ABSOLUTE CONTINUITY OF HAMILTONIAN OPERATORS WITH REPULSIVE POTENTIAL

RICHARD B. LAVINE ${ }^{1}$

Introduction. One expects that the absolutely continuous part of the spectrum of a Hamiltonian operator $H=-\Delta+V$ in $L_{2}\left(E^{n}\right)$ (where Δ is the Laplacian operator and V is the operation of multiplication by a real function which approaches 0 at ∞) will be the interval $[0, \infty)$. That this is the essential spectrum has been shown under very weak assumptions on V [7], but the absolute continuity has been demonstrated only under much stronger assumptions [1], [2], [3], [8].

In this paper we prove that for smooth positive potentials V which are sufficiently repulsive outside some bounded set, the operator $-\Delta+V$ is absolutely continuous. Our conditions are similar to those in the previous work of Odeh [5]. We use results of Putnam [6] on commutators of pairs of selfadjoint operators. Our method works for dimensions $n=1,2$, or 3 , though we consider only two cases, $n=1$ (because of its simplicity) and $n=3$ (because of its importance for applications). Only partial results seem possible in higher dimensions.

1. Notation. Let $H=L_{2}\left(E^{n}\right)$ (with $n \leqq 3$) with the inner product

$$
\langle\phi, \psi\rangle=\int \phi(x) \psi(x)^{*} d x
$$

Let $S \subset H$ be the subset of infinitely differentiable functions whose partial derivatives of all orders approach 0 at ∞ faster than $|x|^{-k}$ for all k. Let P_{j} be the unique self adjoint operator in H given by

$$
P_{j} \psi=-i \partial \psi / \partial x_{j} \quad \text { for } \psi \in \delta
$$

Let H_{0} be the unique selfadjoint operator which is equal to $P_{1}^{2}+P_{2}^{2}$ $+\cdots+P_{n}^{2}$ on S. If g is a measurable function on E^{n}, we shall also use g, or even $g(x)$, to denote the operation of multiplication by g. If T is an operator in H, we write $D(T)$ for the domain of T.

Let us note here a few facts about commutators $[A, B]=A B-B A$ of such operators.
(1) If g is differentiable, and g and all partial derivatives of g are bounded, then

$$
\left[P_{j}, g\right] \psi=-i\left(\partial g / \partial x_{j}\right) \psi \quad \text { for } \psi \in D\left(P_{j}\right)
$$

[^0](2) If g is twice differentiable, and the first and second partial derivatives of g are bounded,
$$
i\left[H_{0}, g\right] \subset \sum_{j=1}^{n}\left(P_{j} \partial g / \partial x_{j}+\partial g / \partial x_{j} P_{j}\right)
$$

If T is a selfadjoint operator in H, and F is a measurable subset of R, let $E_{F}(T)$ be the associated spectral projection. Denote by $H_{a}(T)$ the subspace of vectors ψ such that the measure $F \mapsto\left\|E_{F}(T) \psi\right\|^{2}$ is absolutely continuous with respect to Lebesgue measure. Then $\boldsymbol{H}_{a}(T)$ is a closed subspace which reduces T. Let T_{a} denote T restricted to $\boldsymbol{H}_{a}(T)$. If $T=T_{a}$ we say T is absolutely continuous.

If V is the sum of a square integrable function and a bounded function then $H_{0}+V$ defines a selfadjoint operator on $D(H)=D\left(H_{0}\right)$, and the graph norms $\left(\|H \psi\|^{2}+\|\psi\|^{2}\right)^{1 / 2}$ and $\left(\left\|H_{0} \psi\right\|^{2}+\|\psi\|^{2}\right)^{1 / 2}$ are equivalent for $\psi \in D(H)[4, \mathrm{~V} .5 .3]$. We shall consider such operators in the following sections.
2. Hamiltonian operators in $L_{2}(E)$. Let $n=1$ in the above definitions, and call $P_{1}=P$.

Theorem 1. Let V be differentiable, V and V^{\prime} bounded, and $-\operatorname{sgn}(x) V^{\prime}(x) \geqq 0$. Assume also that

$$
\begin{equation*}
-\operatorname{sgn}(x) V^{\prime}(x) \geqq a|x|^{-3+e} \quad \text { for }|x| \geqq b \tag{1}
\end{equation*}
$$

for some positive ϵ, a and b. Then $H_{0}+V$ is absolutely continuous.
Proof. We shall find a bounded operator A such that on $D(H)$, $i[H, A] \geqq 0, i[H, A]$ is bounded, and 0 is not in the point spectrum of $i[H, A]$. Then, by a theorem of Putnam [6, Theorem 2.13.2], H is absolutely continuous. We shall set

