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The absolute and convective instability of an electrically charged viscoelastic liquid jet is studied. The
liquid is assumed to be (i) a dilute polymer solution described by the Oldroyd-B viscoelastic model,
and also and (ii) a leaky dielectric defined by the Taylor-Melcher leaky dielectric theory. A generalized
eigenvalue equation is obtained and solved numerically. Two different viscoelastic liquids, i.e. a PEO
aqueous solution and a PIB Boger fluid, are taken as examples to study the effect of electric field and elas-
ticity on the absolute and convective instability characteristic of the axisymmetric and first non-axisym-
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Liquid jet instability of both axisymmetric and non-axisymmetric modes, being the effect of electric field larger

on the latter. Elasticity has a profound destabilizing effect on the absolute and convective instability of
the axisymmetric mode while its effect on the non-axisymmetric mode is quite limited. Strategies for
suppressing absolute instability of an electrically charged viscoelastic jet are explored. The result indi-
cates that increasing jet velocity or decreasing jet radius may effectively avoid the occurrence of absolute
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instability.
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1. Introduction

In electrospraying and electrospinning, high-molecular polymer
solutions are frequently used, see e.g. [1-4] among others. Differ-
ent from Newtonian liquids, polymer solutions usually exhibit dis-
tinct rheological features. Particularly, the viscoelasticity of a
polymer may substantially influence the behavior of the issued
jet, consequently affecting the morphology of resulting products.

On the other hand, the behavior of a jet in either electrospraying
or electrospinning is highly related to its instability characteristics.
It is a well known fact that the dominant mode in electrospraying
is the varicose mode, where axisymmetric perturbations tend to
predominate over other perturbations, as is shown in Fig. 1a, while
in electrospinning the dominant mode is the kink mode, i.e. the
first non-axisymmetric perturbations are absolutely predominant
ones, as is shown in Fig. 1b. These facts simply reflect the different
underlying breakup mechanisms behind electrospray and electros-
pinning: while the object of the former process is to produce a
spray by electrical forces, and thus breaking the jet into small
pieces is essential, the latter aims to stretch a certain material
(viscous liquid or polymeric solution) into extremely thin, ideally
continuous filaments. In this latter case, the natural way to dra-
matically increase the jet's length without a drastic overall mass
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acceleration is to deviate and stretch the jet perpendicularly to
the issuing direction, i.e. the kink mode. The force necessary to pro-
voke this stretching perpendicular to the issuing direction of the jet
is provided by the strong radial electric field generated by its own
enormous surface charge.

To date, a number of researches have devoted their efforts to de-
scribe the instability of viscoelastic jets in the presence or absence
of electric environments. Among them, Reneker el al. [5] and Yarin
et al. [6] established a viscoelastic mode to simulate numerically
the highly nonlinear bending instability of a jet in electrospinning.
Brenn et al. [7] and Liu and Liu [8,9] studied the axisymmetric and
non-axisymmetric instability of a non-Newtonian jet in the absence
of electric fields. Carroll and Joo [10,11] studied the linear axisym-
metric instability of an electrified viscoelastic jet. Montanero and
Gafan-Calvo [12] analyzed the spatiotemporal instability of the
axisymmetric mode of an Oldroyd-B viscoelastic liquid jet in a
medium of a co-flowing liquid flow. Li et al. [13] performed a linear
analysis of the competition between axisymmetric and non-
axisymmetric instability of an electrically charged viscoelastic
liquid jet. It was found that either the axisymmetric mode or the
first non-axisymmetric mode is predominant in jet instability
depending on the level of electrification and that elasticity destabi-
lizes both modes, particularly the axisymmetric one. Ruo et al. [14]
examined the influence of unrelaxed elastic tension on the
three-dimensional temporal instability of a viscoelastic liquid jet.
They concluded that in the presence of unrelaxed tension elasticity
plays a stabilizing role in the instability of the axisymmetric and


http://dx.doi.org/10.1016/j.jnnfm.2013.01.003
mailto:fli6@ustc.edu.cn
mailto:amgc@us.es
mailto:jmlopez@us.es
http://dx.doi.org/10.1016/j.jnnfm.2013.01.003
http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm

F. Li et al. /Journal of Non-Newtonian Fluid Mechanics 196 (2013) 58-69 59

P

Basic radial electric field in the air E; = '::—:\

(c) _._.T_R._. 2

» U

-
>

(P.no. A A Y. Kg) r
................. _|‘_.Z

Liquid, zero basic electric field

Fig. 1. Photographs of (a) the axisymmetric varicose mode, (b) the non-axisymmetric kink mode, and (c) schematic description of the theoretical model.

non-axisymmetric modes. Later they extended their research to the
electric environment [15].

