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Contrary to previous theoretical predictions, we show

that the dissipative drift-wave instabilities are absolute

in tokamak plasmas. The existence of unstable eigenmades

is shown to be associated with a new eigenmode pranch

induced by the finite toroidal couplings.



The stability of drift-wave eigenmode in sheared magnetic
fields has been intensively investigated due to its potential
importance to the transport processes in magnetically confined
plasmas such as tokamaks. Most of the theories are, however,
limited to the slab model. It is now well established that
in slab geometries, both the collisionless,]‘_5 and the collisionals
(dissipative) electrostatic drift-wave eigenmodes are stable in the
absence of ion temperature gradients.

The applicability of the slab approximation'to tokamak
plasmas is, however, not at all clear. In particular, Taylor7 has
suggested that the toroidal couplings may significantly affect the
shear-damping mechanism and, thereby, the stability properties. On
the other hand, stability studies in toroidal geometriesG’ using
Taylor's strong-coupling approximation7 indicate that the eigen-
modes are, again, stable for typical values of the shear in tokamaks,
i.e. rq'/qg > 1/2. Here, q==,rBt/RB6 is the usual safety factor.
In this work, we adopt the ballooning-mode formalism9 and investi-
gate the stability properties of dissipative drift-wave eigenmodes
in toroidal plasmas without using the strong-coupling approximation.
We find, both analytically and numerically, that, contrary to
previous theoretical results, unstable eigenmodes do exist. We

observe that these unstable eigenmodes are directly related to the

appearance of a newtoroidicity—inducedbranch10 which experiences

negligible shear damping.
Let us consider electrostatic drift waves in an axisymmetric

tokamak with concentric, circular magnetic surfaces. aAdopting here

the usual (r,e,£) coordinates corresponding respectively to the
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{minor) radial, poloidal and toroidal directions, we express the
perturbed potential, ¢, as

¢(r,8,£,t) =Z&;j(s) exp [i(moe + 348 - nf - mt)} R (1)
T

where |3 << ]mo|, s =(r-r ) /Arg, r, is the reference mode-rational

= — - = NS = '
surface m, = nq(ro), bry = l/kes, ke mo/rO and s rqg'/q
at r = r . For simplicity, we ignore temperature gradients and
consider only the resistive effects. The two-dimensional eigenmode

equation can be straightforwardly derived using fluid descriptions

. . : 6,8
for both the electrons and ions, and is given by ’
A
[203:8) = £c(3.8) Tli.s)] 85080 = 0, (2)
where
. w Vei \ ~2 82 W.oe k 2C52
L=l-1;‘—2—-2-}be<s -3—-2-—1—]_+T+ mz , (3)
R s
o (1-50 v /x,2v.2 Vg0 (4
£ = (119 Vey/kyve™ [le, Ure/ef,
- ~ _ A . A . ,: B ~ A
To5(s) = byapfs) * byt ¢ B ey, e bi-ale] o ®
ki = (s=j} /aR, by = k2 p2 = C /o, C2 =T M., € =r /R
”—(Sjiq’ 8 = eps’ps_ s Clr s - e/Mj_' D_rn ’
r;l = |dln N{r)/dr|, and the rest of notations is standard. In

deriving Eq.{2), we also assume T = Te/T; >> 1 and
I(pi/r)(dz/drz - kez) ¢l<<|¢|. Note that T in Eq.(5) is the

toroidal-coupling operator due to ion VB and curvature drifts.

Since, typically, ]mo]~]n]~[rn/psl~ 0(102-103),



the large-n ordering, i.e., the ballooning-mode formalism9 is appro-
priate here. 1In the zeroth order, we have, with z = s-1i, $j(s) = &(2)
and ajtl (s) = ©(z¥l); i.e., the eigenmodes are composed of identical
structures centered at each mode-rational surface. Eguation (2)

then reduces to a one-dimensional differential-difference equation,

1.e.,

(o) - el 7 (] o) = o ®

and T(z) ®(z) = &(z+l) + &(z-1) + s (d/dz) [®(z-1) = ®(z+l)].
Fourier transforming Eg. {(6), we obtain the following eigenmode

equation describing dissipative drift waves in toroidal plasmas
~ny. T ~ A Al A A
{(dz/dez} |a®/a6? + Ql(a)]+ ia Qz(e)} o (8)=o; (7)

where ¢ is the fourier transform of ¢,

M2 2 ~

0,(8)=nZ a% e (3}, (8)
P(8) = 1-1/0 + o, (8], {9) :
{

Q2(§)= b, (1 + 52 52) +{2 gn/Q) (cosé + s 0 sin 3), {10)

