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Absolute Chow–Künneth Decomposition
for Rational Homogeneous Bundles
and for Log Homogeneous Varieties

Jaya Nn Iyer

1. Introduction

Suppose X is a nonsingular projective variety of dimension n defined over the
complex numbers. Let CHi(X) ⊗ Q be the Chow group of codimension-i alge-
braic cycles modulo rational equivalence, with rational coefficients. Murre [Mu2;
Mu3] has made the following conjecture, which leads to a filtration on the rational
Chow groups.

Conjecture. The motive h(X) := (X,�X) ofX has a Chow–Künneth decom-
position:

�X =
2n∑
i=0

πi ∈ CHn(X ×X)⊗ Q

such that the πi are orthogonal projectors (see Section 2.2).

In this paper, absolute Chow–Künneth decomposition (resp. projectors) is the
same as Chow–Künneth decomposition (resp. projectors). We write “absolute” to
emphasize the difference with the “relative” Chow–Künneth projectors that will
appear in the paper.

Some examples where this conjecture is verified are: curves, surfaces, a prod-
uct of a curve and surface [Mu1; Mu3], abelian varieties and abelian schemes
[DenMu; Sh], uniruled threefolds [DM1], elliptic modular varieties [GHMu2;
GMu], universal families over Picard modular surfaces [Mi+], and finite group
quotients (which may be singular) of abelian varieties [AkJ], some varieties with
nef tangent bundles [I], open moduli spaces of smooth curves [IM], and universal
families over some Shimura surfaces [Mi].

In [I] we looked at varieties that have a nef tangent bundle. Given the structure
theorems of Campana and Peternell [CP] and Demailly, Peternell, and Schneider
[DePS], we know that such a variety X admits a finite étale surjective cover
X ′ → X such that X ′ → A is a bundle of smooth Fano varieties over an abelian
variety. Furthermore, any fibre that is a smooth Fano variety necessarily has a nef
tangent bundle. It is an open question [CP, p. 170] whether such a Fano variety is
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a rational homogeneous variety. They answered this question positively in dimen-
sion ≤ 3. We showed in [I] that if the étale cover is a relative cellular variety over
A or if it admits a relative Chow–Künneth decomposition, then X ′ and X have a
Chow–Künneth decomposition. In particular, this holds for varieties with a nef
tangent bundle of dimension ≤ 3.

In this paper, we weaken the preceding hypothesis on the cover X ′ → A and
obtain a Chow–Künneth decomposition whenever X ′ → A is a rational homoge-
neous bundle over an abelian variety A. This strengthens the results in [I] and, if
the open question [C, p. 170] is answered positively in higher dimensions, then
we obtain a Chow–Künneth decomposition for all varieties that have a nef tan-
gent bundle. This question is answered positively in some higher-dimensional
cases also; see [Hw, Sec. 4] and the references therein. Hence we also obtain a
Chow–Künneth decomposition for new cases in higher dimensions.

We state the result and proofs in a more general situation.

Theorem 1.1. Suppose S is a smooth projective variety over the complex num-
bers. Let G be a connected reductive algebraic group and let Z be a rational G
homogeneous space over the variety S. Assume that S has a Chow–Künneth de-
composition. Then the following statements hold :

(a) the motive of Z has an absolute Chow–Künneth decomposition;
(b) the motive of the bundle Z → S is expressed as a sum of tensor products of

summands of the motive of S with the twisted Tate motive.

A main observation in the proof is to note that a rational homogeneous bundle as
just described is étale locally a relative cellular variety because the formal defor-
mations of a rational homogeneous variety are trivial (see Lemma 3.2). Hence
we can construct relative Chow–Künneth projectors (in the sense of [DenMu])
over étale morphisms of S. These projectors lie in the subspace generated by the
relative algebraic cells. The corresponding relative cohomology classes patch up
since they lie in the subspace generated by the relative analytic cells. Hence the
relative orthogonal projectors can be patched up as algebraic cycles to obtain rela-
tive projectors in the rational Chow groups of the associated regular stack. In this
case, we show that the relative Chow–Künneth projectors over the regular stack
descend to relative Chow–Künneth projectors for Z → S (see Corollary 3.7).
The criterion of Gordon, Hanamura, and Murre [GHMu2] for obtaining absolute
Chow–Künneth projectors from relative Chow–Künneth projectors can be applied
directly; see Proposition 3.8.

