic curves over a finite field; denote the base
fields of X, Y by kX , kY , respectively. Suppose further that we have been given

points x∗ ∈ X(kX), y∗ ∈ Y (kY ); write S
def
= {x∗}, T

def
= {y∗} US

def
= X\S,

VT
def
= Y \T . Let Σ be a set of prime numbers that contains at least one

prime number that is invertible in kX , kY ; thus, Σ determines various quo-

tients ΠUS
, ΠX , ΠUX×X

, ΠX×X , ΠVT
, ΠY , ΠUY ×Y

, ΠY ×Y [cf. Proposition
1.6, (iii); the discussion preceding Proposition 1.5] of the étale fundamental

groups of US , X, UX×X , X × X, VT , Y , UY ×Y , Y × Y , respectively. Also,
we write ΠX ։ GkX

, ΠY ։ GkY
for the quotients determined by the respective

absolute Galois groups of kX , kY . Let

α : ΠX
∼
→ ΠY

be a Frobenius-preserving [hence also quasi-point-theoretic — cf. Re-
mark 10] isomorphism of profinite groups that maps the decomposition group
of x∗ in ΠX [which is well-defined up to conjugation] to the decomposition group
of y∗ in ΠY [which is well-defined up to conjugation]. Then for each prime l ∈ Σ
such that l �= p, there exist commutative diagrams

Π≤∞
US

α∞−→ Π≤∞
VT

�
�

ΠX
α

−→ ΠY

Π≤∞
UX×X

α×
∞−→ Π≤∞

UY ×Y

�
�

ΠX×X
α×α
−→ ΠY ×Y
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— in which ΠUS
։ Π≤∞

US
, ΠUX×X

։ Π≤∞
UX×X

, ΠVT
։ Π≤∞

VT
, ΠUY ×Y

։ Π≤∞
UY ×Y

are the maximal cuspidally pro-l quotients [cf. Proposition 3.6, (v)];
ΠX×X

∼= ΠX ×GkX
ΠX , ΠY ×Y

∼= ΠY ×GkY
ΠY ; the vertical arrows are the

natural surjections; α∞, α×
∞ are isomorphisms, well-defined up to composi-

tion with a cuspidally inner automorphism, that are compatible, relative to
the natural surjections

Π≤∞
US

։ Πc-ab,l
US

; Π≤∞
UX×X

։ Πc-ab,l
UX×X

; Π≤∞
VT

։ Πc-ab,l
VT

; Π≤∞
UY ×Y

։ Πc-ab,l
UY ×Y

— where we use the superscript “c-ab, l” to denote the respective maximal

cuspidally pro-l abelian quotients — with the isomorphisms

Πc-ab
US

∼
→ Πc-ab

VT
; Πc-ab

UX×X

∼
→ Πc-ab

UY ×Y

of Theorem 2.1, (i); Theorem 1.1, (iii), respectively. Moreover, α∞ (respec-
tively, α×

∞) is compatible, up cuspidally inner automorphisms, with the de-

composition groups of x∗, y∗ in Π≤∞
US

, Π≤∞
VT

(respectively, with the images of the

decomposition groups DX , DY in Π≤∞
UX×X

, Π≤∞
UY ×Y

). Finally, this condition of
“compatibility with decomposition groups”, together with the condition of mak-
ing the above diagrams commute, uniquely determine the isomorphisms α∞,
α×
∞, up to composition with a cuspidally inner automorphism; in particular, α×

∞

is compatible, up to composition with a cuspidally inner automorphism, with
the automorphisms of Π≤∞

UX×X
, Π≤∞

UY ×Y
given by switching the two factors.

Proof. First, let us consider the isomorphism [i.e., more precisely: a spe-
cific member of the cuspidally inner equivalence class of isomorphisms]

αc-ab,l : Πc-ab,l
UX×X

∼
→ Πc-ab,l

UY ×Y

arising from the isomorphism Πc-ab
UX×X

∼
→ Πc-ab

UY ×Y
of Theorem 1.1, (iii). Recall

that since α is Frobenius-preserving, it is quasi-point-theoretic [cf. Remark 10],
and that αc-ab,l is compatible with the images of DX , DY , which we denote by

D
(l)
X , D

(l)
Y . Thus, we may assume without loss of generality that our choices of

decomposition groups Dx∗
[US ] ⊆ ΠUS

, Dy∗
[VT ] ⊆ ΠVT

, as well as our choices

of splittings GkX
→֒ Dx∗

[US ], GkY
→֒ Dy∗

[VT ], have images in Πc-ab,l
UX×X

, Πc-ab,l
UY ×Y

that correspond via αc-ab,l. In particular, it follows that αc-ab,l maps Πc-ab,l
US

⊆

Πc-ab,l
UX×X

isomorphically onto Πc-ab,l
VT

⊆ Πc-ab,l
UY ×Y

.