Electric field is the driving factor in electrospraying and electros-
pinning. First, at the outlet of flow, electric field provides the condi-
tions for the formation of a critically stable meniscus structure,
which is called Taylor cone, characterized by the equilibrium be-
tween surface tension and the electrostatic force due to the surface
charges. In turn, this meniscus provides the sustaining mechanic
structure for a singular fluidic phenomenon: from its apex, a stable,
extremely thin jet is formed under certain electric potential and
flow rate. The diameter of that jet is normally two or three orders
smaller than that of the outlet, down to micro-and nano-meters
[16-18]. The downstream evolution and breakup of the electrically
charged jet yields small drops and ultra-fine fibers. The electric field
due to the surface charges promotes the instability of jet, enhancing
its breakup into droplets or its violent stretching by a whipping
movement [13,19]. Besides, the electric charges induced by the
electric field in the droplets and fibers normally prevent their coa-
lescence before solidification takes place [20].

The present work is motivated by the fact that in electrospray-
ing and electrospinning the stable cone-jet structure is only formed
under a certain range of applied electric fields and flow rates. Be-
yond this range the jet may become globally unstable, which
may provoke catastrophic situations in continuous production
[21-23]. Therefore it is of importance to study the global instability
of the jet. Here, the absolute-convective instability transition pro-
vided by a spatiotemporal analysis is the first step to understand
the global instability phenomenon [24-29]. Absolute and convec-
tive instability was soon identified as a fundamental concept in
instability analysis. In fact, while convective instabilities leave
the system locally unaffected (they are “flushed” by the basic
flow), absolute instabilities grow without limitation at the point
where they appear, leading to a global catastrophe of the system.
In practical terms, for a flow released from a capillary, if a jet is
formed and becomes unstable at some distance downstream, it is
regarded to be convectively unstable, but if no jet is formed and
instability happens near the exit of capillary, the hypothetical jet
structure is regarded to be absolutely unstable [30].

The absolute and convective instability of jet has been studied
extensively. Taking an axisymmetric model of a charged Newto-
nian liquid jet, Lopez-Herrera et al. [24] calculated the critical We-
ber number at the boundary of absolute and convective instability

and found that the electric force has a secondary role in the abso-
lute to convective instability transition of jet. Extending their re-
search to three-dimensional scope, Li et al. [25] studied
systematically the linear spatiotemporal instability of a viscous
jet of low permittivity, low conductivity liquid under both radial
and axial electric fields. The absolute and convective instability
transition was explored in the four-parameter space (the Weber
number, the Reynolds number, the electrical Bond number and
the tangential electric field) for both the axisymmetric and first
non-axisymmetric modes. Taking flow focusing as application
background, Herrada et al. [26] studied the jetting-dripping transi-
tion of a compound capillary jet. They calculated the critical Weber
number as a function of the radius ratio for the axisymmetric case.
Vega et al. [27] studied experimentally and numerically the influ-
ence of the flow rate, the distance between the capillary meniscus
and the orifice, as well as liquid properties on the status of flow.
Three different regimes, i.e. the steady jetting regime, the local
instability regime and the global instability regime, were identi-
fied. Montanero et al. [28] and Acero et al. [29] performed an
experimental study on the global instability of a viscous liquid
jet focused by a coaxial jet stream, considering different geometric
configurations of the experimental apparatus utilized to generate
the jet. Si et al. [31] explored the modes in flow focusing, among
which the axisymmetric jetting mode was considered to be con-
vectively unstable and the dripping mode to be absolutely unsta-
ble. Clasen et al. [32] investigated the jetting-dripping transition
of a dilute polymer solution jet.

In this paper we investigate the absolute and convective insta-
bility of an electrified viscoelastic liquid jet. It is organized as fol-
lows. In Section 2 the theoretical model is established and the
formulation is presented. The governing equations and boundary
conditions are transformed into a generalized eigenvalue problem
and the numerical method utilized to solve the problem is briefly
stated. In Section 3 the absolute and convective instability charac-
teristic of the axisymmetric and first non-axisymmetric modes of
the selected liquid jets are explored. The effects of normal electric
field and elasticity on the absolute and convective instability of the
unstable modes are studied. In addition, strategies for suppressing
absolute instability of a viscoelastic jet are discussed. In Section 4
main conclusion is drawn.

As a general consideration, this work aims to provide additional
theoretical basis for the adequate physical description of



60 F. Li et al. /Journal of Non-Newtonian Fluid Mechanics 196 (2013) 58-69

electrospinning phenomena, like other published works in the liter-
ature on this subject. Owing to the current imperfect understanding
of these phenomena, many published experimental works provide
limited and incomplete description of results: indeed, their compar-
ison with theoretical models leads to an end point because the ab-
sence of reporting on critical or crucial experimental observations
precludes building a complete description. This study aims to dissect
some illustrating cases within the appropriate physical space of
parameters that describe and qualify electrospinning phenomena
in the framework of the assumptions made.

2. Model and formulation
2.1. Theoretical model and linearized equations

The present theoretical model shares many characteristics with
the one established in our previous study [13]. We consider an infi-
nitely long cylindrical liquid jet of radius R, surrounded by station-
ary air or vacuum (negligible dynamical effect), see Fig. 1c. The
basic velocity of the jet is steady and uniform, and only has non-
zero axial component, which is denoted by U. The liquid is sup-
posed to be incompressible and viscoelastic. Its viscoelasticity is
described by the Oldroyd-B constitutive equation [33]. It is also
supposed to be a Taylor-Melcher leaky dielectric of finite electrical
conductivity K and electrical permittivity ¢ [34]. The electrical per-
mittivity of surrounding air or vacuum is &g.