A similar proof also holds for a class of log homogeneous varieties studied by
Brion [Br]. A log homogeneous variety consists of a pair (X,D), where X is a
smooth projective variety and D is a normal crossing divisor on X, with the fol-
lowing property. The variety X is said to be log homogeneous with respect to D
if the associated logarithmic tangent bundle TX(−D) is generated by its global
sections. It follows that X is almost homogeneous under the connected automor-
phism group G := Aut0(X,D) with boundary D.

Theorem 1.2. SupposeX is log homogeneous with respect to a normal crossing
divisorD. Then X has a Chow–Künneth decomposition. Moreover, the motive of
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X is expressed as a sum of tensor products of the summands of the motive of its
Albanese reduction with the twisted Tate motive.

See Theorem 4.4.
The proof uses Brion’s classification of log homogeneous varieties [Br]. The

fibres of the Albanese morphism are smooth spherical varieties. In this case we
check that étale local triviality of the Albanese fibration holds. The proof of
Theorem 1.2 relies on the algebraicity of the cohomology of the spherical vari-
eties, much as in Theorem 1.1, and follows by applying the criterion of [GHMu2].

Acknowledgments. We thank B.Totaro for pointing out some errors in the pre-
vious version and for helpful suggestions. Thanks are also due to J.-M. Hwang
for informing us about the status of Campana–Peternell conjecture in higher
dimensions.

2. Preliminaries

We work over the field of complex numbers. We begin by recalling the standard
constructions of the category of motives. Since this is well covered in the litera-
ture, we give a brief account and refer to [Mu2; Sc] for details.

2.1. Category of Motives

The category of nonsingular projective varieties over C will be denoted by V. For
an object X of V, let CHi(X)Q = CHi(X) ⊗ Q denote the rational Chow group
of codimension i algebraic cycles modulo rational equivalence. Suppose X,Y ∈
Ob(V ) and let X = ⋃

Xi be a decomposition into connected components Xi and
di = dimXi. Then Corr r(X,Y ) = ⊕

i CHdi+r(Xi × Y )Q is the group of corre-
spondences of degree r from X to Y.

We will use the standard framework of the category of Chow motives Mrat in
this paper and refer to [Mu2] for details. We denote the category of motives M∼,
where ∼ is any equivalence (e.g., homological or numerical equivalence). When
S is a smooth variety, we also consider the category of relative Chow motives
CHM(S) introduced in [DenMu] and [GHMu1]. If S = Spec C then the category
CHM(S) = Mrat.

2.2. Chow–Künneth Decomposition for a Variety

Suppose X is a nonsingular projective variety over C of dimension n. Let �X ⊂
X × X be the diagonal. Consider the Künneth decomposition of � in the Betti
cohomology:

�X =
2n⊕
i=0

πhom
i

where πhom
i ∈H 2n−i(X)⊗H i(X).

Definition 2.1. The motive of X is said to have Künneth decomposition if each
of the classes πhom

i are algebraic and are projectors—that is, if πhom
i is the image
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of an algebraic cycle πi under the cycle class map from the rational Chow groups
to the Betti cohomology and satisfies πi �πi = πi and�X = ⊕2n

i=0 πi in the ratio-
nal Chow ring of X ×X. The algebraic projectors πi are known as the algebraic
Künneth projectors.

Definition 2.2. The motive of X is said to have a Chow–Künneth decomposi-
tion if the algebraic Künneth projectors are orthogonal projectors—in other words,
if πi � πj = δi,jπi and �X = ⊕2n

i=0 πi in the rational Chow ring of X ×X.

3. Rational Homogeneous Bundles over a Variety

In this section, we first recall the motive of a rational homogeneous variety and
later construct relative Chow–Künneth projectors for a bundle of homogeneous va-
rieties. The criterion of [GHMu2] can then be applied to obtain absolute Chow–
Künneth projectors on the total space of the bundle. For this purpose, we need to
show that the bundle is étale locally trivial and to check patching conditions over
the étale coverings. We begin by recalling the motive of a rational homogeneous
variety.

3.1. The Motive of a Rational Homogeneous Variety

Suppose F is a rational homogeneous variety. Then F is identified as a quotient
G/P for some reductive linear algebraic group G and P a parabolic subgroup of
G. Notice that F is a cellular variety; that is, it has a cellular decomposition

∅ = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = F
such that each Fi ⊂ F is a closed subvariety and Fi−Fi−1 is an affine space. Then
we have the following lemma.

