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In unidimensional absolute identification tasks, participants identify stimuli that vary along a single
dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing
models assume that identification is achieved using long-term representations of absolute magnitudes.
The authors propose an alternative relative judgment model (RJM) in which the elemental perceptual
units are representations of the differences between current and previous stimuli. These differences are
used, together with the previous feedback, to respond. Without using long-term representations of
absolute magnitudes, the RJM accounts for (a) information transmission limits, (b) bowed serial position
effects, and (c) sequential effects, where responses are biased toward immediately preceding stimuli but
away from more distant stimuli (assimilation and contrast).

Keywords: absolute identification, relative judgment

Miller (1956) drew attention to a curious phenomenon. People
have great difficulty identifying stimuli from a set that varies along
a single psychological continuum, even though their ability to
discriminate pairs of stimuli from the set suggests that they should
be very good at the identification task. This phenomenon can be
seen across a wide range of stimulus attributes—the frequency and
loudness of tones, the strength of tastes and smells, the magnitude
of lengths and areas, the hue and brightness of colors, and the
intensity and numerousness of cutaneous stimulation—which sug-
gests some common and fundamental source of the limitation.

In an absolute identification task, participants are required to
identify, with a unique label, stimuli drawn from a set of items that
vary along only a single continuum. Typically, stimuli are evenly
psychologically spaced. A stimulus’s label is normally its ordinal
position within the set. Three key phenomena, which we review in
more detail below, are observed. First, there is a severe limit in the
information transmitted from stimulus to response (i.e., the size of
the set for which members can be identified perfectly) even when
adjacent stimuli are perfectly discriminable. Second, a bow effect
is observed when identification accuracy is plotted against stimu-
lus, with an advantage for the smallest and largest stimuli. Third,
there are strong sequential effects, whereby the stimuli on previous
trials exert a strong bias on the response to the current stimulus.

Many theoretical accounts have been offered for one or more of
these phenomena. Nearly all of these models have in common the
assumption that in an absolute identification task a representation

of the absolute magnitude of the current stimulus is compared with
some long-term representations of the absolute magnitudes of
either other stimuli from the set, particular anchor values, or
particular criterial values. However, in a review for the centenary
issue of Psychological Review, Shiffrin and Nosofsky (1994) con-
cluded that, since Miller’s (1956) classic article, “a fully unified
account of the numerous range, edge, and sequential effects has
not been achieved” (p. 359).

Here, in contrast to existing models (excepting Laming, 1984),
we offer a relative judgment model (RJM) of absolute identifica-
tion. The RJM does not use long-term representations of absolute
magnitudes. Instead, it uses the difference between the current
stimulus and the previous stimulus, in conjunction with the feed-
back from the previous trial, to generate a response. Thus, the
magnitude of the current stimulus is judged relative to the magni-
tude of only the immediately preceding stimulus (hence the name
RJM). In this article, we review existing models of absolute
identification and show that none offers a complete account of the
phenomena described above. We then show that the RJM offers a
unified account of these phenomena and present new experimental
evidence that supports the model. We begin with a review of the
key empirical results.

Empirical Results in Absolute Identification

Information Transmission Limit

If one uses multivariate information transmission as a dependent
variable (McGill, 1954), it is possible to measure the information
transmitted1 in an absolute identification task. If performance in an
absolute identification task were perfect, the information transmitted

