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Abstract

Generalized exponential distribution has received some attention in the last few
years. Recently Kundu and Gupta (2011) and Shoaee and Khorram (2012) introduced
an absolute continuous bivariate generalized exponential distribution. In this paper
we propose an absolute continuous multivariate generalized exponential distribution.
The proposed distribution is very flexible, and the joint probability density functions
can take different shapes. We provide several properties of this model. Further, it is
observed that the multivariate generalized exponential model can be obtained using
multivariate Clayton copula. The maximum likelihood estimators are quite difficult to
compute in practice. Due to this reason, we propose two step estimation procedure
using the copula approach, which are quite easy to implement. Simulation experiments
are performed to compare the performances of the two different estimators, and the
performances are quite similar in nature particularly for large sample sizes. One multi-
variate bone mineral density data set has been analyzed for illustrative purposes, and
it is observed that the proposed model provides a very good fit to the data set.
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1 Introduction

The generalized exponential (GE) distribution proposed by Gupta and Kundu (1999) has

received some attention in the past few years. The two-parameter GE distribution has

been used quite successfully to analyze lifetime data in place of two-parameter gamma or

two-parameter Weibull distributions. The cumulative distribution function (CDF) of a two-

parameter GE distribution has the following form;

F (x;α, λ) =
(
1− e−λx

)α
; x > 0, (1)

and 0, otherwise. The corresponding probability density function (PDF) becomes

f(x;α, λ) = αλe−λx(1− e−λx)α−1; x > 0, (2)

and 0, otherwise. Here α > 0, and λ > 0, are the shape and scale parameters, respectively.

From now on it will be denoted by GE(α, λ). An extensive survey on the GE distribution

can be obtained in Nadarajah (2011), see also Gupta and Kundu (2007).

Using the concept similar to Marshall and Olkin (1967), Kundu and Gupta (2009) intro-

duced a bivariate GE distribution, which has a singular component. Following the approach

of Block and Basu (1974), by removing the singular component, Shoaee and Khorram (2012)

proposed an absolute continuous bivariate GE distribution, whose marginals are not the GE

distributions. Using the one parameter bivariate exchangeable distribution of Mardia (1962),

Kundu and Gupta (2011) introduced an absolute continuous bivariate generalized exponen-

tial distribution, whose marginals are the GE distributions. It is not very simple to generalize

Shoaee and Khoram’s bivariate generalized exponential distribution to its multivariate ver-
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sion. Kundu and Gupta’s absolute continuous bivariate generalized exponential distribution

can be obtained as a special case of the proposed multivariate distribution.

The main aim of this paper is to introduce an absolute continuous multivariate GE

distribution. Takahasi (1965) introduced multivariate Burr distribution by compounding

independent Weibull distributions with a gamma distribution, as a compounder. Using the

same approach Crowder (1989) introduced multivariate Weibull distribution. Surles and

Padgett (2005), using a suitable transformation of Takahasi (1965)’s multivariate Burr dis-

tribution proposed multivariate scaled Burr type X distribution. In this paper we introduce

an absolute continuous multivariate GE (MVGE) distribution by making a suitable trans-

formation from Takahasi’s multivariate Burr distribution. The MVGE distribution has the

GE marginals. Generation from the MVGE distribution has been addressed. We discuss

several properties of the proposed distribution.

Estimation of the unknown parameters is an important problem. The maximum likeli-

hood estimators (MLEs) cannot be obtained in closed form. The MLEs can be obtained by

solving multidimensional optimization problem. We propose alternative estimators based on

copula which can be obtained quite conveniently. Monte Carlo simulations are performed

to compare the performances of the different estimators and it is observed that the perfor-

mance of the MLEs and the estimators based on copula are quite similar. One data analysis

has been performed to show how the proposed model and the method work in a real life

situation.

Rest of the paper is organized as follows. In Section 2, we provide the necessary pre-

liminaries. The MVGE has been introduced in Section 3. In Section 4, we discuss several

properties and in Section 5, we study inferential issues. Monte Carlo simulation results and

the analysis of a data set are provided in Section 6. In Section 7, we conclude the paper.
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2 Preliminaries

2.1 Dependence and Stochastic Order

Several notions of positive or negative dependence for multivariate distributions for varying

degree of strengths are available in the literature, see for example Boland et al. (1996),

Colangelo et al. (2005, 2008), and the references therein. The notions of positive dependence

were introduced in the literature to model the fact that large values of a component of

multivariate random vector are probabilistically associated with large values of the others.

Similarly, the notion of negative dependence captures the fact that large or small values of

a component of a random vector are probabilistically associated with small or large values

of the others. In this paper we will consider three such positive dependence concepts.

A random vector X = (X1, . . . , Xp)
T , is said to be positively lower orthant dependent

(PLOD) if FX (·), the joint cumulative distribution function of X satisfies the following

property:

FX (x1, . . . , xp) ≥
p∏
i=1

FXi(xi), ∀x = (x1, . . . , xp)
T , (3)

here FXi(·) is the marginal distribution function of Xi for i = 1, . . . , p.

Further, we will be using the following notations. For x ∈ Rp, a phrase such that ‘non-

decreasing’ in x means non-decreasing in each component xi, for i = 1, . . . , p. If A is a subset

of the set {1, . . . , p}, then XA denotes the vector (Xi|i ∈ A), similarly, xA is also defined.

The following definitions are known in the statistical literature, see for example Joe (1997).

A p-dimensional random vector X is said to be left tail decreasing (LTD) if

P [XB ≤ xB|XA ≤ xA]

is non-increasing in xA for all xB. Here the sets A and B are disjoint partition of the set

{1, . . . , p}.
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Another multivariate dependence notion is the multivariate left corner set decreasing

property. A random vector X is said to have left corner set decreasing property, if

P [X1 ≤ x1, . . . , XP ≤ xp|X1 ≤ x′1, . . . , XP ≤ x′p] (4)

is non-increasing in x′, for every choice of x = (x1, · · · , xp)T . Equivalently, (4) can be written

as

FX (x ∧ x′)

FX (x′)
non-increases in x′,

where x′ = (x′1, . . . , x
′
p)
T and x ∧ x′ = (min{x1, x′1}, . . . ,min{xp, x′p})T .

Now we will define the following stochastic ordering for a multivariate distribution. It is

a natural generalization from a univariate distribution to a multivariate distribution. Let us

recall that for two random variables X and Y , X is said to be stochastically smaller than

Y (X ≤st Y ) if P (X ≥ a) ≤ P (Y ≥ a), for all a ∈ R. The concept can be generalized to p

dimensional random vectors also as follows.

Let X and Y be two p-dimensional random vectors such that

P (X ∈ U) ≤ P (Y ∈ U) for all upper sets U ⊂ Rp,

then X is said to be smaller than Y in stochastic order, and it will be denoted by X ≤st Y .

2.2 Copula

The dependence among the random variables X1, . . . , Xp, is completely described by the joint

distribution function FX (x1, . . . , xp). The idea of separating FX (x1, . . . , xp) in two parts

- the one which describes the dependence structure, and the other one which describes the

marginal behavior, leads to the concept of copula. To every p-variate distribution function

FX (·), with continuous marginals FX1 , . . . , FXp , corresponds a unique function C : [0, 1]p →
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[0, 1], called a copula function such that

FX (x) = C
[
FX1(x1), . . . , FXp(xp)

]
; for x = (x1, . . . , xp)

T ∈ Rp.

