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Absolute Bounds on Set Intersection and Union Sizes 

from Distribution Information 

NEIL C. ROWE 

Abstract-Estimation of set intersection and union sizes is important 
for access method selection for a database and other data retrieval 
problems. Absolute bounds on sizes are often easier to compute than 
estimates, requiring no distributional or independence assumptions, 
and can answer many of the same needs. We present a catalog of quick 
closed-form bounds on set intersection and union sizes; they can be 
expressed as rules, and managed by a rule-based system architecture. 
These methods use a variety of statistics precomputed on the data, and 
exploit homomorphisms (onto mappings) of the data items onto distri- 
butions that can be more easily analyzed. The methods can be used 
anytime, but tend to work best when there are strong or complex cor- 
relations in the data. This circumstance is poorly handled by the stan- 
dard independence-assumption and distributional-assumption esti- 
mates, and hence our methods fil l a need. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index Terms-Boolean algebra, databases, estimation, frequency 
distributions, inequalities, intersection, query processing, sets, statis- 
tical computing, statistical databases, union. 

I. WHY BOUNDS? 

OOD estimation of the sizes of set intersections and G unions is crucial to selection of efficient access meth- 

ods for data in a database, especially when joins are in- 

volved. Such estimation is necessary for estimates of pag- 
ing or blocks required. But often absolute bounds on such 

sizes can serve the purpose of estimates, for several rea- 

sons: 

1) Absolute bounds are more often possible to compute 

than estimates. Estimates generally require distributional 

assumptions about the data, assumptions that are some- 
times difficult and awkward to verify, particularly for data 

subsets not much studied. Bounds require no assump- 

tions. 

2) Bounds are often easier to compute than estimates 

because the mathematics, as we shall see, can be based 

on simple principles-rarely are integrals (possibly re- 

quiring numerical approximation) needed as with distri- 

butions. This has long been recognized in computer sci- 

ence, as in the analysis of algorithms where worst-case 
(or bounds) analysis tends to be much easier than average 

case. 
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3) Even when bounds tend to be weak, several different 
bounding methods may be tried and the best bound used. 

This paper gives some quite different methods that can be 

used on the same problems. 

4) Bounds fill a gap in the applicability of set-size de- 

termination techniques. Good methods exist when one can 

assume independence of the attributes of a database, and 

some statistical techniques exist when one can assume 

strong but simple correlations between attributes. But un- 
til now there have been few techniques for situations with 

many and complicated correlations between attributes, 

situations bounds can address. Such circumstances occur 

more with human-generated data than natural data, so with 

increasing computerization of routine bureaucratic activ- 

ity, we may see more of them. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  Since choices among database access methods are 

absolute (yes-or-no), good bounds on the sizes of inter- 

sections can sometimes be just as helpful for making de- 

cisions as “reasonable guess” estimates, when the bounds 
do not substantially overlap between alternatives. 

6) Bounds in certain cases permit absolutely certain 

elimination (pruning) of possibilities, as in branch-and- 

bound algorithms and in compilation of database access 

paths. Bounds also help random sampling obtain a sample 

of fixed size from an unindexed set whose size is not 

known, since an error retrieving too few items is much 
worse than an error retrieving too many. 

7) Bounds also provide an idea of the variance possible 
in an estimate, often more easily than a standard devia- 

tion. This is useful for evaluating retrieval methods, since 

a method with the same estimated cost as another, but 
tighter bounds, is usually preferable. 

8) Sizes of set intersections are also valuable in their 

own right, particularly with “statistical databases” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161, 

databases designed primarily to support statistical analy- 

sis. If the users are doing “exploratory data analysis” 

[18], the early stages of statistical study of a data set, 
quick estimates are important and bounds may be suffi- 

cient. This was the basis of an entire statistical estimation 

system using such “antisampling” methods [ 141. 

9) Bounds (and espcially bounds on counts) are essen- 
tial for analysis of security of statistical databases from 

indirect inferences [5]. 

As with estimates, precomputed information is neces- 

sary for bounds on set sizes. The more space allocated to 

precomputed information, the better the bounds can be. 
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Unlike most work with estimates, however, we will ex- 

ploit prior information besides set sizes, including ex- 

trema, frequency statistics, and fits to other distributions. 

We will emphasize upper bounds on intersection sizes, 

but we will also give some lower bounds, and also some 

bounds on set unions and complements. 

Since set intersections must be defined within a “uni- 

verse” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  and we are primarily interested in database ap- 

plications, we will take U to be a relation of a relational 

database. Note that imposing selections or restrictions on 
a relation is equivalent to intersecting sets of tuples defin- 

ing those selections. Thus, our results equivalently bound 

the sizes of multiple relational-database selections on the 

same relation. 

Section I1 of this paper reviews previous research, and 

Section I11 summarizes our method of obtaining bounds. 
Section IV examines in detail the various frequency-dis- 

tribution bounds, covering upper bounds on intersections 

(Section IV-A), lower bounds on intersections (Section 

IV-B), bounds on unions (Section IV-D), bounds on ar- 

bitrary Boolean expressions for sets (Section IV-F), and 

concludes (Section IV-G) with a summary of storage re- 

quirements for these methods. Section V evaluates these 

bounds both analytically and experimentally. Section VI 

examines a different but analogous class of bounds, range- 
analysis, first for univariate ranges (Section VI-A), then 

multivariate (Section VI-B). 

11. PREVIOUS WORK 

Analysis of the sizes of intersections is one of several 

critical issues in optimizing database query performance; 

it is also important in optimizing execution of logic-pro- 

gramming languages like Prolog. The emphasis in pre- 

vious research on this subject has been almost entirely on 

developing estimates, not bounds. Various indepedence 

and uniformity assumptions have been suggested (e.g., 

[4] and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 111). These methods work well for data that has 

no or minor correlations between attributes and between 

sets intersected, and where bounds are not needed. 

Christodoulakis [2] (work extending [9]) has estimated 

sizes of intersections and unions where correlations are 

well modeled probabilistically . He uses a multivariate 

probability distribution to represent the space of possible 

combinations of the attributes, each dimension corre- 

sponding to a set being intersected and the attribute defin- 

ing it. The size of the intersection is then the number of 
points in a hyperrectangular region of the distribution. 

This approach works well for data that have a few simple 

but possibly strong correlations between attributes or be- 

tween sets intersected, and where bounds are not needed. 

Its main disadvantages are 1) it requires extensive study 

of the data beforehand to estimate parameters of the mul- 

tivariable distributions (and the distributions can change 

with time and later become invalid), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 )  it only exploits 

count statistics (what we call level 1 and level 5 infor- 
mation in Section IV), and 3) it only works for databases 

without too many correlations between entities. 

Similar work is that of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7 ] .  They model the data by coef- 

ficients equivalent to moments. They do not use multi- 

variate distributions explicitly, but use the independence 

assumption whenever they can. Otherwise, they partition 

the database along various attribute ranges (into what they 

call “betas,” what [5 ]  calls ‘‘I-sets,’’ and what [12] calls 

‘ ‘first-order sets”) and model the univariate distributions 

on every attribute. This approach does allow modeling of 

arbitrary correlations in the data, both positive and neg- 
ative, but requires potentially enormous space in its re- 

duction of everything to univariate distributions. It can 
also be very wasteful of space, since it is hard to give 

different correlation phenomena different granularities of 

description. Again, the method expoits only count statis- 

tics and only gives estimates, not bounds. 
Some relevant work involving bounds on set sizes is 

that of [8], which springs from a quite different motiva- 

tion that ours (handling of incomplete information in a 

database system), and again only uses count statistics. 

Reference [ lo]  investigates bounds on the sizes of parti- 
tions of a single numeric attribute using prior distribution 

information, but does not consider the much more impor- 

tant case of multiple attributes. 

There has also been relevant work over the years on 

probabilistic inequalities [ 11. We can divide counts by the 

size of the database to turn them into probabilities on a 

finite universe, and apply some of these mathematical re- 
sults. However, the first and second objections of Section 

I apply to this work: it usually makes detailed distribu- 

tional assumptions, and is mathematically complex. For 

practical database situations, we need something more 

general-purpose and simpler. 

111. THE GENERAL METHOD 

We present two main approaches to calculation of ab- 

solute bounds on intersection and union sizes in this pa- 

per. 

Suppose we have a census database on which we have 

tabulated statistics of state, age, and income. Suppose we 

wish an upper bound on the number of residents of Iowa 

that are between the ages of 30 and 34 inclusive, when all 

we know are statistics on Iowa residents and statistics on 

people age 30-34 separately. One upper bound would be 

the frequency of the mode (most common) state for peo- 

ple age 30-34. Another would be five times the frequency 

of the most common age for people living in Iowa (since 

there are five ages in the range of 30-34). These are ex- 

amples of frequency-distribution bounds (discussed in 

Section IV) to which we devote primary attention in this 

paper. 