2

3 \2

). and

: 2,2 = 2
Q= w/m*e “2 = be q /sn, o=V Q {q bs/.en
r

Vo= vy me/tu*e m, . The boundary condition imposed on Eq.(7) is

that the unstable (Im @ > 0) eigenmodes decay asymptotically

~

as |8} + .
We first consider the o « Vej = 0] limitlo. Here, the

electron response is adiabatic and the relevant eigenmode eguation

is
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[a?/a6% + Ql(é\)}JJ (6) = o . (11)

. NN . 1/2
The boundary condition is then, ¢ge)+ exp (1Qns be/

g az/Z)as

[é[ + »; i,e., the wave energy is outward propagating. Further-
more, an examination of Ql(a), as defined by Eq.{8), indicates
that the potential structure consistsof a parabolic anti-well plus
modulations due to toroidal couplings. Equation(ll) has been

1l and numerical shooting

analyzed using both the interactive WKB
codes. in Fig.l, we plot the eigenmode fregquencies Q==ﬂr+-iﬂi

versus the toroidicity €n for be = (.1, ; = 1, and g = 1 for the

lowest eigenstate. The results clearly show the existence of two
damped eigenmode branches. One is a slab-like branch and the other

is a new branch induced by the finite toroidicity. The slab-like
eigenmodes, similar to the Pearlstein-Berk modes12 found in the

slab liwmit, correspond to unbounded eigenstates with anti-well
potential structures and, hence, experience finite shear damping

due to (free) outward energy convection. 1In fact, in this case,
torodicity further enhances the shear damping rates. The toroidicity-
induced (T-I) eigenmodes, however, experience negligible shear damping;

typically, we find -9 ~ 0(10—3-

10_4). Typical potential structures
corresponding to the weak {smaller en)and strong (largexr en) T-I
eigenmodes are shown in Fig.2. It is clear from Fig.2 that the T-I
eigenmodes correspond to eigenstates quasibounded by local potential
wells induced by finite toroidal couplings. The shear damping is
negligible here because the convection of wave energies occurs only

through the tunneling leakages. 1In this respect, the eigenmodes

are quasimarginally stable. It is interesting to note that for



a certain parameter regime both eigenmode hranches can exist
simultaneously. Furthermore, we note the slab-like eigenmocdes,
having turning points + et close to 6 =0 (i.e.,|ﬁt]<<1),

can be understood using Taylor's strong-coupling approxi-
mation, and the eigenmodes remain damped for “ei# 06. In this work,
we therefore concentrate on the T-I eigenmodes. ‘

We now consider the effects of finite electron r;sistive
dissipation (vei# 0) on the T-I eigenmodes. For the purpose of this
letter, we assume Vei is small and perform a perturbative analysis
on the weak T-I eigenmodes. Since the tunneling effects are small,
they may be ignored in the present perturbation theory. The corres-
ponding potential structure in the Vei® 0 limit, c.f. Fig.2(a),

then suggests that the eigenmodes can be assumed to be localized

~
at 0 = 90 where 80 # 0 and Ql(eo) = 0; i.e.,

~2 ) ~ ] ~
0, by 7 + (en/n) ks—l)51n 0, + s b cos eo]= 0. (12)
Let n=¢9 —eo and expand Ql and Q2 about e==eo to 0(n2); Eq. (7)
becomes
2 2 2 2 " 2,. . " 2 N
[(d san?){a2/an? + 0, + olg n?s2)+ ia (2, + Opp 1 /2)] d(nj=0,  (13)

"