We have the following relation between the joint PDF of X1, . . . , Xp, and the copula density

function;

fX (x) = c
[
FX1(x1), . . . , FXp(xp)

]
fX1(x1) . . . fXp(xp); for x = (x1, . . . , xp)

T ∈ Rp. (5)

Here fX (x) is the joint PDF of X1, . . . , Xp, fXj(xj) is the PDF of Xj, for j = 1, . . . , p, and

c(u1, . . . , up) is the copula density function of C(u1, . . . , up). Moreover, from Sklar’s theorem

(see Nelsen: 2006, page 18), it follows that if FX (x) is a joint distribution function with

continuous marginals FX1(·), . . . , FXp(·), and if F−1X1
(·), . . . , F−1Xp

(·) are the inverse functions

of FX1 , . . . , FXp , respectively, then there exists a unique copula C in [0, 1]p, such that

C(u1, . . . , up) = FX

(
F−1X1

(u1), . . . , F
−1
Xp

(up)
)

for u = (u1, . . . , up)
T ∈ [0, 1]p.

It is well known that many dependence properties of a multivariate distribution are copula

properties, and therefore, can be obtained by studying the corresponding copula.

2.3 Burr Type Distribution

Burr (1942) introduced twelve different distribution functions for modelling data. Among

these twelve distribution functions, Burr Type X and Burr Type XII received the maximum

attention. Thorough analysis of Burr Type XII distribution in Rodriguez (1977) (see also

Wingo: 1993). A random variable Z is said to have a Burr Type XII distribution if the CDF

of Z for δ > 0, θ > 0 and β > 0 is

FZ(z) = 1− 1

(1 + θzβ)δ
; for z > 0, (6)

and 0 otherwise. The associated PDF becomes

fZ(z) =
βθzβ−1

(1 + θzβ)δ+1
; for z > 0, (7)
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and 0 otherwise.

The following connection between a Burr Type XII and a GE distribution can be easily

established, and it will be used later to construct a multivariate GE distribution. Consider

a random variable

X = −1

λ
ln
(

1−
(
1 + θZβ

)−1/τ)
, (8)

where Z is a non-negative random variable with the CDF given in (6) and τ > 0. Then, X

follows (∼) GE(α, λ) with α = δτ .

3 Multivariate GE Distribution

Takahasi (1965) introduced multivariate Burr (Type XII) distribution which can be described

as follows. A p-variate random vector Z = (Z1, . . . , Zp)
T is said to have a multivariate Burr

(Type XII) distribution if it has the joint PDF

fZ(z1, . . . , zp) =
Γ(θ + p)

Γ(θ)
×

∏p
i=1 βiθiz

βi−1
i(

1 +
∑p

i=1 θiz
βi
i

)θ+p ; for z1 > 0, . . . , zp > 0. (9)

Here β1 > 0, . . . , βp > 0, θ1 > 0, . . . , θp > 0 and θ > 0. It has been shown by Takahasi (1965)

that if Z = (Z1, . . . , Zp)
T is a p-variate Burr distribution then for any q < p, (Zi1 , . . . , Ziq),

for 1 ≤ i1 < i2 < . . . < iq ≤ p, is a q-variate Burr distribution. Now for the random vector

(Z1, . . . , Zp)
T with joint PDF (9), consider the following random vector X = (X1, . . . , Xp)

T ,

where for i = 1, . . . , p,

Xi = − 1

λi
ln

(
1−

(
1 + θiZ

βi
i

)−1/αi)
, (10)

λ1 > 0, . . . , λp > 0, β1 > 0, . . . , βp > 0, α1 > 0, . . . , αp > 0. The joint PDF of (X1, . . . , Xp)
T

is

fX (x1, . . . , xp) =
ce−

∑p
i=1 λixi

∏p
i=1

(
1− e−λixi

)−αi−1[∑p
i=1 (1− e−λixi)−αi − (p− 1)

]θ+p . (11)
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Here the normalizing constant c =

p∏
i=1

αiλi(θ + i − 1). From now on a p-variate random

vector with the joint PDF (5.1) will be called a multivariate generalized exponential (MVGE)

distribution, and it will be denoted by the MVGEp(α1, . . . , αp, β1, . . . , βp, θ).

The proposed MVGE can be obtained in many other ways also. Consider the follow-

ing one-parameter exchangeable p-variate distribution of Mardia (1962) defined on (0,∞)p.

Mardia (1962) defined the following p-variate random vector V = (V1, . . . , Vp)
T , for θ > 0,

with the joint PDF

fV (v1, . . . , vp) =
θ(θ + 1) . . . (θ + p− 1)

(1 + v1 + v2 + . . .+ vp)θ+p
, (12)

where v1 > 0, . . . , vp > 0. He showed that if V is a random vector with the joint PDF (12),

then the marginals, the joint CDF, and the joint survival function can be obtained in explicit

forms. Now consider the following p-variate random vector X = (X1, . . . , Xp)
T as follows

Vi =
(
1− e−λiXi

)−αi − 1; i = 1, . . . , p. (13)

Then the random vector X has the joint PDF (5.1).

We show that the MVGE distribution can be obtained from the multivariate Clayton

copula also. Consider the one-parameter (θ > 0) p-variate Clayton copula (see for example

Nelsen: 2006),

Cθ(u1, . . . , up) =
1(

u
−1/θ
1 + u

−1/θ
2 + . . .+ u

−1/θ
p − (p− 1)

)θ , (14)

for u1 > 0, . . . , up > 0. Now we construct a new multivariate CDF for x1 > 0, . . . , xp > 0,

using the Clayton copula (14) as follows;

FX (x1, . . . , xp) = Cθ(FX1(x1), . . . , FXp(xp)), (15)

where for i = 1, . . . , p,

FXi(xi) =
(
1− e−λixi

)αiθ
.
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Clearly, for i = 1, . . . , p, Xi ∼ GE(θαi, λi), and the joint CDF of X becomes

FX (x1, . . . , xp) =
1[∑p

i=1 (1− e−λixi)−αi − (p− 1)
]θ . (16)

Now using the copula density function cθ(u1, . . . , up), where

cθ(u1, . . . , up) =
θ(θ + 1) . . . (θ + p− 1)

θp
×

∏p
j=1 u

−( 1
θ
+1)

j(
u
−1/θ
1 + . . .+ u

−1/θ
p − (p− 1)

)(θ+p) ,
it is immediate that

∂p

∂x1 . . . ∂xp
FX (x1, . . . , xp) = fX (x1, . . . , xp).

Here fX (x1, . . . , xp) is same as defined in (5.1). Hence, if X ∼MVGEp(α1, . . . , αp, β1, . . . , βp, θ),

then it has the CDF (16).

The following result will be useful to generate random samples from the MVGE distri-

bution.

Theorem 3.1: Suppose the p-variate random vector V = (V1, . . . , Vp)
T has the joint PDF

(12), then the marginal PDF of V1 and conditional PDFs of

{V2|V1 = v1}, {V3|V1 = v1, V2 = v2}, . . . , {Vp|V1 = v1, . . . , Vp−1 = vp−1},

for v1 > 0, . . . , vp > 0, are, respectively,

fV1(v1) =
θ

(1 + v1)θ+1
;

fV2|V1=v1(v2) =
(θ + 1)(1 + v1)

θ+1

(1 + v1 + v2)θ+2
;

fV3|V1=v1,V2=v2(v3) =
(θ + 2)(1 + v1 + v2)

θ+2

(1 + v1 + v2 + v3)θ+3
;

...

fVp|V1=v1,...,Vp−1=vp−1(vp) =
(θ + p− 1)(1 + v1 + . . .+ vp−1)

θ+p−1

(1 + v1 + . . .+ vp)θ+p
.
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The corresponding CDFs are,

FV1(v1) = 1− 1

(1 + v1)θ
;

FV2|V1=v1(v2) = 1−
(

1 + v1
1 + v1 + v2

)θ+1

;

FV3|V1=v1,V2=v2(v3) = 1−
(

1 + v1 + v2
1 + v1 + v2 + v3

)θ+2

;

...

