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Abstract 
  
Most surveillance cameras have a wide-angle field of view and 
are situated unobtrusively in overhead positions. For this type 
of application, head pose estimation is very challenging 
because of the limitations of the quality and resolution of the 
incoming data. In addition, as a person moves, their pose 
relative to the camera changes, but the desired pose is the 
absolute pose with respect to the room or space. In this paper, 
we present a solution to estimate absolute coarse head pose for 
wide-angle overhead cameras by integrating 3D head position 
and pose information. The work involves image-based 
learning, pose correction based on 3D position, and real-time 
multi-camera integration of low-resolution imagery. The 
system can be applied to an active face cataloguer to obtain 
the best view of the face for surveillance, to customer 
relationship management to record behavior in retail stores or 
to virtual reality as an input device. 
 
Keywords: head pose estimation, gaze direction estimation, 
head tracking, face tracking. 
 
1. Introduction 
     

For practical applications in retail management and 
surveillance, overhead wide-angle cameras are necessary 
to view the entire scene and extract global information. 
Such cameras can be used to track people and their 
traffic patterns. Applications include improving store 
design, advertising effectiveness, and face cataloguing. 
These applications can be enhanced by knowledge of the 
person’s activity, and one of the obvious first steps, is to 
understand the pose of the person. 
     Overhead wide-angle cameras introduce several 
challenges to the problem of head pose estimation. These 
challenges include significant lens distortion artifacts 
and low-resolution imagery of the head. In addition, 
images from such cameras introduce significant ‘virtual’ 
or relative pose. As far as we know, no prior work exists 
to estimate absolute coarse head pose for overhead wide-
angle cameras. Figure 1 shows an individual who is 
looking in the same absolute direction (towards the front 
wall), but the head poses in the image appear differently 
in different positions because of the relative orientation 

of the wide-angle overhead camera. Notice the very low 
resolution of the head region (from 8x8 to 20x20 pixels) 
when the person is in different positions. 
 

 
 
Figure 1.  An individual is looking in the same 
absolute direction (towards the front wall) but 
appears to be looking down or to the side because of 
the relative orientation of the wide-angle overhead 
camera.  
 
    In this paper, we present a solution to estimate 
absolute coarse head pose for overhead wide-angle 
cameras by integrating 3D head position and pose 
information. Figure 2 shows an example of the output 
of this system. As a person walks around the space, 
their 3D location is recorded along with the absolute 
cardinal direction of their pose – i.e. north, east, south 
or west. The pose refers to which direction they are 
facing – that is, their head rather than their body pose. 
         Other researchers have investigated the use of 
stereo (narrow-baseline) to compute head pose [1-3], 
but as far as we know, no prior work exists to exploit 
wide baseline stereo to estimate coarse head pose for 
overhead wide-angle cameras. In our previous work, we 
performed a comparative study of methods for coarse 
head pose based on learning. However, in that study we 
evaluated two methods using a single close-up camera 
facing the individual [4]. 
     In our system, an image-based head pose classifier is 
trained to estimate 12 pan poses from 0 to 360 degrees 



using the training data from an unrelated camera. We 
emphasize that the training data comes from an unrelated 
camera so that an arbitrary camera configuration can be 
used. In order to obtain the absolute head pose and 
correct the ‘virtual pose’ due to the overhead wide-angle 
cameras, we calculate the 3D head position based on a 
wide-baseline stereo method.  
     The 2D head positions are detected by a shape-based 
head finder for two calibrated overhead wide-angle 
cameras. The positions are used to calculate the 3D head 
position. Then the detected 2D head image is corrected 
based on camera calibration information for each camera 
and is fed to the general-trained head pose estimator to 
get the camera-based head pose. The absolute head pose 
for each camera can be obtained by correcting the 
camera-based head pose from the ‘virtual pose’ which is 
computed based on the 3D head positions.  Given an 
estimate of absolute pose from each camera and the 3D 
position of the head, a maximum likelihood estimation is 
performed to improve the final result.  

