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Introduction. One expects that the absolutely continuous part of

the spectrum of a Hamiltonian operator 77= — A+ V in L2(En) (where

A is the Laplacian operator and V is the operation of multiplication

by a real function which approaches 0 at «) will be the interval

[0, » ). That this is the essential spectrum has been shown under very

weak assumptions on V [7], but the absolute continuity has been

demonstrated only under much stronger assumptions [l],[2], [3], [8].

In this paper we prove that for smooth positive potentials V which

are sufficiently repulsive outside some bounded set, the operator

—A+ V is absolutely continuous. Our conditions are similar to those

in the previous work of Odeh [S]. We use results of Putnam [6] on

commutators of pairs of selfadjoint operators. Our method works for

dimensions n = l, 2, or 3, though we consider only two cases, « = 1

(because of its simplicity) and « = 3 (because of its importance for

applications). Only partial results seem possible in higher dimensions.

1. Notation. Let H=L2(En) (with n^3) with the inner product

<0, f) = j <p(x)t(x)*dx.

Let S C 77 be the subset of infinitely differentiable functions whose

partial derivatives of all orders approach 0 at °° faster than \x\~k

for all k. Let P¡ be the unique self adjoint operator in H given by

PfP = — id^/dxj        for fG§.

Let 77o be the unique selfadjoint operator which is equal to P\+P\

+ • • ■ +P\ on S. If g is a measurable function on En, we shall also

use g, or even g(x), to denote the operation of multiplication by g. If

T is an operator in 77, we write D(T) for the domain of T.

Let us note here a few facts about commutators [A, B] =AB—BA

of such operators.

(1) If g is differentiable, and g and all partial derivatives of g are

bounded, then

[Pi, g\* = - m/dx,)t       for * E D(P¡).
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(2) If g is twice differentiable, and the first and second partial

derivatives of g are bounded,

n

i[Bo, {]CE (Pjdg/dXj+dg/dXjPj).
y-i

If T is a selfadjoint operator in H, and F is a measurable subset of

R, let EF(T) be the associated spectral projection. Denote by Ha(T)

the subspace of vectors \p such that the measure íV->||.Eí.(7,)i/'||2 is

absolutely continuous with respect to Lebesgue measure. Then Ha(T)

is a closed subspace which reduces T. Let Ta denote T restricted to

Ha(T). If T=Ta we say T is absolutely continuous.

If V is the sum of a square integrable function and a bounded func-

tion then Ho+ F defines a selfadjoint operator on D(H) =D(H0), and

the graph norms (||iir'||2 + ||'/'||2)1/2 and (||#o'r'||2 + ||lr'||2)1/!! are equiva-

lent for \pQD(H) [4, V. 5.3]. We shall consider such operators in the

following sections.

2. Hamiltonian operators in L2(E). Let » = 1 in the above defi-

nitions, and call Pi = P.

Theorem 1. Let V be differentiable, V and V bounded, and
— sgn(x)F'(x) 2:0. Assume also that

(1) - sgn(x)V'(x) ^ a\ x\-*+'        for \ x\   ^b

for some positive e, a and b. Then Ho+V is absolutely continuous.

Proof. We shall find a bounded operator A such that on D(H),

i [H, A ] =ï 0, i [H, A ] is bounded, and 0 is not in the point spectrum of

i[H, A]. Then, by a theorem of Putnam [6, Theorem 2.13.2], H is

absolutely continuous. We shall set

A = (H - i)-\gP + Pg)(H + i)-*

where g is real valued and infinitely differentiable, and all derivatives

of g are bounded. Since D(H) =D(H0) QD(P),gP(H+i)-1 is bounded.

Since g(H+i)~l is a bounded map of H into D(H), Pg(H+i)_1 is

bounded. Therefore A is a bounded map of H into D(H) which im-

plies that HA and AH are both defined on D(H) and bounded in the

H-norm, so that i[H, A] is bounded. If

B(<p, *) = i( (HA<p, 4,) - (<p, H A*))

B(- , •) is a bounded sesquilinear form on H, so it is sufficient to

calculate its values for a dense set of <p's. Let (H+tf-tyQS. Then
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B(4>, ifr) = ¿{((77 - i)-iH(gP + Pg)(H + ¿)-V, *>
- (0, (77 - i)-*H(gP + Pg)(H + i)~V>}

= i([E(gP + Pg) - (gP + Pg)H](H + it1*, (77 + *)-V>

- <{i[77o, g]P + iP[Ho, g] + ig[V, P] + i[V, P]g}

X (77 + i)-iq>, (77 + *)-Y>

= ((g'P2 + 2Pg'P + P2g' - 2gV')(H + (t% (77 + »)-V>.

Now

g'P2 + P2g' = Pg'P - [P, g']P + Pg'P + P[P, ¿\

= 2Pg'P + [P, [P, g'}} = 2Pg'P - g'".

This gives, for all <pED(H),

i[H, A]* = {4(77 - i)-iPg'P(H + i)-1

- (77 - i)"1 [g'" + 2gV'] (77 + i)"1} <P-

Now let us make the choice of g more specific ; let

(3) g(x) = (2/v) tan-1 ex.

Then

g'(x) = 2cA(l + (c*)2)

and

(4) g'"(x) = 4c3[3(cx)2 - 1]/tt[1 + (ex)2]3.

Since g'(x) >0, the first term of (2) is a positive operator, so we turn

attention to the second term of (2). If | cx\ ^3_1/2, we have

-2g(x)V'(x) ^ 0    and    -g'"(x) ^ 0.