FVp|V1=v1,...,Vp−1=vp−1(vp) = 1−
(

1 + v1 + . . .+ vp−1
1 + v1 + . . .+ vp

)θ+p−1
,

respectively.

Proof: The proof of Theorem 3.1 can be obtained in a routine manner, and it is avoided.

Using Theorem 3.1, a random vector V = (V1, . . . , Vp)
T can be easily generated, sequen-

tially. First generate V1 using the inverse transformation, then V2 and so on. Once Vi’s are

generated, Xi’s can be easily obtained using the transformation (13).

4 Properties

In this section we provide several properties of the MVGE distribution. First we provide the

distribution functions of the marginals, conditionals, and the extreme order statistics of the

MVGE distribution.

Theorem 4.1: If X = (X1, . . . , XP )T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, θ), then

(a) X1 ∼ GE(α1θ, λ1), . . ., Xp ∼ GE(αpθ, λp).

(b) For any non-empty subset Iq = (i1, . . . , iq) ⊂ (1, . . . , p), the q-dimensional marginal

XIq = (Xi1 , . . . , Xiq)
T ∼ MVGEq(αi1 , . . . , αiq , λi1 , . . . , λiq , θ).

(c) The conditional distribution function of (X iq |XI−Iq ≤ xI−Iq), where the set I − Iq =



11

{i ∈ I, i 6= i1, . . . , iq}, is

P (X iq ≤ xIq |XI−Iq ≤ xI−Iq) =

[∑
i∈I−Iq(1− e

−λixi)−αi − (p− q − 1)∑
i∈I(1− e−λixi)−αi − (p− 1)

]θ
. (17)

(d) The survival function of X = (X1, . . . , Xp)
T is

SX (x) = 1−
p∑
i=1

(1− e−λixi)θαi +
∑

1≤i<j≤p

1

[(1− e−λixi)−αi + (1− e−λjxj)−αj − 1]
θ

+

. . .+ (−1)p+1 1

[
∑p

i=1(1− e−λixi)−αi − (p− 1)]
θ
. (18)

Proof: The proofs of (a), (b) and (c) can be obtained using (16). The proof of (d) can be

obtained using the following relation:

P (X > x) = 1− P ((X > x)c) = 1− P ({X1 ≤ x1} ∪ {X2 ≤ x2} ∪ . . . ∪ {Xp ≤ xp})

= 1−
p∑
i=1

P (Xi ≤ xi) +
∑

1≤i<j≤p

P (Xi ≤ xi, Xj ≤ xj) + . . .+

. . . (−1)p+1P

(
p∏
i=1

Xi ≤ xi

)
.

It is clear that if X(1) = min{X1, . . . , Xp} and X(p) = max{X1, . . . , Xp}, then their

distributions can be easily obtained from the expressions (18) and (16), respectively.

Theorem 4.2: If X = (X1, . . . , XP )T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, θ), then X is

(a) PLOD, positively lower orthant dependent.

(b) LTD, left tail decreasing.

(c) LCSD, left corner set decreasing.

Proof: (a) Note that a random vector X is PLOD if and only if it satisfies (3). Since,

PLOD property is a copula property, Nelsen (2006), note that to prove (3) in case of the
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MVGE, it is equivalent to show

Cθ(u1, . . . , up) =
1(

u
−1/θ
1 + u

−1/θ
2 + . . .+ u

−1/θ
p − (p− 1)

)θ ≥ u1 . . . up, (19)

for all 0 < u1, . . . , up < 1. Make the following transformation v1 = u
1/θ1
1 , . . . , vp = u

1/θp
p .

Hence proving (19) is equivalent to prove

0 ≤ v1v2 . . . vp

[
1

v1
+ . . .+

1

vp
− (p− 1)

]
≤ 1, (20)

for all 0 < v1, . . . , vp < 1. Now we will prove (20) by induction on p. Clearly the result is

true for p = 1. It is assumed that the result is true for p = k, and we will prove that the

result is true for p = k + 1. For 0 ≤ v1, . . . , vk+1 ≤ 1, let us write

D = v1v2 . . . vk+1

[
1

v1
+ . . .+

1

vk+1

− k
]

= A+B.

Here, due to induction hypothesis

A = v1v2 . . . vk

[
1

v1
+ . . .+

1

vk
− (k − 1)

]
vk+1 ≤ vk+1

and

B = v1v2 . . . vkvk+1

[
1

vk+1

− 1

]
= v1v2 . . . vk(1− vk+1) ≤ (1− vk+1).

Hence D = A+B ≤ vk+1 + (1− vk+1) = 1.

(b) To prove (b), without loss of generality, let us take A = {1, . . . , q} and B = {q+1, . . . , p}.

If x = (x1, . . . , xp)
T , xi ≥ 0, for i = 1, . . . , p, then

P (XB ≤ xB|XA ≤ xA) =

[∑q
i=1(1− e−λixi)−αi − (q − 1)∑p
i=1(1− e−λixi)−αi − (p− 1)

]θ
. (21)

The right hand side of (21) can be written as[
1

1 + [
∑p

i=q+1(1− e−λixi)−αi − (p− q)][
∑q

i=1(1− e−λixi)−αi − (q − 1)]−1

]θ
. (22)
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Since for fixed xq+1, . . . , xp, the function defined in (22), is a non-increasing function of

x1, . . . , xq, the result follows.

(c) In order to prove the part (c), let us consider

FX (x ∧ x′)

FX (x′)
=

[ ∑p
i=1(1− e−λix

′
i)−αi − (p− 1)∑p

i=1(1− e−λimin{xi,x′i})−αi − (p− 1)

]θ
. (23)

We will show that the function defined in (23) is a non-increasing function of x′1, when

x′2, . . . , x
′
p are kept fixed, and that will prove the result. Consider two cases separately.

Suppose x′1 ≤ x1, in this case the right hand side of (23) as a function of x′1, can be written

as [g(x′1)]
θ
, where

g(x′1) =
u(x′1) + c1
u(x′1) + c2

,

u(x′1) = (1− e−λ1x′1)−α1 ,

c1 =

p∑
i=2

(1− e−λix′i)−αi − (p− 1) and c2 =

p∑
i=2

(1− e−λimin{xi,x′i})−αi − (p− 1).

Clearly, c2 ≥ c1 ≥ 0. Since u(x′1) is a non-decreasing function of x′1, it follows that g(x′1),

hence [g(x′1)]
θ
, is a non-increasing function of x′1. Now for x′1 > x1, the right hand side of

(23) as a function of x′1, can be written as c(u(x′1) + c1) for c > 0. Here, c1 is same as before,

and

c =

[
p∑
i=1

(1− e−λimin{xi,x′i})−αi − (p− 1)

]−θ
.

Since u(x′1) is a non-decreasing function of x′1, the result immediately follows.

Theorem 4.3: If X = (X1, . . . , XP )T ∼ MVGEp(α1, . . . , αp, λ1, . . . , λp, θ), then X has a

multivariate total positivity of order two (MTP2) property.