Suppose we also have income information in our data- 

base, and suppose the question is to find the number of 

Iowans who earned over 100,000 dollars last year. Even 

though the question has nothing to do with ages, we may 

be able to use age data to answer this question. We obtain 

the maximum and minimum statistics on the age attribute 

of the set of Americans who earned over 100,000 dollars 
(combining several subranges of earnings to get this if 
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necessary), and then find out the number of Americans 

that lie in that age range, and that is an upper bound. We 

can also use the methods of the preceding paragraph to 
find the number of Iowans lying in that age range. This is 

an example of range-restriction bounds (discussed in Sec- 

tion VI). 
Our basic method for both kinds of bounds is quite sim- 

ple. Before querying any set sizes, preprocess the data as 

follows: 

1) Group the data items into categories. The categories 

may be arbitrary. 
2) Count the number of items in each category, and 

store statistics characterizing (in some way) these counts. 

Now when bounds on a set intersection or union are 

needed: 
3) Look up the statistics relevant to all the sets men- 

tioned in the query, to bound certain subset counts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Find the minima (for intersections) or maxima (for 

unions) of the corresponding counts for each subset. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 )  Sum up the minima (or maxima) to get an overall 

bound on the intersection size. 
All our rules for bounds on sizes of set intersections 

will be expressed as hierarchy of different “levels” of 

statistics knowledge about the data. Lower levels mean 

less prior knowledge, but generally poorer bounding per- 

formance. 

The word “value” may be interpreted as any equiva- 

lence class of data attribute values. This means that prior 

counts on different equivalence classes may be used to get 

different bounds on the same intersection size, and the 

best one taken, though we do not include this explicitly 

in our formulae. 

IV. FREQUENCY-DISTRIBUTION BOUNDS 

We now examine bounds derived from knowledge (par- 

tial or complete) of frequency distributions of attributes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Upper Frequency-Distribution Bounds 

I )  Level 1: Set Sizes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Intersected Sets Only: If we 

know the sizes of the sets being intersected, an upper 

bound (“sup”) on the size of the intersection is obviously 

min n ( i )  

where n ( i  ) is the size of the ith set and s is the number 

of sets. 
2) Level 2a: Mode Frequencies and Numbers of Dis- 

tinct Values: Suppose we know the mode (most common) 

frequency m ( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) and number of distinct values d ( i ,  j ) 
for some attributej for each set i of s total. Then an upper 

bound on the size of the intersection is 

i =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

To prove this: 1) an upper bound on the mode frequency 
of the intersection is the minimum of the mode frequen- 

cies, 2) an upper bound on the number of distinct values 

of the intersection is the minimum of the number for each 

set, 3) an upper bound on the size of a set is the product 

of its mode frequency and number of distinct values, and 

4) an upper bound on the product of two nonnegative un- 

certain quantities is the product of their upper bounds. 
If we know information about more than one attribute 

of the data, we can take the minimum of the upper bound 
computations on each attribute. Letting r be the number 

of attributes we know these statistics about, the revised 

bound is 

\ / s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 1  

A special case occurs when one set being intersected has 

only one possible value on a given attribute-that is, the 

number of distinct values is 1. This condition can arise 

when a set is defined as a partition of the values on that 

attribute, but also can occur accidentally, particularly 

when the set concerned is small. Hence, the bound is the 

first of the inner minima, or the minimum of the mode 

frequencies on that attribute. For example, an upper bound 

on the number of American tankers is the mode frequency 

of tankers with respect to the nationality attribute. 
The second special case is the other extreme, when one 

set being intersected has all different values for some at- 

tribute, or a mode frequency of 1. This arises from what 

we call an “extensional key” ([12, ch. 31) situation where 

some attribute functions like a key to a relation but only 

in a particular database state. Hence the first bound is the 

minimum of the number of distinct values on that attri- 

bute. For example, an upper bound on the number of 

American tankers in Naples, when we happen to know 

Naples requires only one ship per nationality at a time, is 

the number of different nationalities for tankers at Naples. 

3) Level 2b: A Different Bound with the Same Infor- 
mation: A different line of reasoning leads to a different 

bound utilizing mode frequency and number of distinct 

values, an “additive” bound instead of the “multiplica- 

tive” one above. Consider the mode on some attribute as 

partitioning a set into two pieces, those items having the 

mode value of the attribute, and those not. Then a bound 

on the size of the intersection of r sets is 

min min m ( i ,  j )  + h n  ( n ( i )  - m ( i , j ) ) ] .  

To prove this, let Ri be the everything in set i except for 

its mode, and consider three cases. 

Case 1: Assume the set i that satisfies the first inner 

min above also satisfies the second inner min. Then the 

expression in brackets is just the size of this set. But if 

such a set has minimum mode frequency and minimum- 

size Ri, it must be the smallest set. Therefore, its size 

must be an upper bound on the size of the intersection. 

Case 2: Assume set i satisfies the first inner min, some 

other s e t j  satisfies the second inner min, and sets i a n d j  

have the same mode (most common value). We need only 

consider these two sets because an upper bound on their 

j = l  r ; = I  i = l  
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intersection size is an upper bound on the intersection of 

any group of sets containing them. Then the minimum of 

the two mode frequencies is an upper bound on the mode 

frequency of the intersection, and the minima of the sizes 

of Ri and Rj is an upper bound on the R for the intersec- 

tion. Thus, the sum of two minima on s is a minimum on 

Case 3: Assume set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi satisfies the first inner min, set j 

satisfies the second inner min, and i a n d j  have different 

modes. Let the mode frequency of i be a and that o f j  be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d;  suppose the mode of i has frequency e in set j ,  and 

suppose the rest o f j  (besides the d + e)  has total size f .  
Furthermore, suppose that the mode o f j  has frequency b 
in set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, and the rest of i (besides the a + b) has total 

count c. Then the 2b bound above is a + e + f .  But in 

the actual intersection of the two sets, a would match with 

e ,  b with d ,  and c withf, giving an upper bound of rnin 

( a ,  e )  + min ( b ,  d )  + rnin ( c , f ) .  But e 1 min ( a ,  e ) ,  
f 2 rnin ( c ,  f ), and lastly a 1 rnin ( b ,  d )  because a 2 
b.  Hence, our 2b bound is an upper bound on the actual 

intersection size. 

But the above bound does not use the information about 

the number of distinct values. If the set i that minimizes 

the last minima in the formula above contains more than 

the minimum of the number of distinct values d ( i ,  j ) over 

all the sets, we must “subtract out” the excess, assuming 

conservatively that the extra values occur only once in set 

S. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr s  5 

min min m ( i , j )  + min 
r = l  j = 1  i = l  I 

It would seem that we could do better by subtracting out 

the minimum mode frequency the sets a number of times 

corresponding to the minima of the number of distinct 

values over all the sets. However, this reduces to the level 

2a bound. 

4) Level 2c: Diophantine inferences from sums: A dif- 

ferent kind of information about a distribution is some- 

times useful when the attribute is numeric: its sum and 

other moments on the attribute for the set. (Since the sum 

and standard deviation require the same amount of storage 

as level 2a and 2b information, we call them another level 

2 situation.) This information is only useful when a) we 

know the set of all possible values for the universal set, 

and b) there are few of these values relative to the size of 

the sets being intersected. Then we can write a linear Dio- 

phantine (integer-solution) equation in unknowns repre- 
senting the number of occurrences of each particular nu- 

meric value in each of the sets being intersected, and each 

solution represents a possible partition of counts on each 

value. An upper bound on the intersection size is thus the 
sum over all values of the minimum over all sets of the 

maximum number of occurrences of a particular value for 

a particular set. See [13] for a further discussion of Dio- 
phantine inferences about statistics. A noteworthy feature 

of Diophantine equations is the unpredictability of their 

number of solutions. 

5)  Level 3a: Other Piecemeal Frequency Distribution 
Information: The level 2 approach will not work well for 

sets and attributes that have relatively large mode fre- 

quencies. We could get a better (i.e.,  lower) upper bound 

if we knew the frequencies of other values than the mode. 

Letting m2 ( i ,  j ) represent the frequency of the second 
most common value of the ith set on the jth attribute, a 
bound is 

+ ( (m;nm2(i , j ) )  i = l  * ((m:nd(i,j)) i = l  - I ) ) ] .  

For this we can prove by contradiction that the frequency 

of the second most common value of the intersection can- 
not occur more than the minimum of the frequencies of 

the second most common values of those sets. Let M be 

the mode frequency of the intersection and let M 2  be the 

frequency of the second most common value in the inter- 

section. Assume M 2  is more than the frequency of the 

second most common value in some set i .  Then M2 must 
correspond to the mode frequency of that set i .  But then 

the mode frequency of the intersection must be less than 

or equal to the frequency of the second most frequent 
value in set i ,  which is a contradiction. 

