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Abstract

Generalized exponential distribution has been used quite effectively to model posi-
tively skewed lifetime data as an alternative to the well known Weibull or gamma
distributions. In this paper we introduce an absolute continuous bivariate generalized
exponential distribution by using a simple transformation from a well known bivariate
exchangeable distribution. The marginal distributions of the proposed bivariate gen-
eralized exponential distributions are generalized exponential distributions. The joint
probability density function and the joint cumulative distribution function can be ex-
pressed in closed forms. It is observed that the proposed bivariate distribution can be
obtained using Clayton copula with generalized exponential distribution as marginals.
We derive different properties of this new distribution. It is a five-parameter distri-
bution, and the maximum likelihood estimators of the unknown parameters cannot
be obtained in closed forms. We propose some alternative estimators, which can be
obtained quite easily, and they can be used as initial guesses to compute the maximum
likelihood estimates. One data set has been analyzed for illustrative purposes. Finally
we propose some generalization of the proposed model.

Keywords and Phrases: Bivariate exchangeable distribution; Dependence Properties; Clayton Copula;

Hazard rate; Maximum likelihood estimators; Pseudo generator.

1 Introduction

Gupta and Kundu [9] proposed the generalized exponential (GE) distribution as an alter-

native to the well known Weibull or gamma distributions. It is observed that the proposed
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two-parameter GE distribution has several desirable properties and in many situations it

may fit better than the Weibull or gamma distribution. Extensive work has been done since

then to establish several properties of the generalized exponential distribution. The readers

are referred to the recent review article by Gupta and Kundu [10] on a current account of it.

The GE distribution has the following cumulative distribution function (CDF) for α >

0, λ > 0;

F (x; α, λ) =
(
1 − e−λx

)α
; if x > 0, (1)

and 0 otherwise. It has the probability density function (PDF)

f(x; α, λ) = αλe−λx
(
1 − e−λx

)α−1
if x > 0, (2)

and 0 otherwise. Here α and λ are the shape and scale parameters respectively. Form now

on a GE distribution with the shape and scale parameters as α and λ respectively will be

denoted by GE(α, λ).

The main aim of this paper is to establish a new absolute continuous bivariate generalized

exponential distribution whose marginals are generalized exponential distributions. First we

introduce the one-parameter exchangeable bivariate distribution on (0,∞)×(0,∞) of Mardia

[19]. From now on we call this distribution as the Bivariate Exchangeable (BE) distribu-

tion. The BE model can be obtained as a gamma mixture of two independent exponential

models also, see for example Lindley and Singpurwalla [18]. From the BE distribution, by

simple transformation we obtain an absolute continuous bivariate generalized exponential

distribution whose marginals are univariate generalized exponential distributions.

We discuss different properties of the proposed distribution. Estimation of the unknown

parameters is an important problem in any statistical inference. The MLEs of the unknown

parameters, as expected, cannot be obtained in explicit forms. They have to be obtained

by solving non-linear equations. Since the MLEs are difficult to obtain, we propose some

alternative estimators, which can be obtained quite easily, and they can be used as initial
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guesses to compute the MLEs. One data set has been analyzed for illustrative purposes, and

finally we propose some generalizations.

Rest of the paper is organized as follows. In section 2 we introduce the bivariate gen-

eralized exponential distribution. Its several properties have been discussed in section 3.

Maximum likelihood estimation procedure of the unknown parameters is discussed in sec-

tion 4. In section 5, we provide the analysis of one data set. Generalizations are provided in

section 6 and finally we conclude the paper in section 7.

2 Bivariate Generalized Exponential Distribution

In this section we introduce the bivariate generalized exponential distribution and discuss its

different properties. First let us consider the following BE random variables (U1, U2), which

has the following joint PDF for α > 0;

fU1,U2
(u1, u2) =

α(α + 1)

(1 + u1 + u2)
α+2 ; u1 > 0, u2 > 0, (3)

and 0 otherwise, see Mardia [19] also. Note that if (U1, U2) has the joint PDF (3), then the

marginals, the joint CDF, the joint survival function (SF), the conditional distributions can

be obtained in explicit forms.

It has been observed that as α increases, the correlation coefficient of U1 and U2 increases

first, and then it decreases. The maximum correlation reaches 0.7 at α = 5.0 and as α

increases, the correlation decreases to 0. Now we define the bivariate absolute continuous

generalized exponential random variables, using (U1, U2).

Definition: The bivariate random variables (X1, X2) is said to be bivariate generalized

exponential random variables if, for α1 > 0, λ1 > 0, α2 > 0, λ2 > 0, (X1, X2) has the

following relations;

Ui =
(
1 − e−λiXi

)−αi − 1, i = 1, 2.
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Here the bivariate random variables (U1, U2) has the PDF (3).