Lemma 3.1 [K, Thm., p. 363]. The Chow motive h(F ) = (F,�F) of F decom-
poses as a direct sum of twisted Tate motives

h(F ) =
⊕
ω

L⊗ dimω.

Here ω runs over the set of cells of F.

In particular, this lemma says that the Chow–Künneth decomposition holds for F.
Next we consider bundles of homogeneous spaces Z → S over a smooth variety
S. We want to describe the Chow motive of Z in terms of the Chow motive of S
up to some Tate twists. For this we need to show étale local triviality of Z → S,
which we discuss next.

3.2. The Étale Local Triviality of a Rational Homogeneous Bundle

Suppose that Z → S is a smooth projective morphism and that the base variety S
is smooth and projective.

By étale local triviality we mean that there exist étale morphisms pα : Uα → S

such that the pullback bundle
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ZUα := Z ×S Uα → Uα

is a Zariski trivial fibration and the images of pα cover S; that is,
⋃
α pα(Uα) = S.

Here α runs over some indexing set I. Consider a rational homogeneous bundle
f : Z → S; that is, π is a smooth projective morphism and any fibre π−1y is a ra-
tional homogeneous varietyG/P. HereG is a reductive linear algebraic group and
P ⊂ G is a parabolic subgroup. Assume that S is a smooth complex projective
variety.

We note that an étale cover {Uα} as just described exists for a rational homoge-
neous bundle Z → S.

Lemma 3.2. There are étale open setspα : Uα → S
(
satisfying

⋃
α pα(Uα) = S)

such that the pullback bundle ZUα → Uα is a Zariski trivial fibration.

Proof. We need to note that the formal deformations of a rational homogeneous
variety are trivial. This is just a consequence of Bott’s well-known vanishing the-
orem: H1(G/P, T ) = 0. The assertion on étale local triviality follows from [Se,
Prop. 2.6.10].

Our aim is to obtain relative Chow–Künneth projectors for the bundleZ/S. For this
purpose, we first construct relative projectors over the étale coverings of Z→ S

and check the patching conditions. This requires that we use the language of
stacks, which enables us to descend the projectors down to Z → S. Hence in Sec-
tion 3.3 we recall some facts on regular stacks and the relationship of the rational
Chow groups and cohomology of stacks to that of its coarse moduli space. These
facts will be essentially applied to the simplest situation—the rational homoge-
neous bundle Z → S. Also, the patching will be used for the étale open sets of Z
that are of the type ZUα := Z×S Uα for étale morphismsUα → S. In this context,
it is possible to avoid stacks because the regular stack associated to the étale cov-
erings is again Z. But we use the stacks essentially to say that the algebraic cells
that live in the fibres of Z → S patch together over the étale coverings. This will
be needed in the proof of Lemma 3.5.

We remark that more general patching statements might also hold for other va-
rieties using stacks. However, we do not yet know of concrete examples for which
this can be checked.

3.3. Chow Groups of an Étale Site

Mumford [Mum] and Gillet [Gi] have defined Chow groups for Deligne–Mumford
stacks and more generally for any algebraic stack X . Furthermore, intersection
products are defined whenever X is a regular stack. Let X be a regular stack. The
coarse moduli space of X is denoted by X, and p : X → X is the projection. So
from [Gi, Thm. 6.8], the pullback maps p∗ and pushforward maps p∗ establish a
ring isomorphism of rational Chow groups

CH∗(X )Q ∼= CH∗(X)Q. (1)

This can be applied to the product p × p : X × X → X × X to get a ring
isomorphism
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CH∗(X × X )Q ∼= CH∗(X ×X)Q. (2)

Assume that X is a smooth projective variety. Then these isomorphisms also hold
in the rational singular cohomology of X and X × X (see e.g. [Be]):

H ∗(X , Q) ∼= H ∗(X, Q); (3)

H ∗(X × X , Q) ∼= H ∗(X ×X, Q). (4)

Via these isomorphisms, we can pull back the Künneth decomposition of the
diagonal class inH 2n(X×X, Q) to a decomposition of the diagonal class of X in
H 2n(X × X , Q), whose components we refer to as the Künneth components of X .

Given a smooth varietyX, consider an atlas
⊔
α∈I Uα ofX such thatpα : Uα →X

is an étale morphism for each α ∈ I and such that the images of pα coverX. Then
one can associate aQ-variety [Mum] to this atlas. Furthermore, by [Gi, Prop. 9.2]
there is a regular stack X associated to this data such that X is its coarse moduli
space; in other words, there is a projection

p : X → X.