1w
where (Ql,2)0 Ql,2 {Go)and Re Qlo < 0. Setting ¢(t)

= ./f dn é(n) exp (int) in Eg. (13), we obtain
UQ;O/Z)(tz _ itﬁ) dz/dt2 + t4 _ Q10t2 + ia on] ${t)= 0. (14)

" 2 .2 .
Here, ti = q Q20/Q10 = a/ns 2°. Eqg.(14) can be written as
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[az/dy2 +A-y2 - iA/(y2—iyi)] bly)=o0 . (15)

where y = t/B, B = (- 010/2)1/4. Re B > 0, yi = ti/le

_ 1424 ,,2 =[ _ . 4] 1 . ¢
o= (Qlo 1tk)/B and A ah/ﬂ l)+ ity /B~. Noting tha
Inl = Ja] = V ;s @ perturbative treatment of Eq.(15) can be readily

done and we find for the lowest eigenstate, A = 1+A1, where

Al = - q?‘(A/yk) exp (~in ‘4) . The dispersion relation is then

P (90)=P (1 + 2 —s); (16)

1

here, T =(B/nsQ)2 and § is included to represent the tunneling
effects.

To further analyze Eq. (16), we need to solve 8, from Eq. (12).
For this purpose, we note that the T-I eigenmode branch generally

exists for ien/Q[>[be s| and [85[> 1 for s ~ 1, so that 8, = 1/2.

Thus,
P(0o) = 1+ by(l +s% n?/4) - 1/0 4 e T5/9, (17)
~ ~ /2
r = (en s/qn)(en 1r/2‘52b6 [ —l} ’ (18)
and A = = (/2 -1)(n ¥ /12)1/2 exp (- in/a). (19)

For parameters of interest here, we note that [aT'|< 1. Thus, we

have, with @ = @ _ + i, and |Qi/ur] < 1,

~ I\22
Q_ = (1 - TE, s) /[l + be(l + s /4”, (20}
and

R = Y= Yo (21)



where

v =(1=9a.)(r 3/2er)l/2/[1 + bg(1 + a2 n2/4)], (22)

and Ye is the small shear damping rate due to the tunneling, which
can be estimated by examining the vei=0 limitlo.

Equation(2l) shows that electron resistive dissipation can
destabilize the T-I eigenmodes if v > ;c'where

2
V . m 2y ~2_2\12
- ei e t s T T
v = — = —_— —
c (w*e m. ) 0 [1 * be(l + 4’)] (1_9) . (24)
i/c

For v »>> ;c' we have y = v2/2 o vé{2; i.e., the growth rates of
unstable eigenmodes scale as vé{z. We note that the above pertur-
bative analysis is wvalid for ]Al| < 1l; i.e., v < ;P = (er)3(l-ﬂr)‘2/n.

Finally, we have also solved Eg. (7) numerically in order to
verify as well as extend the above analytical results. Figure 3

plots @ versus the resistivity parameter v = Vai me/w*e m, for the

cuse be = 0.1, ey = 0.15, g = & = 1. The numerical results clearly

demonstrate the properties predicted analytically; i.e., (i) the

8 1/2

eigenmode is destablized for V>V, = 2.5 x 107°, and (ii) y « %

2

for 10°° > v >> Gc' For the present case, Egs.(20) and (21) predict

that @ ~ 0.4 and vy = /2 Ye with v, = 1.9 x 107%. To obtain a

quantitative comparison, we have also plotted the analytical results
in Fig. 3 up to the perturbation limit %): 0.03. We note the
agreement is reasonably good. For v oz Gp‘ numerical results show
that Qi starts decreasing with V. BAnalytical theory for the large

V limit as well as a more complete presentation of the numerical

results will be published elsewhere.
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Fig. 1. Eigenmode frequencies § versus g, in the vgj
X correspond, respectivly, to the slab-like, and weak, and strong, toroidicity-
Qi in the slab limit is also showx.

induced eigenmodes.
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Typical potential structures, -Q.

Fig. 2.
(b) strong toroidicity-induced eigenmodes in the vgy = O limit.
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