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a b s t r a c t

The absolute and convective instability of an electrically charged viscoelastic liquid jet is studied. The 

liquid is assumed to be (i) a dilute polymer solution described by the Oldroyd-B viscoe lastic model,

and also and (ii) a leaky dielectric defined by the Taylor–Melcher leaky dielectric theory. A generalized 

eigenvalue equation is obtained and solved numerically. Two different viscoelastic liquids, i.e. a PEO 

aqueous solution and a PIB Boger fluid, are taken as examples to study the effect of electric field and elas- 

ticity on the absolute and convective ins tability characteristic of the axisymmetric and first non-axisym- 

metric modes of a viscoelastic jet. The analysis shows that normal electric field may induce absolute 

instabili ty of both axisymmetric and non-axisym metric modes, being the effect of electric field larger 

on the latter. Elasticity has a profound destabili zing effect on the absolute and convective instabili ty of 

the axisymmetric mode while its effect on the non-axisymmetric mode is quite limited. Strategies for 

suppressing absolute instability of an electrically charged viscoelasti c jet are explored. The result indi- 

cates that increasing jet velocity or decreasing jet radius may ef fectively avoid the occurrence of absolute 

instabili ty.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction 

In electrospr aying and electrospinning, high-mo lecular polymer 

solutions are frequently used, see e.g. [1–4] among others. Differ- 

ent from Newtonian liquids, polymer solutions usually exhibit dis- 

tinct rheological features. Particularly , the viscoelastici ty of a

polymer may substantially influence the behavior of the issued 

jet, consequently affecting the morphology of resulting products.

On the other hand, the behavior of a jet in either electrosprayin g

or electrospinni ng is highly related to its instability characteristics.

It is a well known fact that the dominant mode in electrosprayin g

is the varicose mode, where axisymmetri c perturbation s tend to 

predominate over other perturbations, as is shown in Fig. 1a, while 

in electrospi nning the dominant mode is the kink mode, i.e. the 

first non-axisy mmetric perturbations are absolutely predominant 

ones, as is shown in Fig. 1b. These facts simply reflect the different 

underlying breakup mechanism s behind electrospr ay and electros- 

pinning: while the object of the former process is to produce a

spray by electrical forces, and thus breaking the jet into small 

pieces is essential, the latter aims to stretch a certain material 

(viscous liquid or polymeric solution) into extremely thin, ideally 

continuous filaments. In this latter case, the natural way to dra- 

matically increase the jet’s length without a drastic overall mass 

accelerati on is to deviate and stretch the jet perpendicularly to 

the issuing direction, i.e. the kink mode. The force necessary to pro- 

voke this stretchin g perpendi cular to the issuing direction of the jet 

is provided by the strong radial electric field generate d by its own 

enormous surface charge.

To date, a number of researche s have devoted their efforts to de- 

scribe the instability of viscoelastic jets in the presence or absence 

of electric environm ents. Among them, Reneker el al. [5] and Yarin 

et al. [6] established a viscoelastic mode to simulate numerically 

the highly nonlinear bending instability of a jet in electrospinni ng.

Brenn et al. [7] and Liu and Liu [8,9] studied the axisymmetric and 

non-axisy mmetric instability of a non-Newton ian jet in the absence 

of electric fields. Carroll and Joo [10,11] studied the linear axisym- 

metric instability of an electrified viscoelastic jet. Montanero and 

Gañán-Calvo [12] analyzed the spatiotempor al instability of the 

axisymmetr ic mode of an Oldroyd-B viscoelasti c liquid jet in a

medium of a co-flowing liquid flow. Li et al. [13] performed a linear 

analysis of the competition between axisymmetr ic and non- 

axisymmetr ic instabilit y of an electricall y charged viscoelastic 

liquid jet. It was found that either the axisymmetri c mode or the 

first non-axisymme tric mode is predomin ant in jet instability 

depending on the level of electrification and that elasticity destabi- 

lizes both modes, particularly the axisymmetr ic one. Ruo et al. [14]

examine d the influence of unrelaxed elastic tension on the 

three-dim ensional temporal instability of a viscoelastic liquid jet.

They concluded that in the presence of unrelaxed tension elasticity 

plays a stabilizing role in the instability of the axisymmetri c and 

0377-0257/$ - see front matter � 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jnnfm.2013.01.003

⇑ Corresponding author. Tel.: +34 954 487226; fax: +34 954 486041.

E-mail addresses: fli6@ustc.edu.cn (F. Li), amgc@us.es (A.M. Gañán-Calvo),

jmlopez@us.es (J.M. López-Herrera).

Journal of Non-Newtonian Fluid Mechanics 196 (2013) 58–69

Contents lists available at SciVerse ScienceDi rect 

Jo urnal of Non-N ewtonia n Fluid Mechanics 

journal homepage: ht tp : / /www.elsevier .com/locate / jnnfm

http://dx.doi.org/10.1016/j.jnnfm.2013.01.003
mailto:fli6@ustc.edu.cn
mailto:amgc@us.es
mailto:jmlopez@us.es
http://dx.doi.org/10.1016/j.jnnfm.2013.01.003
http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm


non-axisym metric modes. Later they extended their research to the 

electric environment [15].

Electric field is the driving factor in electrosprayin g and electros- 

pinning. First, at the outlet of flow, electric field provides the condi- 

tions for the formation of a critically stable meniscus structure ,

which is called Taylor cone, characterized by the equilibrium be- 

tween surface tension and the electrostatic force due to the surface 

charges. In turn, this meniscus provides the sustaining mechanic 

structure for a singular fluidic phenomeno n: from its apex, a stable,

extremely thin jet is formed under certain electric potential and 

flow rate. The diameter of that jet is normally two or three orders 

smaller than that of the outlet, down to micro-and nano-meters 

[16–18]. The downstre am evolution and breakup of the electrically 

charged jet yields small drops and ultra-fine fibers. The electric field

due to the surface charges promotes the instabilit y of jet, enhancin g

its breakup into droplets or its violent stretching by a whipping 

movement [13,19]. Besides, the electric charges induced by the 

electric field in the droplets and fibers normally prevent their coa- 

lescence before solidification takes place [20].

The present work is motivated by the fact that in electrospr ay- 

ing and electrospinni ng the stable cone-jet structure is only formed 

under a certain range of applied electric fields and flow rates. Be- 

yond this range the jet may become globally unstable, which 

may provoke catastrophic situations in continuous production 

[21–23]. Therefore it is of importance to study the global instability 

of the jet. Here, the absolute- convective instability transition pro- 

vided by a spatiotemp oral analysis is the first step to understand 

the global instability phenomeno n [24–29]. Absolute and convec- 

tive instability was soon identified as a fundamenta l concept in 

instability analysis. In fact, while convective instabilities leave 

the system locally unaffected (they are ‘‘flushed’’ by the basic 

flow), absolute instabilit ies grow without limitation at the point 

where they appear, leading to a global catastrophe of the system.

In practical terms, for a flow released from a capillary, if a jet is 

formed and becomes unstable at some distance downstream , it is 

regarded to be convectively unstable, but if no jet is formed and 

instability happens near the exit of capillary, the hypotheti cal jet 

structure is regarded to be absolutely unstable [30].