In the following argument, let us identify the “LinUS
(1/∞)”, “LinX(1/∞)”

portions of ∆Lie
US

with the [completions, relative to the natural filtration topol-
ogy, of the] corresponding graded objects “GrQl

(−)(1/∞)” via the Galois in-
variant splittings of Proposition 3.2, (ii), and similarly for VT . Then, in light
of our assumption that α is Frobenius-preserving, it follows immediately from
the naturality of our constructions [cf., especially, Proposition 3.2, (iii)] that α
induces, for each Z ∋ b ≥ 1, compatible isomorphisms

αLIE : ΠLIE
US

∼
→ ΠLIE

VT
; αLIE≤b : ΠLIE≤b

US

∼
→ ΠLIE≤b

VT
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which are, moreover, compatible [with respect to the natural projections to
ΠX , ΠY ] with the isomorphism α. Moreover, it follows from the construction

of “ΠLIE≤b
(−) ” that the latter displayed isomorphism maps DLIE≤b

x∗
⊆ ΠLIE≤b

US
bi-

jectively onto DLIE≤b
y∗

⊆ ΠLIE≤b
VT

, and that the resulting isomorphism DLIE≤b
x∗

∼
→

DLIE≤b
y∗

induces an isomorphism

D≤b
x∗

∼
→ D≤b

y∗

which is compatible [again by construction!] with the respective Frobenius
elements “Fk” on either side.

Next, let us observe that since the isomorphism αc-ab,l induces an isomor-
phism Πc-ab,l

US

∼
→ Πc-ab,l

VT
that is compatible with the images of the decomposi-

tions groups Dx∗
[US ], Dy∗

[VT ] and Frobenius elements in these decomposition
groups, it follows immediately that for corresponding [i.e., via α] (S, ∅, Σ)-
, (T, ∅, Σ)-admissible coverings X ′ → X, Y ′ → Y [which induce coverings

U ′
S′ → US , VT ′ → VT ], αc-ab,l induces an isomorphism ∆Lie≤2

U ′
S′

∼
→ ∆Lie≤2

VT ′

which is compatible with αLIE≤2. Moreover, although ∆Lie≤2
U ′

S′
, ∆Lie≤2

VT ′
are

not center-free, the semi-direct products ∆Lie≤2
U ′

S′
⋊ HX , ∆Lie≤2

VT ′
⋊ HY are eas-

ily seen to be center-free [cf. Proposition 1.6, (i)], for arbitrary open sub-

groups HX ⊆ G†
kX

, HY ⊆ G†
kY

[where the daggers are as in Proposition 1.6,

(i)] that correspond via α. Since ΠLIE≤2
US

(respectively, ΠLIE≤2
VT

) is an inverse
limit of topological groups that admit normal closed subgroups of the form
∆Lie≤2

U ′
S′

⋊ HX (respectively, ∆Lie≤2
VT ′

⋊ HY ), we thus conclude [by applying the

extension “1 → (−) → Aut(−) → Out(−) → 1” of Section 0 to these normal

closed subgroups] that the isomorphism Πc-ab,l
US

∼
→ Πc-ab,l

VT
induced by αc-ab,l is

compatible — relative to the natural inclusions

Πc-ab,l
US

∼
→ Π≤2

US
→֒ ΠLIE≤2

US
; Πc-ab,l

VT

∼
→ Π≤2

VT
→֒ ΠLIE≤2

VT

[cf. the discussion preceding Proposition 3.4] — with αLIE≤2 : ΠLIE≤2
US

∼
→

ΠLIE≤2
VT

.
In fact, since 3 is odd, it follows immediately from the definitions that

the modules “NewQ
S′(3/4)” vanish, hence [cf. Definition 3.3, (ii)] that we have

an isomorphism ΠLIE≤3
US

∼
→ ΠLIE≤2+

US
, which implies [cf. Proposition 3.4, (i)]