The joint PDF of (X1, X2) for x1 > 0, x2 > 0, can be easily seen by using transformation

technique as

fX1,X2
(x1, x2) =

ce−λ1x1e−λ2x2

(
1 − e−λ1x1

)−α1−1 (
1 − e−λ2x2

)−α2−1

[
(1 − e−λ1x1)−α1 + (1 − e−λ2x2)−α2 − 1

]α+2 , (4)

here c = α(α + 1)α1α2λ1λ2. From now on it will be called BVGE distribution, and it will

be denoted by BVGE(α1, α2, λ1, λ2, α). From the surface plot of the joint PDF of (X1, X2),

not reported here, it has been observed that it can take different shapes and it is unimodal

for different parameter values.

3 Properties

3.1 Joint, Marginal and Conditional PDFs

It may be noted that λ1 and λ2 are the scale parameters, and in establishing different

properties of BVGE distribution we assume λ1 = λ2 = 1 without loss of generality and it

will be denoted as BVGE(α1, α2, α). We have the following result.

Theorem 3.1 If (X1, X2) ∼ BVGE(α1, α2, α), then

(i) X1 ∼ GE(α1α, 1) and X2 ∼ GE(α2α, 1).

(ii) The joint CDF of (X1, X2) is

FX1,X2
(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) =

[
(1 − e−x1)−α1 + (1 − e−x2)−α2 − 1

]−α
.

(iii) The joint survival function of (X1, X2) is

SX1,X2
(x1, x2) = P (X1 ≥ x1, X2 ≥ x2)

= 1 − (1 − e−x1)αα1 − (1 − e−x2)αα2 +
[
(1 − e−x1)−α1 + (1 − e−x2)−α2 − 1

]−α
.
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(iv) The conditional PDF of X1 given X2 = x2, is given by

fX1|X2=x2
(x1) = g1(x1)g2(x1, x2),

where g1(x) is the PDF of GE(α1(1 + α), 1) and

g2(x1, x2) =
(1 − e−x2)

α2

[(1 − e−x1)α1 + (1 − e−x2)α2 − (1 − e−x1)α1 (1 − e−x2)α2 ]
α+2 .

(v) The conditional CDF of X1 given X2 = x2 is

P (X1 ≤ x1|X2 = x2) =
(1 − e−x2)

−α2(α+1)

[
(1 − e−x1)−α1 + (1 − e−x2)−α2 − 1

]α+1 .

Proof: The proof of Theorem 3.1 can be obtained by using the transformation ui =
(
1 − e−xi

)−αi − 1 for i = 1, 2 and by routine calculations.

It is interesting to observe from (iv) of Theorem 3.1 that the conditional distribution of

X1 given X2 = x2, is a weighted GE distribution. Here the weight function for any fixed

value of x2 is a decreasing function of x1. Therefore, the shape of the conditional PDF of

X1 given X2 = x2, does not depend on the value of α2 or x2, it depends only on the values

of α and α1. It is immediate that if α1(1 + α) ≤ 1, the conditional PDF will be a decreasing

function. Otherwise it can be either unimodal or a decreasing function. Different properties

of this conditional distribution may be obtained from the general properties of a weighted

distribution. Although, it is difficult to obtain different moments in explicit forms, but it

may be observed that for fixed α2, as α1 increases, the conditional distribution function as

provided in (v) of Theorem 3.1 is stochastically increasing.

Note that it is very simple to generate samples from a BVGE distribution. First we can

generate (U1, U2) by using the conditional distribution function of U2 given U1, and then by

using the transformation we can generate (X1, X2) from BVGE distribution. Finally before

finishing this subsection we provide a specific interesting example of BVGE.
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Consider, αα1 = αα2 = 1, i.e. α1 = 1/α and α2 = 1/α, then the PDF of BVGE(1/α,

1/α, α) becomes

fX1,X2
(x1, x2) =

α + 1

α
× e−x1e−x2 (1 − e−x1)

− 1

α
−1

(1 − e−x2)
− 1

α
−1

[
(1 − e−x1)−

1

α + (1 − e−x2)−
1

α − 1
]α+2 . (5)

From Theorem 3.1, it follows that both X1 and X2 are exponential random variables with

mean 1. Therefore, the joint PDF of X1 and X2 as defined by (5) can be considered as

bivariate exponential distribution whose marginals are exponential distributions.