The absolute and convective instability of jet has been studied 

extensively. Taking an axisymmetric model of a charged Newto- 

nian liquid jet, López-Herrera et al. [24] calculated the critical We- 

ber number at the boundary of absolute and convective instability 

and found that the electric force has a secondary role in the abso- 

lute to convective instability transition of jet. Extending their re- 

search to three-dim ensional scope, Li et al. [25] studied

systemati cally the linear spatiotemp oral instability of a viscous 

jet of low permittivity, low conductivity liquid under both radial 

and axial electric fields. The absolute and convectiv e instabilit y

transition was explored in the four-paramete r space (the Weber 

number, the Reynolds number, the electrical Bond number and 

the tangential electric field) for both the axisymmetri c and first

non-axisy mmetric modes. Taking flow focusing as application 

background, Herrada et al. [26] studied the jetting-dr ipping transi- 

tion of a compound capillary jet. They calculated the critical Weber 

number as a function of the radius ratio for the axisymmetr ic case.

Vega et al. [27] studied experime ntally and numerically the influ-

ence of the flow rate, the distance between the capillary meniscus 

and the orifice, as well as liquid propertie s on the status of flow.

Three different regimes, i.e. the steady jetting regime, the local 

instabilit y regime and the global instability regime, were identi- 

fied. Montanero et al. [28] and Acero et al. [29] performed an 

experime ntal study on the global instability of a viscous liquid 

jet focused by a coaxial jet stream, considering different geometric 

configurations of the experimental apparatus utilized to generate 

the jet. Si et al. [31] explored the modes in flow focusing, among 

which the axisymmetri c jetting mode was considered to be con- 

vectively unstable and the dripping mode to be absolutel y unsta- 

ble. Clasen et al. [32] investigated the jetting-drippin g transition 

of a dilute polymer solution jet.

In this paper we investiga te the absolute and convective insta- 

bility of an electrified viscoelastic liquid jet. It is organized as fol- 

lows. In Section 2 the theoretical model is established and the 

formulat ion is presente d. The governing equations and boundary 

condition s are transformed into a generalized eigenvalue problem 

and the numerical method utilized to solve the problem is briefly

stated. In Section 3 the absolute and convective instability charac- 

teristic of the axisymmetri c and first non-axisym metric modes of 

the selected liquid jets are explored. The effects of normal electric 

field and elasticity on the absolute and convective instability of the 

unstable modes are studied. In addition, strategies for suppressing 

absolute instability of a viscoelasti c jet are discussed. In Section 4

main conclusio n is drawn.

As a general consideration, this work aims to provide additional 

theoretical basis for the adequate physical description of 

Fig. 1. Photographs of (a) the axisymmetric varicose mode, (b) the non-axisymmetric kink mode, and (c) schematic description of the theoretical model.
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electrospinni ng phenomena , like other published works in the liter- 

ature on this subject. Owing to the current imperfect understanding 

of these phenomena , many published experimental works provide 

limited and incomplete description of results: indeed, their compar- 

ison with theoretical models leads to an end point because the ab- 

sence of reporting on critical or crucial experime ntal observati ons 

precludes building a complete description. This study aims to dissect 

some illustrating cases within the appropriate physical space of 

parameters that describe and qualify electrospinni ng phenomena 

in the framewor k of the assumptions made.

2. Model and formulation 

2.1. Theoretical model and linearized equations 

The present theoretical model shares many characteri stics with 

the one established in our previous study [13]. We consider an infi-

nitely long cylindrical liquid jet of radius R, surrounded by station- 

ary air or vacuum (negligible dynamical effect), see Fig. 1c. The 

basic velocity of the jet is steady and uniform, and only has non- 

zero axial component, which is denoted by U. The liquid is sup- 

posed to be incompressible and viscoelasti c. Its viscoelastici ty is 

described by the Oldroyd-B constitutive equation [33]. It is also 

supposed to be a Taylor–Melcher leaky dielectric of finite electrical 

conductivity K and electrical permittiv ity e [34]. The electrical per- 

mittivity of surrounding air or vacuum is e0.

The dominant slendernes s of the jet and the leaky dielectric 

nature of the liquid [34] used in these phenomena brings on an 

electric field configuration where the normal electric field on the 

jet surface is much larger than the tangential one. Thus, the jet 

slenderness provides that the radial electric field is much larger 

than the axial one. In order to carry out a theoreticall y instability 

analysis, here we neglect the axial electric field, assuming that a

free charge of density q0 is present on the surface of a cylindrical 

jet. As a result a basic radial electric field q0R/e0r is formed in the 

air medium, where r is the radial coordinate in the cylindrical coor- 

dinate system (r,h,z) with h and z the azimuthal and axial coordi- 

nates, respectively . Consistently with the underest imation of the 

axial electric field, no basic electric field in the liquid bulk is con- 

sidered. When the jet is perturbed, the electrical relaxation time 

is assumed small enough to allow the relaxation of all charges on 

the surface. The absence of bulk charges is thus consisten t with 

the absence of electric field in the bulk. Actually, in our simplified

model electric stresses only exist on jet surface. In addition, the ef- 

fects of the gravitational force, temperature and magnetic field are 

assumed to be negligible.

Suppose the jet is perturbed by an infinitesimal disturbance .

The linearized continuity equation and momentum equation in 

nondimension al form are 

r � v ¼ 0; ð1Þ

and

@

@t
þ

@

@z

� �

v ¼ �rp þr � s; ð2Þ

where v is the velocity perturbat ion, t is the time, p is the pressure 

perturbat ion and s is the stress tensor. According to the Oldroyd- B

viscoela stic model, the relations hip between stress and strain is 

1 þ De

@

@t
þ

@

@z

� �� �

s ¼
2

Re

1 þ k�
@

@t
þ

@

@z

� �� �

D; ð3Þ

where D ¼ 1
2
½rv þ ðrvÞT �

� �

is the strain rate tensor. Three dimen- 

sionless numbers appear in Eq. (3), i.e. the Debora h number 

De = kU/R with k the stress relaxation time, the Reynolds 

number Re =qUR/g0 with q the liquid density and g0 the zero-shear 

viscosity, and the relative retardat ion time k⁄ = krU/R with kr the

strain retardat ion time.

The governing Laplace equation for the electric potential 

r2u;a ¼ 0; ð4Þ

closes the governing equation s, where u represe nts the potential in 

the liquid phase, ua represents the potent ial in the air phase, and 

the electric field intensity is E, a = �ru,a.

The linearized boundary condition s at the interface of the liquid 

jet and the ambient medium, whose position is r = 1 + f, are sum- 

marized below.

(i) The kinematic boundary condition 

v ¼
@

@t
þ

@

@z

� �

f ; ð5Þ

where v is the velocity component in radial direction and f is the 

small displace ment of the interface deviated from its equilibrium 

position.

(ii) The dynamic boundary condition 

kTk � n�
1

We

r � nn ¼ 0; ð6Þ

where n is the normal unit vector and r � n is the surface curvature.

The stress tensor T compris es the hydrodyn amic stress T
h

(= �pd + sh, where d is the identity matrix and sh is the viscous 

stress) and the electrical stress Te. For the liquid phase Te ¼

erEu EE � 1
2
E � Ed

� 	

and for the air phase Te ¼ Eu EaEa �
1
2
Ea � Ead

� 	

.

Three dimension less numbers appear in Eq. (6), i.e. the Weber num- 

ber We = qU2R/c with c the surface tension coefficient, the relative 

electrical permittiv ity er = e/e0 and the electrical Euler number 

Eu ¼ q2
0=e0qU2.

(iii) The electric field satisfies the continuity of tangential elec- 

tric field and the Gauss law at surface, i.e.

n� ðEa � EÞ ¼ 0; ð7Þ

ðEa � erEÞ � n ¼ q; ð8Þ

where q is the surface charge density satisfying the following con- 

servatio n equation 

@

@t
þ

@

@z

� �

q �
@v

@r
� seerE � n ¼ 0; ð9Þ

where se = KR/eU is the relative electrical relaxatio n time of the jet.