For knowledge of the frequency of the median-fre- 

quency value (call it mf ( i ,  j ) ) ,  we can just divide the 
outer minimum into two parts (assuming the median fre- 

quency for an odd number of frequencies is the higher of 

the two frequencies it theoretically falls between) 

The mean frequency is no use since this is always the set 

size divided by the number of distinct values. 

6) Level 3b: A Different Bound Using the Same Infor- 
mation: In the same way that level 2b complements level 

2a, there is a 3b upper bound that complements the pre- 
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ceding 3a bound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s 

min min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ( i , j )  + min m 2 ( i , j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J = I  [ ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl = l  r = l  

1 = 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 + min n ( i )  - r n ( i , j )  - m 2 ( i , j )  

- mix ( d ( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj )  - d ( k ,  j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI))]. 
k =  1 

(Here we do not include the median frequency because an 

upper bound on this for an intersection is not the mini- 
mum of the median frequencies of the sets intersected.) 

The formula can be improved still further if we know the 

frequency of the least common value on set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, and it is 
greater than 1 : just multiply the maximum of ( d (  i ,  j ) - 
d (  k ,  j ) )  above by this least frequency for i before taking 

the minimum. 
7) Level 4a: Full Frequency Distribution Informa- 

tion: An obvious extension is to knowledge of the full 

frequency distribution (histogram) for an attribute for each 

set, but not which value has which frequency. By similar 

reasoning to the last section the bound is 

r d ( U . J )  s 

min C minfieq ( i , j ,  k )  

where freq ( i ,  j ,  k )  is the frequency of the kth most fre- 

quent value of the ith set on thejth attribute. This follows 
from recursive application of the first formula for a level 

2b bound. First, we decompose the sets into two subsets 

each, for the mode and nonmode items; then we decom- 

pose the nonmode subsets into two subsets each, for their 
mode and nonmode items; and so on until the frequency 

distributions are exhausted. 
We can still use this formula if all we know is an upper 

bound on the actual distribution-we just get a weaker 

bound. Thus, there are many gradations between level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
and level 4a. This is useful because a classical probability 

distribution (like a normal curve) that lies entirely above 

the actual frequency distribution can be specified with just 
a few parameters and thus be stored in very little space. 

As an example, suppose we have two sets characterized 

by two exponential distributions of numbers between 0 

and 2. Suppose we can upper bound the first distribution 

by 100e-” and the second by 100e“-2, so there are about 

86 of each set. Then the distribution of the set intersection 

is bounded above by the minimum of those two distribu- 

tions. So an upper bound on the size of the intersection is 

, = I  k = l  r = l  

s: jd ( 1meI-2) o!x + ( 1 m e - r )  

= 100(e-’ - e P 2  - e P 2  + e - ’ )  = 46.6. 

8) Level 4b: Diophantine Inferences About Values: A 
different kind of Diophantine inference than that dis- 

cussed in Section IV-A-4 can arise when the data distri- 

bution is known for some numeric attribute. We may able 
to use the sum statistic for set values on that attribute, plus 

other moments, to infer a list of the only possible values 

for each set being intersected; then the possible values for 
the intersection set must occur in every possibility list. 

We can use this to upper-bound size of the intersection as 

the product of an upper bound on the mode frequency of 

the intersection and the number of possible values of the 

intersection. To make this solution practical we require 

that a) the number of distinct values in each set being in- 

tersected is small with respect to the size of the set, and 

b) the least common divisor of the possible values be not 

too small (say less than 0.001) of the size of the largest 

possible value. Then, we can write a linear Diophantine 

equation in unknowns which this time are the possible 

values, and solve for all possibilities. Again, see [13] for 
further details. 

9) Level 5: Tagged Frequency Distributions: Finally, 

the best kind of frequency-distribution information we 
could have about sets would specify exactly which values 

in each distribution have which frequencies. This gives 

an upper bound of 

r d ( U , j )  s 

min C min gpeq ( i , j ,  k )  

where gfreq ( i ,  j ,  k )  is the frequency of globally num- 

bered value k of attributej for set i ,  which is zero when 

value k does not occur in set i ,  and where d (  U ,  j ) is the 

number of distinct values for attribute j in the data uni- 

verse U.  
All that is necessary to identify values is a unique code, 

not necessarily the actual value. Bit strings can be used 

together with an (unsorted) frequency distribution of the 

values that do occur at least once. Notice that level 5 in- 

formation is analogous to level 1 information, as it rep- 

resents sizes of particular subsets formed by intersecting 

each original set with the set of all items in the relation 
having a particular value for a particular attribute. This is 

what [12] calls “second-order sets” and [5 ]  “2-sets.” 

Thus, we have come full circle, and there can be no 
“higher” levels than 5 .  

j = l  k = l  ; = I  

B. Lower Bounds from Frequency Distributions 

On occasion we can get nonzero lower bounds (“inf” ) 
on the size of a set intersection, when the size of the data 

universe U is known, and the sets being intersected are 

almost its size. 

1) Lower Bounds: Levels 1 and 5: A set intersection is 

the same as the complement (with respect the universe) 

of the set union of the complements. An upper bound on 
the union of some sets is the sum of their set sizes. Hence 

a lower bound on the size of the intersection, when the 
universe U is size N ,  is 

/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS \ 

max (0, N - C ( N  - n ( i ) ) )  
i =  I 
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which is the statistical form of the simplest case of the 

Bonferroni inequality. For most sets of interest to a da- 

tabase user this will be zero since the sum is at most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsN. 
But with only two sets being intersected, or sets corre- 

sponding to weak restrictions (that is, sets including al- 

most all the universe except for a few unusual items, sets 

intersected with others to get the effect of removing those 

items), a nonzero lower bound may more often occur. 
For level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 information the bound is 

where gfreq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk )  is as before the number of occur- 

rences of the kth most common value of the jth attribute 

for the ith set, U is the universe set, and d (  U ,  j ) is the 

number of distinct values for attribute j among the items 

of U. 
2) Lower Bounds: Levels 2 ,  3 ,  and 4: It is more diffi- 

cult to obtain nonzero lower bounds when statistical in- 

formation is not tagged to specific sets, as for what we 
have called levels 2, 3, and 4. If we know the mode val- 

ues as well as the mode frequencies, and the modes are 

all identical, we can bound the frequency of the mode in 

the intersection by the analogous formula to level 1 above, 

using the mode frequency of the universe (if the mode is 

identical) for N .  Without mode values, we can infer that 

modes are identical for some large sets, whenever for each 

m(i, j )  - m2( i , j )  > N - n ( i )  

where m ( i ,  j ) is the mode frequency of set i on attribute 

j ,  m2(i, j )  the frequency of the sxond most common 
value, n ( i  ) the size of set i, and N the size of the data 

universe. 
The problem for level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 lower bounds is that we do not 

know which frequencies have which values. But if we 

have some computer time to spend, we can exhaustively 

consider combinatorial possibilities, excluding those im- 
possible given the frequency distribution of the universe, 

and take as the lower bound the lowest level 5 bound. For 

instance, with an implementation of this method in Prolog, 

we considered a universe with four data values for some 
attribute where the frequency distribution of the universe 

was (54, 53, 52, 51), and the frequency distributions of 

the two sets intersected were (40, 38, 22, 20) and (30, 23, 
21, 16). The level 4a lower bound was 8, and occurred 

for several matchings, including 

(54 - 38 - 21, 53 - 40 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16, 52 - 22 - 30, 

51 - 20 - 23) 

The level 1 lower bound is 210 - 120 - 90 = 0, so the 

effort may be worth it. (The level 1 and 4 upper bounds 

are both 30 + 23 + 21 + 16 = 90.) But the number of 

combinations that must be considered for k distinct values 

in the universe is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k !  )2 .  

3) Dejinitional Sets: Another very different way of 
getting lower bounds is from knowledge of how the sets 

intersected were defined. If we know that set i was defined 

as all items having particular values for an attributej, then 

in analyzing an intersection including set i ,  the “defini- 

tional” set i contributes no restrictions on attributes other 

thanj  and can be ignored. This is redundant information 
with levels 1 and 5, but it may help with the other levels. 

For instance, for i l  definitional on attribute j ,  a lower 

bound on the size of the intersection of sets il and i 2  is 
the frequency of the least frequent value (the “anti- 

mode”) of set i 2 on j .  

C. Better Bounds from Relaxation on Sibling Sets 

Both upper and lower bounds can possibly be improved 

by relaxation among related sets in the manner of [3], 
work aimed at protection of data from statistical disclo- 

sure. This requires a good deal more computation time 

than the closed-form formulae in this paper and requires 

sophisticated algorithms. Thus, we do not discuss it here. 

