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Introduction. One expects that the absolutely continuous part of
the spectrum of a Hamiltonian operator H= —A+ V in L,(E*) (where
A is the Laplacian operator and V is the operation of multiplication
by a real function which approaches 0 at «) will be the interval
[0, ). That this is the essential spectrum has been shown under very
weak assumptions on V [7], but the absolute continuity has been
demonstrated only under much stronger assumptions [1],[2], [3], [8].

In this paper we prove that for smooth positive potentials ¥V which
are sufficiently repulsive outside some bounded set, the operator
—A+V is absolutely continuous. Our conditions are similar to those
in the previous work of Odeh [5]. We use results of Putnam [6] on
commutators of pairs of selfadjoint operators. Our method works for
dimensions =1, 2, or 3, though we consider only two cases, n=1
(because of its simplicity) and n=3 (because of its importance for
applications). Only partial results seem possible in higher dimensions.

1. Notation. Let H=L,(E") (with # £3) with the inner product
(¢, ¥) = f d(X)W(x)*dx.

Let SCH be the subset of infinitely differentiable functions whose
partial derivatives of all orders approach 0 at « faster than le"‘
for all k. Let P; be the unique self adjoint operator in H given by

Py = — idy/ox; for ¢y € 8.

Let H, be the unique selfadjoint operator which is equal to P34 P2
+ - - - +P2on 8. If g is a measurable function on E*, we shall also
use g, or even g(x), to denote the operation of multiplication by g. If
T is an operator in H, we write D(T) for the domain of T.

Let us note here a few facts about commutators [4, B]= AB—BA
of such operators.

(1) If g is differentiable, and g and all partial derivatives of g are
bounded, then '

[P, gl¥ = — i(3g/3x;)¢  for ¢ € D(P)).
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(2) If g is twice differentiable, and the first and second partial
derivatives of g are bounded,

i[Ho, g] C 2 (P;dg/dx; + dg/dx;P;).

i=1

If T is a selfadjoint operator in H, and F is a measurable subset of
R, let Er(T) be the associated spectral projection. Denote by H,(T)
the subspace of vectors ¥ such that the measure F—)HEF(TMHZ is
absolutely continuous with respect to Lebesgue measure. Then H,(T)
is a closed subspace which reduces T. Let T, denote T restricted to
H,(T). If T=T, we say T is absolutely continuous.

If Vis the sum of a square integrable function and a bounded func-
tion then Ho+ V defines a selfadjoint operator on D(H) = D(H,), and
the graph norms (|| Hy||2+|[¢||2) "2 and (||Ha||2+]|[¢||2)V? are equiva-
lent for y ED(H) [4, V. 5.3]. We shall consider such operators in the
following sections.

2. Hamiltonian operators in L,(E). Let n=1 in the above defi-
nitions, and call P, =P.

THEOREM 1. Let V be differentiable, V and V' bounded, and
—sgn(x) V'(x) =0. Assume also that

1) — sgn(x)V'(x) = al x|~ for | x| = b
for some positive €, a and b. Then Hy+ V is absolutely continuous.

Proor. We shall find a bounded operator 4 such that on D(H),
i[H, 4120, i[H, A]is bounded, and 0 is not in the point spectrum of
i[H, A]. Then, by a theorem of Putnam [6, Theorem 2.13.2], H is
absolutely continuous. We shall set

A = (H — 4)~'(gP + Pg)(H + i)

where g is real valued and infinitely differentiable, and all derivatives
of g are bounded. Since D(H) = D(H,) CD(P), gP(H+1)"'is bounded.
Since g(H+1)~! is a bounded map of H into D(H), Pg(H+17)"! is
bounded. Therefore 4 is a bounded map of H into D(H) which im-
plies that HA and A H are both defined on D(H) and bounded in the
H-norm, so that ¢[H, 4] is bounded. If

B(p, ¥) = i((HA$, ¥) — (¢, HAY))

B(-, -) is a bounded sesquilinear form on H, so it is sufficient to
calculate its values for a dense set of ¢'s. Let (H+17)~"'¢ES. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] HAMILTONIAN OPERATORS WITH REPULSIVE POTENTIAL 57

B(¢, ) = i{((H — 9)*H(gP + Pg)(H + i)"'¢, ¥)
~ (¢, (H — 9)'H(gP + Pg)(H + i)~)}
= i([H(gP + Pg) — (¢P + P)H|(H + i)'¢, (H + i)~}
= ({ilHo, g]P + iP[H,, g] + iV, P] + i[V, Plg}
X (H + i), (H+ i)~W)
= ((gP*+ 2Pg'P + Pg — 2gV')(H + i)~'¢, (H + 1)~W).
Now
gP+ P = P¢P — [P, ¢]P + P¢P + P[P, ¢']

=2P¢P + [P, [P, ¢]] = 2P¢P — g".
This gives, for all pED(H),
@ i[H, Al¢ = {4(H — i)"'Pg P(H + i)~
— (H =g + 2gV'|(H + i)} o

Now let us make the choice of g more specific; let

3) g(x) = (2/7) tan—! cx.
Then
g @) = 2¢/7(1 + (cx)?)
and
4) g (%) = 4c*[3(cx)? — 1]/x[1 + (ca)?]2.

Since g’(x) >0, the first term of (2) is a positive operator, so we turn
attention to the second term of (2). If | cxl <3712, we have

—2g(®x)V'(x) =20 and —g"(x) 2 0.
On the other hand if lcxl >3-, Ig(x)l >1, so that

) —2(x)V'(x) > — § sgn(x)V'(x).