2.2. Equations for absolute and convective instability analysis 

In spatiotempor al instability analysis the relevant variables of a

system are supposed to be perturbed by an arbitrary infinitesimal 

three-dim ensional disturbance of the form A(r)exp[i(kz + mh) �

ixt] (normal mode analysis), where the prefactor A(r) is the eigen- 

function of any specific variable (velocity, pressure or electric 

field), i is the imaginary number, k is the complex axial wave num- 

ber, m is the azimuthal wave number (integer) and x is the com- 

plex frequency. Substituting the normal mode disturbance into 

the governing equation s and boundary conditions (1)–(9), a series 

of linear homogeneous equation s of the eigenfun ctions is obtained.

The continuity Eq. (1) and the momentum Eq. (2) yield

dv̂

dr
þ
v̂

r
þ

im 

r
ŵ þ ikû ¼ 0; ð10Þ

ð�ixþ ikÞv̂ ¼ �
dp̂

dr 
þ g

d
2
v̂

dr
2
þ

1

r

dv̂

dr
�

m2 þ 1

r2
þ k

2

� �

v̂ �
2im 

r2
ŵ

" #

;

ð11Þ
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ð�ixþ ikÞŵ ¼ �
im 

r
p̂ þ g

d
2
ŵ

dr 
2
þ

1

r

dŵ

dr 
�

m2 þ 1

r2
þ k

2

� �

ŵ þ
2im 

r2
v̂

" #

;

ð12Þ

ð�ixþ ikÞû ¼ �ikp̂ þ g
d

2
û

dr 
2
þ

1

r

dû

dr 
�

m2

r2
þ k

2

� �

û

" #

; ð13Þ

where w and u are the velocity component s in azimuth al and axial 

directions, respective ly, the cap denotes the eigenfunct ion of the 

correspon ding perturbed variable , and g is a compound parameter 

expressed as 

g ¼
1

Re

1 � ik�ðx� kÞ

1 � iDeðx� kÞ
:

The kinemati c boundary conditio n (5) yields

v̂ ¼ �iðx� kÞf̂ : ð14Þ

Owing to the decoup ling of the electric field with the flow field in 

liquid bulk, the electric field can be solved individua lly. From Eq.

(4) the eigenfunctio n of electric potential perturbat ion û;a satisfies

the modified Bessel equation 

d
2û;a

dr
2

þ
1

r

dû;a

dr
� ðk

2
þ

m2

r2
Þû;a ¼ 0:

Consider ing the finiteness at the symmetry axis r = 0 and the far 

field r?1, the solutions to the above equation are 

û ¼ C1ImðkrÞ and ûa ¼ C2KmðkrÞ;

where Im(k) and Km(k) are the mth modified Bessel functions of the 

first and second kinds, respective ly, and C1 and C2 are the coeffi-

cients to be determine d by boundary conditio ns. Hence the pertur- 

bation of electric field intensity is 

E ¼ �C1kI
0
mðkrÞ;�

im 

r
C1ImðkrÞ;�ikC1ImðkrÞ

� �

exp½iðkz þ mhÞ � ixt�;

Ea ¼ �C2kK
0
mðkrÞ;�

im 

r
C2KmðkrÞ;�ikC2KmðkrÞ

� �

exp½iðkzþmhÞ� ixt�;

where the prime denotes the first derivativ e with respect to argu- 

ment. Substitutin g the expressions into the boundary conditions 

(7) and (8), we get 

C1 ¼
q̂ þ f̂n

kI
0
mðkÞf

and C2 ¼
C1ImðkÞ þ f̂

KmðkÞ
;

where

n ¼ 1 þ k
K 0

mðkÞ

KmðkÞ
; f ¼ er �

ImðkÞK
0
mðkÞ

I0mðkÞKmðkÞ
:

Substitutin g the solution s of electric field into the dynamic bound- 

ary conditio n (6) and the surface charge conservation Eq. (9) yields

p̂ � 2g
dv̂

dr
þ Eu 1 �

er

f

� �

q̂ þ
1 � m2 � k

2

We

� Eu

ern

f

 !

f̂ ¼ 0; ð15Þ

g imv̂ þ
dŵ

dr 
� ŵ

� �

þ
imEu

kf

ImðkÞ

I0mðkÞ
q̂ þ

imEun

kf

ImðkÞ

I0mðkÞ
f̂ ¼ 0; ð16Þ

g
dû

dr 
þ ikv̂

� �

þ
iEu

f

ImðkÞ

I0mðkÞ
q̂ þ

iEun

f

ImðkÞ

I0mðkÞ
f̂ ¼ 0; ð17Þ

�ixþ ik þ
seer

f

� �

q̂ �
dv̂

dr
þ
seern

f
f̂ ¼ 0: ð18Þ

The bulk Eqs. (10)–(13) together with the boundary conditions 

(14)–(18) constitut e the general ized eigenv alue equation system 

of this problem .

2.3. Numerical method 

The problem is solved numerically by means of Chebyshev 

spectral collocation method. First, the physical space r 2 [0,1] is 

transformed into the calculation space y 2 [�1,1]. Considering 

the basic velocity profile of the jet is uniform, a simple linear trans- 

formatio n is appropriate, i.e.

r ¼
1 þ y

2
:

Consisten cy conditio ns need to be imposed on the symmetry axis 

r = 0 to eliminate the singularit y, i.e.

v̂ ¼ ŵ ¼
dû

dr 
¼

dp̂

dr 
¼ 0 for m ¼ 0;

û ¼ p̂ ¼ 0; v̂ þ iŵ ¼ 0; 2
dv̂

dr
þ i

dŵ

dr 
¼ 0 for m ¼ 1;

v̂ ¼ ŵ ¼ û ¼ p̂ ¼ 0 for m > 1:

ð19Þ

In the domain y 2 [�1,1] the bulk eigenfunct ions v̂ ; ŵ; û and p̂ are

expanded as a sum of Chebysh ev polynomial s, i.e.

v̂ðyÞ ¼
X

N

n¼0

anTnðyÞ;

ŵðyÞ ¼
X

N

n¼0

bnTnðyÞ;

ûðyÞ ¼
X

N

n¼0

cnTnðyÞ;

p̂ðyÞ ¼
X

N

n¼0

dnTnðyÞ;

where Tn(y) = cos[ ncos�1(y)] is the Chebys hev polynom ial, an, bn, cn

and dn are the expansion coefficients and N is the number of the 

polynom ials. The continuity Eq. (10) and the momentu m Eqs.

(11)–(13) are evaluated at the Gauss–Lobatto collocatio n points 

yj = cos(jp/N), j = 0, 1, . . . , N. In the calculatio n 20–30 collocatio n

points are sufficient to ensure the convergen ce. The boundary con- 

ditions are also evaluated at the correspondi ng points. The dynamic 

boundar y conditions (15)–(17) replace the momentum equations at 

the jet surface r = 1 + f. The consiste ncy conditio ns (19) replace the 

continuity equation and the momentum equation s at the symmet- 

ric axis r = 0. Note that the momentum equations are quadratic 

equations of x. The eigenv alue equation can be written in the fol- 

lowing form 

x2½D�Y þx½C�Y ¼ ½B�Y ; ð20Þ

where the vector Y ¼ ½a0; � � � ; an; b0; � � � ; bn; c0; � � � ; cn;d0; � � � ; dn; q̂; f̂ �
T

and [B], [C] and [D] are the coefficient matrices of size (4N + 6) �

(4N + 6). The expressions of [B], [C] and [D] are given in Appendix 

A. To solve the problem , the above equation should be transformed 

into a generalized eigenvalue problem as follows [14,15]

½E�X ¼ x½F�X; ð21Þ

where

X ¼
Y

xY

� �

; ½E� ¼
B 0

0 I

� �

; ½F� ¼
C D

I 0

� �

;

and I is the unit matrix of size (4N + 6) � (4N + 6). The generalized 

eigenval ue problem (20) is solved using a Matlab code.