3.2 Defining Through Copula

Note that BVGE distribution can be obtained using the copula function also. To every

bivariate distribution function, FX1,X2
with continuous marginals FX1

and FX2
, corresponds

a unique function C : [0, 1]2 → [0, 1], called a copula such that

FX1,X2
(x1, x2) = C {FX1

(x1), FX2
(x2)} , for (x1, x2) ∈ (−∞,∞) × (−∞,∞). (6)

Conversely, it is possible to construct a bivariate distribution function having the desired

marginal distributions and a chosen description structure, i.e. copula. To see this let us

consider the following copula

Cθ(u1, u2) =
(
u−θ

1 + u−θ
2 − 1

)− 1

θ (7)

known as Clayton copula, see for example Nelsen [24], with θ =
1

α
, and the two marginals

as X1 ∼ GE(αα1, λ1) and X2 ∼ GE(αα2, λ2) respectively. Therefore, the joint CDF of X1

and X2 becomes;

FX1,X2
(x1, x2) = C{(1 − e−λ1x1)αα1 , (1 − e−λ2x2)αα2}

=
[
(1 − e−x1)−α1 + (1 − e−x2)−α2 − 1

]−α
. (8)

As a consequence of this relationship (8), many properties of the BVGE distribution are

inherited from the well known properties of the Clayton copula, and it will be explored later.
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3.3 Hazard Function

In this subsection we provide the bivariate hazard rate of the bivariate generalized exponen-

tial distribution. Note that there are several ways of defining the bivariate hazard rates. Basu

[2] first defined the bivariate hazard function of an absolute continuous bivariate distribution

by simply extending the one-dimensional definition to two-dimension, i.e.

hB(x1, x2) =
fX1,X2

(x1, x2)

SX1,X2
(x1, x2)

. (9)

Unfortunately, the above definition of the hazard function does not uniquely define the joint

probability density function. The joint bivariate hazard rate in the sense of Johnson and

Kotz [12] is defined as follows;

h(x1, x2) =

(
− ∂

∂x1

,− ∂

∂x2

)
ln SX1,X2

(x1, x2) = (h1(x1, x2), h2(x1, x2)) (say). (10)

It is well known that the bivariate hazard function h(x1, x2) uniquely determines the joint

PDF, see Marshall [20]. It may be noted that the hazard function of the generalized exponen-

tial distribution can be increasing, decreasing or constant according as the shape parameter

greater than, less than or equal to one.

Theorem 3.2: If (X1, X2) ∼ BVGE(α1, α2, α), then for fixed x2 (x1), h1(x1, x2) (h2(x1, x2))

is a decreasing function of x1 (x2).

Proof: We will show the result for h1(x1, x2), for h2(x1, x2) it will follow along the same

line. Let us use the following variables and notation;

v =
(
1 − e−x1

)−α1

, c1 = 1 −
(
1 − e−x2

)αα2

, c2 =
(
1 − e−x2

)−α2 − 1.

Therefore,

h1(x1, x2) = − ∂

∂x1

ln SX1,X2
(x1, x2) = −

{
∂

∂v
ln

[
c1 − v−α +

1

(v + c2)α

]}
× ∂v

∂x1

. (11)
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To prove that for fixed x2, h1(x1, x2) is a decreasing function of x1, it is enough to prove

that for fixed x2, g(v) and
∂v

∂x1

both are increasing functions of x1, where

g(v) =
∂

∂v
ln

[
c1 − v−α +

1

(v + c2)α

]
.

Note that after simplification g(v) can be written as

g(v) =

(
1 + c2

v

)α+1 − 1

(v + c2)
[
c1(v + c2)α −

(
1 + c2

v

)α
+ 1

] .

Since the numerator is a decreasing function and the denominator is an increasing function

of v, g(v) is a decreasing function of v, i.e.,
∂g(v)

∂v
< 0. Now

∂v

∂x1

= −α1

(
1 − e−x1

)−α1−1
e−x1 < 0,

∂2v

∂x2
1

= α1

(
1 − e−x1

)−α1−1
e−x1 + α1(α1 + 1)

(
1 − e−x1

)−α1−2
e−2x1 > 0.

As

∂g(v)

∂x1

=
∂g(v)

∂v
× ∂v

∂x1

> 0, and
∂2v

∂x2
1

> 0,

the result follows.

3.4 Dependency Properties

In this subsection we provide different dependency properties of the bivariate generalized

exponential distribution. Let us recall the following definition, see Karlin [15]. A real valued

function K(x, y) of two variables ranging over linearly ordered sets A and B, respectively,

is said to be total positivity of order r (abbreviated by TPr) if for 1 ≤ m ≤ r, and for all

a1, · · · , am ∈ A, b1, · · · , bm ∈ B, such that

a1 < · · · < am, b1 < · · · < bm,

then ∣∣∣∣∣∣∣

K(a1, b1) · · · K(a1, bm)
...

. . .
...

K(am, b1) · · · K(am, bm)

∣∣∣∣∣∣∣
≥ 0.
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Here | · | denotes the determinant. Now we have the following dependency result.

Theorem 3.3: If (X1, X2) ∼ BVGE(α1, α2, α), and α1 = α2, then the joint PDF of (X1, X2)

has TP2 property.

