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. appjtt 

Contrary to previous theoretical predictions, we show 
that the dissipative drift-wave instabilities are absolute 
in tokamak plasmas. The existence of unstable eigenmodes 
is shown to be associated with a new eigenmode nranch 
induced by the finite toroidal couplings. 
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The stability of drift-wave eigenmode in sheared magnetic 
fields has been intensively investigated due to its potential 
importance to the transport processes in magnetically confined 
plasmas such as tokamaks. Most of the theories are, however, 
limited to the slab model. It is now well established that 
in slab geometries, both the collisionless, " and the collisional 
(dissipative) electrostatic drift-wave eigenmodes are stable in the 
absence of ion temperature gradients. 

The applicability of the slab approximation to tokamak 
7 plasmas is, however, not at all clear. In particular, Taylor has 

suggested that the toroidal couplings may significantly affect the 
shear-damping mechanism and, thereby, the stability properties. On 

6 o 
the other hand, stability studies in toroidal geometries ' using 

7 
Taylor's strong-coupling approximation indicate that the eigen­
modes are, again, stable for typical values of the shear in tokamaks, 
i.e. rg'/q > 1/2. Here, q - rB./RB is the usual safety factor. 

g 
In this work, we adopt the ballooning-mode formalism and investi­
gate the stability properties of dissipative drift-vrave eigenmodes 
in toroidal plasmas without using the strong-coupling approximation. 
We find, both analytically and numerically, that, contrary to 
previous theoretical results, unstable eigenmodes do exist. We 
observe that these unstable eigenmodes are directly related to the 
appearance of a new toroidicity-induced branch which experiences 
negligible shear damping. 

Let us consider electrostatic drift waves in an axisymmetric 
tokamak with concentric, circular magnetic surfaces. Adopting nere 
the usual (r,0,£) coordinates corresponding respectively to the 
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(minor) radial, poloidal and toroidal directions, we express the 
perturbed potential, <t>, as 

<J)(r,B,5,t) =^j£j(s) exp |~i (mQ9 + je - n? - ut)j , (1) 
J 

where |jj << | m
0|, s = (r-r ) /Ar , r is the reference mode-rational 

surface m Q = ng(rQ) , t±rs = 1/kgS, k g = mQ/xo and s = rg'/q 

at r = r . For simplicity, we ignore temperature gradients and 
consider only the resistive effects. The two-dimensional eigenmode 
equation can be straightforwardly derived using fluid descriptions 

6 3 for both the electrons and ions, and is given by ' 
[L(J,S) - ft(j,s) T(j,s)J $j(s|= 0, (2) 

where 

u OS 

f t = | i - i u V e i A | j 2 v e

2 J ^ n "*eA>), (4) 

T * j ( s ) = * j - n ( s ) + * j - i ( s ' J + S ^ f * j + 1 ( s ) - ^ ^ ( s j j , (5) 

k|j = ( s - j ) / q R , b 0 = k* p 2 , p s = C 8 / < u o i , C 2 = T e / M i , Gn = r n / R , 

r n = l d l n N ( r ) / d r | , and t h e r e s t of n o t a t i o n s i s s t a n d a r d . In 

d e r i v i n g E q . ( 2 ) , we a l s o assume r = T e/Tj_ >> 1 and 

l ( P s A ) ( d / d r - kg ) <S>!«|(j>|. Note t h a t T i n Eq. (5) i s t h e 

t o r o i d a l - c o u p l i n g o p e r a t o r due t o ion 7B and c u r v a t u r e d r i f t s . 

S i n c e , t y p i c a l l y , [ r a j - 1 n | ~ | r n / p g | ~ o ( l 0 2 - 1 0 3 ) , 
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the large-n ordering, i.e., the ballooning-mode formalism9 is appro­
priate here. In the zeroth order, we have, with z = s-j, $ . (s) = $(z) 
and <f>+1 (s) = $(z+l); i.e., the eigenmodes are composed of identical 
structures centered at each mode-rational surface. Equation (2) 
then reduces to a one-dimensional differential-difference equation, 
i.e. , 