Due to the uniformity of the basic velocity profile, a dispersion 

relation can be derived, which is basically the same as in our pre- 

vious paper [13] if x is replaced with �ix. The dispersio n relation 

is solved with the aid of Muller’s method in ISML, serving as a

check to the validity of the Matlab code.
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3. Result and discussion 

In this section the absolute and convective instability of the axi- 

symmetric mode m = 0 and the first non-axisymme tric mode m = 1

of a charged viscoelastic jet is studied. For each mode, the complex 

frequency x is solved as function of the axial wave number k and

the dimensio nless parameter set (Re,De,k
⁄,We,se,er,Eu). Due to the 

complexity of the problem, two particular viscoelastic liquids, i.e.

a PEO aqueous solution and a PIB Boger fluid, are chosen as sam- 

ples, as performed in our previous paper [13]. PEO aqueous solu- 

tions and PIB Boger fluids are simple viscoelastic experime ntal 

materials frequently used in electrospray ing and electrospinning.

They have distinct differences in viscosity , elasticity, surface ten- 

sion and electrical propertie s, which may lead to different jet insta- 

bility behaviors. The choice of both liquids and the theoretical 

viscoelastic model is dictated by a further comparis on with exper- 

iments: both PEO aqueous solutions and PIB Boger fluids are dilute 

polymer solutions well described by the Oldroyd-B viscoelastic 

constitutive equation. Their physical properties were given in 

[10,13]. Fixing the radius of jet to 10 lm and the velocity of jet 

to 1 m/s, a reference state is established, as shown in Table 1.

The values of the dimensionle ss paramete rs are kept under the ref- 

erence state unless otherwise stated.

The typical contour plots of the imaginary part of the complex 

frequency xi in the complex wave number k plane for the axisym- 

metric and non-axisy mmetric modes of the PEO aqueous solution 

and the PIB Boger fluid are shown in Figs. 2 and 3, for, respectively.

Evidently there is a saddle point in each plot. In Fig. 2a the location 

of the saddle point is k0 = (1.15,�0.19) and the value of the com- 

plex frequency at the saddle point is x0 = (1.12,1.18); in Fig. 2b

k0 = (0.62,�0.21), x0 = (0.60,0.96); in Fig. 3a k0 = (1.30,�2.25),

x0 = (1.44,�1.47); and in Fig. 3b k0 = (0.55,�0.15), x0 =

(0.56,1.18). All the saddles satisfy the Briggs pinching criterion 

[35]. Normally, k0 is referred to as the absolute wave number 

and x0 the absolute frequency. The absolute and convectiv e insta- 

bility characterist ic of a jet is determined by the imaginary part of 

the absolute frequenc y, i.e. the absolute growth rate x0i. In Fig. 2a

and b the absolute growth rate is positive, indicating that both the 

axisymmetri c and non-axisym metric modes of the PEO aqueous 

solution are absolutely unstable. In Fig. 3a it is negative, indicating 

that the axisymmetri c mode of the PIB Boger fluid is convectively 

unstable, whereas the non-axisym metric mode of the fluid is abso- 

lutely unstable with a positive absolute growth rate, as shown in 

Fig. 3b.

3.1. Effect of electric field on absolute and convectiv e instability of jet 

The effect of the normal electric field on the absolute and con- 

vective instability of jet of the PEO aqueous solution and the PIB 

Boger fluid is illustrated in Fig. 4, where squares and circles denote 

data points and solid and dashed lines denote fitting curves. It can 

be seen in the figure that the axisymmetri c mode of the PEO aque- 

ous solution is absolutely unstable, even in the absence of electric 

field (i.e. Eu = 0). As the electric field increases, the absolute 

instability of the axisymmetric mode is strengthene d. The non- 

axisymmetri c mode of the PEO aqueous solution was already 

known to be temporally stable in the absence of electric field,

but it can be made unstable by an imposed electric field [13]. Such 

a fundamental influence of electric field on the non-axisymme tric 

mode is also shown in Fig. 4. When electric field is absent, the 

absolute growth rate of the non-axisym metric mode is negative.

When the electrical Euler number is increased to a small value 

(Eu � 2), it becomes positive. That is, only within a narrow range 

of the electrical Euler number (about 0 < Eu < 2) the non-axisym -

metric mode is convectiv ely unstable. Beyond this range it is abso- 

lutely unstable. In addition, electric field has a more profound 

effect on the non-axisym metric mode than on the axisymmetric 

mode. At sufficiently large electric fields the absolute growth rates 

of them are comparable.

Different from the PEO aqueous solution, the behavior of the 

axisymmetr ic mode of the PIB Boger fluid is quite peculiar.

Although the absolute growth rate of it is increased by electric field

to a certain extent, the mode remains convectively unstable in the 

calculatio n range Eu 2 [0,20]. Nevertheless, the tendency suggests 

that it may become absolutely unstable at larger electric field. On 

the other hand, the non-axisy mmetric mode is stable at zero elec- 

tric field. As the electric field increases, the mode first becomes 

convectiv ely unstable and soon enters the absolute instability re- 

gion at an even smaller electrical Euler number than that of the 

non-axisy mmetric mode of the PEO aqueous solution. After it be- 

comes absolutely unstable the electric field continuously increases 

its absolute growth rate. Compared with the axisymmetri c mode,

apparent ly the non-axisym metric mode is much more unstable 

in most situations. That is, the non-axisy mmetric mode dominates 

over the axisymmetri c mode in the stability of jet of the PIB Boger 

Table 1

Values of the dimensionless parameters under the reference state.

Re De k⁄ We se er Eu

PEO-2M 0.01 2.0 � 104 20 0.1471 197.74 80 10 

PIB Boger fluid 4000 ppm 0.0833 311 146.48 0.5822 0.0113 3 10 

Fig. 2. Contours of the imaginary part of the complex frequency xi in the complex 

wave number plane for (a) the axisymmetric mode m = 0 and (b) the non- 

axisymmetric mode m = 1 of the PEO aqueous solution.
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fluid. The same conclusion was drawn from the temporal instabil- 

ity study [13].

Recently Si et al. [21] performed an experime ntal investiga tion 

on the flow modes in electrospinning using aqueous PEO solutions.

It was found that when the electric potential exceeds a certain crit- 

ical value the stable bending mode cannot be maintained and sev- 

eral irregular modes appear. These irregular modes may be the 

result of a global instability caused by the absolute instability un- 

der a large applied electric field. From this point, our theoretical 

predictio n above is qualitativ ely in agreement with the 

experime nts.

3.2. Effect of elasticity on absolute and convective instability of jet 

There are two dimensionless parameters related to liquid elas- 

ticity, i.e. the Deborah number De and the relative strain retarda- 

tion time k⁄. It is understood that the Deborah number is of 

much more significance in the instabilit y of a viscoelasti c jet [9].

Hence we study the effect of elasticity on the absolute and convec- 

tive instability of jet only through this parameter. In practice,

changing elasticity usually implies a modification of the other 

physical properties of liquid, but we disregard this fact and assume 

that the Deborah number can be adjusted freely while maintaining 

the other parameters unchanged.