Proof: Note that (X1, X2) has TP2 property, if and only if for any x11, x12, x21, x22, when-

ever 0 < x11 < x12, and 0 < x21 < x22, we have

fX1,X2
(x11, x21)fX1,X2

(x12, x22) ≥ fX1,X2
(x12, x21)fX1,X2

(x11, x22). (12)

If α1 = α2 = β, then after some simplification, it can be easily seen that (12) is equivalent

to

(u22 − u21)(u12 − u11) ≥ 0, (13)

where
(
1 − e−xij

)−β
= uij, for i, j = 1, 2. Therefore, the result follows.

Since TP2 is the most stringent dependence property, many other dependency properties

follow immediately. For example X1 and X2 are positive quadrant dependent, X1 (X2) is a

positive regression dependent of X2 (X1), and X1 (X2) is a left tail decreasing in X2 (X1).

3.5 Dependency Measures

In this subsection we explicitly compute different measures of dependency, namely Kendall’s

τ , and the medial correlation. Interestingly, both the measures can be obtained from the

Clayton copula. We further provide some dependency measures of extreme events also.

The Kendall’s τ defined as the probability of concordance minus the probability of discor-

dance of two pairs (X1, X2) and (Y1, Y2) of random vectors, having the same joint distribution

function, is

τ = P [(X1 − Y1)(X2 − Y2) > 0] − P [(X1 − Y1)(X2 − Y2) < 0]. (14)

In case of BVGE distribution, we have the following result.
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Theorem 3.4: Let (X1, X2) ∼ BVGE(α1, α2, α), then the Kendall’s τ index is given by

θ

2 + θ
, when θ =

1

α
.

Proof: It is well known that the Kendall’s τ index is a copula property, see Domma [6],

and

τ = 4
∫ 1

0

∫ 1

0
C(u, v)

∂2C(u, v)

∂u∂v
dudv − 1.

Since,

∂2C(u, v)

∂u∂v
= (1 + θ)

u−(θ+1)v−(θ+1)

(u−θ + v−θ − 1)
1

θ
+2

,

∫ 1

0

∫ 1

0
C(u, v)

∂2C(u, v)

∂u∂v
dudv = (1 + θ)

∫ 1

0

∫ 1

0

u−(θ+1)v−(θ+1)

(u−θ + v−θ − 1)
2

θ
+2

dudv

=
(1 + θ)

θ2

∫ ∞

1

∫ ∞

1

1

(x + y − 1)
2

θ
+2

dxdy

=
(1 + θ)

θ2

∫ ∞

0

∫ ∞

0

1

(x + y + 1)
2

θ
+2

dxdy

=
(1 + θ)

θ2
× θ2

2(2 + θ)
=

(1 + θ)

2(2 + θ)
.

Therefore, τ =
2(1 + θ)

(2 + θ)
− 1 =

θ

2 + θ
.

The population version of the medial correlation coefficient for a pair (X1, X2) of contin-

uous random variables was defined by Blomqvist [4]. If MX1
and MX2

denote the medians

of X1 and X2, respectively, then MX1X2
, the medial correlation of X1 and X2 is

MX1X2
= P [(X1 − MX1

)(X2 − MX2
) > 0] − P [(X1 − MX1

)(X2 − MX2
) < 0].

It has been shown by Nelsen [24] that the median correlation coefficient is also a copula

property, and MX1X2
= 4C

(
1

2
,
1

2

)
. Therefore, for BVGE distribution the medial correlation

coefficient between X1 and X2 is 4
(
2θ+1 − 1

)− 1

θ .

The concept of bivariate tail dependence relates to the amount of dependence in the

upper quadrant (or lower quadrant) tail of a bivariate distribution, see Joe [11] (page 33).
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In terms of the original random variables X1 and X2, the upper tail dependence is defined

as

χ = lim
z→1

P (X2 ≥ F−1
X2

(z)|X1 ≥ F−1
X1

(z)).

Intuitively, the upper tail dependence exists, when there is a positive probability that some

positive outliers may occur jointly. If χ ∈ (0, 1], then X1 and X2 are said to be asymptotically

dependent, and if χ = 0, they are asymptotically independent. Coles et al. [5] showed using

the copula function that

χ = lim
u→1

1 − 2u + C(u, u)

1 − u
= lim

u→1

{
2 − log C(u, u)

log u

}
.

In case of BVGE distribution, it can be shown that χ = 0, i.e. X1 and X2 are asymptotically

independent.