that we have an isomorphism Π≤3
US

∼
→ Π≤2

US
[and similarly for VT ]. Thus, by

Proposition 3.4, (iii), it follows that the isomorphism Πc-ab,l
US

∼
→ Πc-ab,l

VT
induced

by αc-ab,l is compatible — relative to the natural inclusions

Πc-ab,l
US

∼
→ Π≤3

US
→֒ ΠLIE≤3

US
; Πc-ab,l

VT

∼
→ Π≤3

VT
→֒ ΠLIE≤3

VT

— with αLIE≤3 : ΠLIE≤3
US

∼
→ ΠLIE≤3

VT
.

Next, let us observe that the diagonal actions of DX , DY on ΠLIE
US

, ΠLIE
VT

clearly factor through D
(l)
X , D

(l)
Y [hence determine “diagonal actions” of D

(l)
X ,
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D
(l)
Y on ΠLIE

US
, ΠLIE

VT
]. Moreover, by what we have already shown concerning the

compatibility of αLIE≤3 with αc-ab,l [cf. also the compatibility of αc-ab,l with D
(l)
X ,

D
(l)
Y ] and the compatibility of αc-ab,l with the decomposition groups Dx∗

[US ],
Dy∗

[VT ], it follows [cf. Remarks 36, 37] that the conditions (a), (b), (c) of
Proposition 3.5 are compatible with αLIE, hence that αLIE is compatible with

the diagonal actions of D
(l)
X , D

(l)
Y on ΠLIE

US
, ΠLIE

VT
[relative to the isomorphism

D
(l)
X

∼
→ D

(l)
Y induced by αc-ab,l].

Now I claim that the isomorphism αLIE≤b maps Π≤b
US

bijectively onto Π≤b
VT

,
thus inducing a compatible inverse system [parametrized by b] of isomorphisms

α≤b : Π≤b
US

∼
→ Π≤b

VT

that are compatible [with respect to the natural projections Π≤b
US

։ ΠX , Π≤b
VT

։

ΠY ] with α. To verify this claim, we apply induction on b. The case b = 1 is
vacuous; the case b = 2 follows from what we have already shown concerning
the compatibility of αLIE≤2 with αc-ab,l. Thus, we assume that b ≥ 2, and that
the claim has been verified for “b” that are ≤ the b under consideration.

Now observe that by Propositions 3.4, (iii); 3.6, (ii), it follows that the
isomorphism

ΠLIE≤b+1
US

∼
→ ΠLIE≤b+1

VT

maps Π≤b+1
US

bijectively onto a Ker(ΠLIE≤b+1
VT

։ ΠLIE≤b+
VT

)-conjugate of Π≤b+1
VT

.

In particular, by conjugating by an appropriate element γ ∈ Ker(ΠLIE≤b+1
VT

։

ΠLIE≤b+
VT

), we obtain an isomorphism

βb+1 : Π≤b+1
US

∼
→ Π≤b+1

VT

that is compatible with α≤b and, moreover, [since γ commutes with I≤b+1
y∗

]

maps I≤b+1
x∗

bijectively onto I≤b+1
y∗

. Note that by Propositions 3.4, (i); 3.6,

(iii), it follows that the choice of γ is unique, modulo Ker(Π≤b+1
VT

։ Π≤b+
VT

). In

particular, the image δ ∈ ΠTOR≤b+1
VT

of γ in ΠTOR≤b+1
VT

is uniquely determined.

On the other hand, since αLIE is compatible with the diagonal actions of

D
(l)
X , D

(l)
Y on ΠLIE

US
, ΠLIE

VT
, it follows immediately, by “transport of structure”,

that δ is fixed by the diagonal action of D
(l)
Y . But, by Proposition 3.6, (iv), this

implies that δ = 0. This completes the proof of the claim.
Thus, we obtain an isomorphism α∞ : Π≤∞

US

∼
→ Π≤∞

VT
as in the statement of

Theorem 3.1. Next, let us recall that ∆≤∞
US

, ∆≤∞
VT

are slim [cf. Proposition 3.6,
(v)]. Thus, since this isomorphism α∞ is compatible with the diagonal actions

of D
(l)
X , D

(l)
Y , we may apply the isomorphism Aut(∆≤∞

US
)