The dominant slenderness of the jet and the leaky dielectric
nature of the liquid [34] used in these phenomena brings on an
electric field configuration where the normal electric field on the
jet surface is much larger than the tangential one. Thus, the jet
slenderness provides that the radial electric field is much larger
than the axial one. In order to carry out a theoretically instability
analysis, here we neglect the axial electric field, assuming that a
free charge of density qq is present on the surface of a cylindrical
jet. As a result a basic radial electric field qoR/¢or is formed in the
air medium, where r is the radial coordinate in the cylindrical coor-
dinate system (r,0,z) with 0 and z the azimuthal and axial coordi-
nates, respectively. Consistently with the underestimation of the
axial electric field, no basic electric field in the liquid bulk is con-
sidered. When the jet is perturbed, the electrical relaxation time
is assumed small enough to allow the relaxation of all charges on
the surface. The absence of bulk charges is thus consistent with
the absence of electric field in the bulk. Actually, in our simplified
model electric stresses only exist on jet surface. In addition, the ef-
fects of the gravitational force, temperature and magnetic field are
assumed to be negligible.

Suppose the jet is perturbed by an infinitesimal disturbance.
The linearized continuity equation and momentum equation in
nondimensional form are

V.-v=0, (1)
and

o 0
<a+&>v=*vp+V'T, (2)

where v is the velocity perturbation, t is the time, p is the pressure
perturbation and 7 is the stress tensor. According to the Oldroyd-B
viscoelastic model, the relationship between stress and strain is

{1+De(%+%>}r:}%[l+A*(%+%>}D, 3)

where D(: 1V + (VU)T}) is the strain rate tensor. Three dimen-

sionless numbers appear in Eq. (3), i.e. the Deborah number
D.=/ U/R with 4 the stress relaxation time, the Reynolds
number R, = pUR/[1o with p the liquid density and 7 the zero-shear

viscosity, and the relative retardation time /.*=/,U/R with A, the
strain retardation time.
The governing Laplace equation for the electric potential

Ve, =0, (4)

closes the governing equations, where ¢ represents the potential in
the liquid phase, ¢, represents the potential in the air phase, and
the electric field intensity iSE = -V .

The linearized boundary conditions at the interface of the liquid
jet and the ambient medium, whose position is r=1 + f, are sum-
marized below.

(i) The kinematic boundary condition

v= <%+%>f, (5)

where v is the velocity component in radial direction and f is the
small displacement of the interface deviated from its equilibrium
position.

(ii) The dynamic boundary condition

1
T| n——V -nn=0, 6
ITl-m - , (6)

where n is the normal unit vector and V - n is the surface curvature.
The stress tensor T comprises the hydrodynamic stress T
(= —pé + 1", where & is the identity matrix and 7" is the viscous
stress) and the electrical stress T°. For the liquid phase T¢ =
&E,(EE — JE -E5) and for the air phase T° = E,(E.E, — E. - Edd).
Three dimensionless numbers appear in Eq. (6), i.e. the Weber num-
ber W, = pU?R[y with 7 the surface tension coefficient, the relative
electrical permittivity ¢,=¢/eg and the electrical Euler number
E, = q3/eopU?.

(iii) The electric field satisfies the continuity of tangential elec-

tric field and the Gauss law at surface, i.e.

nx (E;, —E) =0, (7)
(Eq —&E)-n=q, (8)

where q is the surface charge density satisfying the following con-
servation equation

g 0 ov
(E—s—&)q—g—fesrﬁﬂfﬂ, )

where 7. = KR/eU is the relative electrical relaxation time of the jet.
2.2. Equations for absolute and convective instability analysis

In spatiotemporal instability analysis the relevant variables of a
system are supposed to be perturbed by an arbitrary infinitesimal
three-dimensional disturbance of the form A(r)exp[i(kz + m0) —
iowt] (normal mode analysis), where the prefactor A(r) is the eigen-
function of any specific variable (velocity, pressure or electric
field), i is the imaginary number, k is the complex axial wave num-
ber, m is the azimuthal wave number (integer) and w is the com-
plex frequency. Substituting the normal mode disturbance into
the governing equations and boundary conditions (1)-(9), a series
of linear homogeneous equations of the eigenfunctions is obtained.

The continuity Eq. (1) and the momentum Eq. (2) yield

v v MG ki =0, (10)
o r r

oo dp [P 1dy mPel )\ 2im

(_lerlk)v__errn|:dr2+Tdr_< 2 +k>v—r—2w,

(11)
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it 4 ik — - M dw dw 1)L 2im

- L ey i G 7z VP
(12)

o 0 1 di 2 A

(—iw + ik)it = —ikp + 7 Z +o %— (T—z+k2>u , (13)

where w and u are the velocity components in azimuthal and axial
directions, respectively, the cap denotes the eigenfunction of the
corresponding perturbed variable, and # is a compound parameter
expressed as

_11-iX(w-k
" Re1—iDe(w —k)’
The kinematic boundary condition (5) yields

—kf. (14)