In this case we note that the regular stack X is the same as the variety X. Hence
the isomorphisms in (1)–(4) hold trivially for the projection p. More precisely,
we have

CH∗(X )Q = CH∗(X)
and

H ∗(X , Q) = CH∗(X, Q).

3.4. The Motive of a Rational Homogeneous Bundle

Suppose Z → S is a rational homogeneous bundle over a smooth projective vari-
ety S. Let S et be the étale site on S together with the natural morphism of the sites
f : S et → S. Here S is considered with the Zariski site. Consider the pullback
bundle

Z et := Z ×S S et → S et

over S et.

Since we are dealing with a rational homogeneous bundle, we can describe these
covers explicitly as follows. By Lemma 3.2, the pullback bundles ZUα → Uα for
α ∈ I are Zariski trivial. In other words, ZUα = F ×Uα , where F is a typical fibre
of Z → S. Hence ZUα → Uα is a relative cellular variety for each α ∈ I.

The description of the rational Chow groups of relative cellular spaces
π : X → T is given by Koeck [K] (see also [NZ, Thm. 5.9]), which is stated
for the higher Chow groups. Suppose X → T is a relative cellular space. Then
there is a sequence of closed embeddings

∅ = Z−1 ⊂ Z0 ⊂ · · · ⊂ Zn = X (5)

such that πk : Zk → T is a flat projective T -scheme. Furthermore, for any k =
0,1, . . . , n, the open complement Zk − Zk−1 is T -isomorphic to an affine space
A
mk
T of relative dimension mk. Denote ik : Zk ↪→ X.



Absolute Chow–Künneth Decomposition 85

Theorem 3.3. For any a, b ∈ Z , the map
n⊕
k=0

Ha−2mk (T, b −mk) → Ha(X, b),

(α0, . . . ,αn) �→
n∑
k=0

(ik)∗π∗
k αk

is an isomorphism. HereHa(T, b) = CHb(T, a−2b) are the higher Chow groups
of T.

Proof. See [K, Thm., p. 371].

Theorem 3.3 can equivalently be restated to express the rational Chow groups of
X as

CHr(X)Q =
r⊕
k=0

(⊕
γ

Q[ωγk ]

)
.f ∗CHk(T )Q. (6)

Here the ωγk are the (r − k)-codimensional relative cells and γ runs over the
indexing set of (r − k)-codimensional relative cells in the T -scheme X.

We now apply this theorem to our situation: we have a homogeneous bundle
Z → S and an étale atlas S et := ⊔

α Uα → S such that ZUα → Uα is trivial.

Lemma 3.4. Given a Zariski trivial homogeneous bundle pα : ZUα → Uα , the
rational Chow groups are described as follows:

CHr(ZUα )Q =
r⊕
k=0

(⊕
γ

Q[ωγk ]

)
.p∗
αCHk(Uα)Q.

Proof. Since the homogeneous bundle pα : ZUα → Uα is a Zariski trivial bundle,
it is a relative cellular variety. Hence Theorem 3.3 can be applied to give a natural
isomorphism

CHr(ZUα )Q =
r⊕
k=0

(⊕
γ

Q[ωγk ]

)
.f ∗
α CHk(Uα)Q.

Equivalently, since ZUα = F × Uα , we have the equality (see [FMSS, Thm. 2])

CHr(ZUα )Q = CHr(F × Uα)Q =
∑

p,q,p+q=r
CHp(F )Q.CHq(Uα)Q. (7)

HereF is a typical fibre ofZ → S that is a cellular variety. This gives the assertion.

For our applications it suffices to consider the piece k = 0, which consists of only
the relative algebraic cells of codimension r :

RCHr(ZUα )Q :=
⊕
γ

Q[ωγ0 ].

In other words, we look only at the subgroup consisting of the direct summand
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CHr(F ) ⊂ CHr(F × Uα)
in (7).

A similar equality as in (7) holds in the rational singular cohomology ofZUα →
Uα. So we can also define the piece

RH 2r(ZUα )Q :=
⊕
γ

Q[ωγ0 ]

in the rational singular cohomology of ZUα and the piece

RH 2r(Z)Q :=
⊕
γ

Q[ωγ0 ]

as a subspace of the rational Betti cohomology H 2r(Z, Q) generated by the rela-
tive analytic cells ωγ0 . Here, we use that Z → S is locally trivial in the analytic
topology and that there is an analytic cellular decomposition similar to (5).