Figs. 5a and 5b illustrate the absolute growth rate x0i of the axi- 

symmetr ic mode and the non-axisym metric mode of jet of the PEO 

aqueous solution, respectively , versus the electrical Euler number 

Eu, for different values of the Deborah number. As is shown in 

Fig. 5a, when the elasticity of liquid is small (e.g. De = 200), the axi- 

symmetr ic mode is convectively unstable and the effect of electric 

field is quite small. When the elasticity of liquid is sufficiently

large, the axisymmetri c mode becomes absolutely unstable. As 

elasticity increases, the absolute instability of the mode is further 

enhanced . The destabili zation effect of elasticity on the axisym- 

metric mode is more significant at large electric fields. Contrarily,

the effect of elasticity on the non-axisymme tric mode is weak. As 

is shown in Fig. 5b, at relatively small electric fields the non-axi- 

symmetr ic mode is hardly influenced by elasticity and at relatively 

large electric fields it is destabilized by elasticity to a small extent.

Figs. 6a and 6b illustrate the result for the PIB Boger fluid.

Clearly elasticity weakens the convective instability of the axisym- 

metric mode of the fluid. Moreover, at sufficiently large electric 

fields the axisymmetri c mode may become absolutely unstable.

On the other hand, the destabilizati on effect of elasticity on the 

non-axisy mmetric mode is limited, as in the case of the PEO aque- 

ous solution.

3.3. Strategies for suppressing absolute instability 

Normally, absolute instability is undesirable in electrospray ing 

and electrospinning since it potentially induces the global instabil- 

ity of jet and influences the quality of products. Unfortunate ly, our 

calculatio n result shows that the axisymmetri c mode of a visco- 

elastic jet is probably absolutely unstable if the elasticity of liquid 

and the imposed normal electric field are large enough. More sur- 

prisingly , the non-axisym metric mode becomes absolutely unsta- 

ble easily once its instability is triggered, no matter how large 

the elasticity is. From this perspective, it is of interest to seek for 

some strategy for suppressi ng absolute instability of a charged vis- 

coelastic jet.

In addition to the Deborah number and the electrical Euler num- 

ber, the Reynolds number and the Weber number are naturally sup- 

posed to be two paramete rs influencing the absolute and 

convectiv e instabilit y characteristic of jet. However, according to 

our calculation, absolute instability cannot be completely sup- 

pressed by varying the Reynolds number or the Weber number 

individua lly, even though they show great quantitat ive influence

on jet instability. For the PEO aqueous solution, within the range 

Fig. 3. Contours of the imaginary part of the complex frequency xi in the complex 

wave number plane for (a) the axisymmetric mode m = 0 and (b) the non- 

axisymmetric mode m = 1 of the PIB Boger fluid.

Fig. 4. The absolute growth rate x0i versus the electrical Euler number Eu.
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from 0.001 to 0.1 the Reynolds number increases the absolute 

growth rate of both the axisymmetri c and non-axisymme tric 

modes. Absolute instability cannot be avoided even at extremely 

small Reynolds number (Re = 0.001). For the PIB Boger fluid, the 

Reynolds number also destabilizes the axisymmetr ic and non- 

axisymmetri c modes within the range Re 2 [0.01,0.5]. The axisym- 

metric mode becomes absolutely unstable at large values of the 

Reynolds number and large electric fields, while the non-axisym- 

metric mode is absolutel y unstable all the way. The influence of 

the Weber number on the axisymmetri c and non-axisym metric 

modes for the PEO aqueous solution is complicated, but both modes 

are basically kept in the absolute instability domain within the 

range We 2 [0.05,0.3]. As to the PIB Boger fluid, for We 2 [0.1,10] 

the axisymmetri c mode remains convectively unstable, being the 

absolute growth rate increased as the Weber number decreases.

On the other hand, the non-axisy mmetric mode is always abso- 

lutely unstable, even though its absolute growth rate is depresse d

greatly at small values of Weber number. Generally, for neither 

the PEO aqueous solution nor the PIB Boger fluid it seems feasible 

to eliminate absolute instability through changing viscosity or sur- 

face tension of liquid. We need to explore other aspects.

In the calculatio n the velocity and the radius of jet are fixed for 

convenience. However, in experiments both the velocity and the 

radius of jet can be changed through adjusting the flow rate at 

the orifice of capillary. Considering this fact, in the following we 

study the effect of them on the absolute and convective instabilit y

of jet, aiming to find possible ways to suppress absolute instability.

First, the radius of jet is fixed to 10 lm and the velocity of jet is 

varied between several values: 0.5 m/s, 1 m/s, 2 m/s and 4 m/s.

Note that with the variation of the velocity of jet six parameters,

i.e. Re, De, k
⁄, We, se and Eu, are changed at the same time. In such 

a case the electrical Euler number is not appropriate as abscissa 

in the plot and we use the nondimension al electrost atic pressure 

- ¼ q2
0g

2
0=e0qc2 instead. Here, note that the value of - is about 

two orders larger than the value of the electrical Euler number.

In this sense the characterist ic pressure qc2=g2
0 would not be 

appropriate as a scale to normalize the electrost atic force. How- 

ever, it does not affect our analysis. In addition, the velocity of 

jet is scaled by Uc = c/g0, that is, the nondimension al velocity of 

jet is defined as U⁄ = U/Uc. Figs. 7a and 7b illustrate the variation 

of the absolute growth rate with the nondimension al velocity of 

jet for the axisymmetric mode and the non-axisymme tric mode 

of the PEO aqueous solution, respectively. It is clear that absolute 

instabilit y of both modes is suppressed as the velocity of the jet 

is increased. At a velocity of 4 m/s (U⁄ = 58.82), the absolute growth 

rates become nearly zero. The stabilization effect of velocity is 

Fig. 5. Effect of the elasticity on the absolute and convective instability of (a) the 

axisymmetric mode m = 0 and (b) the non-axisymmetric mode m = 1 of the PEO 

aqueous solution. Fig. 6. Effect of the elasticity on the absolute and convective instability of (a) the 

axisymmetric mode m = 0 and (b) the non-axisymmetric mode m = 1 of the PIB 

Boger fluid.
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more significant at large electric fields. The result for the PIB Boger 

fluid is illustrated in Fig. 8. As is shown in the figure, the variation 

of the absolute growth rate with the velocity is generally the same 

as in the case of the PEO aqueous solution. Most significantly, abso- 

lute instability of the non-axisym metric mode is depressed as the 

velocity of jet is increased, especially at large electric fields.

To better understand the role of the velocity, the absolute and 

convective instability transition boundary on the U⁄ �- plane is 

plotted in Figs. 9 and 10 for the PEO aqueous solution and the PIB 

Boger fluid, respectively. In the figures solid line denotes the bound- 

ary of the axisymmetric mode, below which is the absolute instabil- 

ity region of the mode and above which is its convective instability 

region; dashed line denotes the boundary of the first non- 

axisymmetri c mode, below which is its absolute instability region 

and above which is its convective instability region. For both modes 

and both liquids, it can be seen that, at a fixed electric field, the 

instability of jet transits from absolute to convective when the 

velocity of jet is increased to a certain critical value. On the other 

hand, at a fixed velocity, the instability may change from convectiv e

to absolute when the electric field is increased up to some critical 

value. For the axisymmetri c mode of the PEO aqueous solution, as 

is shown in Fig. 9, there exists a minimum velocity (U⁄ � 54.5 and 

U � 3.8 m/s), and when the velocity of the jet is smaller than this va- 

lue, the jet is absolutely unstable no matter how large the electric 

field is. In Fig. 9 the narrow region between two boundary lines is 

absolute for the axisymmetric mode and convective for the non-axi- 

symmetric mode, indicating that for the PEO aqueous solution the 

axisymmetri c mode is dominant over the non-axisym metric mode.