D. Set Unions 

Rules analogous to those for intersection bounds can be 
obtained for union bounds. Most of these are lower 

bounds. 

1) Dejining Unions from Intersections: Since 

n ( i  U j )  = n ( i )  + n ( j )  - n ( i  n j )  

where n ( i  U j )  means the size of the union of set i and 

set j ,  and n ( i  n j ) means the size of their intersection, 

extending our previous notation for set size, it follows 

that 

n ( i  U j  U k )  = n ( i )  + n ( j )  + n ( k )  - n ( i  n j )  
- n ( i  n k )  - n ( j  n k )  

+ n ( i  n j n k )  

using the distribution of intersection over union, and 

/ s  \ S 

S S 

+ c  c c 
r I = l  1 2 = l , r 2 # r l  r 3 = l , r 3 3 1 2 , 1 3 + r l  

n(i1 n i 2  n i 3 )  - - .  . 
Another approach to unions is to use complements of sets 
and DeMorgan’s law: 

~ 

S S 

U ~ ( i )  = n 2(i) 
r = l  i =  I 
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The problem with using this is the computing of statistics 

on the complement of a set, something difficult for level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2,  3 ,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 information. 

In one important situation the calculation of union sizes 

is particularly easy: when the two sets unioned are dis- 
joint (that is, their intersection is empty). Then the size 

of the union is just the sum of the set sizes, by the first 

formula in this section. Disjointness can be known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
priori, or we can infer it using methods in Section VI- 

2) Level I Information for Unions: To obtain union 

bounds rules from intersection rules, we can do a “com- 
pilation” of the above formulae (Section 3.5.5.) of [12] 
gives other examples of this process) by substituting rules 

for intersections in them, and simplifying the result. Sub- 

stituting the level 1 intersection bounds in the above set- 

complement formula: 

A-2. 

i = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= min N ,  C n ( i )  ( i:, ) 
Here we use the standard notation of “inf ” for the lower 

bound and ‘‘sup’’ for the upper bound. 

3) Level 2b Unions: If we know the mode frequency 

m ( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) and the number of distinct values d( i ,  j ) on at- 

tributej, then we can use a formula analogous to the level 

2b intersection upper bound, a lower bound on the union 

4) Level 2a Unions: The approach used in level 2a for 

intersections is difficult to use here. We cannot use the 
negation formula to relate unions to intersections because 

there is no comparable multiplication of two quantities 

(like mode frequency and number of distinct values) that 

gives a lower bound on something. However, for two sets 

we can use the other (first) formula relating unions to in- 
tersections, to get a union lower bound: 

inf ( n ( A ( i 1 )  U A ( i 2 ) ) )  

= n ( i 1 )  + n ( i 2 )  - min ( m ( i l , j ) ,  

m ( i 2 , j ) )  * min ( d ( i l , j ) ,  d ( i 2 , j ) )  

For three sets, it becomes: 

n( i1 )  + n ( i 2 )  + n ( i 3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

- min [min ( m ( i l , j ) ,  m ( i 2 , j ) )  

* min ( d ( i l , j ) ,  d ( i 2 , j ) )  

+ min ( m ( i l , j ) ,  m ( i 3 ,  j ) )  

* min ( d ( i ~ , j ) ,  d ( i 3 , j ) )  

+ min ( m ( i 2 , j ) ,  m ( i 3 , j ) )  

* min ( d ( i 2 , j ) ,  d ( i 3 , j ) ) l  

+ max [max ( m ( i I , j ) ,  m(i2 ,  j ) ,  m ( i 3 , j ) )  

* max (d ( i1 ,  j ) ,  d ( i 2 , j ) ,  d ( i 3 , j ) ) I .  

j =  I 

r 

j =  1 

The formulae get messy for more sets. 

the lower bound 

5)  Level 3b Unions: Analogous to level 2b, we have 

S 

m ( i , j )  + max m 2 ( i j j )  
i =  1 

n ( i )  - m ( i , j )  - m 2 ( i 9 j )  
r = l  

where m2 ( i ,  j ) is the frequency of the second most com- 

mon value of set i on attribute j .  And if we know the 

frequency of the least common value in set i ,  we multiply 

the maximum of ( d ( k ,  j ) - d (  i, j ) )  above by it before 

taking the maximum. 

6) Level 3a Unions: Analogous to level 2a, and to level 

3a intersections, we have for the union of two sets a lower 

bound of 

r 

n( i1 )  + n ( i 2 )  - rnin 0.5 [min ( d ( i l , j ) ,  d ( i 2 , j ) )  
J =  I 

* [min ( m ( i l , j ) ,  m ( i 2 , j ) )  

+ min ( m f ( i l , j ) ,  mf(i2,j))I 

where m2 is the frequency of the second most common 

value, and mf the frequency of the median-frequency 

value. 

7) Level 4 Unions: The analysis of level 4 is analogous 

to that of Section IV-A-7, giving a lower bound of 

r = l  

where freq ( i ,  j ,  k )  is the frequency of the kth most fre- 

quent value of the ith set unioned on the jth attribute. 
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8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALevel 5 Unions: Level 5 is analogous to level 1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r d ( U . 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

inf: max C max gfreq ( i ,  j ,  k )  
j = l  k = l  i = l  

E. Complements 

To complete our coverage of set algebra we need set 

complements. The size of a complement is just the differ- 

ence of the size N of the universe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU (something that is 

often important, so we ought to know it) and the size of 
the set. An upper bound on a complement is N minus a 

lower bound on the size of the set; a lower bound on a 

complement is N minus an upper bound on the size of the 

set. 

F. Embedded Set Expressions 

So far we have only considered intersections, unions, 

and complements of simple sets about which we know 

exact statistics. But if the set-description language per- 

mits arbitrary embedding of query expressions, new com- 

plexities arise. 

Oiie problem is that the formulae of Sections IV-A- 1 - 
4 require exact values values for statistics, and such sta- 

tistics are usually impossible for an embedded expression. 

But we can substitute upper bounds on the embedded- 

expression statistics in upper-bound formulae (or lower 
bounds when preceded in the formula by a minus sign). 

Similarly, we can substitute lower bounds on the statistics 

in lower-bound formulae (or upper bounds when preceded 

in the formula by a minus sign). This works for statistics 

on counts, mode frequency, frequency of the second-most 

common value, and number of distinct items-but not the 

median frequency. 

1) Summary of Equivalences: Another problem is that 

there can be many equivalent forms of a Boolean-algebra 

expression, and we have to be careful which equivalent 

form we choose because different forms give different 

bounds. Appendix A surveys the effect of various equiv- 

alences of Boolean algebra on bounds using level 1 infor- 

mation. Commutativity and associativity do not affect 

bounds, but factoring out of common sets in conjuncts or 

disjuncts with distributive laws is important since it usu- 
ally gives better bounds and cannot worsen them. Factor- 

ing out enables other simplification laws which usually 

give better bounds, too. 

The formal summary of Appendix A is in Fig. 1 (“yes” 

means better in all but trivial cases). Since these transfor- 

mations are sufficient to derive set expression equivalent 

to another a set expression, the information in the table is 

sufficient to determine whenever one expression is always 

better than another. 

Equivalence 

Commutativity 
Renexivity 

Associativity 
Distribution of n over U 
Distribution of U over n 
Operations with U and 0 

Absorption 
Identity elements 

Negation-absorption 
DeMorgan’s Laws 

Fig. 1 .  Table of Boolean-equivalence effects on bounds. 

2) The Best Form of a Given Set Expression, for  Level 
1 Znformation: So the best form for the best level 1 bounds 

is a highly factored form, quite different from a disjunc- 

tive normal or a conjunctive normal form. The number of 

Boolean operators does not matter, more the number of 

sets they operate on, so we do not want the “minimum- 
gate” form important in classical Boolean optimization 

techniques like Karnaugh maps. So minimum-term form 

[6] seems to be closest to what we want; note that all the 

useful transformations in the above table reduce the num- 

ber of terms in an expression. Minimum-term form makes 

sense because multiple occurrences of the same term 
should be expected to cause suboptimal bounds arising 

from failure to exploit the perfect correlation of items in 

the occurrences. Unfortunately, the algorithms in [6] for 

transforming a Boolean expression to this form are con- 

siderably more complicated than the one to a minimum- 

gate form. 

Minimum-term form is not unique. Consider these three 

equivalent expressions: 

( A  f l  ( B  U C ) )  U ( B  fl C )  

= ( B  fl ( A  U C ) )  U ( A  fl C )  

= ( C  n ( A  U B ) )  U ( A  f l  B ) .  

These cannot be ranked in a fixed order, though they are 

all preferable (by their use of a distributive law) to the 

unfactored equivalent 

( A  n B )  U ( A  n c )  U ( B  n c ) .  
So we may need to compute bounds on each of several 

minimum-term forms, and take the best bounds. This sit- 

uation should not arise very often because users will query 

sets with few repeated mentions of the same set-parity 

queries are rarely needed. 