∼
→ Aut(∆≤∞

VT
) induced

by α∞ to obtain — i.e., by pulling back the extension

1 → ∆≤∞
US

→ Aut(∆≤∞
US

) → Out(∆≤∞
US

) → 1

[cf. Section 0] via the homomorphism

(D
(l)
X ։) ΠX → Out(∆≤∞

US
)
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arising from the diagonal action [and similarly for ∆≤∞
VT

] — an isomorphism

α×
∞ : Π≤∞

UX×X

∼
→ Π≤∞

UY ×Y
as in the statement of Theorem 3.1. Here, we note

that the “cuspidally inner indeterminacy” of α∞, α×
∞ that is referred to in the

statement of Theorem 3.1 arises from the “cuspidally inner indeterminacy” in
the choice of corresponding decomposition groups Dx∗

[US ], Dy∗
[VT ] [more pre-

cisely: the images of these groups in Π≤∞
US

, Π≤∞
VT

, as opposed to just in Πc-ab,l
US

,

Πc-ab,l
VT

]. Finally, we observe that the asserted uniqueness follows immediately
by considering eigenspaces relative to the Frobenius actions [cf. Proposition
3.2, (ii)], together with the construction of the isomorphism αLIE [cf. also
Propositions 1.10, (i); 2.3, (i)].

Remark 40. The argument of the proof of Theorem 3.1 involving
Proposition 3.6, (iv), may be regarded as a sort of “higher order analogue”
of the argument applied in the proof of Theorem 1.1, (iii), involving Lemma
1.1; Proposition 1.8, (v).

Remark 41. At first glance, it may appear that the portion of Theorem
3.1 concerning α×

∞ may only be concluded when X(kX), Y (kY ) are nonempty.

In fact, however, since (Π≤∞
UX×X

)†, (Π≤∞
UY ×Y

)† are slim [cf. Proposition 3.6, (v)], it

follows that the portion of Theorem 3.1 concerning α×
∞ may be concluded even

without assuming that X(kX), Y (kY ) are nonempty, by applying Theorem 3.1
after passing to corresponding [via α] finite extensions of kX , kY [cf. Remark
5].

Remark 42. It seems reasonable to expect that, when, say, Σ = {l},
the techniques applied in the proof of Theorem 3.1, together with the theory of
[Mtm], should allow one to reconstruct the [geometrically pro-Σ] étale funda-
mental groups of the various configuration spaces [i.e., finite products of copies
of X over kX , with the various diagonals removed] “group-theoretically” from
ΠX [under, say, an appropriate hypothesis of “Frobenius-preservation” as in
Theorem 3.1]. This topic, however, lies beyond the scope of the present paper.

Remark 43. If the “cuspidalization of configuration spaces” [cf. Re-
mark 42] can be achieved, then it seems likely that by applying an appropriate
“specialization” operation, it should be possible to generalize Theorem 3.1 to
the case where S, T are subsets of arbitrary finite cardinality.

Remark 44. One essential portion of the proof of Theorem 3.1 is the
Galois invariant splitting of Proposition 3.2, (ii). Although it does not appear
likely that such a splitting exists in the case of a nonarchimedean local base
field [cf., e.g., the theory of [Mzk4]], it would be interesting to investigate the
extent to which a result such as Theorem 3.1 may be generalized to the nonar-
chimedean local case, perhaps by making use of some sort of splitting such as
the Hodge-Tate decomposition, or a splitting that arises via crystalline methods.
In the context of absolute anabelian geometry over nonarchimedean local fields,
however, such p-adic Hodge-theoretic splittings might not be available, since
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the isomorphism class of the Galois module “Cp” is not preserved by arbitrary
automorphisms of the absolute Galois group of a nonarchimedean local field
[cf. the theory of [Mzk3]].

The development of the theory underlying Theorem 3.1 was motivated by
the following important consequence:

Corollary 3.1 (Total Global Green-compatibility). In the situation of
Theorem 1.1, (iii) [in the finite field case], suppose further that Σ† = Primes†,
and that X, Y are Σ-separated [which implies that α is Frobenius-preserving

and point-theoretic — cf. Remarks 9, 10]. Then the isomorphism α is to-

tally globally Green-compatible.