4 Maximum Likelihood Estimation

In this section we describe how to obtain the maximum likelihood estimators of the unknown

parameters based on a random sample of size n from BVGE(α1, α2, λ1, λ2, α). Based on the

sample {(x11, x12), · · · , (xn1, xn2)}, the log-likelihood function becomes;

l(θ) = −λ1

n∑

i=1

xi1 − λ2

n∑

i=1

xi2 − (α1 + 1)
n∑

i=1

ln(1 − e−λ1xi1) − (α2 + 1)
n∑

i=1

ln(1 − e−λ2xi2)

−(α + 2)
n∑

i=1

ln
[
(1 − e−λ1xi1)−α1 + (1 − e−λ2xi2)−α2 − 1

]
+ n ln c, (15)

here θ = (α1, α2, λ1, λ2, α) and c = α(α + 1)α1α2λ1λ2. The maximum likelihood estimates

can be obtained by maximizing (15) with respect to the unknown parameters. As expected,

they cannot be obtained in explicit forms. One needs to solve five non-linear equations to

compute the MLEs, see the Appendix for details. Note that the Newton-Raphson method

or other optimization routine may be used to maximize (15). But to use any optimization

routine we need to provide the initial guesses of the parameters and those initial guesses play

important roles in any higher dimensional optimization process. Since it is a regular family,
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the usual asymptotic normality result holds in this case, i.e.

√
n(θ̂ − θ) −→ N5(0, I

−1), (16)

here I is the expected Fisher information matrix. Note that the Fisher information matrix

cannot be obtained in explicit forms, most of the elements can be obtained only in terms of

double integration. We have provided, see in the Appendix, the observed Fisher information

matrix, which can be used to compute the asymptotic confidence intervals of the unknown

parameters.

Now we discuss how to obtain the initial guesses based on the observed sample. We

make the following re-parameterization: β1 = αα1 and β2 = αα2. Since X1 ∼ GE(β1, λ1)

and X2 ∼ GE(β2, λ2), we fit the generalized exponential distribution to the marginals. We

calculate the MLEs of (β1, λ1) and (β2, λ2) based on the respective marginals. If the MLEs

of β1, λ1, β2, λ2 based on the marginals are denoted by β̃1, λ̃1, β̃2 λ̃2 respectively, then

β̃j(λj) = − n
∑n

i=1 ln(1 − e−λjxij)
; j = 1, 2,

and λ̃j can be obtained as a fixed point solution of the following equation

hj(λ) = λ, (17)

where

hj(λ) =




∑n
i=1

xije
−λxij

(1−e
−λxij )∑n

i=1 ln(1 − e−λxij)
+

1

n

n∑

i=1

xije
−λxij

(1 − e−λxij)
+

1

n

n∑

i=1

xij




−1

,

for j = 1, 2. Note that (17) is obtained by taking the derivative with respect to λ, of the

profile log-likelihood function of the GE distribution. Suppose the initial guess of λ̃j is λ
(0)
j ,

then consider λ
(1)
j = h(λ

(0)
j ), and continue the process until convergence takes place. Once

we obtain λ̃j, then β̃j can be obtained as β̃j(λ̃j). Using λ̃j and β̃j for j = 1, 2, we can plot

the profile log-likelihood function of α from (15) and that will provide an initial guess value

of α. The details will be illustrated in the data analysis section.
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n α1 λ1 α2 λ2 α

20 1.1148 1.0771 1.1012 1.0607 2.0651
(0.0481) (0.0298) (0.0442) (0.0260) (0.0738)

40 1.0592 1.0319 1.0603 1.0397 2.0461
(0.0273) (0.0147) (0.0253) (0.0135) (0.0476)

60 1.0523 1.0275 1.0513 1.0266 2.0272
(0.0215) (0.0104) (0.0207) (0.0105) (0.0439)

80 1.0513 1.0227 1.0554 1.0243 2.0090
(0.0197) (0.0087) (0.0198) (0.0078) (0.0428)

Table 1: The average MLEs and the associated square root of the mean squared errors
(within brackets below) are reported for Set 1.

5 Simulation Results and Data Analysis

5.1 Simulation Results

In this subsection we present some simulation results to see how the maximum likelihood

estimators behave for different sample sizes and for different parameter values. We have

used different sample sizes namely n = 20, 40, 60 and 80 and two different sets of parameter

values: Set 1: α1 = λ1 = α2 = λ2 = 1, α = 2, and Set 2: α1 = λ1 = α2 = λ2 = 1, α = 0.25.

In each case we have computed the maximum likelihood estimators of the unknown parame-

ters by maximizing the log-likelihood function (15). We compute the average estimates and

mean squared errors over 1000 replications and the results are reported in Tables 1 and 2.

Some of the points are quite clear from Tables 1 and 2. In all the cases the performances

of the maximum likelihood estimates are quite satisfactory. It is observed that as sample size

increases the average estimates and the mean squared error decrease for all the parameters,

as expected. It also verifies the consistency properties of the MLEs. Moreover, the average

biases and MSEs of MLEs of αi and λi for i = 1, 2, do not depend on α.
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n α1 λ1 α2 λ2 α

20 1.0263 1.0260 1.0477 1.0501 0.2746
(0.0137) (0.0176) (0.0140) (0.0174) (0.0027)

40 1.0312 1.0267 1.0234 1.0410 0.2710
(0.0119) (0.0157) (0.0110) (0.0151) (0.0021)

60 1.0264 1.0489 1.0169 1.0300 0.2616
(0.0108) (0.0131) (0.0098) (0.0146) (0.0014)

80 1.0097 1.0360 1.0259 1.0417 0.2561
(0.0089) (0.0132) (0.0089) (0.0121) (0.0010)

Table 2: The average MLEs and the associated square root of the mean squared errors
(within brackets below) are reported for Set 4.