However , the predominance of the axisymmetri c mode tends to dis- 

appear at large electric fields. In Fig. 10 the axisymmetri c mode of 

the PIB Boger fluid is convectiv ely unstable in the explored field ex- 

cept in a small region (below at the right) with large electric fields

and small jet velocities. Between the two boundary lines there is a

Fig. 7. Variation of the absolute growth rate x0i with the nondimensional velocity 

of jet U⁄ for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode 

m = 1 of the PEO aqueous solution.

Fig. 8. Variation of the absolute growth rate x0i with the nondimensional velocity 

of jet U⁄ for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode 

m = 1 of the PIB Boger fluid.

Fig. 9. The boundary between absolute and convective instability of the axisym- 

metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)

of the PEO aqueous solution on the U⁄ �- plane.
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wide region in which the axisymmetr ic mode is convectively unsta- 

ble and the non-axisy mmetric mode is absolutely unstable. In this 

region the non-axisymme tric mode is dominant. Above the dashed 

line both modes are convectively unstable.

Now the velocity of jet is fixed to 1 m/s and the radius of jet is 

varied between several values: 2.5 lm, 5 lm, 10 lm, 20 lm and 

40 lm. Taking Rc ¼ g2
0=qc as a scale, we define a nondimension al 

jet radius R⁄ = R/Rc. The absolute and convective instability charac- 

teristic of the PEO aqueous solution and the PIB Boger fluid jets are 

demonst rated in Figs. 11 and 12 , respectively, where the abscissa is 

the nondimension al electrostatic force -. It is shown that the influ-

ence of the jet radius on the absolute growth rate of the axisym- 

metric mode of the PEO aqueous solution is non-monoto nic. As 

the jet radius is decreased, the absolute growth rate is increased 

moderate ly at relatively small electric fields but is decrease d to a

great extent at relatively large electric fields. On the other hand,

the absolute growth rate of the non-axisy mmetric mode is de- 

creased as the jet radius is decreased, especially at large electric 

fields. In the scope of present research both the axisymmetric 

and the non-axisymme tric modes are absolutel y unstable. For 

the PIB Boger fluid, the absolute growth rate of the axisymmetric 

mode is decreased as the radius is decreased. This mode is convec- 

tively unstable except when the radius and the electric field are 

sufficiently large. For the non-axisymme tric mode the influence

of jet radius is quite limited. With the absolute growth rate re- 

duced slightly as the radius of jet is decreased, the non-axisy mmet- 

ric mode remains in the absolute instabilit y domain. Generally,

although absolute instabilit y cannot be eliminated by decreasing 

or increasing the radius of jet, it can be weakened to a certain ex- 

tent in all the cases.

Fig. 10. The boundary between absolute and convective instability of the axisym- 

metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)

of the PIB Boger fluid on the U⁄ �- plane.

Fig. 11. Variation of the absolute growth rate x0i with the nondimensional radius 

of jet R⁄ for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode 

m = 1 of the PEO aqueous solution.

Fig. 12. Variation of the absolute growth rate x0i with the nondimensional radius 

of jet R⁄ for (a) the axisymmetric mode m = 0 and (b) the non-axisymmetric mode 

m = 1 of the PIB Boger fluid.
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The absolute and convective instability transition boundary on 

the R⁄ �- plane is plotted in Figs. 13 and 14 for the PEO aqueous 

solution and the PIB Boger fluid, respectively , where solid line de- 

notes the boundary of the axisymmetri c mode and dashed line de- 

notes the boundary of the first non-axisym metric mode. In Fig. 13 ,

the small region in the upper left corner confined by the solid line,

which possesses large jet radii (R⁄ > 0.011 and R > 160 lm) and 

small electric fields, is the convective instabilit y domain of the axi- 

symmetric mode of the PEO aqueous solution, and in the large re- 

gion beyond it the axisymmetr ic mode is absolutely unstable. The 

transition boundary of the non-axisym metric mode is like an 

asymptotic line in both the R⁄ and - directions. The region up 

and to the right of the boundary is absolute instability for the 

non-axisym metric mode, while in the region below and to the left 

of the line the mode is stable or convectively unstable. It should be 

noted that in this below left region the axisymmetri c mode is dom- 

inant since it is absolutely unstable. In Fig. 14 both the transition 

boundary of the axisymmetri c mode and that of the non-axisym- 

metric mode of the PIB Boger fluid possess asymptotic characteri s- 

tic. At a fixed jet radius, the instability of the modes may transit 

from convectiv e to absolute when the electric field exceeds a crit- 

ical value. On the other hand, at a fixed electric field, the instability 

may transit from convectiv e to absolute when the radius of the jet 

exceeds a critical value. Note that the stable or convectively unsta- 

ble region of the non-axisy mmetric mode is quite small. That is, at 

the jet velocity considered here (U = 1 m/s), the absolute instability 

of the non-axisymme tric mode of the PIB Boger fluid is easily in- 

duced by the electric field. In addition, in the region between 

two boundary lines where the axisymmetric mode is convectively 

unstable and the non-axisym metric mode is absolutel y unstable,

the non-axisy mmetric mode is dominant.

4. Conclusion 

In this work we explore the absolute and convective instability 

of a charged viscoelastic liquid jet through a linear model built for 

three-dim ensional infinitesimal disturbance s, aiming to the estab- 

lishment of a general, complete knowledge and predictive frame- 

work for the benefit of industrial processes.

Consisten tly with previous studies for Newtonian liquids, it is 

found that normal electric field may induce and augment the abso- 

lute instabilit y of both the axisymmetri c and non-axisym metric 

modes of a viscoelastic jet. Moreover, the destabilization effect of 

electric field on the non-axisymme tric mode is more significant.

Elasticity may also induce and enhance absolute instability of 

unstable modes, especially the axisymmetric one. The way to sup- 

press absolute instability is explored. It is found that absolute 

instabilit y of both the axisymmetric and non-axisy mmetric modes 

may be weakened through increasing the velocity of jet and adjust- 

ing (in most situation s decreasing) the jet radius.

According to the calculatio n, an electrified viscoelastic jet seems 

prone to become absolutel y unstable, particularly when it is sub- 

jected to non-axisym metric disturbances. However, experime nts 

show that a viscoelasti c jet can be well controlled under a globally 

stable state. This discrepan cy between theory and experime nts 

might be explained from several aspects. First, in electrohydrody -

namically generated jets, there usually exists an externally applied 

tangentia l electric field (not considered in this work) which might 

suppress absolute instability and benefit convective instability.

Second, absolute and convective instability only reflects local 

instabilit y characterist ics, and absolute instability does not neces- 

sarily lead to global instability, especially when the radius of the jet 

changes along the axial coordinate. Third, non-linear effects may 

be of paramou nt importance in electrified viscoelastic jets, where 

the role of elasticity as well as the other parameters might be quite 

different from the linear case. The investigatio n of these issues re- 

mains of particular interest for the future.
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Appendi x A. Expressions of the matrices in the eigenvalue 

problem (20)

½D� ¼

½0�1�ð4Nþ6Þ

D2a ½0�ðN�1Þ�ð3Nþ5Þ

½0�2�ð4Nþ6Þ

½0�ðN�1Þ�ðNþ1Þ D4b ½0�ðN�1Þ�ð2Nþ4Þ

½0�2�ð4Nþ6Þ

½0�ðN�1Þ�ð2Nþ2Þ D6b ½0�ðN�1Þ�ðNþ3Þ

½0�ðNþ4Þ�ð4Nþ6Þ
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Fig. 13. The boundary between absolute and convective instability of the axisym- 

metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)

of the PEO aqueous solution on the R⁄ �- plane.