 

 
Figure 2. The system tracks the 3D position of a 
person as they walk around a room and their 
absolute cardinal head pose. 
   This paper is organized as following. Section 2 
describes the system setup and the method to detect the 
2D and 3D head positions. Section 3 discusses the 
‘virtual pose’ correction for overhead wide-angle 

cameras. Section 4 describes the method for absolute 
head pose estimation. This is followed by the 
experimental results in Section 5; finally we summarize 
our paper and present future directions in Section 6. 
 

2. Head Region and Position  
 
2.1 System Setup 
 
    Our group has built a 3D people tracking system, 
which is used to drive a face cataloguer and position-
based video retrieval. The system is based on wide-
baseline stereo control of multiple active cameras. It 
enables the continuity of identity. We associate each path 
with close-up images of the particular person, allowing 
us to answer: “who is where?” at any point of time [5,6]. 
Figure 3 shows the positions (in mm) of the two cameras 
and their orientations and the path a person took as they 
walked around the room (center). The coordinate system 
of camera 1 is shown at right, the coordinate system of 
camera 2 is shown in the upper left corner. 

 
Figure 3. The track of a person walking around the 
room and the positions (in mm) of the two cameras 
and their optic axes. 

 
2.2 Background Subtraction 
 

As shown in Figure 4, the background subtraction 
module combines evidence from differences in color 
(top left), texture (middle left), and motion (bottom left). 
The use of multiple modalities improves the detection of 
objects in cluttered environments. The resulting saliency 
map (top right) is smoothed using morphology-like 
operators and then small holes and blobs are eliminated 
to generate a clean foreground mask (middle right).  

The background subtraction module has a number of 
mechanisms to handle changing ambient conditions and 
scene composition. First, it continually updates its 
overall RGB channel noise parameters to compensate for 
changing light levels. Second, it estimates and corrects 



for AGC and AWB shifts induced by the camera. 
Finally, it maintains a map of high activity regions 
(lower right) and slowly updates its background model 
only in areas deemed as relatively quiescent. 

 

  
 
Figure 4. Background subtraction combines 
evidence from  color, texture and motion. 
 
2.3 Head Localization and 3D Head Position 
Detection 

      (a)                           (b) 
 Figure 5. Head detection steps. (a) The silhouette 
information (b) Distance profile showing significant 
peaks and the radii of curvature at the significant 
peaks. 
    The head detection uses the smoothed silhouette of the 
foreground object as segmented using background 
subtraction. To interpret the silhouette, we use a simple 
human body model consisting of six body parts: head, 
abdomen, two hands, and two feet as shown in Figure 5. 

First, we generate a one-dimensional “distance profile” 
that is the distance of each contour pixel from the 
contour centroid, following the contour clockwise. This 
distance profile is parsed into peaks and valleys based on 
the relative magnitudes of the successive extreme. The 
peaks of the distance transform are used to hypothesize 
candidate locations of the five body parts: the head, two 
feet, and two hands. Determination of the head among 
the candidate locations is currently based a number of 
heuristics based on the relative positions of the candidate 
locations and the curvatures of the contour at the 
candidate locations. More specifically, the following 
objective function is used to decide the location of the 
head:  

( ) * | ( ) | * *i i c x c i r i e iO Y Y w X X w R w E= − + − + − , 
where ( , )c cX Y , ( , )i iX Y denote the co-ordinates of the 

centroid of the body contour and center of the circle 
fitted to the contour segment associated with i th peak. 

iR , iE  denote radius and residue of least square fitting 

of the i th circle. ( 1)xw = , ( 1)rw = , and ( 10)ew =  are 
weights associated with the three components of the 
objective function. In other words, the objective function 
hypothesizes that smaller, more circular extreme are 
more likely to be heads. Similarly, the circles that are 
higher and vertically more aligned with the center of the 
body are preferred as heads. Our approach is similar to 
[7]. 
    Based on the 2D head position on each camera and the 
camera calibration information, the 3D head position is 
derived using a wide baseline stereo method. 