$$
A=(H-i)^{-1}(g P+P g)(H+i)^{-1}
$$

where g is real valued and infinitely differentiable, and all derivatives of g are bounded. Since $D(H)=D\left(H_{0}\right) \subset D(P), g P(H+i)^{-1}$ is bounded. Since $g(H+i)^{-1}$ is a bounded map of H into $D(H), P g(H+i)^{-1}$ is bounded. Therefore A is a bounded map of H into $D(H)$ which implies that $H A$ and $A H$ are both defined on $D(H)$ and bounded in the H-norm, so that $i[H, A]$ is bounded. If

$$
B(\phi, \psi)=i(\langle H A \phi, \psi\rangle-\langle\phi, H A \psi\rangle)
$$

$B(\cdot, \cdot)$ is a bounded sesquilinear form on H, so it is sufficient to calculate its values for a dense set of ϕ 's. Let $(H+i)^{-1} \phi \in \mathcal{S}$. Then

$$
\begin{aligned}
B(\phi, \psi)= & i\left\{\left\langle(H-i)^{-1} H(g P+P g)(H+i)^{-1} \phi, \psi\right\rangle\right. \\
& \left.\quad-\left\langle\phi,(H-i)^{-1} H(g P+P g)(H+i)^{-1} \psi\right\rangle\right\} \\
= & i\left\langle[H(g P+P g)-(g P+P g) H](H+i)^{-1} \phi,(H+i)^{-1} \psi\right\rangle \\
= & \left\langle\left\{i\left[H_{0}, g\right] P+i P\left[H_{0}, g\right]+i g[V, P]+i[V, P] g\right\}\right. \\
& \left.\quad \times(H+i)^{-1} \phi,(H+i)^{-1} \psi\right\rangle \\
= & \left\langle\left(g^{\prime} P^{2}+2 P g^{\prime} P+P^{2} g^{\prime}-2 g V^{\prime}\right)(H+i)^{-1} \phi,(H+i)^{-1} \psi\right\rangle .
\end{aligned}
$$

Now

$$
\begin{aligned}
g^{\prime} P^{2}+P^{2} g^{\prime} & =P g^{\prime} P-\left[P, g^{\prime}\right] P+P g^{\prime} P+P\left[P, g^{\prime}\right] \\
& =2 P g^{\prime} P+\left[P,\left[P, g^{\prime}\right]\right]=2 P g^{\prime} P-g^{\prime \prime \prime}
\end{aligned}
$$

This gives, for all $\phi \in D(H)$,

$$
\begin{align*}
i[H, A]_{\phi}=\left\{4(H-i)^{-1} P g^{\prime}\right. & P(H+i)^{-1} \tag{2}\\
& \left.-(H-i)^{-1}\left[g^{\prime \prime \prime}+2 g V^{\prime}\right](H+i)^{-1}\right\} \phi .
\end{align*}
$$

Now let us make the choice of g more specific; let

$$
\begin{equation*}
g(x)=(2 / \pi) \tan ^{-1} c x . \tag{3}
\end{equation*}
$$

Then

$$
g^{\prime}(x)=2 c / \pi\left(1+(c x)^{2}\right)
$$

and

$$
\begin{equation*}
g^{\prime \prime \prime}(x)=4 c^{3}\left[3(c x)^{2}-1\right] / \pi\left[1+(c x)^{2}\right]^{3} \tag{4}
\end{equation*}
$$

Since $g^{\prime}(x)>0$, the first term of (2) is a positive operator, so we turn attention to the second term of (2). If $|c x| \leqq 3^{-1 / 2}$, we have

$$
-2 g(x) V^{\prime}(x) \geqq 0 \quad \text { and } \quad-g^{\prime \prime \prime}(x) \geqq 0
$$

On the other hand if $|c x|>3^{-1 / 2},|g(x)|>\frac{1}{3}$, so that

$$
\begin{equation*}
-2 g(x) V^{\prime}(x)>-\frac{2}{3} \operatorname{sgn}(x) V^{\prime}(x) \tag{5}
\end{equation*}
$$

Now let us choose c so that

$$
\begin{equation*}
\sqrt{3} c \leqq \min \left\{b^{-1},(\pi a / 18 \sqrt{3})^{1 / \epsilon}\right\} \tag{6}
\end{equation*}
$$

Then by (1) and (5),

$$
\begin{equation*}
-2 g(x) V^{\prime}(x) \geqq \frac{2}{3} a|x|^{-3+e} \quad \text { for }|x|>1 / \sqrt{3} c \geqq b \tag{7}
\end{equation*}
$$