Another problem with the minimum-term form is that 

it does not always give optimal bounds. For instance, let 

set A in the above be the union of two new sets D and E. 
Let the sizes of B,  C, D ,  and E ,  respectively, be 10, 7, 

7, and 8. Then, the three factored forms give upper 
bounds, respectively, of rnin (15, 17) + min (10, 7) = 
22, min (10, 22) + min (15, 7) = 17, and min (7, 25) + 
rnin (15, 10) = 17. But the first form is the minimum- 

term form, with six terms instead of seven. However, this 

situation only arises when there are different ways to fac- 

tor, and can be forestalled by calculating a bound sepa- 

rately for the minimum-term form corresponding to every 

different way of factoring. 
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3) Embedded Expression Forms with Other Levels of 

Information: Level 5 is analogous to level 1-it just rep- 

resents a partition of all the sets being intersected into 

subsets of a particular range of values on a particular at- 
tribute, with bounds being summed up on all such ranges 

of the attribute. Thus, the above “best” forms will be 
equally good for level 5 information. Analysis is consid- 

erably more complicated for levels 2,  3 ,  and 4 since we 

do not have both upper and lower bounds in those cases. 

But the best forms for level 1 can be used heuristically 

then. 

G. Analysis of Storage Requirements 

1) Some Formulae: Assume a universe of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr attributes 

on N items, each attribute value requiring an average of 

w bits of storage. The database thus requires rNw bits of 

storage. Assume we only tabulate statistics on “ 1-sets’’ 

[ 5 ]  or “first-order sets” [ 121 or universe partitions by the 

values of single attributes. Assume there are m approxi- 

mately even partitions on each attribute. Then the space 

required for storage of statistics is as follows: 

Level 1 : There are mr sets with just a set size tabulated 

for each. Each set size should average about N / m ,  and 

should require about log, ( N / m )  bits, so a total of mr * 
log, ( N / m )  bits are required. This will tend to be consid- 

erably less than rNw, the size of the database because w 
will likely be on the same order as log, ( N l m ) ,  and m is 

considerably less than N. 
Level 2: For each of the mr sets we have 2r statistics 

(the mode frequency and number of distinct values for 

each attribute). (This assumes we do not have any criteria 

to claim certain attributes as being useless, as when their 

values exhibit no significantly different distributions for 

different sets-if not, we replace r by the number of useful 

attributes.) Hence, we need 2mr2 logz ( N / m )  bits. 
Level 3 :  We need twice as much space as level 2 to 

include the second highest frequency and the median fre- 

quency statistics too, hence 4mr2 log, ( N / m )  bits. 
Level 4:  We can describe a distribution either implic- 

itly (by a mathematical formula approximating it) or ex- 

plicitly (by listing of values). For implicit storage, we 

need to specify a distribution function and absolute de- 

viations above and below it (since the original distribution 

is discrete, it is usually easier to use the corresponding 

cumulative distributions). We can use codes for common 

distributions (like the uniform distribution, the exponen- 

tial, and the Poisson), and we need a few distribution pa- 

rameters of w bits, plus the positive and negative devia- 
tion extrema of w bits each too. So space will be similar 

to level 3 information. 
If a distribution is not similar to any known distribu- 

tion, we must represent it explicitly. Assume data items 

are aggregated into approximately equal-size groups of 
values; the m-fold partitioning that defined the original 

sets is probably good (else we would not have chosen it 

for the other purpose originally), so let us assume it. Then 

we have a total of m 2 r 2  log, ( N / m )  bits. If some of the 

groups of values (bins) on a set are zero, we can of course 

omit them and save space. 

Level 5 :  This information is similar to level 4 except 

that values are associated with points of the distribution. 

Implicit representation by good-fit curves requires just as 

much space as level-4 implicit representation-we just 

impose a fixed ordering of values along the horizontal axis 

instead of sorting by frequency, Explicit representation 

also takes the level 4 of m2r2 log, ( N / m ) ,  but an alter- 

native is to give pairs of values and their associated fre- 

quencies, something good when data values are few in 

number. 

2)  Other Storage Issues: We also need storage for ac- 

cess structures. If users query only a few named sets, we 

can just store the names in a separate lexicon table map- 
ping names to unique integer identifiers, requiring a total 

of m * r * ( 1  + log, m r )  bits for the table where 1 is the 

average length of a name, assuming all statistics on the 

same set are stored together. 
But if users want to query arbitrary value partitions of 

attributes, rather than about named sets, we must also 

store definitions of the sets about which we have tabulated 

statistics. For sets that are partitions of numeric attri- 

butes, the upper and lower limits of the subrange are suf- 

ficient, for 2mw bits each. But nonnumeric attributes are 

more trouble, because we usually have no alternative than 

to list the set to which each attribute value belongs. We 
can do this with a hash table on value, for 2V log, m bits 

assuming a 50 percent hash table occupancy. Thus, total 

storage is approximately 

2r,,, wm + 2( r - r,,,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ log, m. 

A variety of compression techniques can be applied to 

storage of statistics, extending standard compression 

techniques for databases [ 151. Thus, the storage calcula- 

tions above can be considered upper bounds. 

These storage requirements are not necessarily bad, not 

even the level 4 and 5 explicit distributions. In many da- 

tabases, storage is cheap. If a set intersection is often 

used, or a bound is needed to determine how to perform 

a large join when a wrong choice may mean hours or days 

more time, quick reasoning with a few page fetches of 
precomputed statistics (it’s easy to group related precom- 

puted statistics on the same page) will usually be much 

faster than computing the actual statistic or estimating it 

by unbiased sampling. That is because the number of page 
fetches is by far the major determinant of execution time 

for this kind of simple processing. Computing the actual 

statistic would require looking at every page containing 

items of the set; random sampling will require examining 

nearly as many pages, even if the sampling ratio is small, 
because except in the rare event in which the placement 

of records on pages is random (generally a poor database 

design strategy), records selected will tend to be the only 

records used on a page, and thus most of the page-fetch 

effort is “wasted.” Reference [ 141 discusses these issues 

further. 
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V . EVALUATION OF THE FREQUENCY-DISTRIBUTION 

BOUNDS 

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparing Bounds 

distribution bounds on intersections (see Fig. 2): 

We can prove some relationships between frequency- 

1) Level 2b upper bounds are better than level 1 since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I min n ( i )  - max ( d ( i , j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i =  I ( k i l  

2) Level 3a upper bounds are better than level 2a be- 

cause you get the latter if you substitute m ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, j ) for m2 ( i ,  
j ) and mf( i , j  ) in the former, and m2( i ,  j ) I m( i, j )and 

m f ( i , j )  I m ( i , j ) .  
3) Level 3b upper bounds are better than level 2b be- 

cause 

S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs /  

F \ 

S 

n ( i )  - m ( i , j )  - max ( d ( i , j )  
i =  1 k =  1 

4) Level 4a upper bounds are better than level 3a be- 

cause the mode frequency is an upper bound on the fre- 
quency of the half of the most frequent values, and the 

median frequency is an upper bound on the frequency of 

the other half. Hence, writing the level 3a expression in 

brackets as a summation of d ( U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) terms comparable to 

that in the level 4a summation, each level-3a term is an 

upper bound on a corresponding level-4 term. 

5 )  Level 4a upper bounds are better than level 2b since 

they represent repeated application of level-2b bounds to 

subsets of the sets intersected. 

6) Level 5 upper bounds are better than level 4a by the 

proof in Appendix B. 

7) Level 5 lower bounds are better than level 1 lower 

bounds because level 5 partitions the level 1 sets into many 

subsets and computes lower bounds separately on each 

subset instead of all at once. 
Analogous arguments hold for bounds on unions since 

rules for unions were created from rules for intersections. 

1 upper 

5 ujlper 

I 
actual intersection size 

I 
I 

5 lower 

1 lower 

Fig. 2. Strength relationships between the frequency-distribution bounds 
on intersections. 

B. Experiments 

There are two rough guidelines for bounds on set inter- 

section and union sizes to be more useful than estimates 
of those same things: 

1) Some of the sets being intersected or unioned are 

significantly nonindependent (that is, not drawn randomly 

from some much larger population). Hence, the usual es- 

timates of their intersection size obtained from level 1 

(size of the intersected sets) information will be poor. 

2) At least one set being intersected or unioned has a 

significantly different frequency distribution from the oth- 

ers on at least one attribute. This requires that at least one 

set has values on an attribute that are not randomly drawn. 

These criteria can be justified by the general homo- 

morphism idea behind our approach (see Section 111): good 
bounds result whenever values in the range of the homo- 

morphism get very different counts mapped onto them for 

each set considered. These criteria can be used to decide 

which sets on a database it might be useful to store statis- 

tics for computing bounds. 