Proof: Recall that FX (x) has the MTP2 property, if and only if

FX (x)FY (y)

FX (x ∨ y)FY (x ∧ y)
≤ 1. (24)
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Here x = (x1, . . . , xp)
T , y = (y1, . . . , yp)

T , x ∨ y = (x1 ∨ y1, . . . , xp ∨ yp)T , x ∧ y = (x1 ∧

y1, . . . , xp ∧ yp)T , where c ∨ d = max{c, d} and c ∧ d = min{c, d}. We will use the following

notations for i = 1, . . . , p;

ai = (1− e−λixi)−αi and bi = (1− e−λiyi)−αi .

Therefore, proving (24) is equivalent to proving(
p∑
i=1

min{ai, bi} − (p− 1)

)(
p∑
i=1

max{ai, bi} − (p− 1)

)
≤(

p∑
i=1

ai − (p− 1)

)(
p∑
i=1

bi − (p− 1)

)
. (25)

Here ai ≥ 1 and bi ≥ 1 for i = 1, . . . , p. Note that (25) can be established if we can show for

ci ≥ 0 and di ≥ 0,(
p∑
i=1

min{ci, di}

)(
p∑
i=1

max{ci, di}

)
≤

(
p∑
i=1

ci

)(
p∑
i=1

di

)
. (26)

If ci ≥ di or ci ≤ di for i = 1, . . . , p, (26) easily follows. Suppose there exists a 1 < q < p,

and without loss of generality we assume that c1 ≤ d1, . . . , cq ≤ dq, cq+1 > dq+1, . . . , cp > dp.

Therefore (
p∑
i=1

ci

)(
p∑
i=1

di

)
−

(
p∑
i=1

min{ci, di}

)(
p∑
i=1

max{ci, di}

)
=(

p∑
i=q+1

(ci − di)

)(
q∑
i=1

(di − ci)

)
≥ 0.

Theorem 4.4: Suppose X and Y are p-variate random vectors, such that

X ∼MVGEp(α1, . . . , αp, λ1, . . . , λp, θ) and Y ∼MVGEp(β1, . . . , βp, λ1, . . . , λp, θ).

If αi ≤ βi for i = 1, . . . , p, then X ≤st Y .
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Proof: Since αi ≤ βi, it follows Xi ≤st Yi, for i = 1, . . . , p. since X and Y have same

copula, the result follows using the Theorem 6.B.1 of Joe (1997).

Theorem 4.5: Suppose X and Y are p-variate random vectors, such that

X ∼MVGEp(α1, . . . , αp, λ1, . . . , λp, θ), Y ∼MVGEp(α1, . . . , αp, λ1, . . . , λp, δ),

and they are independently distributed. Then

P (Y ≤X) = P (Y1 ≤ X1, . . . , Yp ≤ Xp) =

p∏
i=1

θ + i− 1

θ + δ + i− 1
.

Proof: For c =

p∏
i=1

αiλi(θ + i− 1),

P (Y ≤X) = P (Y1 ≤ X1, . . . , Yp ≤ Xp)

=

∫ ∞
0

. . .

∫ ∞
0

fX (x1, . . . , xp)FY (x1, . . . , xp)dx1 . . . dxp

=

∫ ∞
0

· · ·
∫ ∞
0

ce−
∑p
i=1 λixi

∏p
i=1

(
1− e−λixi

)−αi−1[∑p
i=1 (1− e−λixi)−αi − (p− 1)

]θ+δ+pdx1 . . . dxp
=

p∏
i=1

θ + i− 1

θ + δ + i− 1
.

Interestingly P (Y ≤ X) does not depend on αi’s and λi’s, it just depends on the copula

parameters.

5 Different Estimators

5.1 Maximum Likelihood Estimators

Suppose {(xi1, . . . , xip); i = 1, . . . , n} is a random sample of size n from a MVGE(Θ), where

Θ = (α1, . . . , αp, λ1, . . . , λp, θ), and consider the maximum likelihood estimation of the 2p+1

unknown parameters of Θ. The likelihood function of the unknown parameters can be
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written as

L(Θ) =

(
p∏
i=1

αiλi(θ + i− 1)

)n
e−

∑n
i=1

∑p
j=1 λjxij

∏n
i=1

∏p
j=1

(
1− e−λjxij

)−αj−1∏n
i=1

[∑p
j=1 (1− e−λjxij)−αj − (p− 1)

]θ+p .

Hence, the log-likelihood function becomes

l(Θ) = n

p∑
j=1

lnαj + n

p∑
j=1

lnλj −
p∑
j=1

λj

n∑
i=1

xij −
p∑
j=1

(αj + 1)
n∑
i=1

ln(1− e−λjxij) +

n

p∑
j=1

ln(θ − j + 1)−
p∑
j=1

n∑
i=1

(θ + p) ln

{
p∑
j=1

(1− e−λjxij)−αj − (p− 1)

}
(27)

The MLEs of the unknown parameters can be obtained by maximizing the log-likelihood

function (27) with respect to 2p + 1 unknown parameters. The explicit solutions are not

available, hence we need to obtain numerical solutions. It involves solving simultaneously

2p + 1 non-linear equations. Newton-Raphson method may be used to solve the 2p + 1

non-linear equations, but for large p, it is quite difficult to implement.

Due to this reason, we propose to use the MBP (maximization by parts) method proposed

by Song, Fan and Kalbfleisch (2005). The MBP method can be used quite effectively to

compute the MLEs in this case, and it involves solving only p + 1 non-linear equations

separately, in each iteration. Implementation of the proposed algorithm is quite simple, and

it can be used quite effectively for large p also. Moreover, in this case it can be proved that

it produces consistent estimates of the unknown parameters at each iteration. We make the

following one to one transformation of the parameters:

(α1, . . . , αp, λ1, . . . , λp, θ)⇔ (β1, . . . , βp, λ1, . . . , λp, θ),

where βi = αiθ, for i = 1, . . . , p. For convenience we denote Θ = (β1, . . . , βp, λ1, . . . , λp, θ).

We re-write the log-likelihood function (27) , in terms of the copula density as follows:

l(Θ) = l1(Θ1) + l2(Θ1, θ), (28)
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where Θ1 = (β1, . . . , βp, λ1, . . . , λp), l1(Θ1) =

p∑
j=1

l1j(βj, λj),

l1j(βj, λj) = n ln βj + n lnλj −
n∑
i=1

λjxij +
n∑
i=1

(βj − 1) ln(1− e−λjxij), (29)

and for uij(βj, λj) = (1− e−λjxij)βj , i = 1, . . . , n, j = 1, . . . , p,

l2(Θ1, θ) = −np ln θ + n

p∑
j=1

ln(θ + j − 1)−
(

1

θ
+ 1

) n∑
i=1

p∑
j=1

lnuij(βj, λj)−

(θ + p)
n∑
i=1

ln
(
(ui1(β1, λ1))

−1/θ + . . .+ (uip(βp, λp))
−1/θ − (p− 1)

)
. (30)

Now we propose the following MBP algorithm to compute the MLEs of Θ. We use the

following notations:

l̇1(Θ1) =
∂

∂Θ1

l1(Θ1), l̇21(Θ1, θ) =
∂

∂Θ1

l2(Θ1, θ), l̇22 =
∂

∂θ
l2(Θ1, θ)

Algorithm 1:

Step 1: Find Θ
(1)
1 by solving l̇1(Θ1) = 0.

Step 2: Find θ(1), by solving l̇22(Θ
(1)
1 , θ) = 0.

Step 3: At the k-th iteration, for k > 0, find Θ
(k+1)
1 , by solving l̇1(Θ1) = −l̇21(Θ(k)

1 , θ(k)).