1 Information transmitted is a measure of the amount of association
between the input (stimulus) and the output (response) of a channel (the
participant). The amount of information transmitted does not describe the
nature of the association, and the analysis makes no assumptions about the
form of the association. Miller (1956) began with a motivation for using
this measure.
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would grow as the number of stimuli was increased. For example,
perfect identification of two equally probable stimuli carries one bit of
information, identification of four stimuli carries two bits, identifica-
tion of eight stimuli carries three bits, and so on. However, the
information transmitted from stimulus to response (sometimes, chan-
nel capacity) in an absolute identification task seems to be limited to
very few bits (see Table 1), corresponding to perfect identification of
very few stimuli across a very wide range of stimulus attributes (see
Garner, 1962; Laming, 1984; Miller, 1956, for reviews). Figure 1
shows information transmitted as a function of the number of stimuli
in the set (with range of the stimuli held constant) for data from
Garner (1953) and Pollack (1952). (In all figures that present data,
data are collapsed across participants.) With a small number of stim-
uli, obviously less information must be transmitted, but as the number
of stimuli increases, the information transmitted from stimulus to
response does not continue to increase. Although an increase in the
range of stimuli (number held constant), and hence the separation of
the stimuli, produces an initial increase in information transmitted, the
increase is a negatively accelerated function of range and quickly
reaches an asymptote once adjacent stimuli are discriminable (Alluisi
& Sidorsky, 1958; Braida & Durlach, 1972; Eriksen & Hake, 1955a;
Pollack, 1952).

Bow or Edge Effects in the Serial Position Curve

When accuracy is plotted as a function of the rank of the
stimulus within the stimulus set, a characteristic bow is observed
in the resulting serial position curve (e.g., Kent & Lamberts, 2005;
Lacouture & Marley, 2004; Murdock, 1960; W. Siegel, 1972).

Performance on stimuli at the ends of the range is better than
performance on midrange stimuli even though, when presented in
isolation, any two adjacent stimuli may be perfectly discriminable.
As for information transmission, once stimuli are pairwise per-
fectly discriminable, increased spacing of items leads, at best, to
only slight improvements in accuracy (Braida & Durlach, 1972;
Brown, Neath, & Chater, 2002; Gravetter & Lockhead, 1973;
Hartman, 1954; Lacouture, 1997; Luce, Green, & Weber, 1976;
Pollack, 1952). Figure 2 shows the very similar stimulus–response

Figure 1. Information transmitted from stimulus to response as a function
of stimulus set size. The solid line is the maximum possible amount of
information transmitted given perfect performance. Dashed lines are the
best fits of the relative judgment model. Data are taken from Garner (1953)
and Pollack (1952).

Table 1
The Limit in Information Transmitted for a Variety of Stimulus Attributes

Attribute Source Limit/bits

Frequency of a tone Hartman (1954) 2.3
Pollack (1952) 2.3
W. Siegel (1972) 1.6

Intensity of a tone Garner (1953) 2.2
Norwich, Wong, and Sagi (1998) 2.2
Braida and Durlach (1972; from calculations by

Marley and Cook, 1984)
1.9

Saltiness of a solution Beebe-Center, Rogers, and O’Connell (1955) 1.7
Sweetness of a solution Beebe-Center, Rogers, and O’Connell (1955) 1.7
Intensity of odor Engen and Pfaffmann (1959) 1.5
Bisection of a scale Hake and Garner (1951) 3.2

Coonan and Klemmer (as reported in Miller, 1956) 3.2/3.9
Line length Baird, Romer, and Stein (1970) 2.4

Pollack (as cited in Miller, 1956) 2.6/3.0
Angle of inclination Muller, Sidorsky, Slivinske, Alluisi, and Fitts

(1955; as cited in Garner, 1962, and Laming, 1984)
4.5

Pollack (as cited in Miller, 1956) 2.8/3.3
Area Pollack (as cited in Miller, 1956) 2.6/2.7
Area of a circle Alluisi and Sidorsky (1958) 2.7
Area of a square Eriksen and Hake (1955a) 2.0

Eriksen and Hake (1955b) 2.8
Area of complex figure Baird, Romer, and Stein (1970) 2.1
Hue Chapanis and Halsey (1956) 3.1

Eriksen and Hake (1955b) 3.3
Conover (1959; as cited in Garner, 1962) 3.5

Brightness Eriksen and Hake (1955b) 2.3
Cutaneous electrical intensity Hawkes and Warm (1960) 1.7

Note. Limits separated by a slash denote limits for short and long duration stimulus exposure.
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confusion matrices obtained by Brown et al. (2002) for absolute
identification of tones varying in their frequency. Tones were
geometrically spaced, with each tone a constant ratio higher in
frequency than the immediately lower tone. (Following Weber’s
law, geometric spacing is typically used to produce stimuli that are
presumed to be equally psychologically spaced.) Each confusion
matrix is for a different stimulus spacing (from 420–563 Hz in the
narrow spacing condition to 363–652 Hz in the wide spacing
condition). As Figure 2 shows, increasing the stimulus spacing had
almost no effect on performance.