1) Experiments: Nonrandom Sets: As a simple illus- 

tration, consider the experiments summarized in the ta- 

bles of Figs. 3 and 4 .  We created a synthetic database of 

300 tuples of four attributes whose values were evenly 

distributed random digits 0-9. We wrote a routine (MIX) 
to generate random subsets of the data set satisfying the 

above two criteria, finding groups of subsets that had un- 

usually many common values. We conducted 10 experi- 

ments each on random subsets of sizes 270, 180, 120, and 

30. There were four parts to the experiment, each sum- 

marized in a separate table. In the top tables in Figs. 3 

and 4, we estimated the size of the intersection of two 

sets; in the lower tables, we estimated the size of the in- 
tersection of four sets. In Fig. 3, the chosen sets had 95 

percent of the same values; in Fig. 4, 67 percent. 

The entries in the tables represent means and standard 
deviations in 10 experiments of the ratios of bounds or 
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set d.c 110 

Average ratio of bounds and estimate. to actual 

I set siie 270 I set sire 
for two net8 chosen by the MIX routine to have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA06 overlap 

number kind of bound 

number kind of bund 
or.ets or ntinute 
1 level 1 upper bound 
1 level laupper bound 

of sets 

1 
1 
1 

1 
2 
1 
1 

a 

a 

~ 

set dsc 170 set dse 180 set dsr 110 .et I i c  SO 

1.11 0.01 1.40 0.06 1.6 0.04 1.44 0.09 
1.56 0.04 1.87 0.14 1.01 0.11 2.02 0.11 

1.05 0.0 
1.51 0.06 
1.12 0.01 
1.01 0.0 
1.01 0.01 
0.0s 0.0 
0.64 0.0 
0.42 0.01 
0.56 0.0 ___ 

1 level 5. U& bound 
1 level 4. upper bound 
1 level 6 upper bound 
1 level 1 estim.tc 
1 level 6 ntim.tc 

1.12 0.01 0.0s 
1.01 0.01 
1.01 0.01 
0.41 0.0 0.0 

1.17 0.01 
1.08 0.01 
1.06 0.01 
1.0 0.0 
1.0 0.0 

Average ratio of bounds .nd estimates 
for four sets cho.en by the M D  

1 level 6 lower bound 0.99 0.0 
1 level 1 lower bound 0.99 0.0 

0.66 0.01 0.1 0.02 0.0 0.0 
0.6 0.01 0.0 0.0 0.0 0.0 

1.1s 0.01 
1.4s 0.00 
1.18 0.05 
1.08 0.01 
1.m 0.01 
0.24 0.0 
0.18 0.0 
0.04 0.01 
0.0 0.0 

number kind ofbound met mise 170 set dse 180 

4 level 1 upper bound 1.54 0.0s 1.04 0.17 
4 level 1. upper bound 1.6 0.04 5.66 0.16 
4 levelS. upper bound 130 0.05 1.99 0.17 
4 lcrel4a upper bound 1.27 0.01 2.61 0.14 
4 level 6 upper bound 1.15 0.01 1.58 0.14 
4 level 1 ntimate 0.98 0.01 0.64 0.04 
4 level 6 “timate 0.08 o.oa 0.60 0.0s 
4 level 6 lower bound 0.09 0.01 0.14 0.00 
4 level 1 lower bound 0.89 0.01 0.0 0.0 

of set. or estim.tc 

1.15 0.01 
1.45 0.06 

1.08 0.01 
1.06 0.01 
0.07 0.0 
0.09 0.0 
0.0 0.0 
0.0 0.0 

1.1 0.02 

set dzc 110 set d s e  SO 

1.86 0.16 5.07 0.36 
S.74 0.51 4.01 0.76 
1.0s 0.10 1.01 036 
1.6 0.11 1.61 0.51 
1.17 0.10 1.08 0.1 
0.18 0.01 0.0 0.0 
o m  0.01 0.01 0.0 
0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 

0vcrl.p 
Kt dsc SO 

1.1 0.01 
1.66 0.01 
1.10 0.04 
1.05 0.01 
1.01 0.01 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

Fig. 3 .  Experiments measuring average ratio of bounds and estimates to 
actual intersection size, 95 percent set overlap 195 percent of the values 

in each set are in the other(s)]. Entries give ratio followed by standard 

error. 

1.65 0.00 
1.58 0.00 
1.10 0.05 
0.80 0.05 
0.9 0.0s 

1.61 0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 . S l  0.01 
1.16 0.04 
0.6 0.01 
0.61 0.01 

1.45 0.11 

1.15 0.06 
0.14 0.01 
0.16 0.01 

1.20 0.08 

estimates to the actual intersection size. There are four 

pairs of columns for the four different set sizes investi- 

gated. The rows correspond to the various frequency-dis- 

tribution levels discussed: the five levels of upper bounds 

first, then two estimate methods, then the two lower bound 

methods. (Since level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 information is just level 1 infor- 

mation at a finer level of detail, it is easier to generalize 

the level 1 estimate formula to a level 5 estimate for- 

mula.) Only level 2a and 3a rules were used, not 2b and 

3b. 

The advantage of bounds shows in both Figs. 3 and 4, 
but more dramatically in Fig. 3 where sets have the 95 

percent overlap. Unsurprisingly , lower bounds are most 

helpful for the large set sizes (left columns), whereas up- 

per bounds are most helpful for the small set sizes (right 

columns). However, the lower bounds are not as useful 

because when they are close to the true set size (i.e., the 

ratio is near l ) ,  estimates are also close. But when upper 

bounds are close to the true set size for small sets, both 

estimates and lower bounds can be far away. 

2) Experiments: real data: The above experiments 

were with synthetic data, but we found similar phenom- 

ena with real-world data. A variety of experiments, sum- 

marized in [17], were done with data extracted from a 

database of medical (rheumatology) patient records. Per- 

formance of estimate methods versus our bounding meth- 

ods was studied for different attributes, different levels of 

information, and different granularities of statistical sum- 

marization. Results were consistent with the preceding 

ones for a variety of set types. This should not be sur- 

prising since our two criteria given previously are often 

fulfilled with medical data where different measures (tests, 

observations, etc.) of the sickness of a patient often tend 

to correlate. 

VI. BOUNDS FROM RANGE ANALYSIS 
Frequency-distribution bounds are only one example of 

a class of bounding methods involving mappings (homo- 

morphisms) of a set of data items onto a distribution. An- 

other very important example are bounds obtained from 

analysis on the range of values for some attribute, call it 

j ,  of the data items for each set intersected. These meth- 

ods essentially create new sets, defined as partitions o n j ,  

which contain the intersection or union being studied. 

These new sets can therefore can be included in the list 

of sets being intersected or unioned without affecting the 

result, and this can lead to tighter (better) bounds on the 

size of the result. Many formulas analogous to those of 

Section IV can be derived. 

A. Intersections on Univariate Ranges 

1)  Statistics on Partitions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof an Attribute: All the 

methods we will discuss require partition counts on some 

attributej. That is, the number of data items lying in mu- 

tually exclusive and exhaustive ranges of possible values 

f o r j .  For instance, we may know the number of people 

ages 0-9, 10-19, 20-29, etc.; or the number of people 
with incomes 0-9999, 10,000-19,999, 20.000-29,999, 

etc. We require that the attribute be sortable by something 

other than item frequency in order for this partioning to 

make sense and be different from the frequency-distribu- 

tion analysis just discussed; this means that most suitable 

attributes are numeric. 

This should not be interpreted, however, as requiring 

anticipation of every partition of an attribute that a user 

might mention in a query, just a covering set. To get 

counts on arbitrary subsets of the ranges, inequalities of 

the Chebyshev type may be used when moments are 

known, as for instance Cantelli’s inequalities: 

[probability that x - p I h]  I U’ / ( . ’  + h 2 )  

[probability that x - p 5 A ]  2 X2/(a2 + A’) 

for p the mean and U the standard deviation of the attrib- 

ute. Otherwise, the count of a containing range partition 

may be used as an upper bound on the subset count. 
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2) Upper Bounds from Set Ranges and Bin Counts on 

the Universe (Level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1): Suppose we know partition (bin) 

counts on some numeric attribute j for the universe U.  
(We must know them for at least one set to apply these 

methods, so it might as well be the universe.) Suppose we 

know the maximum h ( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ) and minimum 1 ( i ,  j ) on at- 

tributej for each set i being intersected. Then an upper 

bound on the maximum of the intersection H (  j ), and a 

lower bound on the minimum of the intersection L ( j ) are 

H ( j )  = min h ( i , j ) ,  L ( j )  = max l ( i , j ) .  