Proof. Indeed, we may apply Theorem 3.1 to the isomorphism α of Theo-
rem 1.1, (iii), and arbitrary choices of sets of cardinality one S = {x∗}, T = {y∗}
that correspond via α. Let l ∈ Σ†. Then let us observe that the quotient
ΠUS

։ Π≤∞
US

satisfies the following property:

If ΠUS
։ Q is a finite quotient of ΠUS

such that for some quotient
Q ։ Q′ whose kernel has order a power of l, ΠUS

։ Q′ factors

through ΠUS
։ Π≤∞

US
, then ΠUS

։ Q also factors through ΠUS
։

Π≤∞
US

.

A similar statement holds for the quotient ΠVT
։ Π≤∞

VT
. In light of this obser-

vation, together with our assumption that Σ† = Primes† [which implies that α
is Frobenius-preserving], it follows that the reasoning of [Tama, Corollary 2.10,
Proposition 3.8] [cf. also Remark 10 of the present paper], may be applied to
the isomorphism

α∞ : Π≤∞
US

∼
→ Π≤∞

VT

of Theorem 3.1 to conclude that the isomorphism α∞ maps the set of de-
composition subgroups of the domain bijectively onto the set of decomposition
subgroups of the codomain.

On the other hand, sorting through the definitions, the datum of the lift-
ing of a decomposition group of ΠX , ΠY corresponding to a point that does
not belong to S, T to a [noncuspidal] decomposition group of the domain or

codomain of α∞ determines, by projection to Πc-ab,l
US

, Πc-ab,l
VT

, the l-adic portion
of the Green’s trivialization associated to this point and the unique point of S
or T . Since l is an arbitrary element of Σ† = Primes†, and the points x∗, y∗
are arbitrary points that correspond via α, this shows that α is globally Green-
compatible. That α is totally globally Green-compatible follows by applying this
argument to the isomorphism induced by α between open subgroups of ΠX ,
ΠY .

Theorem 3.2 (The Grothendieck Conjecture over Finite Fields). Let
X, Y be proper hyperbolic curves over a finite field; denote the base fields
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of X, Y by kX , kY , respectively. Write ΠX , ΠY for the étale fundamental

groups of X, Y , respectively. Let

α : ΠX
∼
→ ΠY

be an isomorphism of profinite groups. Then α arises from a uniquely de-
termined commutative diagram of schemes

X̃
∼
→ Ỹ

�
�

X
∼
→ Y

in which the horizontal arrows are isomorphisms; the vertical arrows are the
pro-finite étale universal coverings determined by the profinite groups ΠX , ΠY .

Proof. Theorem 3.2 follows formally from Corollaries 2.1, 3.1; Remarks
9, 10; Proposition 2.2, (ii).

Appendix. Free Lie Algebras

In this Appendix, we discuss various elementary facts concerning free Lie
algebras that are necessary in Section 3. In particular, we develop a sort of
“higher order analogue” of the theory developed in Lemma 1.1.

Proposition A.1 (Free Lie Algebras). Let R be a commutative ring

with unity; V a finitely generated free R-module. Write LieR(V ) for
the free Lie algebra over R associated to V ; for Z ∋ b ≥ 1, denote by
Lieb

R(V ) ⊆ LieR(V ) the R-submodule generated by the “alternants of degree b”
[cf. [Bour, Chapter II, §2.6]]. Also, we shall denote by UR(V ) the enveloping

algebra of LieR(V ). [Thus, we have a natural inclusion LieR(V ) →֒ UR(V ).]
Then:

(i) Each Lieb
R(V ) is a finitely generated free R-module. Moreover, there is

a natural isomorphism V
∼
→ Lie1R(V ).

(ii) Let v ∈ V be a nonzero element such that the quotient module V/R · v

is free. Then the centralizer of v in UR(V ) is equal to the R-submodule of
UR(V ) generated by the nonnegative powers of v. In particular, if R is a field
of characteristic zero, then the centralizer of v in LieR(V ) is equal to R · v.