On the other hand, from (4) we have

$$
\begin{equation*}
g^{\prime \prime \prime}(x) \leqq 12 / \pi c|x|^{4} . \tag{8}
\end{equation*}
$$

Thus for $|x|>1 / \sqrt{3} c$

$$
\begin{aligned}
-2 g(x) V^{\prime}(x)-g^{\prime \prime \prime}(x) & \geqq|x|^{-4}\left(\frac{2}{3} a|x|^{1+\epsilon}-12 / \pi c\right) \\
& >|x|^{-4}\left(2 \cdot 3^{-(3+\epsilon) / 2} a / c^{\epsilon}-12 / \pi\right) / c \geqq 0 .
\end{aligned}
$$

(The first inequality follows from (7) and (8), the second from $|x|$ $>1 / \sqrt{3} c$, and the third from (6).) This establishes that $i[H, A]$ is a positive operator.

If $i[H, A] \psi=0$, one would have

$$
0=(i[H, A] \psi, \psi) \geqq \int\left(-2 g(x) V^{\prime}(x)-g^{\prime \prime \prime}(x)\right)\left|(H+i)^{-1} \psi(x)\right|^{2} d x
$$

which would imply $(H+i)^{-1} \psi=0$ since $-2 g(x) V^{\prime}(x)-g^{\prime \prime \prime}(x)>0$ for all x. Since $(H+i)^{-1}$ is injective, we see that 0 is not in the point spectrum of $i[H, A]$.

Let us add a few words in motivation of the choice of A. This operator may be regarded as a kind of quantum mechanical analogue to the function on classical mechanical phase space $f(p, q)$ $=(2 / \pi) p \tan ^{-1} c q$, where p and q are respectively the momentum and position coordinates. The classical Poisson bracket of the Hamiltonian $p^{2}+V(q)$ with f is

$$
\begin{aligned}
& (\partial H / \partial p)(\partial f / \partial q)-(\partial H / \partial q)(\partial f / \partial p) \\
& \quad=2 / \pi\left\{p^{2} c /\left[1+(c x)^{2}\right]-\tan ^{-1}(c q) V^{\prime}(q)\right\}
\end{aligned}
$$

which is positive if $\operatorname{sgn}(x) V^{\prime}(x) \leqq 0$ for all x. This leads to the conjecture that the quantum mechanical analogue $i[H, A]$ is also positive.

Corollary 1. Let V be differentiable for $|x|>b$ and $-\operatorname{sgn}(x) V^{\prime}(x)$ $\geqq|x|^{-3+\epsilon}$ for $|x|>b$, V locally square integrable, and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{|x-b|<1}|V(y)|^{2} d y=0 \tag{9}
\end{equation*}
$$

Then if $H=H_{0}+V$, the spectrum of H_{a} is $[0, \infty)$.
Proof. $V=V_{1}+V_{2}$ where V_{1} satisfies (9) and the conditions of Theorem 1, and V_{2} is a square integrable function with compact support. Because of (9), the essential spectrum of $H_{1}=H_{0}+V_{1}$ is [$0, \infty$) [7], and by Theorem 1, $H_{1}=H_{1 a}$ so that $\operatorname{sp}\left(H_{1 a}\right)=[0, \infty)$. But since $V_{2} \in L_{1}(E) \cap L_{2}(E), H_{a}=\left(H_{1}+V_{2}\right)_{a}$ is unitarily equivalent to $H_{1 a}=H_{1}$.
(See [4, p. 546]. $V_{2}=V_{2}^{\prime} V_{2}^{\prime \prime}$ where $V_{2}^{\prime}\left(H_{0}+i\right)^{-1}$ and $V_{2}^{\prime \prime}\left(H_{0}+i\right)^{-1}$ are in the Schmidt class. But $\left(H_{1}+i\right)^{-1}=\left(H_{0}+i\right)^{-1}\left(I-V_{1}\left(H_{1}+i\right)^{-1}\right)$, where $I-V_{1}\left(H_{1}+i\right)^{-1}$ is a bounded operator [7], which implies that $V_{2}^{\prime}\left(H_{1}+i\right)^{-1}$ and $V_{2}^{\prime \prime}\left(H_{1}+i\right)^{-1}$ are Schmidt class.)
3. Hamiltonian operators in three dimensions. Let $n=3$ in the definitions of $\S 1$.

Theorem 2. Let V be differentiable, V and $|\nabla V|$ bounded, and $-|x|^{-1} x \cdot \nabla V(x) \geqq a|x|^{-3+e}$ for $|x| \geqq b$ for some positive a and b. Then $H_{0}+V$ is absolutely continuous.