Owing to the decoupling of the electric field with the flow field in
liquid bulk, the electric field can be solved individually. From Eq.
(4) the eigenfunction of electric potential perturbation ¢, satisfies
the modified Bessel equation

v=—i(w

m2

o, 1ddg
Loy SR (0 + e =0

dr? r dr

Considering the finiteness at the symmetry axis r=0 and the far
field r — oo, the solutions to the above equation are

@ = Cyln(kr) and pq = CoKp (kr),

where I,(k) and K(k) are the m" modified Bessel functions of the
first and second kinds, respectively, and C; and C, are the coeffi-
cients to be determined by boundary conditions. Hence the pertur-
bation of electric field intensity is

E = {—Cl kL, (kr), — gcllm(kr), —ikCllm(kr)} expli(kz + mo) — iwt],

E,= {—Csz;ﬂ(er —?Csz(kr), —ikCsz(kr)} expli(kz+ mo) —iwt],

where the prime denotes the first derivative with respect to argu-
ment. Substituting the expressions into the boundary conditions
(7) and (8), we get

_q+fe Cilm(k) +f
o M e T T Rm
where
K L K (R
Skl ST T Rk

Substituting the solutions of electric field into the dynamic bound-
ary condition (6) and the surface charge conservation Eq. (9) yields

di e\,  (1-m* -k £\ -
21’]d +E, (1 C>q+ (W E, C)f: (15)

¢
odw imE, In(k) . imE I (k) ;
”('m“E_W)* kLol ke 1!~ (16)
du o N GE In(k) o GG Im(k) 2
11<dr+lk1/>+ : I—;n(k)qu R ,'T,(k)f (17)
. LTl AU Te&l;
(—lw+1k+ C)q PR Cf 0. (18)

The bulk Egs. (10)-(13) together with the boundary conditions
(14)-(18) constitute the generalized eigenvalue equation system
of this problem.

2.3. Numerical method

The problem is solved numerically by means of Chebyshev
spectral collocation method. First, the physical space r € [0,1] is
transformed into the calculation space y € [—1,1]. Considering
the basic velocity profile of the jet is uniform, a simple linear trans-
formation is appropriate, i.e.

1ty
5

Consistency conditions need to be imposed on the symmetry axis
r=0 to eliminate the singularity, i.e.

r=

.. didp

W_dr ar =0form=0,
L . dv  .dw B (19)
u=p=0, v+iw=0, Za+lﬁ_0f0rm_l,

v=w=0=p=0form>1.
In the domain y € [-1,1] the bulk eigenfunctions #, W, and p are
expanded as a sum of Chebyshev polynomials, i.e.

N
= ZanTn )
n=0
N
= anTn W)
n=0
N
y)=> caTa(y)
n=0
N
= ZdnTn 0’)
n=0

where T,(y) = cos[ncos~'(y)] is the Chebyshev polynomial, a,, by, ¢,
and d, are the expansion coefficients and N is the number of the
polynomials. The continuity Eq. (10) and the momentum Egs.
(11)-(13) are evaluated at the Gauss-Lobatto collocation points

=cos(jm/N), j=0,1,...,N. In the calculation 20-30 collocation
points are sufficient to ensure the convergence. The boundary con-
ditions are also evaluated at the corresponding points. The dynamic
boundary conditions (15)-(17) replace the momentum equations at
the jet surface r=1 + f. The consistency conditions (19) replace the
continuity equation and the momentum equations at the symmet-
ric axis r=0. Note that the momentum equations are quadratic
equations of w. The eigenvalue equation can be written in the fol-
lowing form

DY + w[C]Y = [B]Y, (20)

where the vector Y = [aq, -, Gy, bo, -, bn,Co, -+, Cn,do, -+ dn, 4, f]
and [B], [C] and [D] are the coefficient matrices of size (4N + 6) x
(4N + 6). The expressions of [B], [C] and [D] are given in Appendix
A. To solve the problem, the above equation should be transformed
into a generalized eigenvalue problem as follows [14,15]

[EIX = w[F|X, (21)

where

r=(l) =3 %) =[S 3]

and [ is the unit matrix of size (4N + 6) x (4N + 6). The generalized
eigenvalue problem (20) is solved using a Matlab code.

Due to the uniformity of the basic velocity profile, a dispersion
relation can be derived, which is basically the same as in our pre-
vious paper [13] if w is replaced with —iw. The dispersion relation
is solved with the aid of Muller’s method in ISML, serving as a
check to the validity of the Matlab code.
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3. Result and discussion

In this section the absolute and convective instability of the axi-
symmetric mode m = 0 and the first non-axisymmetric mode m = 1
of a charged viscoelastic jet is studied. For each mode, the complex
frequency w is solved as function of the axial wave number k and
the dimensionless parameter set (Re, De, A", We, Te, &, E,,). Due to the
complexity of the problem, two particular viscoelastic liquids, i.e.
a PEO aqueous solution and a PIB Boger fluid, are chosen as sam-
ples, as performed in our previous paper [13]. PEO aqueous solu-
tions and PIB Boger fluids are simple viscoelastic experimental
materials frequently used in electrospraying and electrospinning.
They have distinct differences in viscosity, elasticity, surface ten-
sion and electrical properties, which may lead to different jet insta-
bility behaviors. The choice of both liquids and the theoretical
viscoelastic model is dictated by a further comparison with exper-
iments: both PEO aqueous solutions and PIB Boger fluids are dilute
polymer solutions well described by the Oldroyd-B viscoelastic
constitutive equation. Their physical properties were given in
[10,13]. Fixing the radius of jet to 10 pm and the velocity of jet
to 1 m/s, a reference state is established, as shown in Table 1.
The values of the dimensionless parameters are kept under the ref-
erence state unless otherwise stated.