Step 4: Find θ(k+1), by solving l̇22(Θ
(k+1), θ) = 0.

The implementation details are provided in Appendix A.

Since the MVGE satisfies all the conditions for the consistency and asymptotic normality

of the MLEs to hold, we have the following result. If Θ̂ is the MLE of Θ, then

√
n(Θ̂−Θ)→ N2p+1(0, I

−1). (31)

Here I is the expected Fisher information matrix. Note that it is not difficult to compute the

expected Fisher information matrix which can be expressed in p dimensional integration. The
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observed information matrix can be used in construction of asymptotic confidence intervals

of the unknown parameters. The observed Fisher information matrix can be obtained by

taking second derivatives of the log-likelihood function. They are provided in Appendix B

for easy reference.

5.2 Two Stage Copula Estimators

Since the MVGE has a very convenient copula structure, the method of Joe (2005) can be

immediately used to provide two stage copula estimators of the unknown parameters. In

this case the estimators can be obtained by solving p + 1 non-linear equations separately,

hence computationally two-stage copula estimators can be obtained more conveniently than

the MLEs. The two-stage copula estimators can be obtained very easily using the structure

of the log-likelihood function (28). The following algorithm can be used for that purpose:

Algorithm 2:

Step 1: Maximize l1(Θ1) with respect to Θ1 to compute the estimate of Θ1, say Θ̃1.

Step 2: Maximize l2(Θ̃1, θ) with respect to θ, to get an estimate of θ, say θ̃.

Since Step 1 can be obtained by solving p non-linear equations separately, it is immediate

that Θ̃ can be obtained by solving p + 1 non-linear equations separately. We have the

following result. If Θ̃ is the two-stage estimator of Θ, then

√
n(Θ̃−Θ)→ N2p+1(0,W ). (32)

The exact expressions of the different elements of W can be obtained using the method

provided by Joe (2005) and they are provided in Appendix C.
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6 Simulations and Data Analysis

6.1 Simulations

In this section we present some simulation results mainly to compare the performances of

the MLEs and the two-stage estimators. We have taken different p (p = 1 and 2) values,

different sample sizes (n = 20, 40, 60, 80 and 100) and different θ (θ = 1 and 2) values. The

samples have been generated using the method proposed in Section 3. For each data set,

we have calculated the estimators of the unknown parameters using two-stage estimators,

and also based on MLEs. In calculating the MLEs we have used the two-stage estimators

as initial guesses. We report the average estimates and the square root of the mean squared

errors based on 1000 replications. The results are reported in Tables 1 - 8. In each box

the upper figures indicate the average estimate and the associated square root of the mean

squared errors (MSE) is reported below.

It is clear from the simulation results that as the sample size increases, as expected, the

biases and the MSEs decrease in both cases. Both methods perform quite satisfactorily. The

performance of the MLEs are slightly better than the estimators based on two-stage methods

in terms of lower MSEs and biases particularly for small sample sizes. For large sample sizes

both the methods behave quite similarly in terms of biases and MSEs. Although both

methods perform quite satisfactorily, computationally the two-stage estimators are much

easier to obtain than the MLEs.
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Table 1: The average estimates based on two-stage copula method and the associated mean
squared errors (reported below) for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3
= 1 and θ = 1.0.

n α1 λ1 α2 λ2 α3 λ3 θ
20 1.1216 1.1459 1.0900 1.1112 1.1060 1.1375 1.2021

0.4505 0.3775 0.4136 0.3518 0.4596 0.3864 0.6974
40 1.0542 1.0694 1.0391 1.0501 1.0429 1.0597 1.0874

0.2751 0.2407 0.2617 0.2341 0.2716 0.2375 0.3745
60 1.0391 1.0383 1.0341 1.0303 1.0324 1.0303 1.0467

0.2146 0.1808 0.2132 0.1823 0.2148 0.1743 0.2746
80 1.0314 1.0285 1.0262 1.0227 1.0228 1.0205 1.0327

0.1905 0.1538 0.1824 0.1553 0.1824 0.1522 0.2295
100 1.0264 1.0223 1.0188 1.0144 1.0160 1.0118 1.0239

0.1647 0.1377 0.1568 0.1345 0.1592 0.1305 0.2006

Table 2: The average estimates and the associated mean squared errors (reported below) of
the MLEs for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = 1 and θ = 1.0.

n α1 λ1 α2 λ2 α3 λ3 θ
20 1.1142 1.1301 1.0698 1.1096 1.0978 1.1167 1.1723

0.4221 0.3552 0.4013 0.3498 0.4327 0.3689 0.6767
40 1.0481 1.0456 1.0227 1.0448 1.0352 1.0448 1.0765

0.2522 0.2317 0.2445 0.2289 0.2598 0.2267 0.3592
60 1.0267 1.0228 1.0167 1.0234 1.0291 1.0299 1.0401

0.2089 0.1756 0.2078 0.1778 0.2098 0.1705 0.2611
80 1.0229 1.0199 1.0198 1.0202 1.0177 1.0196 1.0298

0.1889 0.1501 0.1801 0.1498 0.1801 0.1503 0.2109
100 1.0199 1.0201 1.0187 1.0098 1.0098 1.0101 1.0178

0.1589 0.1354 0.1498 0.1311 0.1497 0.1298 0.1996

6.2 Data Analysis

In this section we present the analysis of a data set for illustrative purposes mainly to show

how the proposed model and the estimators work in practice. We analyze a multivariate

data set obtained from Johnson and Wichern (1999, page 34), representing the bone mineral

density (BMD) measured in g/cm2 for 25 individuals. The data are presented in Table 9.
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Table 3: The average estimates based on two-stage copula method and the associated mean
squared errors (reported below) for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3
= 1 and θ = 2.0.

n α1 λ1 α2 λ2 α3 λ3 θ
20 1.2628 1.1172 1.2132 1.0873 1.2401 1.1071 2.4206

0.7666 0.3108 0.7771 0.2929 0.7872 0.3164 1.3776
40 1.1098 1.0553 1.0864 1.0388 1.0939 1.0462 2.2607

0.4405 0.2001 0.4119 0.1972 0.4367 0.1984 1.0397
60 1.0701 1.0299 1.0651 1.0250 1.0652 1.0258 2.1613

0.3341 0.1522 0.3314 0.1554 0.3387 0.1500 0.8182
80 1.0570 1.0223 1.0529 1.0197 1.0479 1.0168 2.1182

0.2935 0.1295 0.2856 0.1357 0.2902 0.1289 0.7127
100 1.0542 1.0176 1.0418 1.0123 1.0378 1.0094 2.0806

0.2547 0.1171 0.2470 0.1154 0.2529 0.1104 0.6089

Table 4: The average estimates and the associated mean squared errors (reported below) of
the MLEs for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = 1 and θ = 2.0.

n α1 λ1 α2 λ2 α3 λ3 θ
20 1.2427 1.0988 1.1943 1.0678 1.1756 1.0896 2.3452

0.7332 0.2934 0.7215 0.2786 0.7567 0.2998 1.3561
40 1.0799 1.0336 1.0643 1.0265 1.0653 1.0227 2.2225

0.4228 0.1889 0.3991 0.1801 0.4118 0.1768 1.0222
60 1.0565 1.0111 1.0338 1.0114 1.0399 1.0234 2.1556

0.3139 0.1447 0.3098 0.1410 0.3089 0.1392 0.7789
80 1.0338 1.0210 1.0234 1.0102 1.0198 1.0119 2.0798

0.2815 0.1198 0.2789 0.1210 0.2817 0.1219 0.7070
100 1.0220 1.0165 1.0228 1.0011 1.0229 1.0057 2.0182