Increasing the number of stimuli in an absolute identification
task increases the size of the bow effect (Alluisi & Sidorsky, 1958;
Durlach & Braida, 1969; Lacouture & Marley, 1995; Pollack,
1953; W. Siegel, 1972; Weber, Green, & Luce, 1977). Figure 3
shows the serial position curves obtained by Lacouture and Marley
(1995; see also Kent & Lamberts, 2005; Lacouture, Li, & Marley,
1998) for different stimulus set sizes, with a larger bow effect for
larger set sizes. Note that although Stimuli 5 and 6 can be nearly
perfectly discriminated when they constitute the entire stimulus
set, performance on these same stimuli drops considerably when
they are identified within a larger stimulus set. Simply shifting all
the stimuli along the dimension, so that each stimulus increases in
value by a constant multiplicative factor, has no effect on the
accuracy against stimulus magnitude curve (Lacouture, 1997). The
bow effect remains even after extensive practice, although small
improvements in accuracy are observed (Alluisi & Sidorsky, 1958;
Hartman, 1954; Weber et al., 1977; but see Rouder, Morey,
Cowan, & Pfaltz, 2004, for a larger practice effect). The bow effect

is greatly reduced by correction for the asymmetry of errors on
extreme versus interior stimuli (Weber et al., 1977), which sug-
gests that the restricted opportunity to make errors at the ends of
the range is a major factor underlying the bow effect (see also
Eriksen & Hake, 1957). The bow effect is not due to response bias
(at least, not response bias alone). In data in which end responses
are not used more frequently than central responses, the effect is
still observed (W. Siegel, 1972). In our data from Experiment 1,
the bow is observed although there is a bias against responding
with extreme categories.

Sequential Effects

We know of no absolute identification experiment in which
strong sequence effects (where the response to the current stimulus
was shown to depend on previous stimuli and responses) were not
found. Of course, when performance in an absolute identification
task is perfect, there are no sequential dependencies. Thus, the
existence of sequential dependencies is likely to provide a useful
insight into processing in an absolute identification task.

The most salient sequential effect is that the response given to
the current stimulus is shown to be assimilated to the immediately
preceding stimulus (Garner, 1953; Holland & Lockhead, 1968; Hu,
1997; Lacouture, 1997; Lockhead, 1984; Long, 1937; Luce,
Nosofsky, Green, & Smith, 1982; Petrov & Anderson, 2005;
Purks, Callahan, Braida, & Durlach, 1980; Rouder et al., 2004;
Staddon, King, & Lockhead, 1980; Stewart, 2001; Ward & Lock-
head, 1970, 1971). In other words, participants are systematically

Figure 3. Accuracy (top) and d� (bottom) against stimulus rank for five
different set sizes (spacing between adjacent stimuli held constant). Dashed
lines are the best fits of the relative judgment model. Data are from
Lacouture and Marley (1995). d�i,i�1 � measure of the confusibility of
Stimulus i and Stimulus i � 1.

Figure 2. Confusion matrices for three different stimulus spacings (ratios
1.037, 1.050, and 1.076) obtained by Brown, Neath, and Chater (2002).
Each curve represents the proportion of responses in each response cate-
gory for a given stimulus: Together, the curves show the stimulus–response
confusion matrix. The accuracy against stimulus magnitude serial position
curve is obtained when the apexes of each curve are joined. The best fit is
to data averaged across all three stimulus spacings.
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biased to respond as if the current stimulus is nearer to the previous
stimulus than it actually is. Figure 4 shows data from the feedback
condition of Ward and Lockhead’s (1970) absolute identification
experiment. Stimuli were tones varying in loudness. The average
error in responding on the current trial is plotted for each stimulus
as a function of the stimulus on the previous trial. When the current
stimulus was greater than the previous stimulus, the error was
negative (i.e., the stimulus is underestimated); when the current
stimulus was less than the previous stimulus, the error was posi-
tive. The five lines are approximately parallel, with positive slopes,
demonstrating that assimilation took place for all combinations of
current and previous stimuli (Lockhead, 1984). Assimilation to
preceding items is also observed in magnitude estimation tasks
(e.g., Jesteadt, Luce, & Green, 1977), in matching tasks (Stevens,
1975, p. 275), and in relative intensity judgment tasks (Lockhead
& King, 1983).