 
3. Virtual Pose Correction for 
Overhead Wide-angle Camera 
 
    The head pose estimation for overhead wide-angle 
cameras needs to correct for ‘virtual pose’ using the 3D 
head and camera positional information. In our 
approach, the imagery from two cameras and their     
relative geometry are used to improve performance. 

 
Figure 6.  Virtual tilt (looking up/down), virtual pan 
(looking left/right) and virtual roll (image rotation) for 
overhead wide-angle camera. 
 
    We use the terms: tilt, pan, and roll to refer to the head 
looking up/down (tilt), left/right (pan), and the rotation 
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along the optic axis (roll). Figure 6 shows an instance of 
virtual tilt (left image), virtual pan (center image), and 
virtual roll (right image). 
 
3.1. Virtual Tilt Correction 
 
    Prior to designing the algorithms for virtual tilt 
correction, we computed the sensitivity of virtual tilt 
with regards to relative position of the person with 
respect to the camera. Figures 7 shows the results of this 
analysis. In this figure, we show how virtual tilt is 
determined by the distance to the camera depending on 
the height of the person and the height of the camera. As 
a person gets very close to the camera, virtual tilt 
becomes extreme. On the other hand, for indoor 
cameras, in rooms of typical heights (8-9 feet) and 
people of normative size, virtual tilt can be kept below 
20° for distances greater than approx. 6 feet from the 
camera or below 10° for distances greater than 12 feet.  

 
Figure 7. The sensitivity of virtual tilt regards to 
relative position (in inches) of the person with 
respect to the camera.  
     
    Virtual tilt is computed based on the camera origin 
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     Note, since virtual tilt refers to tipping the head up or 
down, it is with respect to some direction of the face. 
Hence, if a person is turned with respect to the camera , 

virtual tilt is a tip of the head in this direction. In our 
system, we train only on a fixed tilt ( °= 10xθ ) with 
respect to the frontal face. 
 
 3.2. Virtual Pan Correction 
 
     Figure 8 shows the sensitivity of virtual pan with 
regards to relative position of the person with respect to 
the camera. Virtual pan depends on how close to the 
camera (the horizontal axis in Figure 8) and how far to 
the left (or right) of the camera (the axis into the page in 
Figure 8). Again, the sensitivity is most extreme when a 
person is near the camera but is nearly linear beyond a 
few feet. 
     Virtual pan yθ can be computed similarly to virtual 

tilt using the complement of the angle between the 
epipolar line and the y-axis of the world coordinate 
system.: 
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Figure 8. Sensitivity to virtual pan regards to the 
relative position (in inches) of the person with 
respect to the camera.      
  
3.3. Virtual Roll Correction  
 
    Virtual roll ,zθ  is computed based on the angle 
between the vertical axis of world coordinate system 
projected onto the camera’s image plane and the vertical 
axis of the camera system: 
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where (R,T) represent the rigid transformation from the 
world coordinate system to the camera coordinate 
system. 

 
4. Absolute Head Pose Estimation for 
Overhead Wide-Angle Cameras 
 
4.1 Absolute Head Pose Estimation 
 
     The flow chart of the algorithm used to estimate 
absolute pose by the general camera configuration 
system is shown in Figure 9.  Each overhead wide-angle 
camera is independently calibrated. Based on the 
calibration information, each camera corrects for virtual 
roll using image rotation. Then the system uses 
background subtraction and the head finder to find the 
head region in each image. Relative pose estimation is 
then performed by a neural network based head pose 
classifier for each camera [4]. We call this ‘relative’ pose 
estimation, because at this point, the algorithm estimates 
pose based on appearance only for each camera.  
 

 
 
Figure 9. Overview of the method to estimate 
absolute head pose for overhead wide-angle camera. 
 