[L (z) - f t(z) T (z)J *(z)-= 0, (6) 

and T(z) <J>(z) = $(z+l) + $(z-l) + s (d/dz) [<f(z-l) - $(z+l)]. 
Fourier transforming Eq.(6), we obtain the following eigenmode 
equation describing dissipative drift waves in toroidal plasmas 

j(d2/d82} [d 2/d9 2 + Q1(B)1+ ia Q 2 (e)j $ (e) = 0; (7) 

where <j) is the fourier transform of $, 

Q 1 ( § ) = n 2 n 2 P (e), (8) 

p(e) = 1-1/si + Q 2(e), (9) 

Q 2 ( e ) = b Q ( l + s 2 8 2 ) +(2 en/J5J ( c o s 8 + s 9 s i n e), (10) 

, 2 , 2 , 2 - „3 / 2 . , 2 \2 , 
/ < D * e , n s = b 9 g / e n ' a = v n \ q V e n) ' a n d 

Q = to 

v = v . m /w + m.. The boundary condition imposed on Eq.(7) is ei e *e I 
that the unstable (Im ft > 0) eigenmodes decay asymptotically 
as | 9 | + <•>. 

We first consider the a = v . = 0 limit . Here, the 
electron response is adiabatic and the relevant eigenmode equation 
is 
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[d 2 /de 2 + Q^ejJ • (e) = o . (ID 

The boundary condition is then, <f>(9/-»- exp (ifing b g
/ s 6 /2) as 

|a[ •+ <°; i.e., the wave energy is outward propagating. Further­
more, an examination of Q,(e], as defined by Eq.(8), indicates 
that the potential structure consists of a parabolic anti-well plus 
modulations due to toroidal couplings. Equation(11) has been 
analyzed using both the interactive WKB and numerical shooting 
codes. In Fig.l, we plot the eigenraode frequencies £} = £!+ if!, 
versus the toroidicity e n for b„ = 0. 1, s = 1, and q = 1 for the 
lowest eigenstate. The results clearly show the existence of two 
damped eigenmode branches. One is a slab-like branch and the other 
is a new branch induced by the finite toroidicity. The slab-like 

12 
eigenmodes, similar to the Pearlstein-Berk modes found in the 
slab limit, correspond to unbounded eigenstates with anti-well 
potential structures and, hence, experience finite shear damping 
due to (free) outward energy convection. In fact, in this case, 
torodicity further enhances the shear damping rates. The toroidicity-
induced (T-I) eigenmodes, however, experience negligible shear damping; 
typically, we find -fi ~ o(l0~ - 10~ ) . Typical potential structures 
corresponding to the weak (smaller e ) and strong (larger e ) T-I 
eigenmodes are shown in Fig.2. It is clear from Fig.2 that the T-I 
eigenmodes correspond to eigenstates quasibounded by local potential 
wells induced by finite toroidal couplings. The shear damping is 
negligible here because the convection of wave energies occurs only 
through the tunneling leakages. In this respect, the eigenmodes 
are quasiraarginally stable. It is interesting to note that for 
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a certain parameter regime both eigenmode branches can exist 
simultaneously. Furthermore, we note the slab-like eigenmcdes, 
having turning points + 9 close to 6 =0 (i.e., |,6.|«1), 
can be understood using Taylor's strong-coupling approxi­
mation, and the eigenmodes remain damped for " .^ 0 . In this work, 
we therefore concentrate on the T-I eigenmodes. 

We now consider the effects of finite electron resistive 
dissipation (^eifi 0) on the T-I eigenmodes. For the purpose of this 
letter, we assume v&^ is small and perform a perturbative analysis 
on the weak T-I eigenmodes. Since the tunneling effects are small, 
they may be ignored in the present perturbation theory. The corres­
ponding potential structure in the v .= 0 limit, c.f. Fig.2(a), 
then suggests that the eigenmodes can be assumed to be localized 
at 9 = e where S f 0 and Q1(6 ) = 0; i.e., 

6 ob e s 2 + ( en/n) |s-l)sin BQ + s 6 Q cos eQ] = 0. (12) 
Let n =6 - 6 and expand Q and Q, about 0=6 to 0(n ); Eq. (7) 
becomes 