Fig. 14. The boundary between absolute and convective instability of the axisym- 

metric mode m = 0 (solid line) and the non-axisymmetric mode m = 1 (dashed line)

of the PIB Boger fluid on the R⁄ �- plane.
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where [0] denotes zero matrix and the subscript denotes its size,

D2a = De � [Tn(yj)], a matrix of size (N � 1) � (N + 1), row:

j = 1, . . . , N � 1; column: n = 0, 1, . . . , N; in expansion form 

D2a ¼ De �

T0ðy1Þ T1ðy1Þ � � � TNðy1Þ

T0ðy2Þ T1ðy2Þ � � � TNðy2Þ

..

. ..
. . .

. ..
.

T0ðyN�1Þ T1ðyN�1Þ � � � TNðyN�1Þ
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; and D4b ¼ D6b ¼ D2a:

½C� ¼

C1x

C2a C2b ½0�ðN�1Þ�ðNþ1Þ C2d ½0�ðN�1Þ�2

C3a ½0�1�ð2Nþ2Þ C3c C3d C3e

C4x

C5a C5b ½0�ðN�1Þ�ðNþ1Þ C5d ½0�ðN�1Þ�2

C6a C6b ½0�1�ð2Nþ2Þ C6d C6e

C7x

½0�ðN�1Þ�ð2Nþ2Þ C8b C8c ½0�ðN�1Þ�2

C9a ½0�1�ðNþ1Þ C9c ½0�1�ðNþ1Þ C9e C9f

C10x

C11a C11b C11c ½0�N�ðNþ3Þ

½0�1�ð4Nþ5Þ 1
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where

C1x ¼
½T0ð�1Þ T1ð�1Þ � � � TNð�1Þ ½0�1�ð3Nþ5Þ� if m ¼ 0

½T0ð�1Þ � � � TNð�1Þ iT0ð�1Þ � � � iTNð�1Þ ½0�1�ð2Nþ4Þ� if m ¼ 1
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;
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C2a, C2b, and C2d are matrices of size (N � 1) � (N + 1), row:

j = 1, . . . , N � 1; column: n = 0, 1, . . . , N;
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4ik�

Re

T 0
nð1Þ

� �
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if m ¼ 0

½0�1�ð2Nþ2Þ T0ð�1Þ T1ð�1Þ � � � TNð�1Þ ½0�1�ðNþ3Þ


 �

if m ¼ 1

8

<

:

;

C8b ¼ �
ik�

Re

4T 00
nðyjÞþ

4

1þyj

T 0
nðyjÞ�

4m2

ð1þyjÞ
2
þk

2
þ

Reð1þ2ikDeÞ

k�

 !

TnðyjÞ

 !" #

;

C8c ¼ ½�kDeTnðyjÞ�;

C8b and C8c are matrices of size (N � 1) � (N + 1), row: j = 1, . . . ,

N � 1; column: n = 0, 1, . . . , N;

C9a ¼
ik�

Re

ikTnð1Þ

� �

; C9c ¼
ik�

Re

2T 0
nð1Þ

� �

;

C9a and C9c are matrices of size 1 � (N + 1), column: n = 0, 1, . . . , N;

C9e ¼ iDe
iEu

f

ImðkÞ

I0mðkÞ
and C9f = C9en;

C10x ¼
½0�1�ð3Nþ3Þ T 0

0ð�1Þ T 0
1ð�1Þ � � � T 0

Nð�1Þ ½0�1�2

h i

if m�0

½0�1�ð3Nþ3Þ T0ð�1Þ T1ð�1Þ � � � TNð�1Þ ½0�1�2


 �

if m ¼ 1

8

<

:

;

C11a ¼ 2T 0
nðyjÞ þ

2

1 þ yj

TnðyjÞ

" #

; C11b ¼
2im

1 þ yj

TnðyjÞ

" #

; C11c

¼ ½ikTnðyjÞ�;

C11a, C11b and C11c are matrices of size N � (N + 1), row:

j = 0, . . . , N � 1; column: n = 0,1, . . . , N.

½B� ¼

B1x

B2a B2b ½0�ðN�1Þ�ðNþ1Þ B2d ½0�ðN�1Þ�2

B3a ½0�1�ð2Nþ2Þ B3c B3d B3e

B4x

B5a B5b ½0�ðN�1Þ�ðNþ1Þ B5d ½0�ðN�1Þ�2

B6a B6b ½0�1�ð2Nþ2Þ B6d B6e

B7x

½0�ðN�1Þ�ð2Nþ2Þ B8b B8c ½0�ðN�1Þ�2

B9a ½0�1�ðNþ1Þ B9c ½0�1�ðNþ1Þ B9e B9f

B10x

B11a B11b B11c ½0�N�ðNþ3Þ

B12x

B13x

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

where

B1x ¼ C1x �er;

B2a ¼ �
1þ ik�k

Re

4T 00
nðyjÞþ

4

1þyj

T 0
nðyjÞ�

4ðm2 þ1Þ

ð1þyjÞ
2
þk

2
þ

Reðik�Dek
2
Þ

1þ ik�k

 !

TnðyjÞ

 !" #

;

B2b ¼
8imð1þ ik�kÞ

Reð1þyjÞ
2

TnðyjÞ

" #

; B2d ¼ ½2ð1þ ikDeÞT
0
nðyjÞ�;

B2a, B2b, and B2d are matrices of size (N � 1) � (N + 1), row:

j = 1, . . . , N � 1; column: n = 0, 1, . . . , N;

B3a ¼ �
4ð1 þ ik�kÞ

Re

T 0
nð1Þ

� �

; B3c ¼ ½ð1 þ ikDeÞTnð1Þ�;

B3a and B3c are matrices of size 1 � (N + 1), column: n = 0, 1, . . . , N;

B3d ¼ ð1þ ikDeÞEu 1�
er

f

� �

; B3e ¼ ð1þ ikDeÞ
1�m2 � k

2

We

�Eu

ern

f

 !

;

B4x ¼ C4x � er;

B5a ¼�B2b; B5b ¼ B2a; B5d ¼
2im

1þyj

ð1þ ikDeÞTnðyjÞ

" #

;

matric es of size (N � 1) � (N + 1), row: j = 1, . . ., N � 1; column:

n = 0, 1, . . ., N;

B6a ¼
1 þ ik�k

Re

imTnð1Þ

� �

; B6b ¼
1 þ ik�k

Re

ð20Tnð1Þ � Tnð1ÞÞ

� �

;
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matrices of size 1 � (N + 1), column: n = 0, 1, . . ., N;

B6d ¼ð1þ ikDeÞ
imEu

kf

ImðkÞ

I0mðkÞ
and B6e ¼B6dn;

B7x ¼C7x �er;

B8b ¼ �
1þ ik�k

Re

4T 00
nðyjÞþ

4

1þyj

T 0
nðyjÞ�

4m2

ð1þyjÞ
2
þk

2
þ

Reðik�Dek
2
Þ

1þ ik�k

 !