     Based on the camera calibration information and the 
3D head position, the system can now correct for virtual 
pan to obtain an estimate of absolute pose. Given an 
estimate of absolute pose from each camera and the 3D 
position of the head, maximum likelihood estimation is 
performed to obtain the final absolute head pose. The 
maximum likelihood estimation assumes the two views 
of the head are seen from two cameras with known 
geometry, and thus the angle between the two views is 
known. 
    The final estimate of pose maximizes the likelihood 
that both cameras are viewing this pose from their 

respective vantage points. The probability distribution 

)|( θkZP  of an image observation kZ for the thk  

camera given a specific pose θ , depends on camera 
noise, lighting variations, individual variations, etc. The 
majority (although not all) of these factors are 
independent for each camera. Therefore, we model the 
joint probability as the product of the individual 
distributions: 

∏≈
n

k kZPnZZZP )|()|...2,1( θθ . 

    The outputs of each individual pose estimator are 
inversely weighted by the distance of the head from that 
camera. In this way, the system can bias the output based 
on the closer camera. 
   
4.2 Non-Uniform Head Pose Ground Truth 
Data 
 
    In the generalized camera configuration system, we 
acquire training data from an independent wide-angle 
overhead camera. This data was acquired at the 
following pan angles in degrees:  

(0,15,30,49,90,120,180,-120,-90,-49,-30,-15). 
Our prior system was based on the CMU Pose, 
Illumination and Expression database [ref] which is in 
uniform angles. An example of non-uniform angle 
sampling (from 0-90°) is shown in the bottom row of 
Figure 10.  

 
Figure 10. Top row: uniform angle sampling 
(0°,22.5°,45°,67.5°,90°). Bottom row: non-uniform 
sampling (0°,15°,30°,49°,90°). 
 
     There are two reasons that training data was acquired 
at non-uniform angle spacing. First, since images of the 
face are projected onto the image plane, the spacing 
between the features of the face does not change linearly 
with pan angle. In particular, we use pan angles, which 
cause the projection of the nose (center of the face) to 
move in equal step sizes from the center to the outer 
tangent of the face (i.e. when the face is turned 90°). To 
visually contrast the two sampling techniques, uniform 
sampling is shown in the top row of Figure 10. Notice 
the similarity between the views at 67.5° and 90°. 
    Secondly, as the subject turns from 90° to 180° we 
train additionally only at 120°. If you assume that half 
the head is covered by hair (the back 180° hemisphere) 
then half the face can be seen when turned to 90°. 



Similarly, a quarter of the face can be seen at 120°. This 
non-uniform sampling of pan angle space is important in 
order to optimize the ability of the classifier to discern 
pose. 
     We performed experiments based on two sets of data. 
The initial database used was the CMU Pose, 
Illumination and Expression database [14] composed of 
68 subjects. This dataset contains high resolution close-
up images. In our previous work, we discuss some of the 
issues regarding the effectiveness of the dataset to 
generalize to a larger population and how these issues 
can be addressed [4].  We believe that training data 
needs to be acquired for a wide range of prototypes and 
ultimate systems will need to differentiate (implicitly or 
explicitly) prototypes in order to correctly classify pose 
given the enormous range of variation in personal 
characteristics.  
     On the other hand, once an appropriate prototype 
match is found, classification can proceed from the 
smaller but more relevant database. This tactic was 
utilized in our wide-angle overhead experiments. In 
these experiments only data from a small number of 
subjects acquired in our laboratory was used. 
 

5. Experimental Results 
 
     Results of our first experiment were based on the 
CMU PIE database and are shown in Table 1. In this 
experiment, images were classified into 9 uniformly-
spaced poses ranging from 0-180°.  The “two camera 
angle,” i.e., the angle from one camera to the head to the 
other camera, is known. Since the subject is centered in 
the view of each camera, no virtual pose is evident. This 
simple experiment was used to verify our assumption 
that classification could be improved using multiple 
cameras. On average, performance improved from 89% 
correct classification to over 96% for a single image at 
32x32 to from 79% to 85% for a single image at 16x16.  
 