0.2489 0.1143 0.2389 0.1099 0.2498 0.1101 0.5988

Preliminary data analysis suggests that marginals are coming from skewed distributions

and they have increasing hazard functions. Therefore, the GE distribution can be used to

fit the marginals. We have used the three-parameter GE for fitting the marginals, i.e. it has

the PDF

f(x;α, λ, µ) = αλe−λ(x−µ)(1− e−λ(x−µ))α−1,

and the location parameter µ is assumed to be known. We have fitted the three-parameter

GE distributions to the marginals. In this case we first obtain the unbiased estimator of the
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Table 5: The average estimates based on two-stage copula method and the associated mean
squared errors (reported below) for different parameters when α1 = λ1 = α2 = λ2 = α3 =
λ3 = α4 = λ4 = α5 = λ5 = 1 and θ = 1.0.

n α1 λ1 α2 λ2 α3 λ3 α4 λ4 α5 λ5 θ

20 1.0876 1.1195 1.0788 1.1273 1.0753 1.1246 1.0700 1.1192 1.0750 1.1141 1.1478
0.3419 0.3722 0.3491 0.3736 0.3467 0.3749 0.3429 0.3656 0.3443 0.3537 0.5226

40 1.0273 1.0594 1.0214 1.0542 1.0211 1.0542 1.0264 1.0592 1.0195 1.0550 1.0777
0.2028 0.2327 0.2075 0.2189 0.2149 0.2195 0.2118 0.2345 0.2058 0.2307 0.2859

60 1.0149 1.0340 1.0167 1.0389 1.0129 1.0335 1.0148 1.0314 1.0150 1.0347 1.0454
0.1606 0.1811 0.1629 0.1851 0.1639 0.1795 0.1668 0.1814 0.1608 0.1775 0.2157

80 1.0066 1.0242 1.0111 1.0287 1.0046 1.0182 1.0097 1.0267 1.0082 1.0260 1.0332
0.1350 0.1517 0.1376 0.1501 0.1345 0.1484 0.1426 0.1578 0.1374 0.1529 0.1762

100 1.0064 1.0174 1.0094 1.0205 1.0028 1.0126 1.0099 1.0209 1.0087 1.0219 1.0259
0.1214 0.1373 0.1236 0.1338 0.1225 0.1337 0.1283 0.1382 0.1209 0.1362 0.1561

Table 6: The average estimates and the associated mean squared errors (reported below) of
the MLEs for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = α4 = λ4 = α5 =
λ5 = 1 and θ = 1.0.

n α1 λ1 α2 λ2 α3 λ3 α4 λ4 α5 λ5 θ

20 1.0523 1.1098 1.0498 1.1156 1.0439 1.1110 1.0232 1.0101 1.0543 1.0909 1.1167
0.3118 0.3434 0.3098 0.3423 0.3115 0.3389 0.3119 0.3432 0.3114 0.3427 0.4876

40 1.0195 1.0276 1.0114 1.0345 1.0134 1.0345 1.0087 1.0329 1.0101 1.0367 1.0435
0.1818 0.2029 0.1834 0.2019 0.1919 0.2001 0.1889 0.1999 0.1876 0.2101 0.2675

60 1.0121 1.0178 1.0098 1.0141 1.0108 1.0076 1.0111 1.0198 1.0008 1.0187 1.0213
0.1497 0.1634 0.1423 0.1671 0.1501 0.1598 0.1428 0.1699 0.1501 0.1701 0.1987

80 1.0022 1.0098 1.0043 1.0098 1.0025 1.0043 1.0065 1.0054 1.0031 1.0098 1.0114
0.1298 0.1489 0.1301 0.1467 0.1289 0.1402 0.1388 0.1498 0.1287 0.1491 0.1698

100 1.0022 1.0008 1.0021 1.0039 1.0009 1.0001 1.0001 1.0101 1.0025 1.0111 1.0119
0.1198 0.1332 0.1205 0.1313 0.1189 0.1315 0.1197 0.1312 0.1189 0.1334 0.1523

location parameter using the method proposed by Hall and Wang (2005), and then compute

the MLEs of the shape and scale parameters, and the results are presented in Table 10. We

have subtracted the estimates of the location parameters from the corresponding marginals,

and use this data set for fitting the model MVGE6(α1, . . . , α6, λ1, . . . , λ6, θ).

We present below the two-stage copula estimators of the unknown parameters and the as-

sociated 95% confidence interval in brackets based on the asymptotic distribution of the
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Table 7: The average estimates based on two-stage copula method and the associated mean
squared errors (reported below) for different parameters when α1 = λ1 = α2 = λ2 = α3 =
λ3 = α4 = λ4 = α5 = λ5 = 1 and θ = 2.0.

n α1 λ1 α2 λ2 α3 λ3 α4 λ4 α5 λ5 θ

20 1.1976 1.0928 1.1907 1.1050 1.1857 1.1011 1.1788 1.0929 1.1913 1.0961 2.2948
0.5842 0.3046 0.5862 0.3133 0.5872 0.3104 0.5985 0.3026 0.6032 0.2931 1.1052

40 1.0645 1.0461 1.0606 1.0443 1.0617 1.0455 1.0633 1.0467 1.0542 1.0429 2.1925
0.3205 0.1935 0.3414 0.1879 0.3399 0.1852 0.3257 0.1942 0.3212 0.1889 0.7529

60 1.0409 1.0266 1.0458 1.0323 1.0418 1.0284 1.0408 1.0239 1.0413 1.0278 2.1084
0.2495 0.1531 0.2558 0.1564 0.2523 0.1492 0.2601 0.1517 0.2481 0.1483 0.5677

80 1.0236 1.0191 1.0318 1.0239 1.0217 1.0147 1.0284 1.0207 1.0257 1.0205 2.0786
0.2047 0.1282 0.2105 0.1278 0.2012 0.1240 0.2168 0.1331 0.2060 0.1275 0.4518

100 1.0199 1.0133 1.0260 1.0175 1.0162 1.0100 1.0269 1.0172 1.0239 1.0179 2.0610
0.1843 0.1163 0.1879 0.1148 0.1839 0.1111 0.1975 0.1174 0.1825 0.1141 0.3999

Table 8: The average estimates and the associated mean squared errors (reported below) of
the MLEs for different parameters when α1 = λ1 = α2 = λ2 = α3 = λ3 = α4 = λ4 = α5 =
λ5 = 1 and θ = 2.0.

n α1 λ1 α2 λ2 α3 λ3 α4 λ4 α5 λ5 θ

20 1.1623 1.0876 1.1543 1.0897 1.1659 1.0987 1.1683 1.0581 1.1459 1.0563 2.1778
0.5325 0.2676 0.5410 0.2669 0.5289 0.2688 0.5411 0.2781 0.5386 0.2689 0.8998

40 1.0344 1.0312 1.0317 1.0117 1.0361 1.0009 1.0267 1.0056 1.0034 1.0101 2.1111
0.2898 0.1551 0.2999 0.1523 0.2956 0.1489 0.3011 0.1423 0.2998 0.1501 0.5923

60 1.0319 1.0009 1.0219 1.0110 1.0278 1.0210 1.0391 1.0211 1.0313 1.0091 2.0198
0.2398 0.1415 0.2367 0.1493 0.2381 0.1397 0.2391 0.1401 0.2369 0.1407 0.5197

80 1.0118 1.0023 1.0219 1.0110 1.0109 1.0054 1.0115 1.0107 1.0165 1.0167 2.0514
0.1923 0.1175 0.2001 0.1198 0.1996 0.1210 0.1998 0.1218 0.1976 0.1212 0.4389

100 1.0019 1.0111 1.0213 1.0110 1.0009 1.0001 1.0191 1.0019 1.0154 1.0080 2.0098
0.1818 0.1112 0.1825 0.1125 0.1801 0.1109 0.1889 0.1135 0.1822 0.1122 0.3818

two-stage estimators as provided in (32).