Marginals Minimum Maximum Median 1-st Quartile 3-rd Quartile

X1 10.79 12.89 11.60 11.22 11.95

X2 142.72 306.00 164.65 152.37 182.20

Table 3: The basic statistics of X1 and X2.

5.2 Data Analysis

In this section for illustrative purposes we have presented the analysis of one bivariate data

set. The data set represents the national track records of the 55 different countries for the

1984 Los Angeles Olympics for women. Here X1 and X2 represent the track records for 100m

flat race and marathon respectively. The data set is originally available in IAAF/ Track and

Field Statistics Handbook for the 1984 Los Angeles Olympics, see also Johnson and Wichern

[13]. We provide some basic statistics of X1 and X2 in Table 3. From the histogram plots

and from the scatter plot, not reported here, of X1 and X2, it has been observed that both

X1 and X2 are right skewed and X1 and X2 are positively correlated. The sample correlation

coefficient between X1 and X2 is 0.646. Since both the marginals are positively skewed, and

sample correlation coefficient is also within the possible range of the proposed BVGE, we
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Model X1 X1

MLL KSD p MLL KSD p
GE -33.7369 0.1217 0.3900 -147.1649 0.1155 0.4559

Weibull -34.1514 0.1124 0.4123 -153.2186 0.1455 0.1948
Log-Normal -34.1498 0.1121 0.4157 -155.9186 0.1761 0.0659

Table 4: The maximized log-likelihood values, the Kolmogorov-Smirnov distances, and the
associated p values for different distribution functions and for two marginals are provided.

use the BVGE distribution to model this data set. Before analyzing the data set we have

subtracted 10 and 125 from X1 and X2 respectively.

Before progressing further we have fitted the generalized exponential distribution to the

marginals and obtained β̃1 = 33.1416, λ̃1 = 2.5116, β̃2 = 6.1719, λ̃2 = 0.0523. We have fitted

different other univariate distributions namely Weibull and log-normal distributions to the

marginals. The maximized log-likelihood (MLL) values, the Kolmogorov-Smirnov distances

(KSD) and the associated p values for the different distributions and for two marginals are

provided in Table 4. In case of GE model, we have also provided the plot of g(F̂ (x)) against

x in Figure 1. This plot can be used as a goodness of fit for the GE distribution, see Kannan

et al. [14] It is clear from all these, that GE distribution can be used to fit the marginals

reasonably well.

It may be mentioned that although several goodness of fit tests are available for an

arbitrary univariate distribution function, but for a general bivariate distribution functions

we do not have a satisfactory goodness of fit test. Because of this reason we have tested the

marginals only. At least it gives us an indication which bivariate distribution function can

be used. Using the above initial guess values of β1, β2, λ1 and λ2, we plot the approximate

profile log-likelihood of α from (15) in the Figure 2. It is clear that the profile log-likelihood

function is an unimodal function. From the profile log-likelihood function, we obtain an

initial guess value of α as 0.80. Using the above initial estimates, we obtain the MLEs

as α̂1 = 41.4916, λ̂1 = 2.5358, α̂2 = 7.7552, λ̂2 = 0.0526, α̂ = 0.8081, and the maximized
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Figure 1: The plot of g(F̂ (x)) against x of (a) X1 (b) X2
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Figure 2: The approximate profile log-likelihood function of α,

log-likelihood value as -268.1177. The 95% confidence intervals of α1, λ1, α2, λ1 and α

are (38.3275, 44.6557), (1.5171, 3.5545), (5.9861, 9.5153), (0.0315, 0.0737), (0.4409, 1.1753)

respectively.

Now for comparison purposes, we have fitted bivariate Weibull and bivariate log-normal

distributions arising from the same copula, i.e. using the marginals as Weibull and log-

normal distributions respectively in (6). The corresponding maximized log-likelihood values

for bivariate Weibull and bivariate log-normal distributions are -277.8718 and -282.1134

respectively. Although, it may not be always true, but at least in this case it is observed
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that the proposed BVGE provides a better fit to the given data set, than bivariate Weibull

and bivariate log-normal distributions, in terms of the log-likelihood function.