Note if H (  j ) < L ( j ), we can immediately say the in- 

tersection is the empty set. Similarly, for the union of sets 

H ( j )  = max h ( i , j ) ,  L ( j )  = min l ( i , j ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S S 

i =  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F S 

i =  1 i = l  

So an intersection or union must be a subset of U that has 

values bounded by L (  j ) and H (  j ) on attribute j ,  for any 

numeric attributej. So an upper bound on the size of an 
intersection or union is the minimum-size such range-par- 

tition set over all attributes j in Q ,  or 

\ 

where s sets are intersected, where there are r numeric 
attributes, where B ( x ,  j ) denotes the number of the bin 

into which values x falls on attributej, and where binfreq 
( U ,  j ,  k )  is the number of items in partition (bin) k on 

attribute j for the universe U.  
Absolute bounds on correlations between attributes may 

also be exploited. If two numeric attributes have a strong 
relationship to each other, we can formally characterize a 

mapping from one to the other with three items of infor- 

mation: the algebraic formula, an upper deviation from 

the fit to that formula for the universe U ,  and a lower 
deviation. We can calculate these three things for pairs of 

numeric attributes on U ,  and store only the information 

for pairs with strong correlations. To use correlations in 
finding upper bounds, for every attribute j we find L (  j ) 
and H (  j ) by the old method. Then, for every stored cor- 

relation from an arbitrary attribute j l  to and arbitrary at- 

tribute j 2 ,  we calculate the projection of the range of j l  
[from L (  j l )  to H (  j l ) ]  by the formula ontoj2.  The over- 

lap of this range on the original range o f j 2  [from L (  j 2 )  

to H (  j 2 ) ]  is then the new range on j 2 ,  and L (  j 2 )  and 

H (  j 2 )  are updated if necessary. Applying these correla- 

tions requires iterative relaxation methods since narrow- 

ing of the range of one attribute may allow new and 

tighter narrowings of ranges of attributes to which that 

attribute correlates, and so on. 

3) Upper Bounds from Mode Frequencies on Bin 
Counts for Intersected Sets (Level 2): At the next level of 

information, analogous to level 2 for frequency-distribu- 
tion bounds, we can have information about distributions 

of values for particular sets. Suppose this includes an up- 

per bound m ( i ,  j ) on the number of things in set i in a 

bin of some attribute j .  (This m ( i ,  j )  is like the mode 

frequency in Section IV, except the equivalence classes 

here are all items in a certain range on a certain attribute.) 

Assume as before we know what bins a given range of an 

attribute covers. Then an upper bound on the size of the 

set intersection is 

where H (  j ) and L (  j ) are as before. Similarly, an upper 

bound on the size of a set union is 

I S \ \  

4) Upper Bounds from Bin Counts for  Intersected Sets 
(Level 5): Finally, if we know the actual distribution of 
bin counts for each set i being intersected, we can modify 

the intersection formula of level 1 as follows: 

where s sets are intersected, where there are r numeric 

attributes, where B ( x ,  j )  is the number of the bin into 
which value x falls on attribute j ,  and where binfreq ( i ,  j ,  
k )  is the number of items in partition (bin) k on attribute 
j for set i .  Similarly, the union upper bound is 

S \ l  

c binfreq ( i ,  j ,  k )  
i =  1 

As with frequency-distribution level 4a and level 5 
bounds, we can also use this formula when all we know 

is an upper bound on the bin counts, perhaps from a dis- 

tribution fit. 

B. Multidimensional Intersection Range Analysis 

Analogous to range analysis, we may be able to obtain 

a multivariate distribution that is an upper bound on the 

distribution of the data universe U over some set S of in- 

terest (as discussed in [9] and [2]). We determine ranges 

on each attribute of S by finding the overlap of the ranges 

for each set being intersected as before. This defines a 

hyperrectangular region in hyperspace, and the universe 

upper bound also bounds the number of items inside it. 

We can also use various multivariate generalizations of 

Chebyshev’s inequality [ l ]  to bound the number of items 

in the region from knowledge of moments of any set con- 
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taining the intersection set (including the universe). As 

with univariate range analysis, we can exploit known cor- 

relations to further truncate the ranges on each attribute 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  obtaining a smaller hyperrectangular region. 

Another class of correlation we can use is specific to 

multivariate ranges: those between attributes in the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 
itself. For instance, a tight linear correlation between two 

numeric attributes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj l  and j 2 ,  strongly limits the number 
of items within rectangles the regression line does not pass 

through. If we know absolute bounds on the regression 

fit, we can infer zero items within whole subregions. If 

we know a standard error on the regression fit we can use 

Chebyshev’s inequality and its relatives to bound how 
many items can lie certain distances from the regression 

line. 

Just as for univariate range analysis, we can exploit 

more detailed information about the distribution of any 

attribute (not necessarily the ones in S ) .  If we know an 

upper bound on bin size, for some partitioning into subre- 

gions or “bins,” or  if we know the exact distribution of 

bin sizes, we may be able to improve on the level 1 
bounds. 

C. Lower Bounds from Range Analysis 

Lower bounds can be obtained from substituting the 

above upper bounds in the first three formulae relating 

intersections and unions in Section IV-D-1, either substi- 

tuting for the intersection or for the union. Unfortunately, 
the resulting formulae are complicated, so we will not give 

them here. 

D. Embedded Set Expressions for Range Analysis 

Let us consider the effect of Boolean equivalences on 

embedded set descriptions for the above range-analysis 

bounds for level 1 information. First, range-analysis 

bounds cannot be provided for expressions with set com- 
plements in them because there is no good way to deter- 

mine a maximum or minimum of the complement of a set 

other than the maximum or minimum of the universe. So 
none of the equivalences involving complements apply. 

The only set-dependent information in the level-1 cal- 

culation are the extrema of the range, H and L. Equiva- 

lence of set expressions under commutativity or associa- 

tivity of terms in intersections or unions then follows from 

the commutativity of the maxima and minima of opera- 

tions, as does distributivity of intersections over unions 

and vice versa. Equivalence under reflexivity follows be- 

cause max ( a ,  a )  = a and min ( a ,  a )  = a.  Introduction 

of terms for the universe and the null set are useless be- 

cause the max ( a ,  0) = a for a > 0, and min ( a ,  N )  = 
a. So expression rearrangements do not affect the bounds, 
so we might as well not bother; that seems a useful heu- 

ristic for level 2 and 5 information, too. 

E. Storage Requirements for  Range Analysis 

Space requirements for these range analysis bounds can 
be computed in the same way as for the frequency-distri- 

bution bounds. Assume that the number of bins on each 

attribute is m,  the average number of attributes is r ,  the 

number of bits required for each attribute value is w, and 

the number of items in the database is N .  Then the space 

requirements for univariate range bounds are 

level I :  mr log, ( N / m )  + 2mr2w 

level 2: mr2 log, ( N / m )  + 2mr2w 

level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 :  m2r2 log, ( N / m )  + 2mr2w. 

Again, these are pessimistic estimates since they assume 

that all attributes can be helpful for range analysis. 

F. Evaluation of the Range-Analysis Bounds 

Level 2 upper bounds are definitely better than level 1 

because the binfreq ( U ,  j ,  k )  is an upper bound on mf( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 
j ) ;  level 5 is better than level 2 because m f ( i ,  j )  is an 

upper bound on binfreq ( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  k ) .  But the average-case 

performance of the range-analysis bounds is harder to pre- 

dict than that of the frequency-distribution bounds, since 

the former depends on widely different data distributions, 

while the latter’s distributions tend to be more similar. 

Furthermore, maxima and minima statistics have high 

variance for randomly distributed data, so it is hard to 

create an average-case situation for them; strong range- 

restriction effects do occur with real databases, but mostly 

with human-artifact data that does not fit well to classical 

distributions. Thus no useful average-case generalizations 

are possible about range-analysis bounds. 

G. Cascading Range-Analysis and Frequency- 
Distribution Methods 

The above determination of the maximum and mini- 

mum of an intersection set on an attribute can be used to 

find better frequency-distribution bounds too, since it ef- 

fectively adds new sets to the list of sets being intersected, 

sets defined as partitions of the values of particular attri- 

butes. These new sets may have unusual distributions on 

further attributes that can lead to tight frequency-distri- 
bution bounds. 

VII. CONCLUSION 

We have provided a library of formulae for bounds on 
the sizes of intersections, unions, and complements of 

sets. We have emphasized intersections (because of their 

greater importance) and intersection upper bounds (be- 

cause they are easier to obtain). Our methods exploit sim- 

ple precomputed statistics (counts, frequencies, maxima 

and minima, and distribution fits) on sets. The more we 
precompute, the better our bounds can be. We illustrated 

by analysis and experiments the time-space-accuracy 

tradeoffs involved between different bounds. Our bounds 

tend to be most useful when there are strong or complex 

correlations between sets in an intersection or union, a 

situation in which estimation methods for set size tend to 

do poorly. This work thus nicely complements those 
methods. 
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APPENDIX A 

BEST EQUIVALENT FORMS FOR LEVEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 FREQUENCY- 

DISTRIBUTION BOUNDS 

We give here the detailed comparison of level 1 fre- 

quency-distribution bounds (both upper and lower) for set 

expressions equivalent under Boolean algebra. 