α̃1 = 23.8616(∓7.1513), λ̃1 = 7.5595(∓2.8776), α̃2 = 32.3204(∓9.0118), λ̃2 = 8.7521(∓3.1234),

α̃3 = 10.8818(∓3.2567), λ̃3 = 3.4830(∓0.9117), α̃4 = 16.5540(∓4.9987), λ̃4 = 4.5939(∓1.7876),

α̃5 = 33.7024(∓9.1165), λ̃5 = 11.0702(∓4.1113), α̃6 = 31.5931(∓8.5467), λ̃6 = 10.7384(∓4.0112),

θ̃ = 2.0912(∓0.7511).
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Table 9: The BMD data.

Subject Dominant Radius Dominant Humerus Dominant Ulna
No. radius humerus ulna
1 1.103 1.052 2.139 2.238 0.873 0.872
2 0.842 0.859 1.873 1.741 0.590 0.744
3 0.925 0.873 1.887 1.809 0.767 0.713
4 0.857 0.744 1.739 1.547 0.706 0.674
5 0.795 0.809 1.734 1.715 0.549 0.654
6 0.787 0.779 1.509 1.474 0.782 0.571
7 0.933 0.880 1.695 1.656 0.737 0.803
8 0.799 0.851 1.740 1.777 0.618 0.682
9 0.945 0.876 1.811 1.759 0.853 0.777
10 0.921 0.906 1.954 2.009 0.823 0.765
11 0.792 0.825 1.624 1.657 0.686 0.668
12 0.815 0.751 2.204 1.846 0.678 0.546
13 0.755 0.724 1.508 1.458 0.662 0.595
14 0.880 0.866 1.786 1.811 0.810 0.819
15 0.900 0.838 1.902 1.606 0.723 0.677
16 0.764 0.757 1.743 1.794 0.586 0.541
17 0.733 0.748 1.863 1.869 0.672 0.752
18 0.932 0.898 2.028 2.032 0.836 0.805
19 0.856 0.786 1.390 1.324 0.578 0.610
20 0.890 0.950 2.187 2.087 0.758 0.718
21 0.688 0.532 1.650 1.378 0.533 0.482
22 0.940 0.850 2.334 2.225 0.757 0.731
23 0.493 0.616 1.037 1.268 0.546 0.615
24 0.835 0.752 1.509 1.422 0.618 0.664
25 0.915 0.936 1.971 1.869 0.869 0.868

Table 10: Parameter estimates for marginal GE.

Parameter Dominant Radius Dominant Humerus Dominant Ulna
radius humerus ulna

α 49.9006 67.5898 22.7566 36.6185 70.4800 66.0690
λ 7.5595 8.7521 3.4830 4.5939 11.0702 10.7384
µ 0.2578 0.2762 0.7159 0.8185 0.2636 0.2483

We use these estimates as the initial estimates to compute the MLEs of the unknown param-

eters. The MLEs of the unknown parameters, and the associated 95% confidence intervals



25

based on the Fisher information matrix presented within brackets are as follows:

α̂1 = 23.3272(∓6.1217), λ̂1 = 7.6402(∓2.1521), α̂2 = 31.3839(∓8.1176), λ̂2 = 8.5622(∓2.3654),

α̂3 = 10.7247(∓2.7664), λ̂3 = 3.2199(∓0.8675), α̂4 = 15.3030(∓4.0145), λ̂4 = 4.3723(∓1.1657),

α̂5 = 32.9878(∓8.2525), λ̂5 = 10.7200(∓3.5641), α̂6 = 30.9029(∓7.8876), λ̂6 = 10.4922(∓3.3176),

θ̂ = 2.2257(∓0.7223).

Now the natural question is how good the model fits the data. Although, we have several

satisfactory goodness of fit tests available for univariate data set, the same is not true in

case of multivariate data set. Therefore, we test the marginals only. It is known that

this is not sufficient, but necessary at least. We computed the Kolmogorov-Smirnov (KS)

distances between the empirical marginals and the fitted marginals, and the associated p

values (reported within brackets) for the six marginals to be; 0.1989 (0.2754), 0.1565 (0.5728),

0.1174 (0.8807), 0.1045 (0.9474), 0.1123 (0.9106) 0.0944 (0.9790), respectively. Since in all

the cases the p values are quite high, it indicates that the proposed MVGE is indeed a good

model for this BMD multivariate data set.

7 Conclusions

In this paper we have proposed a new multivariate absolute continuous distribution whose

marginals are the GE distributions. The proposed model is a very flexible multivariate

model, and it is observed that the proposed model can be obtained in three different ways.

We have developed various properties of the model and discussed two different estimation

procedures. It is observed that the MLEs are computationally quite difficult to compute

but the two-stage estimators are very easy to implement in practice. Simulation results

suggest that the performances of the two estimators are quite similar in nature mainly for
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large sample sizes. One multivariate bone mineral density data has been analyzed using this

model, and it is observed that the proposed model provides a good fit to the above data set.
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Appendix A

In Step 1, Θ(1) = (β
(1)
1 , . . . , β

(1)
p , λ

(1)
1 , . . . , λ

(1)
p ) can be obtained by solving

n

λj
−

n∑
i=1

xij + (βj − 1)
n∑
i=1

xije
−λjxij

1− e−λjxij
= 0, (33)

n

βj
+

n∑
i=1

ln(1− e−λjxij) = 0. (34)

First obtain λ
(1)
j by solving

n

λj
−

n∑
i=1

xij + (β
(1)
j (λj)− 1)

n∑
i=1

xije
−λjxij

1− e−λjxij
= 0,

where

β
(1)
j (λj) = − n∑n

i=1 ln(1− e−λjxij)

and finally obtain

β
(1)
j = − n∑n

i=1 ln(1− e−λ
(1)
j xij)

In Step 2 and Step 4, θ(k) for k ≥ 1, can be obtained by solving the following non-linear

equation on θ:

n∑
i=1

p∑
j=1

ln(uij(β
(k)
j , λ

(k)
j )) =

p∑
j=1

nθ(j − 1)

θ + j − 1
+ θ2

n∑
i=1

ln(vi(Θ
(k)
1 , θ))

+(θ + p)
n∑
i=1

∑p
j=1((uij(β

(k)
j , λ

(k)
j ))−1/θ ln(uij(β

(k)
j , λ

(k)
j ))

vi(Θ
(k)
1 , θ)

,
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where

vi(Θ
(k)
1 , θ) =

p∑
j=1

uij(β
(k)
j , λ

(k)
j )−1/θ − (p− 1)

Step 3 can be performed as follows. Let us define the following notations for j = 1, . . . , p.

c
(k)
1j = β

(k)
j

(
1

θ(k)
+ 1

) n∑
i=1

xije
−λ(k)j xij

(1− e−λ
(k)
j xij)

c
(k)
2j =

(
1

θ(k)
+ 1

) n∑
i=1

ln(1− e−λ
(k)
j xij)

d1j = −
β
(k)
j (θ(k) + p)

θ(k)

n∑
i=1

(1− e−λ
(k)
j xij)−1−β

(k)
j /θ(k)xije

−λ(k)j xij

vi(Θ
(k)
1 , θ(k))

d2j = −(θ(k) + p)

θ(k)

n∑
i=1

ln(1− e−λ
(k)
j xij)× (1− e−λ

(k)
j xij)−β

(k)
j /θ(k)

vi(Θ
(k)
1 , θ(k))

.