6 Generalization: Bivariate Proportional Reversed

Hazard Model

Although, so far we have introduced the bivariate absolute continuous generalized exponen-

tial distribution and discussed its several properties, but it is observed that our method can

be easily used for a much larger class of distribution functions, namely the Lehmann alter-

natives class or proportional reversed hazard class. A family of distribution functions, say

F , is called a Lehmann alternative class or proportional reversed hazard class if the elements

of F can be expressed as follows:

F = {F : F (x; θ) = (F0(x))θ, θ > 0}, (18)

here F0(·) is a distribution function and it is known as the baseline distribution function.

Note that for any θ > 0, F (x; θ) is a proper distribution function and the support of F (x; θ)

is same as the support of F0(x).

Lehmann [17] first introduced this class of distribution functions in a testing of hypoth-

esis problem, see for example Gupta, Gupta and Gupta [8]. Recently, proportional reversed

hazard model has received considerable attention in the statistical literature. Several propor-

tional reversed hazard models, with different F0(·) have been introduced and their statistical

properties have been studied quite extensively. Those include; the exponentiated Weibull

model by Mudholkar et al. ([22]), exponentiated Rayleigh by Surles and Padgett ([27]),

generalized or exponentiated exponential by Gupta and Kundu [9], exponentiated Pareto by

Shawky and Abu-Zinadah [26] and exponentiated gamma by Gupta, Gupta and Gupta [8]

were introduced and studied quite extensively by different authors.

Now for any given absolute continuous baseline distribution function F0(·), with the PDF
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f0(·), we introduce the bivariate proportional reversed hazard model as follows. A bivariate

random variable (X1, X2) is said to have a bivariate proportional reversed hazard model if

the joint PDF of (X1, X2) is

fX1,X2
(x1, x2) =

c1(F0(x1))
−α1−1(F0(x2))

−α2−1f0(x1)f0(x2)

[(F0(x1))−α1 + (F0(x2))−α2 − 1]α+2 , (19)

here α1 > 0, α2 > 0, α > 0 as before and c1 = α1α2α(α+1). Note that (19) is obtained from

the joint PDF of (U1, U2), (3), by using the transformation

Ui = (F0(Xi))
−αi − 1; i = 1, 2. (20)

Now we immediately have the following results which can be easily established.

Theorem 6.1: If (X1, X2) has the joint PDF (19), then

(i) X1 and X2 have the distribution functions (F0(·))αα1 and (F0(·))αα2 respectively.

(ii) The joint CDF of (X1, X2) is

FX1,X2
(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) =

[
(F0(x1))

−α1 + (F0(x2))
−α2 − 1

]−α
.

(iii) The joint survival function of (X1, X2) is

SX1,X2
(x1, x2) = P (X1 ≥ x1, X2 ≥ x2)

= 1 − (F0(x1))
αα1 − (F0(x2))

αα2 +
[
(F0(x1))

−α1 + (F0(x2))
−α2 − 1

]−α
.

The conditional PDF and CDF can be obtained very easily. Moreover the generation from

a bivariate proportional reversed hazard model is also straight forward. It can be obtained

by first generating (U1, U2) and then using the inverse transformation of (20), (X1, X2) can

be obtained. In the general case also it can be easily shown along the same line as Theorem

4.2, that if (X1, X2) has the joint PDF (19) and α1 = α2, then (X1, X2) has TP2 property.

If f0(·) is a decreasing function, then both the components of the joint bivariate hazard

function in the sense of Johnson and Kotz [12] are decreasing functions. Moreover, X1 and
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X2 are positive quadrant dependent, X1 (X2) is a regression dependent of X2 (X1) and X1

(X2) is a left tail decreasing in X2 (X1).

7 Conclusions

In this paper we have introduced an absolute continuous bivariate generalized exponential

distribution which has generalized exponential marginals. It has been obtained from a BE

distribution through a proper transformation. It should be mentioned that this may not

be the only way to generate bivariate distribution with a given marginals, see for example

Bandyopadhyay and Basu [1], Sankaran and Nair [25], Nayak [23] and the references cited

therein.

The proposed bivariate generalized exponential distribution has explicit joint PDF and

the joint CDF. Several properties of this distribution have been established. It is further ob-

served that using proper transformation a class of absolute continuous bivariate distributions

can be obtained and they have natural extension to the multivariate case also.

Note that we have defined the bivariate proportional reversed hazard model using the

transformation

Ui = (F0(Xi))
−αi − 1, i = 1, 2.

Similar development is also possible using the transformation

Ui = (S0(Xi))
−αi − 1, i = 1, 2, (21)

where S0(Xi) is any survival function. In this case also the joint PDF and and joint CDF

of (X1, X2) will be in closed form. Along the same line several other properties also can be

established. The work is in progress, it will be reported later.
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Appendix: Normal Equations and Observed Fisher In-

formation Matrix

Normal Equations:

We will present the normal equations. We use the following notations;

Ai1 = (1 − e−λ1xi1), A′
i1 = xi1e

−λ1xi1 , A′′
i1 = −x2

i1e
−λ1xi1 ,

Ai2 = (1 − e−λ2xi2), A′
i2 = xi2e

−λ2xi2 , A′′
i2 = −x2

i2e
−λ2xi2 .