TnðyjÞ

 !" #

;

B8c ¼ ½ðik�Dek
2
ÞTnðyjÞ�;

B8b and B8c are matrices of size (N � 1) � (N + 1), row:

j = 1, . . . , N � 1; column: n = 0, 1, . . . , N;

B9a ¼
1 þ ik�k

Re

ikTnð1Þ

� �

; B9c ¼
1 þ ik�k

Re

2T 0
nð1Þ

� �

;

matrices of size 1 � (N + 1), column: n = 0, 1, . . . , N;

B9e ¼ ð1 þ ikDeÞ
iEu

f

ImðkÞ

I0mðkÞ
and B9f ¼ B9en;

B10x ¼ C10x � er;

B11a ¼ C11a � er; B11b ¼ C11b � er; B11c ¼ C11c � er;

B12x ¼ iT0ð1Þ iT1ð1Þ � � � iTNð1Þ ½0�1�ð3Nþ4Þ k

 �

;

B13x ¼ 2iT
0
0ð1Þ 2iT

0
1ð1Þ � � � 2iT

0
Nð1Þ ½0�1�ð3Nþ3Þ k � iseer

f
� iseern

f

h i

;

and er is an arbitrary complex number unequa l to unity.

References

[1] D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer 
49 (2008) 2387–2425.

[2] O. Regev, S. Vandebril, E. Zussman, C. Clasen, The role of interfacial 
viscoelasticity in the stabilization of an electrospun jet, Polymer 51 (2010)
2611–2620.

[3] H. Moghadam, M. Samimi, A. Samimi, M. Khorram, Electrospray modeling of 
highly viscous and non-Newtonian liquids, J. Appl. Polym. Sci. 118 (2010)
1288–1296.

[4] M. Pakravan, M.-C. Heuzey, A. Ajji, A fundamental study of chitosan/PEO 
electrospinning, Polymer 52 (2011) 4813–4824.

[5] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of 
electrically charged liquid jets of polymer solutions in electrospinning, J. Appl.
Phys. 87 (2000) 4531–4547.

[6] A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in 
electrospinning of nanofibers, J. Appl. Phys. 89 (2001) 3018–3026.

[7] G. Brenn, Z. Liu, F. Durst, Linear analysis of the temporal instability of 
axisymmetric non-Newtonian liquid jets, Int. J. Multiphase Flow 26 (2000)
1621–1644.

[8] Z. Liu, Z. Liu, Linear analysis of three-dimensional instability of non-Newtonian 
liquid jets, J. Fluid Mech. 559 (2006) 451–459.

[9] Z. Liu, Z. Liu, Instability of a viscoelastic liquid jet with axisymmetric and 
asymmetric disturbances, Int. J. Multiph. Flow 34 (2008) 42–60.

[10] C.P. Carroll, Y.L. Joo, Axisymmetric instabilities of electrically driven 
viscoelastic jets, J. Non-Newtonian Fluid Mech. 153 (2008) 130–148.

[11] C.P. Carroll, Y.L. Joo, Axisymmetric instabilities in electrospinning of highly 
conducting, viscoelastic polymer solutions, Phys. Fluids 21 (2009) 103101.

[12] J.M. Montanero, A.M. Gañán-Calvo, Viscoelastic effects on the jetting-dripping 
transition in co-flowing capillary jets, J. Fluid Mech. 610 (2008) 249–260.

[13] F. Li, X.-Y. Yin, X.-Z. Yin, Axisymmetric and non-axisymmetric instability of an 
electrically charged viscoelastic liquid jet, J. Non-Newtonian Fluid Mech. 166 
(2011) 1024–1032.

[14] A.-C. Ruo, F. Chen, C.-A. Chung, M.-H. Chang, Three-dimensional response of 
unrelaxed tension to instability of viscoelastic jets, J. Fluid Mech. 682 (2011)
558–576.

[15] A.-C. Ruo, K.-H. Chen, M.-H. Chang, F. Chen, Instability of a charged non- 
Newtonian liquid jet, Phys. Rev. E 85 (2012) 016306.

[16] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer 
nanofibers by electrospinning and their applications in nanocomposites,
Compos. Sci. Technol. 63 (15) (2003) 2223–2253.

[17] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, Electrospray ionization-principles 
and practice, Mass Spectrom. Rev. 9 (1990) 37–70.

[18] A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the 
preparation of ultrathin fibers, Angew. Chem. Int. Ed. 46 (2007) 5670–5703.

[19] M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and 
electrically forced jets. I. Stability theory, Phys. Fluids 13 (8) (2001) 2201–
2220.

[20] S.J. Gaskell, Electrospray: principles and practice, J. Mass Spectrom. 32 (7)
(1997) 677–688.

[21] T. Si, G.-B. Li, X.-X. Chen, R.-J. Tian, X.-Z. Yin, Experimental investigation on 
flow modes of electrospinning, Acta Mech. Sin. 28 (3) (2012) 644–652.

[22] Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental 
characterization of electrospinning: the electrically forced jet and 
instabilities, Polymer 42 (2001) 9955–9967.

[23] S.A. Theron, E. Zussman, A.L. Yarin, Experimental investigation of the 
governing parameters in the electrospinning of polymer solutions, Polymer 
45 (6) (2004) 2017–2030.

[24] J.M. López-Herrera, A.M. Gañán-Calvo, M.A. Herrada, Absolute to convective 
instability transition in charged liquid jets, Phys. Fluids 22 (2010) 062002.

[25] F. Li, A.M. Gañán-Calvo, J.M. López-Herrera, Absolute-convective instability 
transition of low permittivity, low conductivity charged viscous liquid jets 
under axial electric fields, Phys. Fluids 236 (2011) 094108.

[26] M.A. Herrada, J.M. Montanero, C. Ferrera, A.M. Gañán-Calvo, Analysis of the 
dripping-jetting transition in compound capillary jets, J. Fluid Mech. 649 
(2010) 523–536.

[27] E.J. Vega, J.M. Montanero, M.A. Herrada, A.M. Gañán-Calvo, Global and local 
instability of flow focusing: the influence of the geometry, Phys. Fluids 22
(2010) 064105.

[28] J.M. Montanero, N. Rebollo-Muñoz, M.A. Herrada, A.M. Gañán-Calvo, Global 
stability of the focusing effect of fluid jet flows, Phys. Rev. E 83 (2011) 036309.

[29] A.J. Acero, C. Ferrera, J.M. Montanero, A.M. Gañán-Calvo, Focusing liquid 
microjets with nozzles, J. Micromech. Microeng. 22 (2012) 065011.

[30] S.P. Lin, Breakup of Liquid Sheets and Jets, Cambridge University Press, 2003.
[31] T. Si, F. Li, X.-Y. Yin, X.-Z. Yin, Modes in flow focusing and instability of coaxial 

liquid-gas jets, J. Fluid Mech. 629 (2009) 1–23.
[32] C. Clasen, J. Bico, V.M. Entov, G.H. McKinley, ‘Gobbling drops’: the jetting- 

dripping transition in flows of polymer solutions, J. Fluid Mech. 636 (2009) 5–
40.

[33] D.F. James, Boger fluids, Annu. Rev. Fluid Mech. 41 (2009) 129–142.
[34] D.A. Saville, Electrohydrodynamics: the Taylor–Melcher leaky dielectric 

model, Annu. Rev. Fluid Mech. 29 (1997) 27–64.
[35] P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows, Springer,

2001.

F. Li et al. / Journal of Non-Newtonian Fluid Mechanics 196 (2013) 58–69 69


	Absolute and convective instability of a charged viscoelastic liquid jet
	1 Introduction
	2 Model and formulation
	2.1 Theoretical model and linearized equations
	2.2 Equations for absolute and convective instability analysis
	2.3 Numerical method

	3 Result and discussion
	3.1 Effect of electric field on absolute and convective instability of jet
	3.2 Effect of elasticity on absolute and convective instability of jet
	3.3 Strategies for suppressing absolute instability

	4 Conclusion
	Acknowledgements
	Appendix A Expressions of the matrices in the eigenvalue problem (20)
	References