Head Resolution Two camera 
angle (degrees) 32x32 16x16 

22.5 96% 85% 
45 97% 85% 

67.5 98% 90% 
90 95% 80% 

Single camera 89% 79% 
 
Table 1. Result of pose classification for two cameras 
using CMU PIE database 
 
     The remaining experiments were performed with data 
obtained in our laboratory. In these experiment overhead 
wide-angle cameras are used. Pose classification follows 
the algorithm outlined in Section 4. Table 2 shows a 

summary of the absolute head pose classification results 
based on 4799 images. 
 
 Cam1 Cam2 Both  

No  
Correction 

76.4% 65.6% 81.3%  
Recognition 
Rate Virtual Pose 

Correction 
80.6% 69.1% 84.3% 

Average Head Size (pixels) 18x18 13x14  

Average Distance between 
Head and Camera (M) 

3.65 4.48  

 
Table 2. Results of absolute head pose estimation 

 
      In our results, the average head size is 18x18 pixels 
for Camera 1 and 13x14 pixels for Camera 2. The 
average distance between the head and the Camera 1 and 
Camera 2 is 3.65m and 4.48m respectively. In Table 2, 
the columns “Cam1” and “Cam2” list the outputs of each 
individual head pose estimator. The final head pose 
results using the maximum likelihood estimator 
combining the individual outputs from both cameras are 
listed in the column “Both”.  Without “virtual pose” 
correction, an average recognition rate of 76.4% was 
achieved for camera 1 and a recognition rate of 65.6% 
for camera 2. By combining the outputs of camera 1 and 
camera 2, the recognition rate increased to 81.3%. With 
“virtual pose” correction, the average recognition rates 
of the camera 1, camera 2 and the combination of both 
cameras increased to 80.6%, 69.1%, and 84.3% 
respectively. 
    More examples of our algorithm applied to image 
sequences taken in our lab can be viewed at 
http://www.research.ibm.com/peoplevision. In Figure 11 
we show three examples.  In each example, the top left 
image is from Camera 1, the top right image is from 
Camera 2, and the center white square shows the path of 
the person in red (in 2D) ending with the estimated 
absolute head pose (black arrow). Currently the absolute 
head pose is identical to the head pose from Camera 1’s 
point of view. The gauge at left shows in red, the relative 
pose for Camera 1 (from Camera 1’s point of view), in 
green, the virtual pose, and in blue the absolute pose. 
The virtual pose represents the amount of pose change 
expected due to the position of the person with respect to 
the camera. The gauge at right shows the analogous 
estimates for Camera 2  (from Camera 2’s point of 
view). The bottom images show the detected head 
regions from each camera enlarged for visualization.  
     The three examples illustrate typical system behavior. 
In Figure 11(a) both individual cameras correctly 
estimate pose. Notice the correction from relative (red) 
to absolute pose (blue) based on the virtual pose (green). 
When the subject is equidistant to both cameras, 



integrated pose estimation is driven by both distributions 
(Figure 11(b)). When the subject is near one camera, its 
peak probability dominates the integrated pose 
estimation(Figure 11(c)).      
    Figure 12 shows (from left to right) a spatial contour 
plot of accuracy for Camera 1, Camera 2, and the 
integrated maximum likelihood estimate. The positions 
of the cameras are shown as diamonds at top (Camera 2) 
and at right (Camera 1) in each figure. For Camera 1, the 
accuracy falls off near the position of Camera 2 
(diamond at top). For Camera 2 the accuracy decreases 
as the subject is more distant from the camera. The 
integrated result clearly shows the advantage of 
combining pose information in 3D. It is interesting to 
note, that in general, the accuracy falls off sharply. 
 

6. Conclusions 
  
   In this paper, we successfully integrated head pose 
estimation for overhead wide-angle cameras with 3D 
position information. Unlike previous work on head pose 
estimation, the overhead wide-angle cameras provide 
very low-resolution imagery of the head, introduce 
significant ‘virtual’ or relative pose and significant lens 
distortion artifacts.  To enable arbitrary camera 
configurations, the head pose estimator was trained on 
an independent camera configuration. In order to obtain 
correct absolute head pose for overhead wide-angle 
camera, the virtual pose is corrected based on the head 
position and pose information. An average recognition 
rate of 85% was achieved.  
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