∂l

∂λ1

= −
n∑

i=1

xi1 − (α1 + 1)
n∑

i=1

A′
i1

Ai1

+ (α + 2)
n∑

i=1

α1A
−α1−1
i1 A′

i1

A−α1

i1 + A−α2

i2 − 1
+

n

λ1

= 0

∂l

∂λ2

= −
n∑

i=1

xi2 − (α2 + 1)
n∑

i=1

A′
i2

Ai2

+ (α + 2)
n∑

i=1

α2A
−α2−1
i2 A′

i2

A−α1

i1 + A−α2

i2 − 1
+

n

λ2

= 0

∂l

∂α1

= −
n∑

i=1

ln Ai1 + (α + 2)
n∑

i=1

A−α1

i1 ln Ai1

A−α1

i1 + A−α2

i2 − 1
+

n

α1

= 0

∂l

∂α2

= −
n∑

i=1

ln Ai2 + (α + 2)
n∑

i=1

A−α2

i2 ln Ai2

A−α1

i1 + A−α2

i2 − 1
+

n

α2

= 0

∂l

∂α
= −

n∑

i=1

ln
(
A−α1

i1 + A−α2

i2 − 1
)

+
n

α
+

n

α + 1
= 0

Observed Fisher Information Matrix

In this subsection we present the elements of the observed Fisher information matrix.

∂2l

∂λ2
1

= − n

λ2
1

+ (α1 + 1)
n∑

i=1

xi1A
′
i1

A2
i1

− (α + 2)
n∑

i=1

α1xi1A
′
i1A

−α1−1
i1 Ci1

(A−α1

i1 + A−α2

i2 − 1)2
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∂2l

∂λ2
2

= − n

λ2
2

+ (α2 + 1)
n∑

i=1

xi2A
′
i2

A2
i2

− (α + 2)
n∑

i=1

α2xi2A
′
i2A

−α2−1
i2 Ci2

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂α2
1

= − n

α2
1

− (α + 2)
n∑

i=1

A−α1

i1 (ln Ai1)
2(1 − A−α2

i2 )

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂α2
2

= − n

α2
2

− (α + 2)
n∑

i=1

A−α2

i2 (ln Ai2)
2(1 − A−α1

i1 )

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂α2
= − n

α2
− n

(α + 1)2

∂2l

∂λ1∂λ2

= −(α + 2)
n∑

i=1

α1α2A
−α1−1
i1 A−α2−1

i2 A′
i1A

′
i2

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂λ1∂α1

= −
n∑

i=1

A′
i1

Ai1

+ (α + 2)
n∑

i=1

Di1

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂λ1∂α2

= −(α + 2)
n∑

i=1

α1A
−α1−1
i1 A′

i1A
−α2

i2 ln Ai2

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂λ1∂α
=

n∑

i=1

α1A
−α1−1
i1 A′

i1

A−α1

i1 + A−α2

i2 − 1

∂2l

∂λ2∂α1

= −(α + 2)
n∑

i=1

α2A
−α2−1
i2 A′

i2A
−α1

i1 ln Ai1

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂λ2∂α2

= −
n∑

i=1

A′
i2

Ai2

+ (α + 2)
n∑

i=1

Di2

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂λ2∂α
=

n∑

i=1

α2A
−α2−1
i2 A′

i2

A−α1

i1 + A−α2

i2 − 1

∂2l

∂α1∂α2

= −(α + 2)
n∑

i=1

(A−α1

i1 ln Ai1)(A
−α2

i2 ln Ai2)

(A−α1

i1 + A−α2

i2 − 1)2

∂2l

∂α1∂α
=

n∑

i=1

A−α1

i1 ln Ai1

(A−α1

i1 + A−α2

i2 − 1)

∂2l

∂α2∂α
=

n∑

i=1

A−α2

i2 ln Ai2

(A−α1

i1 + A−α2

i2 − 1)

where

Ci1 = (1 − A−α2

i2 )(1 + (α1 + 1)A−1
i1 e−λ1xi1) − A−α1

i1 (1 + e−λ1xi1A−1
i1 )

Ci2 = (1 − A−α1

i1 )(1 + (α2 + 1)A−1
i2 e−λ2xi2) − A−α2

i2 (1 + e−λ2xi2A−1
i2 )

Di1 = A−α1−1
i1 {(A−α2

i2 − 1)(1 − α1 ln Ai1) + A−α1

i1 }



22

Di2 = A−α2−1
i2 {(A−α1

i1 − 1)(1 − α2 ln Ai2) + A−α2

i2 }
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