Now let us choose ¢ so that

(6) V3¢ £ min{s1, (ra/18+/3)1/¢}

Then by (1) and (5),

(7 —2g(@)V'(x) Z 3a| x|+ for | x| >1/v3c 2 0.

On the other hand, from (4) we have
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®) g (x) < 12/xc| x|t
Thus for |x| >1/4/3¢
—2g(x)V'(x) — g (x) = I x‘*‘(%al xl“" — 12/%c)
> | 2|42 3-@01g/cc — 12/m)/c = 0.

(The first inequality follows from (7) and (8), the second from |x|
>1/4/3¢, and the third from (6).) This establishes that i[H, 4] is
a positive operator.

If {[H, Ay =0, one would have

0=ﬂEﬂ%MéfG%@W@—W@Hw+WW@Wx

which would imply (H+:)~%¥ =0 since —2g(x)V'(x) —g""’(x) >0 for
all x. Since (H+1%)7! is injective, we see that 0 is not in the point
spectrum of 5[H, A]. I}

Let us add a few words in motivation of the choice of 4. This
operator may be regarded as a kind of quantum mechanical analogue
to the function on classical mechanical phase space f(p, ¢)
= (2/m)p tan—! cq, where p and ¢ are respectively the momentum and
position coordinates. The classical Poisson bracket of the Hamil-
tonian p24 V(g) with f is

(0H/3p)(3f/3q) — (0H/3q)(8f/dp)
= 2/n{p%/[1 + (c0)*] — tan~(c) V' ()}
which is positive if sgn(x) V'(x) =0 for all x. This leads to the con-

jecture that the quantum mechanical analogue i[H, 4] is also
positive.

COROLLARY 1. Let V be differentiable for lx] >band —sgn(x) V' (x)
= | x[ —3+e for [ x] >b, Vlocally square integrable, and

©) lim | V) |2dy = 0.

i lz—yI<1
Then if H=Hy+V, the spectrum of H, is [0, ).

Proor. V="V;+V, where V; satisfies (9) and the conditions of
Theorem 1, and V3 is a square integrable function with compact sup-
port. Because of (9), the essential spectrum of Hy=Ho+ Vs [0, ®)
[7], and by Theorem 1, H,= H,, so that sp(Hi,) = [0, «). But since
VoELI((EYNLy(E), H, = (H,+ V3), is unitarily equivalent to Hy, = H.
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(See [4, p. 546]. Vo=V{ V4’ where V{ (Ho+4)~! and V3§’ (Ho+1)"!
are in the Schmidt class. But (Hy1+14)'=(Hoy+12) (I — Vi(H1+17)™Y),
where I — Vi(H,+1)~! is a bounded operator [7 ], which implies that
Vi (Hi+14)'and V' (H1+12)~! are Schmidt class.) i

3. Hamiltonian operators in three dimensions. Let #=3 in the
definitions of §1.

THEOREM 2. Let V be differentiable, V and |VV| bounded, and
—|%| %V V(x) Za| x| 3+ for |x| b for some positive a and b. Then
Hy+V is absolutely continuous.

Proor. As in the proof of Theorem 1, we shall define a bounded
operator 4 such thati[H, 4]=0on D(H), A maps H into D(H), and
i[H, A] does not have 0 in its point spectrum. It will be convenient
to use a different representation of H. Let U be the unitary trans-
formation U: Ly(E*)—Ly([0, ®); Ly(S?)) (where S is the unit sphere
in E?), defined for functions ¢(r, 8, ¢) =f(r)g(0, ¢) by

UY(r) = 1f(r)g

(where 7, 0, and ¢ are the usual spherical coordinates on E3). The
multiplication operator & on Ly([0, ®); L:(S?)) defined by (kf)(r)
=h(r)f(r), transforms to

U*hU\b(r’ 0’ d’) = h(f)ll/(f, 0; ¢)

On the other hand the symmetric operator —i d/dr in
Ly([0, ®); Ly(S?)) transforms to D,= U*(—4 d/dr) U where

(10) D, = X (ui/r)P; — (i/7);

D(D,)=D(P,)ND(P2)N\D(P;). Note that if f is a boundedly differ-
entiable function,

(11) lf, D,] = (i/r)x-Vf  on D(H).
We define 4 on L.(E?) by
A = (H— i)Y gD, + D,g)(H + 9)!

where g(r) = (2/m) tan—" ¢r with v/3¢ Smin {b~1, (ra/18+/13)V¢}. From

(10) it is clear that g D,(H+1%)~'and D, g(H+1%)~! are bounded, and

so A maps H into D(H). A4 is selfadjoint, since g and D, are symmetric.
Note that

UHU* = — d*/dr* + r*B
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where B is a positive operator in L;(S?).
Calculations in Ly([0, ®); Ly(S?)) similar to those in the proof of
Theorem 1 yield, for ¢y €8

i[Ho, gD, + Dygly = 4D,¢' D, — g + 4grB.
For such ¢, by (11),
i[V, gD, + Dygly = — 2r'g(x-VV)¥,
and the argument of Theorem 1 applies. |}

COROLLARY 2. Let V be differentiable for | x| >b, and —r=1x-VV(x)
= | x| =+, V locally square integrable, and

lim | V() |2dy = 0.

e J oyl
Then if H=Ho+V, the spectrum of H, is [0, ).
The proof is the same as in Corollary 1.
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