On the other hand if \cx\ >3~1/2, \g(x)\ >\, so that

(5) -2g(x)V'(x) > - f sgn(x)V'(x).

Now let us choose c so that

(6) V3c á min{b-\ (7ra/18V3)1/e}

Then by (l) and (5),

(7) -2g(x)V'(x) ^ f a\ x|-s+e       for | x\  > i/V3c = b.

On the other hand, from (4) we have
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(8) ¿"'(s) £12/« |*|«.

Thus for |x| >1/V3c

-2g(x)V'(x) - g'"(x) ^ | *|-<(fa| «|*+« - 12/«)

> | *|-4(2-3-<3+<>/2a/c« - 12/x)/c £ 0.

(The first inequality follows from (7) and (8), the second from \x\

>l/y/3c, and the third from (6).) This establishes that i[H, A] is

a positive operator.

If i[H, A]\p = 0, one would have

0 = (i[H, A]*, tf^f (-2g(x)V'(x) - g'"(x)) | (H + ¿)-V(s) \*dx

which would imply (H+i)~h¡/ = 0 since -2g(x)V'(x)-g'"(x)>0 for

all x. Since (H+i)~l is injective, we see that 0 is not in the point

spectrum of i[H, A].    |

Let us add a few words in motivation of the choice of A. This

operator may be regarded as a kind of quantum mechanical analogue

to the function on classical mechanical phase space f(p, q)

= (2/w)p tan-1 cq, where p and q are respectively the momentum and

position coordinates. The classical Poisson bracket of the Hamil-

tonian p2+ V(q) with/ is

(dH/dp)(df/dq) - (dH/dq)(df/dp)

= 2/ir{p2c/[l + (ex)2] - tan-i(cq)V'(q)}

which is positive if sgn(x)F'(x) £0 for all x. This leads to the con-

jecture that the quantum mechanical analogue i[H, A] is also

positive.

Corollary 1. Let V be differentiable for \x\ >b and — sgn(x)F'(x)

S: \x\~i+'for \x\ >b, V locally square integrable, and

(9) lim   f \V(y)\2dy = 0.
j->»    J \z~i\<l

Then if H=H0+V, the spectrum of Ha is [0, «>).

Proof. V=Vi+Vt where Vi satisfies (9) and the conditions of

Theorem 1, and Vi is a square integrable function with compact sup-

port. Because of (9), the essential spectrum of Hi = H0+Vi is [O, »)

[7], and by Theorem 1, Hi = Hia so that sp(Hia) = [O, °o). But since

ViQLi(E)C\Li(E), Ha = (Hi+ V2)a is unitarily equivalent to Hu=Hi.
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(See [4, p. 546]. V2=V{V{' where VI (Ho+i)~l and Vi'(Ho+i)'1
are in the Schmidt class. But (Hi+i)~l = (Ho+i)-l(I- Vi(Hi+i)~l),

where 7— V^Hi+if1 is a bounded operator [7], which implies that

V{ (Hi+i)-1 and VI' (Hi+i)'1 are Schmidt class.)    B

3. Hamiltonian operators in three dimensions. Let « = 3 in the

definitions of §1.

Theorem 2. Let V be differentiable, V and \W\ bounded, and

— | x | _1x ■ V V(x) = a | x | ~3+i /or | x | ^ 6 /or some positive a and b. Then

Ho+V is absolutely continuous.

Proof. As in the proof of Theorem 1, we shall define a bounded

operator ^4 such that ¿ [77, A ] 3ï 0 on D (77), A maps H into D (77), and

i[77, A] does not have 0 in its point spectrum. It will be convenient

to use a different representation of H. Let U be the unitary trans-

formation U: L2(E3) —>L2([0, oo); L2(S2)) (where S2 is the unit sphere

in E3), defined for functions \¡/(r, d, <p) =f(r)g(0, <b) by

UMr) = rf(r)g

(where r, 6, and d> are the usual spherical coordinates on Ez). The

multiplication operator h on L2([0, oo); L2(S2)) defined by (hf)(r)

= h(r)f(r), transforms to

U*hW(r, d, <*>) = h(r)t(r, 9, 0).

On the other hand the symmetric operator — i d/dr in

Li([0, oo); Li(S2)) transforms to Dr= U*(-i d/dr)U where

(10) or = ZfeA)Py-(¿A);

D(Dr)=D(Pi)C^D(P2)r\D(P3). Note that if / is a boundedly differ-
entiable function,

(11) \f, Dr] - (i/r)x-Vf       onD(H).

We define A on L2(7i3) by

A = (H - i)-\gDr + Drg)(H + i)~l

whereg(r) = (2/7r) tan_1crwith V3cámin{&_1, (7ra/18\/L3)1/e}. From

(10) it is clear that g Dr(H+i)_1 and Dr g(H+i)~l are bounded, and

so^4 maps H into D(H).A is selfadjoint, since g and Dr are symmetric.

Note that

UHoV* = - d2/dr2 + r~2B
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where B is a positive operator in L2(S2).

Calculations in L2([0, »); L2(S2)) similar to those in the proof of

Theorem 1 yield, for ipQS

i[H0, gDr + Drg]* = iDrg'Dr - g'" + igr-*B.

For such yp, by (11),

i[V, gDr + Drg]t = - 2r-lg(x-W)f,

and the argument of Theorem 1 applies. |

Corollary 2. Let V be differentiable for \x\ >b, and —r~1x-VV(x)
^ | x|_3+f, V locally square integrable, and

lim    f | V(y) \2dy = 0.
z->«    J |x-k|<1

Then if H = H0+ V, the spectrum of Ha is [0, co).

The proof is the same as in Corollary 1.
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