The typical contour plots of the imaginary part of the complex
frequency w; in the complex wave number k plane for the axisym-
metric and non-axisymmetric modes of the PEO aqueous solution
and the PIB Boger fluid are shown in Figs. 2 and 3, for, respectively.
Evidently there is a saddle point in each plot. In Fig. 2a the location
of the saddle point is ko =(1.15,—0.19) and the value of the com-
plex frequency at the saddle point is wg=(1.12,1.18); in Fig. 2b
ko =(0.62,-0.21), wo=(0.60,0.96); in Fig. 3a ko=(1.30,—-2.25),
wo= (1.44,-147); and in Fig. 3b ko=(0.55,-0.15), wo=
(0.56,1.18). All the saddles satisfy the Briggs pinching criterion
[35]. Normally, ko is referred to as the absolute wave number
and wog the absolute frequency. The absolute and convective insta-
bility characteristic of a jet is determined by the imaginary part of
the absolute frequency, i.e. the absolute growth rate wy;. In Fig. 2a
and b the absolute growth rate is positive, indicating that both the
axisymmetric and non-axisymmetric modes of the PEO aqueous
solution are absolutely unstable. In Fig. 3a it is negative, indicating
that the axisymmetric mode of the PIB Boger fluid is convectively
unstable, whereas the non-axisymmetric mode of the fluid is abso-
lutely unstable with a positive absolute growth rate, as shown in
Fig. 3b.

3.1. Effect of electric field on absolute and convective instability of jet

The effect of the normal electric field on the absolute and con-
vective instability of jet of the PEO aqueous solution and the PIB
Boger fluid is illustrated in Fig. 4, where squares and circles denote
data points and solid and dashed lines denote fitting curves. It can
be seen in the figure that the axisymmetric mode of the PEO aque-
ous solution is absolutely unstable, even in the absence of electric
field (i.e. E,=0). As the electric field increases, the absolute
instability of the axisymmetric mode is strengthened. The non-
axisymmetric mode of the PEO aqueous solution was already
known to be temporally stable in the absence of electric field,
but it can be made unstable by an imposed electric field [13]. Such
a fundamental influence of electric field on the non-axisymmetric

i\\ 7

Fig. 2. Contours of the imaginary part of the complex frequency w; in the complex
wave number plane for (a) the axisymmetric mode m=0 and (b) the non-
axisymmetric mode m =1 of the PEO aqueous solution.

mode is also shown in Fig. 4. When electric field is absent, the
absolute growth rate of the non-axisymmetric mode is negative.
When the electrical Euler number is increased to a small value
(E, =~ 2), it becomes positive. That is, only within a narrow range
of the electrical Euler number (about 0 < E, < 2) the non-axisym-
metric mode is convectively unstable. Beyond this range it is abso-
lutely unstable. In addition, electric field has a more profound
effect on the non-axisymmetric mode than on the axisymmetric
mode. At sufficiently large electric fields the absolute growth rates
of them are comparable.

Different from the PEO aqueous solution, the behavior of the
axisymmetric mode of the PIB Boger fluid is quite peculiar.
Although the absolute growth rate of it is increased by electric field
to a certain extent, the mode remains convectively unstable in the
calculation range E, € [0,20]. Nevertheless, the tendency suggests
that it may become absolutely unstable at larger electric field. On
the other hand, the non-axisymmetric mode is stable at zero elec-
tric field. As the electric field increases, the mode first becomes
convectively unstable and soon enters the absolute instability re-
gion at an even smaller electrical Euler number than that of the
non-axisymmetric mode of the PEO aqueous solution. After it be-
comes absolutely unstable the electric field continuously increases
its absolute growth rate. Compared with the axisymmetric mode,
apparently the non-axisymmetric mode is much more unstable
in most situations. That is, the non-axisymmetric mode dominates
over the axisymmetric mode in the stability of jet of the PIB Boger

Table 1
Values of the dimensionless parameters under the reference state.
Re D. A W, Te & E,
PEO-2M 0.01 2.0 x 10* 20 0.1471 197.74 80 10
PIB Boger fluid 4000 ppm 0.0833 311 146.48 0.5822 0.0113 3 10
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Fig. 3. Contours of the imaginary part of the complex frequency w; in the complex
wave number plane for (a) the axisymmetric mode m=0 and (b) the non-
axisymmetric mode m =1 of the PIB Boger fluid.
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Fig. 4. The absolute growth rate wy; versus the electrical Euler number E,,.

fluid. The same conclusion was drawn from the temporal instabil-
ity study [13].