The effect of stimuli further back in the sequence on the
current response is the opposite—that is, there is a contrast
effect (Holland & Lockhead, 1968; Lacouture, 1997; Ward &
Lockhead, 1970, 1971). Assimilation to the previous trial and
contrast to trials further back have been demonstrated within
the same experiments, for the same participants. Figure 5 shows
the average error on the current trial (averaged across all
possible stimuli on the current trial) as a function of the stim-
ulus k trials ago for data from Holland and Lockhead (1968),
Lacouture (1997), and Ward and Lockhead (1970). As de-
scribed above, assimilation was shown to the stimulus on the
immediately preceding trial (k � 1). Stimuli on less recent trials
(k � 1) exhibited contrast, as shown by the reversal in the sign
of the error. The contrast effect was smaller than the assimila-
tion, and the error dependency reduced to zero with increased
numbers of intervening trials.

In the experiments on sequence effects discussed so far, stimu-
lus, response, and feedback were all highly correlated. Which of
these is the basis for assimilation (and contrast)? We focus on this
question for the remainder of this section.

The sequence effects observed are dependent on the quality of
stimulus presentation. Ward and Lockhead (1971) examined per-
formance in a standard absolute identification experiment using
line length. When they increased task difficulty by reducing the

luminance and duration of line length presentations, they observed
more assimilation. In the difficult condition, accuracy was low,
and therefore the correlation between stimuli and responses was
reduced. Assimilation was demonstrated only to the previous stim-
ulus and not the previous response. This suggests that assimilation
to the previous response is only normally observed because the
response is correlated with the previous stimulus (see also Garner,
1953; McGill, 1957; Mori, 1998).

Ward and Lockhead (1971) also observed assimilation to the pre-
vious trial’s feedback but not to the previous response in a guessing
task (although there was slight evidence of a small contrast effect to
responses further back in the sequence). The guessing task was
identical to an absolute identification experiment, except that the
stimuli were omitted and therefore could not have been the cause of
the assimilation observed. As the task was guessing, there was no
correlation between the feedback and the responses. Thus, the obser-
vation of sequential effects only for the previous feedback but not the
previous response in a task in which the two were not correlated also
suggests that previous responses are not the locus of sequential
effects.

Manipulating the Sequence in an Absolute Identification
Task

Manipulating the relative frequencies of the size of the differ-
ences between consecutive trials affects identification accuracy. In

Figure 4. Average En (error in responding on trial n) for each Sn (rank of
the stimulus presented on trial n) as a function of Sn�1. Dashed lines are the
best fits of the relative judgment model. Data have been collapsed across
pairs of stimuli. Data are from Ward and Lockhead (1970).