Proof. As in the proof of Theorem 1, we shall define a bounded operator A such that $i[H, A] \geqq 0$ on $D(H), A$ maps H into $D(H)$, and $i[H, A]$ does not have 0 in its point spectrum. It will be convenient to use a different representation of H. Let U be the unitary transformation $U: L_{2}\left(E^{3}\right) \rightarrow L_{2}\left([0, \infty) ; L_{2}\left(S^{2}\right)\right.$) (where S^{2} is the unit sphere in E^{3}), defined for functions $\psi(r, \theta, \phi)=f(r) g(\theta, \phi)$ by

$$
U \psi(r)=r f(r) g
$$

(where r, θ, and ϕ are the usual spherical coordinates on E^{3}). The multiplication operator h on $L_{2}\left([0, \infty) ; L_{2}\left(S^{2}\right)\right)$ defined by $(h f)(r)$ $=h(r) f(r)$, transforms to

$$
U^{*} h U \psi(r, \theta, \phi)=h(r) \psi(r, \theta, \phi)
$$

On the other hand the symmetric operator $-i d / d r$ in $L_{2}\left([0, \infty) ; L_{2}\left(S^{2}\right)\right)$ transforms to $D_{r}=U^{*}(-i d / d r) U$ where

$$
\begin{equation*}
D_{r}=\sum_{j}\left(x_{j} / r\right) P_{j}-(i / r) \tag{10}
\end{equation*}
$$

$D\left(D_{r}\right)=D\left(P_{1}\right) \cap D\left(P_{2}\right) \cap D\left(P_{3}\right)$. Note that if f is a boundedly differentiable function,

$$
\begin{equation*}
\left[f, D_{r}\right]=(i / r) x \cdot \nabla f \quad \text { on } D(H) \tag{11}
\end{equation*}
$$

We define A on $L_{2}\left(E^{3}\right)$ by

$$
A=(H-i)^{-1}\left(g D_{r}+D_{r g}\right)(H+i)^{-1}
$$

where $g(r)=(2 / \pi) \tan ^{-1} c r$ with $\sqrt{3} c \leqq \min \left\{b^{-1},(\pi a / 18 \sqrt{13})^{1 / \epsilon}\right\}$. From (10) it is clear that $g D_{r}(H+i)^{-1}$ and $D_{r} g(H+i)^{-1}$ are bounded, and so A maps H into $D(H) . A$ is selfadjoint, since g and D_{r} are symmetric.

Note that

$$
U H_{0} U^{*}=-d^{2} / d r^{2}+r^{-2} B
$$

where B is a positive operator in $L_{2}\left(S^{2}\right)$.
Calculations in $L_{2}\left([0, \infty) ; L_{2}\left(S^{2}\right)\right)$ similar to those in the proof of Theorem 1 yield, for $\psi \in S$

$$
i\left[H_{0}, g D_{r}+D_{r g}\right] \psi=4 D_{r g^{\prime}} D_{r}-g^{\prime \prime \prime}+4 g r^{-3} B
$$

For such ψ, by (11),

$$
i\left[V, g D_{r}+D_{r g}\right] \psi=-2 r^{-1} g(x \cdot \nabla V) \psi
$$

and the argument of Theorem 1 applies.
Corollary 2. Let V be differentiable for $|x|>b$, and $-r^{-1} x \cdot \nabla V(x)$ $\geqq|x|^{-3+e}, V$ locally square integrable, and

$$
\lim _{x \rightarrow \infty} \int_{|x-y|<1}|V(y)|^{2} d y=0
$$

Then if $H=H_{0}+V$, the spectrum of H_{a} is $[0, \infty)$.
The proof is the same as in Corollary 1.

References

1. J. R. Hфegh-Krohn, Partly gentle perturbation with application to perturbation by annihilation-creation operators, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 2187-2192.
2. J. S. Howland, Banach space techniques in the perturbation theory of self-adjoint operators with continuous spectra, J. Math. Anal. Appl. 20 (1967), 22-47.
3. T. Ikebe, Eigenfunction expansions associated with the Schrödinger operators and their application to scattering theory, Arch. Rational Mech. Anal. 5 (1960), 1-34.
4. T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966.
5. F. Odeh, Note on differential operators with a purely continuous spectrum, Proc. Amer. Math. Soc. 16 (1965), 363-366.
6. C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Springer-Verlag, Berlin, 1967.
7. P. Rejto, On the essential spectrum of the hydrogen energy and related operators, Pacific J. Math. 19 (1966), 109-140.
8. -, On partly gentle perturbations. II, J. Math. Anal. Appl. 20 (1967), 145-187.

Cornell University

[^0]: Received by the editors October 23, 1968.
 ${ }^{1}$ Research partially supported by NSF grant GP-6948.