Recently Si et al. [21] performed an experimental investigation
on the flow modes in electrospinning using aqueous PEO solutions.
It was found that when the electric potential exceeds a certain crit-
ical value the stable bending mode cannot be maintained and sev-
eral irregular modes appear. These irregular modes may be the
result of a global instability caused by the absolute instability un-
der a large applied electric field. From this point, our theoretical
prediction above is qualitatively in agreement with the
experiments.

3.2. Effect of elasticity on absolute and convective instability of jet

There are two dimensionless parameters related to liquid elas-
ticity, i.e. the Deborah number D, and the relative strain retarda-
tion time /2* It is understood that the Deborah number is of
much more significance in the instability of a viscoelastic jet [9].
Hence we study the effect of elasticity on the absolute and convec-
tive instability of jet only through this parameter. In practice,
changing elasticity usually implies a modification of the other
physical properties of liquid, but we disregard this fact and assume
that the Deborah number can be adjusted freely while maintaining
the other parameters unchanged.

Figs. 5a and 5b illustrate the absolute growth rate wy; of the axi-
symmetric mode and the non-axisymmetric mode of jet of the PEO
aqueous solution, respectively, versus the electrical Euler number
E,, for different values of the Deborah number. As is shown in
Fig. 5a, when the elasticity of liquid is small (e.g. D, = 200), the axi-
symmetric mode is convectively unstable and the effect of electric
field is quite small. When the elasticity of liquid is sufficiently
large, the axisymmetric mode becomes absolutely unstable. As
elasticity increases, the absolute instability of the mode is further
enhanced. The destabilization effect of elasticity on the axisym-
metric mode is more significant at large electric fields. Contrarily,
the effect of elasticity on the non-axisymmetric mode is weak. As
is shown in Fig. 5b, at relatively small electric fields the non-axi-
symmetric mode is hardly influenced by elasticity and at relatively
large electric fields it is destabilized by elasticity to a small extent.

Figs. 6a and 6b illustrate the result for the PIB Boger fluid.
Clearly elasticity weakens the convective instability of the axisym-
metric mode of the fluid. Moreover, at sufficiently large electric
fields the axisymmetric mode may become absolutely unstable.
On the other hand, the destabilization effect of elasticity on the
non-axisymmetric mode is limited, as in the case of the PEO aque-
ous solution.

3.3. Strategies for suppressing absolute instability

Normally, absolute instability is undesirable in electrospraying
and electrospinning since it potentially induces the global instabil-
ity of jet and influences the quality of products. Unfortunately, our
calculation result shows that the axisymmetric mode of a visco-
elastic jet is probably absolutely unstable if the elasticity of liquid
and the imposed normal electric field are large enough. More sur-
prisingly, the non-axisymmetric mode becomes absolutely unsta-
ble easily once its instability is triggered, no matter how large
the elasticity is. From this perspective, it is of interest to seek for
some strategy for suppressing absolute instability of a charged vis-
coelastic jet.

In addition to the Deborah number and the electrical Euler num-
ber, the Reynolds number and the Weber number are naturally sup-
posed to be two parameters influencing the absolute and
convective instability characteristic of jet. However, according to
our calculation, absolute instability cannot be completely sup-
pressed by varying the Reynolds number or the Weber number
individually, even though they show great quantitative influence
on jet instability. For the PEO aqueous solution, within the range
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Fig. 5. Effect of the elasticity on the absolute and convective instability of (a) the
axisymmetric mode m =0 and (b) the non-axisymmetric mode m=1 of the PEO
aqueous solution.

from 0.001 to 0.1 the Reynolds number increases the absolute
growth rate of both the axisymmetric and non-axisymmetric
modes. Absolute instability cannot be avoided even at extremely
small Reynolds number (R, =0.001). For the PIB Boger fluid, the
Reynolds number also destabilizes the axisymmetric and non-
axisymmetric modes within the range R, € [0.01,0.5]. The axisym-
metric mode becomes absolutely unstable at large values of the
Reynolds number and large electric fields, while the non-axisym-
metric mode is absolutely unstable all the way. The influence of
the Weber number on the axisymmetric and non-axisymmetric
modes for the PEO aqueous solution is complicated, but both modes
are basically kept in the absolute instability domain within the
range W, € [0.05,0.3]. As to the PIB Boger fluid, for W, € [0.1,10]
the axisymmetric mode remains convectively unstable, being the
absolute growth rate increased as the Weber number decreases.
On the other hand, the non-axisymmetric mode is always abso-
lutely unstable, even though its absolute growth rate is depressed
greatly at small values of Weber number. Generally, for neither
the PEO aqueous solution nor the PIB Boger fluid it seems feasible
to eliminate absolute instability through changing viscosity or sur-
face tension of liquid. We need to explore other aspects.

In the calculation the velocity and the radius of jet are fixed for
convenience. However, in experiments both the velocity and the
radius of jet can be changed through adjusting the flow rate at

a [
- PIB Bogers m=0

Fig. 6. Effect of the elasticity on the absolute and convective instability of (a) the
axisymmetric mode m =0 and (b) the non-axisymmetric mode m =1 of the PIB
Boger fluid.

the orifice of capillary. Considering this fact, in the following we
study the effect of them on the absolute and convective instability
of jet, aiming to find possible ways to suppress absolute instability.