[(d 2/dn 2)(d 2/dn 2 + Q 1 0 + Q"IQ n
2/2)+ i«(Q 2 0 + Q2'0 n2/2)J *(n)=0, (13) 

where /Q 2/0 H Q l 2 ' ( 9 o ) a n d R e QIQ < °- Setting (j> (t) 

r °° = / dn <Kn) e x P (infc> in Eq. (13), we obtain 

[(Q^0/2)(t2 - it 2) d 2/dt 2 + t 4 - Q 1 Q t 2 + io Q 2 0l +(t)= 0. (14) 

Here, t 2 = a Q^'Q^IQ = a / n s ^ ' E3-d4) c a n b e written as 
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[d 2/dy 2 + X - y
2 - iA/(y2-iy2)] i> (y) = 0 . (15). 

where y = t/0, B = (- Q[Q/2)1/4, Re g > 0, y 2 = t 2/g 2, 

X = (Q 1 0-it 2)/g 2 and A = [ffl(l/n-l)+ it^l /B 4. Noting that 

J/ll » |a| • v ., a perturbative treatment of Eq. (15) can be readily 
done and we find for the lowest eigenstate, X = 1+X,, where 
X = - yff (A/y. ) exp (-iT..'4) . The dispersion relation is then 
J. K 

P (e0)=r (l + xi -«); (16) 

here, r =(g/n ilj and 5 is included to represent the tunneling , si, 
s 

effects. 
To further analyze Eg.(16), we need to solve 9 from Eq.(12) 

For this purpose, we note that the T-I eigenmode branch generally 
exists for |en/n|>|bg s| and |80[> 1 for s - 1, so that 8 Q ~ ir/2. 

Thus, 
P(eJ ~ 1 + b e(l + s 2 TT 2/4) - l/n + e -ns/Q, (17) 

1/2 
r ' (en s / (J n)("n 7 r / 2 R b e s -1/ • (18) 

and Xx = -(l/fi -l) (IT ~ n/r- 3-) 1 / 2 exp (- iit/4) . (19) 

For parameters of interest here, we note that \Qr\< 1. Thus, we 
have, with Q = ft + in. and |fi./« I < 1, r a ' x r' 

"r " i 1 ~ T En s) /[l + b 6(l + sV/4)], (20) 

and 

°i = Y- Yt» (21) 
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where 

T =(l " nr)(ir v/2n rr) 1/ 2/[l + b e(l + s 2 ir2/4)], (22) 

and Y t is the small shear damping rate due to the tunneling, which 

can be estimated by examining the v .=0 limit 1 0. 

Equation(21) shows that electron resistive dissipation can 
destabilize the T-I eigenmodes if v > v where 

V 
c 1^r) = ^ [ - ^ ) ] ! (A). .«. 

For v >> v c, we have y = v 1 , / 2 = v 1/ 2; i.e., the growth rates of 
unstable eigenmodes scale as v '. . We note that, the above pertur-
bative analysis is valid for | \ 1 \ < 1; i. e. , v < v = {n r)3(l-n ) - 2/TT. 

Finally, we have also solved Eq.(7) numerically in order to 
verify as well as extend the above analytical results. Figure 3 
plots Q versus the resistivity parameter v = v . m /to4 m. for the 
case b„ = 0.1, e = 0.15, q = s = 1. The numerical results clearly 
demonstrate the properties predicted analytically; i.e., (i) the 

— — —8 —1/? 
eigenmode is destablized for v> v - 2.5 x 10 , and (ii) y <* v 

— 2 — — for 10 > v >> v . For the present case, Eqs.(20) and (21) predict 
that ar ~ 0.4 and y ~ v / 4 - y with yt ~ 1.9 x 10 . To obtain a 
quantitative comparison, we have also plotted the analytical results 

in Fig. 3 up to the perturbation limit v - 0.03. We note the 
agreement is reasonably good. For v > v - numerical results show 
that fi. starts decreasing with v . Analytical theory for the large 
v limit as well as a more complete presentation of the numerical 
results will be published elsewhere. 
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792266 
Fig. 1. Eigenmode frequencies £1 versus E P in the v e^ = 0 limit, o, •, and 

X correspond, respectivly, to the slab-like, and weak, and strong, toroidiciti'-
induced eigenmodes. Q^ in the slab limit is also shown. 



792273 
Fig. 2. Typical potential structures, -Qi. for the (a) weak and 

(t>) strong toroidicity-induced eigenmodes in the v ej = 0 limit. 
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