(iii) Suppose that the rank of V over R is ≥ 2. Then the Lie algebra LieR(V ) is

center-free. In particular, the adjoint representation of LieR(V ) is faith-

ful.
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(iv) Let R′ be an R-algebra which is finitely generated and free as an

R-module. Let φ : R′
։ R be a surjection of R-algebras; suppose that V =

V ′⊗R′,φ R, for some finitely generated free R′-module V ′ [so we obtain a natu-
ral surjection V ′

։ V compatible with φ]. Then the natural surjection V ′
։ V

induces a surjection of R-modules Lieb
R(V ′) ։ Lieb

R(V ) that factors as a com-
posite of natural surjections as follows:

Lieb
R(V ′) ։ Lieb

R′(V ′) ։ Lieb
R(V )

Here, the first arrow of this factorization is the arrow naturally induced by
observing that every Lie algebra over R′ naturally determines a Lie algebra
over R; the second arrow of this factorization is the arrow functorially induced
by the natural φ-compatible surjection V ′

։ V . Finally, this second arrow
induces an isomorphism Lieb

R′(V ′) ⊗R′,φ R
∼
→ Lieb

R(V ).

Proof. Assertion (i) follows immediately from [Bour, Chapter II, §2.11,
Theorem 1, Corollary]. Assertion (ii) follows from the well-known structure of
the enveloping algebra UR(V ) [i.e., the natural isomorphism of UR(V ) with the
free associative algebra determined by V over R; the fact that when R is a field
of characteristic zero, the image of LieR(V ) in UR(V ) may be identified with the
set of primitive elements — cf. [Bour, Chapter II, §3, Theorem 1, Corollaries
1,2]], by considering the effect on “words” of forming the commutator with v
— cf. the argument of [Mtm, Proposition 3.1] [which is given only in the case
where R is a field of characteristic zero, but does not, in fact, make use of this
assumption on R in an essential way]. Assertion (iii) follows immediately from
assertion (ii) [by allowing the element “v” of assertion (ii) to range over the
elements of an R-basis of V ]. Assertion (iv) follows formally from the universal
property of a free Lie algebra, together with the well-known functoriality of a
free Lie algebra with respect to tensor products [cf. [Bour, Chapter II, §2.5,
Proposition 3]].

Next, let us suppose that we have been given data as follows:

(i) a prime number l;

(ii) a profinite group ∆ that admits an normal open subgroup V ⊆ ∆ such
that the following conditions are satisfied: (a) V is abelian [so we shall regard
V as a module]; (b) the topological module V is a finitely generated free R-

module, where we write R
def
= Zl; (c) the resulting action of the finite group

G
def
= ∆/V on V determines a G-module VQl

def
= V ⊗ Ql that contains the

regular representation of G;

(iii) a positive power N of l;



534 Shinichi Mochizuki

(iv) a collection of [not necessarily distinct!] elements g1, . . . , gd ∈ G [where
d ≥ 1 is an integer] of G at least one of which is not equal to the identity element.

Write

ζ
def
=

d∑

i=1

(1 − gi) ∈ R[G]

[where R[G] is the group ring of G with coefficients in R]. Then we have the
following result:

Lemma A.1 (Nontriviality of a Certain Operator). There exists an in-
teger n ≥ 1 such that the order |Jζ | of the image

Jζ ⊆ J

of the action of ζ on [the finite group] J
def
= V ⊗ (Z/lnZ) is divisible by N .

Proof. Indeed, since the G-module VQl
contains the regular representation

[cf. condition (ii), (c)], it follows that the image of the action of ζ on VQl
is a

nonzero Ql-vector space, hence that the image of the action of ζ on the finitely
generated free R-module V [cf. condition (ii), (b)] contains a rank one free
R-module. Now Lemma A.1 follows immediately.

Next, let Jζ ⊆ J be as in Lemma A.1; write H
def
= ∆/(ln · V ) [so J ⊆ H,

H/J = G]. Also, let us assume that we have been given data as follows:

(v) a collection of elements h1, . . . , hd ∈ H that lift g1, . . . , gd ∈ G;

(vi) a G-torsor EG [whose G-action will be written as an action from the
left];

(vii) an H-torsor EH [whose H-action will be written as an action from the
left];

(viii) a surjection

ǫ : EH ։ EG

that is compatible with the natural surjection H ։ G;

(ix) a continuous action of a profinite group Γ on ∆ that preserves the

subgroup V ⊆ ∆, hence determines a profinite group ∆Γ
def
= ∆ ⋊ Γ that acts

continuously on G, H [in such a way that the restriction of this action to
∆ ⊆ ∆Γ is the action of ∆ on G, H by conjugation];
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(x) continuous actions of ∆Γ on EG, EH [which will be denoted via super-
scripts] that are compatible with the continuous actions of ∆Γ on G, H, as well
as with the surjection ǫ and, moreover, induce the trivial action of Γ ⊆ ∆Γ on
EG [hence also on G];

(xi) an element [i.e., “basepoint”] eH ∈ EH , whose image via ǫ we denote
by eG ∈ EG, such that eH , eG are fixed by the action of ∆Γ on EH , EG.