Therefore, λ
(k+1)
j can be obtained by solving the following non-linear equation on λj

n

λj
−

n∑
i=1

xij + (β
(k+1)
j (λj)− 1)

n∑
i=1

xije
−λjxij

1− e−λjxij
= c1j + d1j

where

β
(k+1)
j (λj) = − n∑n

i=1 ln(1− e−λjxij)− c1j − d1j
and finally obtain

β
(k+1)
j = β

(k+1)
j (λ

(k+1)
j )

Appendix B

In this section we provide the elements of the observed Fisher information matrix. We will

provide the following elements for j, k = 1, . . . , p, j 6= k.

∂2l

∂β2
j

,
∂2l

∂λ2j
,
∂2l

∂θ2
,

∂2l

∂βj∂βk
,

∂2l

∂βj∂λj
,

∂2l

∂βj∂λk
,
∂2l

∂βj∂θ
,
∂2l

∂λj∂θ
.

∂2l

∂β2
j

= − n

β2
j

+
(θ + p)

θ2β2
j

n∑
i=1

[ln(uij(βj, λj)]
2 × [(uij(βj, λj))]

−1/θ

vi(Θ1, θ)
×

{
1− [(uij(βj, λj))]

−1/θ

vi(Θ1, θ)

}
∂2l

∂λ2j
= − n

λ2j
+

(
βj
θ
− 1

) n∑
i=1

x2ije
−λjxij

(1− e−λjxij)2
+

(θ + p)βj
θ

n∑
i=1

Aij(Θ1, θ)x
2
ijwij(λj)

(vi(Θ1, θ))2
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where

Aij(Θ1, θ) =
1

(uij(βj, λj))1/θ
×
[{(

βj
θ

+ 1

)
wij(λj) + 1

}
vi(Θ1, θ) + wij(λj)(uij(βj, λj))

−1/θ
]

∂2l

∂θ2
=
np

θ2
−n

p∑
j=1

1

(θ + j − 1)2
− 2

θ3

n∑
i=1

p∑
j=1

lnuij(βj, λj)−
n∑
i=1

2Bi(Θ1, θ)

vi(Θ1, θ)
−(θ+p)

n∑
i=1

ci(Θ1, θ)

where

Bi(Θ1, θ) =

p∑
j=1

Bij(Θ1, θ)

Bij(Θ1, θ) =
1

θ2
(uij(βj, λj))

−1/θ ln(uij(βj, λj))

Ci(Θ1, θ) = −2Bi(Θ1, θ)

θvi(Θ1, θ)
+

1

θ4

p∑
j=1

[uij(βj, λj)]
−1/θ[ln(uij(βj, λj))]

2 +
Bi(Θ1, θ)

[vi(Θ1, θ)]2
.

For 1 ≤ j 6= k ≤ p

∂2l

∂βj∂βk
= −θ + p

θ

n∑
i=1

1

(vi(Θ1, θ))2
× [uij(βj, λj)]

−1/θ ln(1− e−λjxij)

×[uik(βk, λk)]
−1/θ ln(1− e−λkxik).

∂2l

∂βj∂θ
=

1

θ2

n∑
i=1

p∑
j=1

ln(1− e−λjxij) + p
n∑
i=1

Bi(Θ1, θ)

vi(Θ1, θ)
+ θ(θ + p)

n∑
i=1

(
Bi(Θ1, θ)

vi(Θ1, θ)

)2

−
(p
θ

+ 1
) n∑
i=1

p∑
j=1

Bij(Θ1, θ) ln(1− e−λjxij)
vi(Θ1, θ)

∂2l

∂βj∂λj
= −1

θ

n∑
i=1

xije
−λjxij

1− e−λjxij
− (θ + p)

n∑
i=1

Dij(βj, λj, θ)

(
1− βj

θ
ln(1− e−λjxij)

)
−β2

j (θ + p)
n∑
i=1

(Dij(βj, λj, θ))
2

∂2l

∂βk∂λj
= −βj(θ + p)

θ

n∑
i=1

Dij(βj, λj)×
1

vi(Θ1, θ)
× (uik(βk, λk))

−1/θ × ln(1− e−λkxik),

where

Dij(βj, λj, θ) =
(1− e−λjxij)−(βj/θ+1)xije

−λjxij

θvi(Θ1, θ)
.

∂2l

∂θ∂λj
=

1

θ2

n∑
i=1

βjxije
−λjxij

1− e−λjxij
+
βj
θ

n∑
i=1

Dij(βj, λj, θ)

(
p− βj(θ + p)

θ
ln(1− e−λjxij)

)

−βj(θ + p)

θ2

n∑
i=1

p∑
m=1

Dij(βj, λj, θ)×
1

vi(Θ1, θ)
× [uim(βm, λm)]−1/θ lnuim(βm, λm).
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Appendix C

In this section we provide the elements of the matrix W , which is a 2p+ 1× 2p+ 1 positive

definite matrix. In the calculation of the different elements of the matrix W , we need to

compute the expected Fisher information matrix also. They are not presented here, as these

elements can be easily obtained from the expressions provided in Appendix B, and after

performing required one or two dimensional integration numerically. We will be using the

following notations. The expected 2p+ 1× 2p+ 1 Fisher information matrix is denoted by

I =


I11 . . . I1p I1d
...

. . .
...

...
Ip1 . . . Ipp Ipd
Id1 . . . Idp Idd

 .
Here each Ijk, for 1 ≤ j, k ≤ p is a 2× 2 matrix, each Ijd, for 1 ≤ j ≤ p is a 2× 1, vector,

Ijd = ITdj, and Idd is a real number. From Joe (2005), we have

W =
(
−U−1

)
M
(
−U−1

)T
.

Here

−U =


J11 . . . 0 0

...
. . .

...
...

0 . . . Jpp 0
Id1 . . . Idp Idd

 , and −M =


J11 . . . J1p 0

...
. . .

...
...

Jp1 . . . Jpp 0
0 . . . 0 Idd

 .
Now we provide the elements of each of the 2× 2 matrix J jk, for 1 ≤ j, k ≤ p. If we denote

for 1 ≤ j 6= k ≤ p,

J jj =

[
aj11 aj12
aj21 aj22

]
and J jk =

[
bjk11 bjk12
bjk21 bjk22

]
,

then for (Xj, Xk) ∼ MVGE2(αj, αk, βj, βk, θ),

aj11 =
1

β2
, aj12 = aj21 = −E

[
Xje

−λjXj

1− e−λjXj

]
, aj22 =

1

λ2j
+ (βj − 1)E

[
X2
j e
−λjXj

(1− e−λjXj)2

]
,

bjk11 = cov
{

ln
(
1− e−λjXj

)
, ln
(
1− e−λkXk

)}
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bjk12 = cov

{
ln
(
1− e−λjXj

)
, (βk − 1)

(
Xke

−λkXk

(1− e−λkXk)

)}
bjk21 = cov

{
(βj − 1)

(
Xje

−λjXj

(1− e−λjXj)

)
, ln
(
1− e−λkXk

)}
bjk22 = cov

{
(βj − 1)

(
Xje

−λjXj

(1− e−λjXj)

)
, (βk − 1)

(
Xke

−λkXk

(1− e−λkXk)

)}
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