First, the radius of jet is fixed to 10 um and the velocity of jet is
varied between several values: 0.5 m/s, 1 m/s, 2 m/s and 4 m/s.
Note that with the variation of the velocity of jet six parameters,
i.e. Re, D¢, A", W,, 7, and E,, are changed at the same time. In such
a case the electrical Euler number is not appropriate as abscissa
in the plot and we use the nondimensional electrostatic pressure
@ = q3n2/e0py? instead. Here, note that the value of @ is about
two orders larger than the value of the electrical Euler number.
In this sense the characteristic pressure py*/n#3 would not be
appropriate as a scale to normalize the electrostatic force. How-
ever, it does not affect our analysis. In addition, the velocity of
jet is scaled by U, = y/[no, that is, the nondimensional velocity of
jet is defined as U* = U/U.. Figs. 7a and 7b illustrate the variation
of the absolute growth rate with the nondimensional velocity of
jet for the axisymmetric mode and the non-axisymmetric mode
of the PEO aqueous solution, respectively. It is clear that absolute
instability of both modes is suppressed as the velocity of the jet
is increased. At a velocity of 4 m/s (U* = 58.82), the absolute growth
rates become nearly zero. The stabilization effect of velocity is
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more significant at large electric fields. The result for the PIB Boger
fluid is illustrated in Fig. 8. As is shown in the figure, the variation
of the absolute growth rate with the velocity is generally the same
as in the case of the PEO aqueous solution. Most significantly, abso-
lute instability of the non-axisymmetric mode is depressed as the
velocity of jet is increased, especially at large electric fields.

To better understand the role of the velocity, the absolute and
convective instability transition boundary on the U* — @ plane is
plotted in Figs. 9 and 10 for the PEO aqueous solution and the PIB
Boger fluid, respectively. In the figures solid line denotes the bound-
ary of the axisymmetric mode, below which is the absolute instabil-
ity region of the mode and above which is its convective instability
region; dashed line denotes the boundary of the first non-
axisymmetric mode, below which is its absolute instability region
and above which is its convective instability region. For both modes
and both liquids, it can be seen that, at a fixed electric field, the
instability of jet transits from absolute to convective when the
velocity of jet is increased to a certain critical value. On the other
hand, at a fixed velocity, the instability may change from convective
to absolute when the electric field is increased up to some critical
value. For the axisymmetric mode of the PEO aqueous solution, as
is shown in Fig. 9, there exists a minimum velocity (U* ~ 54.5 and
U ~ 3.8 m/s),and when the velocity of the jet is smaller than this va-
lue, the jet is absolutely unstable no matter how large the electric
field is. In Fig. 9 the narrow region between two boundary lines is
absolute for the axisymmetric mode and convective for the non-axi-
symmetric mode, indicating that for the PEO aqueous solution the
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Fig. 7. Variation of the absolute growth rate wo; with the nondimensional velocity
of jet U* for (a) the axisymmetric mode m =0 and (b) the non-axisymmetric mode
m =1 of the PEO aqueous solution.
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Fig. 8. Variation of the absolute growth rate wg; with the nondimensional velocity
of jet U* for (a) the axisymmetric mode m =0 and (b) the non-axisymmetric mode
m =1 of the PIB Boger fluid.
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Fig. 9. The boundary between absolute and convective instability of the axisym-
metric mode m =0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)
of the PEO aqueous solution on the U* — @ plane.

axisymmetric mode is dominant over the non-axisymmetric mode.
However, the predominance of the axisymmetric mode tends to dis-
appear at large electric fields. In Fig. 10 the axisymmetric mode of
the PIB Boger fluid is convectively unstable in the explored field ex-
cept in a small region (below at the right) with large electric fields
and small jet velocities. Between the two boundary lines there is a
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Fig. 10. The boundary between absolute and convective instability of the axisym-
metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)
of the PIB Boger fluid on the U* — @ plane.

wide region in which the axisymmetric mode is convectively unsta-
ble and the non-axisymmetric mode is absolutely unstable. In this
region the non-axisymmetric mode is dominant. Above the dashed
line both modes are convectively unstable.
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Fig. 11. Variation of the absolute growth rate o; with the nondimensional radius
of jet R* for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode
m =1 of the PEO aqueous solution.

Now the velocity of jet is fixed to 1 m/s and the radius of jet is
varied between several values: 2.5 pm, 5 pm, 10 um, 20 pm and
40 um. Taking R. = #3/p7 as a scale, we define a nondimensional
jet radius R* = R/R.. The absolute and convective instability charac-
teristic of the PEO aqueous solution and the PIB Boger fluid jets are
demonstrated in Figs. 11 and 12, respectively, where the abscissa is
the nondimensional electrostatic force @. It is shown that the influ-
ence of the jet radius on the absolute growth rate of the axisym-
metric mode of the PEO aqueous solution is non-monotonic. As
the jet radius is decreased, the absolute growth rate is increased
moderately at relatively small electric fields but is decreased to a
great extent at relatively large electric fields. On the other hand,
the absolute growth rate of the non-axisymmetric mode is de-
creased as the jet radius is decreased, especially at large electric
fields. In the scope of present research both the axisymmetric
and the non-axisymmetric modes are absolutely unstable. For
the PIB Boger fluid, the absolute growth rate of the axisymmetric
mode is decreased as the radius is decreased. This mode is convec-
tively unstable except when the radius and the electric field are
sufficiently large. For the non-axisymmetric mode the influence
of jet radius is quite limited. With the absolute growth rate re-
duced slightly as the radius of jet is decreased, the non-axisymmet-
ric mode remains in the absolute instability domain. Generally,
although absolute instability cannot be eliminated by decreasing
or increasing the radius of jet, it can be weakened to a certain ex-
tent in all the cases.
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Fig. 12. Variation of the absolute growth rate wo; with the nondimensional radius
of jet R* for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode
m =1 of the PIB Boger fluid.