Lemma 3.5. The cycles ωγ0 in RCH∗(ZUα )Q patch together in the étale site to
determine a subspace RCH∗(Z)Q of CH∗(Z)Q , generated by the patched cycles
and that maps isomorphically onto the subspace RH 2r(Z)Q ⊂ H 2r(Z, Q), under
the cycle class map

CH∗(Z)Q → H 2∗(Z, Q).

Proof. Note that the cycles ωγ0 ∈ RCH∗(ZUα )Q patch together as analytic cycles
in the étale site and determine a subspace RH 2r(Z)Q ⊂ H 2r(Z, Q).

Since the fibre F is a cellular variety, there is a natural isomorphism

RCH∗(ZUα )Q
�−→RH 2∗(ZUα )Q (8)

between the 0th piece of the rational Chow group and the relative Betti cohomol-
ogy for each α.

Via the isomorphism in (8), the patching conditions required over the étale site
to define the piece RCH2r(Z)Q are the same as those for RH 2r(Z)Q. More pre-
cisely, the patching conditions are given in [Gi, Sec. 4]. The identification in (8)
together with the fact that the patching conditions are fulfilled for the singular co-
homology of the étale site means that the cycles ωγ0 patch together to give a class
in RH 2r(Z)Q , and hence they also patch together to give a class in RCH2r(Z)Q.

These patched classes generate the Q-subspace RCH2r(Z)Q ⊂ CH∗(Z)Q , which
maps isomorphically onto the subspace RH 2r(Z)Q ⊂ H 2r(Z, Q) under the cycle
class map.

Corollary 3.6. There is a canonical isomorphism

RCHr(Z)Q � RH 2r(Z)Q

between the rational Chow groups and the rational cohomology generated by the
relative cells.

Let n := dim(Z/S).
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Corollary 3.7. The bundle Z → S has a relative Chow–Künneth decomposi-
tion in the sense of [GHMu1].

Proof. This follows from Lemma 3.5 applied to the relative productZ×S Z → S.

We notice that the relative orthogonal Künneth projectors inH 2n(Z×S Z, Q) lift to
relative orthogonal projectors in H 2n(ZUα ×Uα ZUα , Q), which add to the relative
diagonal cycle. Now we note that the relative diagonal �Z/S and its orthogonal
Künneth components actually lie in the piece RH 2n(Z ×S Z)Q (generated by the
relative algebraic cells) and, under the isomorphisms in (3) and (4), lift to an orthog-
onal decomposition

�Z/S =
2n∑
i=0

)i ∈RH 2n(Z ×S Z)Q

over the étale site—that is, over ZUα ×Uα ZUα for each α ∈ I. Now apply Corol-
lary 3.6 to the product spaceZUα ×Uα ZUα → Uα to lift the relative orthogonal pro-
jectors just described to orthogonal algebraic projectors in RCHn(ZUα ×Uα ZUα )Q ,
and these patch to give relative Chow–Künneth projectors and a relative Chow–
Künneth decomposition:

�Z/S =
2n∑
i=0

)i ∈ CHn(Z ×S Z)Q.

Proposition 3.8. Suppose Z → S is a rational homogeneous bundle over a
smooth variety S. Then the motive of the bundle Z → S is expressed as a sum
of tensor products of summands of the motive of S with the twisted Tate motive.
More precisely, the motive of Z can be written as

h(Z) =
⊕
i

hi(Z),

where hi(Z) = ⊕
j+k rωα.Lj⊗hk(S). Here rωα is the number of j -codimensional

cells on a fibre F.

In particular, if S has a Chow–Künneth decomposition then Z also admits an
absolute Chow–Künneth decomposition.

Proof. By Corollary 3.7, we know that the bundle Z/S has a relative Chow–
Künneth decomposition. Since the map Z → S is a smooth morphism and since
the fibres of Z → S have only algebraic cohomology, we can directly apply the
criterion in [GHMu2, Main Theorem 1.3] to obtain absolute Chow–Künneth pro-
jectors for Z and the decomposition stated previously (see e.g. [I, Lemma 3.2,
Cor. 3.3]).