Next, let us write

RJ
def
= R[J ]

for the group ring of J with coefficients in R. Thus, RJ is a commutative R-
algebra, and we have a natural augmentation homomorphism RJ ։ R [which
sends all of the elements of J to 1]. Moreover, if we write

ǫM : MH
def
= R[EH ] ։ MG

def
= R[EG]

for the morphism of RJ -modules induced by ǫ on the respective free R-modules
with bases given by the elements of EH , EG, then ǫM induces a natural iso-
morphism MH ⊗RJ

R
∼
→ MG. Thus, it follows from Proposition A.1, (iv),

that, for b ≥ 1 an integer, we have [in the notation of Proposition A.1] natural
surjections

Lieb
R(MH) ։ Lieb

RJ
(MH) ։ Lieb

R(MG)

the second of which determines a natural isomorphism Lieb
RJ

(MH) ⊗RJ
R

∼
→

Lieb
R(MG).
Now let

P (X1, . . . , Xd)

be an “alternant monomial of degree d” [i.e., a monomial element of Lied
Z(−)

of the free Z-module on the indeterminate symbols X1, . . . , Xd] in which each
Xi [for i = 1, . . . , d] appears precisely once. Then P (X1, . . . , Xd) determines an
element

P (g1 · eG, . . . , gi · eG, . . . , gd · eG)

of Lied
R(MG). Moreover, by allowing such P (X1, . . . , Xd) and g1, . . . , gd to vary

appropriately, we obtain a Hall basis [cf., e.g., [Bour, Chapter II, §2.11]] of
Lied

R(MG) [at least if d ≥ 2; if d = 1, then one must also allow for the unique
g1 to be the identity element]. Similarly, by allowing such P (X1, . . . , Xd) and
h1, . . . , hd ∈ H to vary appropriately, we obtain a Hall basis [again, strictly
speaking, if d ≥ 2] of Lied

RJ
(MH) of elements of the form P (h1 ·eH , . . . , hd ·eH).

Lemma A.2 (Relation of Superscript and Left Actions). For any v ∈
V ⊆ ∆ ⊆ ∆Γ that maps to j ∈ J , we have

P (h1 · eH , . . . , hi · eH , . . . , hd · eH)v = ζ(j) · P (h1 · eH , . . . , hi · eH , . . . , hd · eH)

in Lied
RJ

(MH).
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Proof. Indeed, we compute:

P (h1 · eH , . . . , hi · eH , . . . , hd · eH)v

= P (hv
1 · eH , . . . , hv

i · eH , . . . , hv
d · eH)

= P (hv
1 · h−1

1 · h1 · eH , . . . , hv
i · h−1

i · hi · eH , . . . , hv
d · h−1

d · hd · eH)

=
( d∏

i=1

[j, hi]
)
· P (h1 · eH , . . . , hi · eH , . . . , hd · eH)

= ζ(j) · P (h1 · eH , . . . , hi · eH , . . . , hd · eH)

[where we apply the RJ -module structure of EH and the fact that ev
H = eH [cf.

(xi)]].

Next, let us assume that we have also been given the following data:

(xii) a topological R-module Λ equipped with a continuous action by Γ [which
thus determines, via the natural surjection ∆Γ ։ Γ, a continuous action by ∆Γ

on Λ].