Figure 5. Average En (across all Sn) as a function of the lag, k, for each
possible Sn�k. Data have been collapsed across pairs of stimuli. Dashed
lines are the best fits of the relative judgment model. The three data sets are
from Holland and Lockhead (1968), Lacouture (1997), and Ward and
Lockhead (1970). En � error in responding on trial n; Sn � rank of the
stimulus presented on trial n.
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an absolute identification task, Luce et al. (1982) used four differ-
ently constrained sequences. In one condition, the sequence of
trials was constrained so that the current stimulus was either
identical to, one step softer than, or one step louder than the
previous stimulus. This condition was called the small step (3)
condition, because the current stimulus was chosen from one of
three stimuli centered on the previous stimulus. In the small step
(5) condition, the current stimulus was selected from five adjacent
intensities centered on the previous stimulus. In the random con-
dition, the sequence was random. In the large step condition, the
current stimulus was at least four stimuli different from the pre-
vious stimulus. For all four sequence types, each intensity was
equally frequent over the course of the whole experiment. From
the identification confusion matrix, a measure of the confusibility,
d�i,i�1, of each loudness i with the adjacent loudness, i � 1, was
obtained. This method of analysis allows comparison of identifi-
cation performance free from contamination by constraints im-
posed by the control of the sequences in each condition.2 (The
procedure for calculating d�i,i�1 is given in the Appendix.) When
d�i,i�1 is plotted against stimulus magnitude, each condition shows
a characteristic bow, with poorer performance for the middle of the
range of signals (see the bottom panel in Figure 6). The key result
is that the curves lie one above the other, such that tones are more
confusable in the conditions in which the step size is larger: In
order of decreasing identification performance, the curves are
small step (3), small step (5), random step, and large step. Smaller
transitions seem to lead to higher accuracy (see also Hu, 1997, and

Petzold & Haubensak, 2001, for similar findings). (The top panel
of Figure 6 shows the corresponding bows in the accuracy serial
position curves. Here, the ordering of the large step and random
conditions is reversed, with better performance in the large step
condition because of the restricted possibility of making mistakes
imposed by the restricted set of possible responses on each trial.)
Further work (Nosofsky, 1983b), testing alternative hypotheses, is
consistent with the idea that smaller transitions lead to greater
accuracy.

Existing Models of Absolute Identification

There are many existing accounts of some of the phenomena
seen in absolute identification data. The extant models can be
divided into four main classes: (a) models in which memories of
recent stimuli are assimilated (Holland & Lockhead, 1968; Lock-
head & King, 1983), (b) modified Thurstonian models (Braida et
al., 1984; Durlach & Braida, 1969; Luce et al., 1976; Purks et al.,
1980; Treisman, 1985), (c) limited response or processing capacity
models (Lacouture & Marley, 1991, 1995, 2004; Laming, 1984,
1997; Marley & Cook, 1984, 1986), and (d) exemplar models
(Brown et al., 2002; Kent & Lamberts, 2005; Nosofsky, 1997;
Petrov & Anderson, 2005). Below, we briefly review each of these
models and consider which of the phenomena outlined (limit in
information transmitted, bow effects, and assimilation and con-
trast) are and are not accounted for by each model. Table 2 gives
an overview of the scope of these models. Two themes emerge
from this review. First, there are two different types of explanation
as to why increasing the range of stimuli does not increase infor-
mation transmitted. Some models assume a perceptual locus, and
others assume the limit lies in the response process. The second
theme is that current models that assume that long-term represen-
tations of absolute magnitudes are the basis for absolute identifi-
cation do not provide a full account of sequential effects.

Assimilation Models

Holland and Lockhead (1968). In Holland and Lockhead’s
(1968) model, participants are assumed to generate a response by
adding the judged distance between the current stimulus and the
previous stimulus to the feedback from the previous trial. Assim-
ilation and contrast are accounted for in terms of the contamination
of the representations of the absolute magnitudes of stimuli. Spe-
cifically, the memory of the previous stimulus is assumed to be
contaminated by the memories of earlier stimuli.

Of the phenomena outlined above, Holland and Lockhead’s
(1968) model accounts for assimilation and contrast, but only on
average. For example, consider a low-magnitude stimulus on the
previous trial. The stimuli on preceding trials are likely to have
been larger in magnitude, and, thus, when the previous stimulus is
confused with them, the representation of its magnitude is an
overestimate. This causes the difference between the current and
previous stimuli to be underestimated on average (as the current
stimulus is also likely to be larger than the previous stimulus) and
leads to the current response being biased toward the previous

2 It is not clear whether the responses offered to participants were
constrained for Luce et al.’s (1982) Experiment 1. This was the case for
their Experiment 2.