F. Li et al. /Journal of Non-Newtonian Fluid Mechanics 196 (2013) 58-69 67

The absolute and convective instability transition boundary on
the R* — w plane is plotted in Figs. 13 and 14 for the PEO aqueous
solution and the PIB Boger fluid, respectively, where solid line de-
notes the boundary of the axisymmetric mode and dashed line de-
notes the boundary of the first non-axisymmetric mode. In Fig. 13,
the small region in the upper left corner confined by the solid line,
which possesses large jet radii (R*>0.011 and R> 160 pm) and
small electric fields, is the convective instability domain of the axi-
symmetric mode of the PEO aqueous solution, and in the large re-
gion beyond it the axisymmetric mode is absolutely unstable. The
transition boundary of the non-axisymmetric mode is like an
asymptotic line in both the R* and @ directions. The region up
and to the right of the boundary is absolute instability for the
non-axisymmetric mode, while in the region below and to the left
of the line the mode is stable or convectively unstable. It should be
noted that in this below left region the axisymmetric mode is dom-
inant since it is absolutely unstable. In Fig. 14 both the transition
boundary of the axisymmetric mode and that of the non-axisym-
metric mode of the PIB Boger fluid possess asymptotic characteris-
tic. At a fixed jet radius, the instability of the modes may transit
from convective to absolute when the electric field exceeds a crit-
ical value. On the other hand, at a fixed electric field, the instability
may transit from convective to absolute when the radius of the jet
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Fig. 13. The boundary between absolute and convective instability of the axisym-
metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)
of the PEO aqueous solution on the R* — @ plane.

10" =
\\
; \‘ Absolute instability
10" v
‘\
-m \\
102 | Q
e
- 2
- Convective %
instability QC
10-3 o el L — .
10° 10" 10° 10° 10" 10°

Fig. 14. The boundary between absolute and convective instability of the axisym-
metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)
of the PIB Boger fluid on the R* — @ plane.

exceeds a critical value. Note that the stable or convectively unsta-
ble region of the non-axisymmetric mode is quite small. That is, at
the jet velocity considered here (U = 1 m/s), the absolute instability
of the non-axisymmetric mode of the PIB Boger fluid is easily in-
duced by the electric field. In addition, in the region between
two boundary lines where the axisymmetric mode is convectively
unstable and the non-axisymmetric mode is absolutely unstable,
the non-axisymmetric mode is dominant.

4. Conclusion

In this work we explore the absolute and convective instability
of a charged viscoelastic liquid jet through a linear model built for
three-dimensional infinitesimal disturbances, aiming to the estab-
lishment of a general, complete knowledge and predictive frame-
work for the benefit of industrial processes.

Consistently with previous studies for Newtonian liquids, it is
found that normal electric field may induce and augment the abso-
lute instability of both the axisymmetric and non-axisymmetric
modes of a viscoelastic jet. Moreover, the destabilization effect of
electric field on the non-axisymmetric mode is more significant.
Elasticity may also induce and enhance absolute instability of
unstable modes, especially the axisymmetric one. The way to sup-
press absolute instability is explored. It is found that absolute
instability of both the axisymmetric and non-axisymmetric modes
may be weakened through increasing the velocity of jet and adjust-
ing (in most situations decreasing) the jet radius.

According to the calculation, an electrified viscoelastic jet seems
prone to become absolutely unstable, particularly when it is sub-
jected to non-axisymmetric disturbances. However, experiments
show that a viscoelastic jet can be well controlled under a globally
stable state. This discrepancy between theory and experiments
might be explained from several aspects. First, in electrohydrody-
namically generated jets, there usually exists an externally applied
tangential electric field (not considered in this work) which might
suppress absolute instability and benefit convective instability.
Second, absolute and convective instability only reflects local
instability characteristics, and absolute instability does not neces-
sarily lead to global instability, especially when the radius of the jet
changes along the axial coordinate. Third, non-linear effects may
be of paramount importance in electrified viscoelastic jets, where
the role of elasticity as well as the other parameters might be quite
different from the linear case. The investigation of these issues re-
mains of particular interest for the future.
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Appendix A. Expressions of the matrices in the eigenvalue
problem (20)
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where [0] denotes zero matrix and the subscript denotes its size,
Dyg=Dc - [Ta(y;)], a matrix of size (N—1)x(N+1), row:
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and er is an arbitrary complex number unequal to unity.
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