A. Commutativity 

The order of sets in an intersection or union does not 

matter because examination of the rules shows this only 
changes the order of a sum, minimum, or maximum, and 

those operations are commutative. 

B. Reflexivity 

Since 

sup ( n ( A  A ) )  = min ( a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa )  = a ,  

the outer max must be zero. So the Q2 lower bound is 

zero. But since 

r /  k \ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

- N  + [ ( c  n ( i ) )  - ( k  - 1 ) N l  
r = l  

and the first term in brackets is less than 0, and the second 

term in brackets is less than or equal to N ,  the right side 

must be less than 0. Hence the Ql lower bound is zero 

too. 

3)  Third, suppose the second inner max in the Q2 
bound is zero. Then the Ql and Q2 bounds are equal. 

inf ( n ( A  fl A ) )  = max (0 ,  2a - N )  

sup ( n ( A  U A ) )  = rnin ( N ,  2 a ) ,  

inf ( n ( A  U A ) )  = max ( a ,  a )  = a 

the equivalent expression of just the set A is preferable for 

obtaining bounds. 

C. Associativity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Intersection 

D. Associativity of Union 

From the last section it follows that associativity does 

not matter to set unions because any union of s sets can 

be written as the complement of the intersection of the 

complements of those sets, and there is no additional un- 
certainty introduced in the handling of complements of 

sets (just subtract the size or the bound from N ). 

E. Distributivity of Intersection over Union 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S / k  \ / s  \ 

Q I  = fl A ( i ) ,  ~2 = (I A (  n (I A ( i )  
i =  I ( i = l  ") ( , + I  ) 

where 1 I k I s. (By embedding these groupings, we 

can model an arbitrary associative computation scheme.) 
Then the upper bounds are equivalent since the minimum 

operator is associative. The lower bounds are also equiv- 

alent 

- ( k  - I )N) + max (0, ( i = k +  I n ( i ) )  

- ( ~ - k -  l ) N  . )) 

The distributive law of intersection over union does not 

preserve level- 1 bounds: the factored form is preferable. 

Let 

/ s  \ S 

Q3 = A fl (iuI B ( i ) ) ,  Q4 = U ( A  n B ( i ) ) .  
i = l  

Then, 

sup ( n ( Q 3 ) )  = min a ,  min N ,  2 b ( i )  ( ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi l l  )) 
= min ( a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;I, c b ( i )  ) 

sup ( n ( Q 4 ) )  = min 
i = l  

Casel :  b ( i )  ~ a f o r s o m e i . T h e n a = m i n ( a , b ( i ) )  

for some i ,  and since a and b (  i ) are always nonnegative 

a I c min ( a ,  b ( i ) ) .  
S 

i =  I 

We have three cases to consider for each of the inner max 

expressions for Q2: 
1) Suppose the second argument of both is the larger; 

then the expression for Q2 becomes that for Q l .  
2)  Second, suppose the first inner max expression is 

zero. (This includes the case where the second inner max 

is zero too.) Since 

Case2: b ( i )  < a f o r a l l i .  T h e n b ( i )  = m i n ( a , b ( i ) )  
and 

S S 

c b ( i )  = c min ( a ,  b ( i ) ) .  
1 = I  i =  I 

Hence, in both cases, 

( n ( i ) )  - ( s  - k - 1)N  5 N 
i = k + l  

S S 

c b ( i )  I c rnin ( a ,  b ( i ) )  a n d a  I N 
i =  I i =  I 
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Order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-min(a,c)-min(b,d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

. - ~ -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 
- 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d2cao2b 
d2a2c2b 
d2a3b2c 
o2d2c2b 
a3d>b>c 
a2b3d2c ________ 

and so the upper bound on Q3 (the “factored out” form) 

is always less than or equal to the upper bound on Q4, 

and hence preferable. 

The lower bounds on Q3 and Q4 are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

inf (n(Q3))  = max 0, a - N + max b ( i )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  1 

F 

inf (n(Q4))  = max (max(0, a - N + b ( i ) ) )  

which are equivalent since the latter represents a valid 

sup ( n ( A  U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ) )  = min ( N ,  ( N  - a )  + ( N  - b ) )  

inf ( n ( A  n B >) = N - min ( a ,  b )  9 

i =  I 

scope extension of the second max in the former. 
inf ( n ( A  U E ) )  = max ( N  - a ,  N - b ) )  

F. Distributivity of Union over Intersection 

tribution of union over intersection is also preferable. 

G. The Universal Set, the Null Set, and Absorption 

sup ( n ( A  U B ) )  = N - max ( a ,  b ) ,  

sup ( n ( 2  fl E ) )  = rnin ( N  - a ,  N - b )  

inf ( . ( A  U B ) )  = N - rnin ( N ,  a + b ) ,  

Similar analysis shows that the factored form for dis- 

Let U represent the universe and 9 the empty set. Then 
inf ( n ( A  f l  3)) = max (0 ,  a + b - N ) .  

sup ( n ( A  U U ) )  = rnin ( N ,  a + N )  = N ,  

inf ( n ( A  U U ) )  = max ( a ,  N )  = N APPENDIX B 

sup ( n ( A  fl U ) )  = rnin ( a ,  N )  = a ,  

inf ( n ( A  n U ) )  = max (0 ,  a + N - N )  = a 

sup ( n ( A  U 9)) = rnin ( N ,  a + 0 )  = a ,  

inf ( n ( A  U 9)) = max ( a ,  0 )  = a 

sup ( n ( A  n 9)) = min ( a ,  0) = 0, 

inf ( n ( A  n 9)) = max (0, a + 0 - N )  = 0. 

So it does not matter to the bounds which we take. For 

the “absorption” laws 

A n ( A  U B )  = A ,  A U ( A  n B )  = A  

the latter forms are obviously preferable. 

H. Negation Equivalences 

difficulties. First note 

We have not yet considered negation, but it causes few 

sup ( n ( A  f l  A ) )  = rnin ( a ,  N - a ) ,  

inf ( n ( A  f l  A ) )  = max (0, a + N - a - N )  = 0 

sup ( n ( A  U A ) )  = rnin ( N ,  a + N - a )  = N ,  

inf ( n ( A  U A ) )  = max ( a ,  N - a )  

so it is better to replace A U A with U ,  and A n 2 with 

9. We can use this to show another form of absorption is 

desirable: 

A n  ( A ~ B ) = A  n B  

A U (2 fl B ) = A  U B .  

DeMorgan’s Laws always give two equivalent expres- 

sions: 

sup ( n ( A  n B ) )  = N - max (0, a + b - N ) ,  

PROOF OF THE SUPERIORITY OF LEVEL 5 FREQUENCY- 

DISTRIBUTION UPPER BOUNDS TO LEVEL 4A 

For any attribute j ,  level 5 and level 4a upper-bound 

calculation can be expressed as operating on a matrix in 

which the entry in row i and column k represents the kth 

frequency for set i ;  this matrix has 5 rows and d (  U ,  j ) 
columns. But level 4a rows are sorted by decreasing val- 

ues while level 5 rows are not. To show that level 5 
bounds are superior (less than or equal to) level 4a bounds, 

we show that the level 4a matrix can be created by a series 

of binary interchanges on the level 5 matrix where each 

interchange cannot improve the criterion for the matrix, 

the summation of the minima of the columns. 

First, we prove this for a two-row matrix. Suppose we 

first sort the columns by decreasing order of second-row 

frequencies. Now consider sorting the first-row frequen- 

cies by a d (  U ,  j )-step process. For each step k ,  we pick 

the largest element in the first row exclusive of the first k 
- 1 items, and interchange it with the element in column 

k .  Suppose at some step we interchange a currently largest 

value a with another value b, and suppose value a is orig- 
inally in the same column with d in the second row, and 

b is originally in the same column with c in the second 

row. The only effect of this interchange is to substitute in 
the criterion an expression min ( a ,  c )  + min ( b ,  d ) for 

an expression rnin ( a ,  d )  + min ( 6 ,  c ) ,  and assume a I 
b and d 1 c. We can verify the first expression is an upper 

bound on the second by considering the six cases in turn 
(see Fig. 5). Thus, the level-4 upper bound is itself an 

upper bound on the level-5 upper bound. 

The result for a two-row matrix easily extends to ma- 

trices with more rows, if we just replace references to the 

values in the second row in the above by references to the 

minimum value in the column for all but the first-row 
value. Thus, the general result is proved. 
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