Figure 6. Data showing the bow in proportion correct (top) and d�i,i�1

(bottom) serial position curves for the four conditions used by Luce,
Nosofsky, Green, and Smith (1982). Dashed lines are the best fits of the
relative judgment model. d�i,i�1 � measure of the confusibility of Stimulus
i and Stimulus i � 1.
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stimulus (i.e., assimilation). Contrast also follows: On average, the
current response is biased away from stimuli two or more trials ago
because these stimuli are, on average, greater in magnitude than
the (low-magnitude) stimulus on the immediately preceding trial.
However, a detailed examination reveals this account to be unsat-
isfactory. Typically, assimilation is observed for all combinations
of current and previous stimuli (e.g., Ward & Lockhead, 1970; our
Experiment 1). Holland and Lockhead’s model predicts contrast in
some cases. For example, consider the case of absolute identifica-
tion of 10 stimuli, with Stimulus 3 on the preceding trial followed
by Stimulus 2 on the current trial. The confused representation of
Stimulus 3 will be an overestimate (as earlier stimuli are likely to
have been larger), and, thus, the difference between the current
stimulus and the previous stimulus will be overestimated. This
produces a contrast effect in which assimilation is observed. In
addition to this difficulty for the model, Holland and Lockhead
gave no account of the other phenomena listed in Table 2.

Lockhead and King (1983). In Lockhead and King’s (1983;
see also Lockhead, 1984) model, two assumptions are made: (a)
that successive stimuli assimilate in memory, and (b) that people
compare each new stimulus with a collection of stimulus memories
to determine a response. No psychological mechanism is chosen to
motivate these assumptions; “the focus here is on a simple equa-
tion to fit the data” (Lockhead, 1984, p. 44). The equation is Rn

� Sn � a1�Sn � Sn�1� � a2�Sn � Sn�2� � a3�Sn

� Sn�3� � . . . � �, where Rn is the response on trial n, Sn is
the stimulus on trial n, a1 � 0 for assimilation to Sn�1, a2 � a3 �
. . . � 0 for decreasing contrast to less recent stimuli, and � is a
noise term. Although such a model can inevitably describe assim-
ilation and contrast, no consideration is given to other absolute
identification phenomena. In our application of Lockhead and

King’s model, we have found that such a model does not offer an
account of the limit in information transmitted or the bow effect.

Modified Thurstonian Models

In a Thurstonian account, presentation of a stimulus results in
perception of an absolute magnitude, represented as a noisy value
on an internal sensory scale. Criteria, or bounds, divide this scale
into response categories. The criteria provide a long-term frame of
reference for absolute magnitudes. There are important multidi-
mensional extensions of this idea (e.g., Ashby & Townsend, 1986).
The source of variability in responding in the standard Thurstonian
model is the noise in the representation of the stimulus on the
internal sensory scale.

A simple Thurstonian model can offer some account of the limit
in information transmitted as the number of stimuli is increased
with the range held constant (the “Range constant” columns in
Table 2): As the number of stimuli is increased, the bounds
become closer together, and the fixed magnitude noise on the
sensory scale means that a stimulus is more likely to be classified
incorrectly. The bow effect can also be explained because there is
a limited ability to make mistakes for stimuli at the edges of the
range. For example, if the smallest magnitude stimulus is greatly
underestimated, then it will still be correctly classified into the first
category. The invariance of these phenomena as range is increased
(the “N constant” columns in Table 2) and an account of sequential
effects require further modification of the model. We evaluate
three modifications below.

Durlach and Braida (1969). Durlach and Braida (1969) mod-
ified the simple Thurstonian decision model outlined above to
include an internal noise model. Durlach and Braida proposed that