Remark 3.9. Suppose X is a smooth projective variety with a nef tangent bun-
dle. Then, by [CP; DePS], we know that there exists an étale cover X ′ → X of X
such thatX ′ → A is a smooth morphism over an abelian varietyAwhose fibres are
smooth Fano varieties with a nef tangent bundle. It is an open question [CP, p. 170]
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whether such a Fano variety is a rational homogeneous variety. A positive answer
to this question, together with Proposition 3.8, will give absolute Chow–Künneth
projectors for all varieties with a nef tangent bundle. See also [Hw, Sec. 4] for a
discussion on new cases where this question is answered positively.

4. Chow–Künneth Decomposition for
Log Homogeneous Varieties

Log homogeneous varieties were introduced by Brion [Br]. SupposeX is a smooth
projective variety and D ⊂ X is a normal crossing divisor. Then X is said to be
log homogeneous with respect to D if the logarithmic tangent bundle TX(−D) is
generated by its global sections. Then X is almost homogeneous under the con-
nected automorphism groupG := Aut0(X,D) with boundaryD. TheG-orbits in
X are exactly the strata defined by D; in particular, their number is finite.

A classification of log homogeneous varieties is given by Brion as follows.

Theorem 4.1. Any log homogeneous varietyX can be written uniquely asG×I Y,
where:

(1) G is a connected algebraic group;
(2) I ⊂ G is a closed subgroup containing Gaff as a subgroup of finite index;
(3) for any Levi subgroup L ⊂ Gaff, Y is a complete smooth I-variety contain-

ing an open L-stable subset YL such that the L-variety Y is spherical and the
projection

X → G/I =: A (9)

is the Albanese morphism.

Proof. See [Br, Thm. 3.2.1].

Recall that a smooth spherical variety Y is a G-variety such that the Borel sub-
group B of G has an open dense orbit in Y. It is known that Y contains a finite
number of B-orbits. Since we are looking at varieties defined over C, it follows
that a spherical variety is a linear variety (in the sense of [T, Addendum, p. 5]).
In particular, we have the following statement.

Lemma 4.2. Suppose Y is a smooth complete spherical variety. Then there is an
isomorphism

CHi(Y ) �−→H 2i(Y, Z)

for each i.

Proof. See [FMSS, Cor. to Thm. 2].

Lemma 4.3. Suppose Y is a smooth complete spherical variety. Then Y has a
Chow–Künneth decomposition.

Proof. This follows from Lemma 4.2 and the construction of orthogonal projec-
tors given in [IM, Lemma 5.2].
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We will show that X has a Chow–Künneth decomposition under the following
assumption.

Theorem 4.4. SupposeX is a log homogeneous variety. Then the varietyX has
a Chow–Künneth decomposition. Moreover, the motive ofX is expressed as a sum
of tensor products of the summands of the motive of its Albanese reduction with
the twisted Tate motive.

Proof. With notation as in Theorem 4.1, suppose the spherical variety Y is a Fano
variety. Then, by [BiB, Prop. 4.2(i)], we have the vanishing H1(Y, TY ) = 0. In
particular, this implies that the formal deformations of Y are trivial. Hence, by
[Se, Prop. 2.6.10], the Albanese fibration in (9) is étale locally trivial. In general,
consider the Albanese fibration

X = G×I Y → G/I = A,

which is easily seen to be étale locally trivial. The following explanation is due
to Totaro. Notice that all the fibres of this morphism are isomorphic to Y. In more
detail, this morphism is étale locally trivial because the morphism G → G/I is
étale locally trivial, which is a standard fact about the quotient of an algebraic
group by a smooth closed subgroup. See the discussion of homogeneous spaces
in [Bo, 6.14].

Hence we can apply the methods from the previous section. By Lemma 4.3,
relative Chow–Künneth projectors can be constructed for Zariski trivializations
of (9) over étale covers Uα → A. Hence the proof of Proposition 3.8 applies to
this situation. Indeed, Lemma 3.4 holds for a relative spherical variety over Uα.
This can be applied to the Albanese fibration in (9) over étale morphisms, where
it is Zariski trivial. In this case, the following piece of the rational Chow ring
RCH∗(Uα × Y )Q is identified with the Chow ring CH∗(Y )Q. A formula similar to
(6) holds for the Chow groups of Uα ×Y, since Y is cellular; see [FMSS, Thm. 2].
Hence, by Lemma 4.2, CH∗(Uα × Y )Q � H 2∗(Uα × Y )Q. Similarly, Lemma 3.5
and Corollary 3.6 hold for (9) over étale morphisms. The rest of the arguments are
the same as given for a rational homogeneous bundle.
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