Write:

VΓ
def
= V ⋊ Γ ⊆ ∆Γ;

FJ
def
= J · P (h1 · eH , . . . , hd · eH) ⊆ Lied

RJ
(MH);

R[FJ ]
def
= R · FJ = RJ · P (h1 · eH , . . . , hd · eH) ⊆ Lied

RJ
(MH);

Λ[FJ ]
def
= R[FJ ] ⊗R Λ ⊆ Lied

RJ
(MH)⊗R; Λ

F
def
= P (g1 · eG, . . . , gd · eG) ∈ Lied

R(MG);

R[F ]
def
= R · F ⊆ Lied

R(MG); Λ[F ]
def
= R[F ] ⊗R Λ ⊆ Lied

R(MG) ⊗R Λ

Thus, the natural surjection Lied
RJ

(MH) ։ Lied
R(MG) determines [compatible]

natural surjections FJ ։ {F}, R[FJ ] ։ R[F ], Λ[FJ ] ։ Λ[F ]. Also, we observe
[cf. the fact that Lied

RJ
(MH) is a finitely generated free RJ -module] that FJ is

a J-torsor [relative to the action from the left], hence, in particular, a finite
set.

Now observe that since VΓ acts trivially on G, eH [cf. (ix), (x), (xi)], it
follows immediately that VΓ acts compatibly on FJ , R[FJ ], Λ[FJ ], F , R[F ],
Λ[F ], and that the natural action of VΓ on R[G] preserves ζ. In particular, it
follows that VΓ preserves Jζ ⊆ J , hence that VΓ acts naturally on the set of
orbits

(FJ ։) Fζ
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of FJ with respect to the action of Jζ ; moreover, by Lemma A.2, it follows that
this action of VΓ on Fζ factors through the quotient VΓ ։ Γ.

Now let us consider invariants with respect to the various superscript ac-
tions under consideration. Let us write

Invar(−,−)

for the set of invariants of the second argument in parentheses with respect to
the superscript action of the group given by the first argument in parentheses.
Then any element

η ∈ Invar(VΓ, Λ[FJ ])

may be regarded as a Λ-valued function on the set FJ which descends [cf.
Lemma A.2] to a Γ-invariant Λ-valued function on Fζ , i.e., an element ηζ ∈
Invar(Γ, Λ[Fζ ]). Next, let us observe that [since ηζ is Γ-invariant] the sum of
the values ∈ Λ of the Λ-valued function on Fζ determined by ηζ is a Γ-invariant
element

∫
ηζ ∈ Invar(Γ, Λ). Thus, the sum

∫
η ∈ Λ

of the values ∈ Λ of the Λ-valued function on FJ determined by η satisfies the
relation ∫

η = |Jζ | ·

∫
ηζ

in Λ. But the image of η in Λ[F ] is precisely the element (
∫

η) ·F . Thus, since,
by Lemma A.1, |Jζ | is divisible by N , we conclude the following:

Lemma A.3 (Monomial-wise Computation of Invariants). The image

Im(Invar(VΓ, Λ[FJ ])) ⊆ Λ[F ]

of Invar(VΓ, Λ[FJ ]) ⊆ Λ[FJ ] in Λ[F ] lies in N · Invar(Γ, Λ[F ]).

Thus, by allowing P (X1, . . . , Xd) and h1, . . . , hd ∈ H as in the above
discussion to vary appropriately so as to obtain a Hall basis [again, strictly
speaking, if d ≥ 2] of Lied

RJ
(MH) of elements of the form P (h1 ·eH , . . . , hd ·eH),

we conclude the following:

Theorem A.1 (Invariants of Free Lie Algebras). Let d ≥ 1 be an inte-
ger. Suppose that we have been given data as in (i), (ii), (iii) above. Let n ≥ 1
be an integer that satisfies the property of Lemma A.1 for all [of the finitely
many] possible choices of data as in (iv) [relative to the given integer d ≥ 1];

J
def
= V/(ln · V ) ⊆ H

def
= ∆/(ln · V ); RJ

def
= R[J ]. Suppose that have also been

given data as in (vi), (vii), (viii), (ix), (x), (xi), (xii) above; let MH
def
= R[EH ],

MG
def
= R[EG], VΓ

def
= V ⋊ Γ (⊆ ∆Γ). Then the natural surjection

Lied
RJ

(MH) ⊗R Λ ։ Lied
R(MG) ⊗R Λ
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maps

Invar(VΓ, Lied
RJ

(MH) ⊗R Λ)

into

N · Invar(VΓ, Lied
R(MG) ⊗R Λ)

if d ≥ 2. In a similar vein, the natural surjection MH⊗RΛ ։ MG⊗RΛ maps
Invar(VΓ, MH ⊗RΛ) into N ·Invar(VΓ, MG⊗RΛ)+Invar(VΓ, Λ) ·eG ⊆ MG⊗RΛ.
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