Table 2
A Comparison of Absolute Identification Models

Model Type

Information
transmission limit Bow

Sequence
effects

Range
constant

N
constant

Basic
effect

Range
constant

N
constant RT Assimilation Contrast Manipulation

Holland and Lockhead (1968) Regression No No No No No No Partlya Partlya No
Lockhead and King (1983) Regression No No No No No No Yes Yes No
Durlach and Braida (1969) Modified Thurstonian Yes Yes Yesb Yes Yes No No No No
Treisman (1985) Modified Thurstonian Yes Yes Yes Yes Yes No Partlyc Partlyc No
Luce, Green, and Weber (1976) Modified Thurstonian Yes Yes Yesd Yes Yes No No No Yes
Marley and Cook (1984, 1986) Restricted capacity Yes Yes Yes Yes Yes Yes No No No
Lacouture and Marley (1991) Restricted capacity Yes Yes No No No No No No No
Lacouture and Marley (1995, 2004) Restricted capacity Yes Yes Yes Yes Yes Yes No No Yes
Laming (1984, 1997) Relative judgment Yes Yes No No No No No No Yes
Brown, Neath, and Chater (2002) Exemplar No No Yes Yes Yese No No No No
Nosofsky (1997) Exemplar No No Yesf Yes No Yes No No No
Petrov and Anderson (2005) Exemplar Possibly Possibly Yes Possibly Possibly No Partlyg No Possibly
Kent and Lamberts (2005) Exemplar Possibly No Yes Yesh No Yes No No No
Relative judgment model Relative judgment Yes Yes Yes Yes Yes No Yes Yes Yes

Note. Yes indicates the effect is captured. No indicates the effect cannot be captured. Partly indicates that some aspect of the effect is captured but that
there is a significant shortcoming. N � set size; RT � response time; Sn � rank of the stimulus presented on trial n.
a Captures the effect only on average. b With the additional assumption of an anchor at each end of the range. c Incorrectly predicts that assimilation
will decrease as Sn � Sn�1 increases. d With the additional assumption that the attention band dwells at the edges of the range. e With the additional
assumption that discriminability is reduced as stimulus range increases. f An account of the bow effect is built into the model’s response bias
parameters. g Predicts response repetition but not increasing assimilation as Sn � Sn�1 increases. h Kent and Lamberts held stimulus spacing rather than
stimulus range constant.
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memory can operate in one of two modes. Here we discuss only
the context-coding mode, which applies to absolute identification.
In the context-coding mode, the presented stimulus is compared
with the general context of recent stimulus presentations. The
context-coding mode adds an additional source of variability in
responding (beyond the perceptual noise in the simple Thurstonian
model) that results from “the inability of the subject to determine
the context precisely and his inability to determine or represent the
relation of the sensation to this context precisely” (p. 374). The
standard deviation of the context-coding noise is assumed to be
proportional to the range of the stimuli, though no psychological
motivation is given for this assumption. The inclusion of a source
of variability that grows with the stimulus range allows Durlach
and Braida’s (1969) preliminary theory of intensity resolution to
account for the invariance of the absolute identification phenom-
ena as range is increased (either through an increase in the number
of stimuli with the spacing held constant or through an increase in
the spacing).

To account for bow effects, Braida et al. (1984) suggested that
the general context is set by two anchors at either end of the range.
The participant compares a stimulus with the general context by
counting steps (which are some proportion of the distance between
the anchors) using a noisy measurement unit. Thus, there is less
variability for stimuli near one of the anchors, as the number of
steps is small, and thus the cumulative error is small.3

No mechanism is offered to account for sequential effects.
However, Purks et al. (1980) suggested that the distributions that
represent signals are unaffected by the location of the previous
signal but that the category boundaries are. By partitioning their
data by the previous signal and fitting a Thurstonian decision-
bound model to each partition, Purks et al. demonstrated that the
separation between signal distributions was unaffected but that the
locations of decision boundaries were, being shifted away from the
previous signal. The next modification of the simple Thurstonian
model extends this idea.

Treisman (1985). Treisman (1985) used criterion-setting the-
ory (Treisman & Williams, 1984) to maintain response criteria in
a simple Thurstonian model. Two opposing short-term mecha-
nisms act on the criteria on a trial-by-trial basis. A tracking
mechanism, motivated by the assumption that objects in the real
world tend to persist, moves criteria away from the currently
perceived sensory effect, increasing the probability of a repetition
of the previous response. A stabilizing mechanism acts to locate
criteria nearer to the prevailing flux of sensory inputs, motivated
by the assumption that criteria will be adjusted to maximize
information transmitted. Tracking shifts are larger in magnitude
than stabilizing shifts but decay more quickly. Thus, Treisman’s
model predicts assimilation to the immediately preceding stimulus
when tracking shifts dominate but predicts contrast to less recent
stimuli when stabilizing shifts dominate. However, this account
does not fully explain the sequential biases. Treisman (1985, p.
192) stated that the magnitude of criteria movement decreases with
the distance of the criteria from the stimulus. Therefore, the model
would be expected to predict greater assimilation where previous
and current stimuli are similar. However, assimilation is greater
where stimuli differ more rather than less (see, e.g., Figure 4). For
the same reason, Treisman’s model predicts that the error in
responding should be greater if the previous and current stimuli are

similar: Luce et al. (1982), Nosfosky (1983b), Hu (1997), and
Rouder et al. (2004) found the opposite result.

The magnitude of the stabilizing shift is, unlike tracking shifts,
not fixed but instead proportional to the distance between the
sensory input and the nearest criterion. The magnitude of stabili-
zation is thus proportional to the intercriterion distance and there-
fore also proportional to the range. This allows Treisman’s (1985)
model to explain why increasing the range of stimuli does not
increase information transmitted. However, it also means that as
the range is increased, stabilization should come to dominate, and
it predicts a change in the pattern of assimilation and contrast that
is not observed (e.g., Experiment 1 below).

Treisman’s (1985) model does not predict the gradual and
smooth U-shaped pattern of the bow effect (instead, accuracy is
approximately equal for all but the two most extreme stimuli).
However, if criteria in the central region are more closely spaced,
bow effects will be more U shaped. Such a spacing would also lead
to a response bias for extreme stimuli, but the opposite pattern—a
central tendency in responding—is typically observed (see Exper-
iment 1).

Luce et al. (1976). Luce et al. (1976) proposed a modified
Thurstonian model in which an attention band roves over the
stimulus range. Items falling in the band result in a less variable
Thurstonian representation than those that do not. As the stimulus
range is increased, the probability of stimuli falling inside the
fixed-width band is reduced, causing a reduction in identification
performance. This allows the model to predict a limit in perfor-
mance as stimulus range is increased. With the additional assump-
tion that the attention band dwells at the edges of the range of
stimuli, bow or edge effects are accounted for, although no moti-
vation for this assumption is given. The further assumption that
attention tends to dwell on the location of the last stimulus explains
the finding that there is typically reduced variation in responding
when the previous stimulus is similar to the current stimulus (e.g.,
Luce et al., 1982). However, the attention band model does not
offer an account of the systematic bias in responding to the current
stimulus by preceding stimuli (i.e., assimilation and contrast).

Restricted Capacity Models

Cook, Lacouture, and Marley (Lacouture & Marley, 1991, 1995,
2004; Marley & Cook, 1984, 1986) have presented three models of
absolute identification that account for limits on information trans-
mitted and bow effects by assuming a limited capacity process in
either memory or response processes (not perceptual processes).
These models can account for limits in performance as stimulus
range is increased because they do not assume that the limit in
information transmitted is perceptual.

Marley and Cook (1984, 1986) and Karpiuk, Lacouture, and
Marley (1997). In Marley and Cook’s (1984, 1986) models,
perception is assumed to be absolute, with the location of the

3 Gravetter and Lockhead (1973) proposed a similar model, except that
in their model noise is assumed to be proportional to the criterial range (i.e.,
the distance between the two most extreme category boundaries) rather
than the distance between the two most extreme stimuli. Though these two
distances are highly correlated in most situations, if the lowest and highest
stimuli are placed more extremely, criterial range is found to be more
appropriate.
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stimulus represented accurately on a Thurstonian continuum. The
exact location on the continuum is unavailable to the response
process and must be deduced through comparison of the stimulus
with the context in which it is presented. Marley and Cook as-
sumed that the context, which comprises a set of elements, must be
rehearsed. Each element’s activation is incremented each time a
pulse arrives from a Poisson pulse process, before its activation
continues to decay exponentially. There is a fixed total rehearsal
capacity, which they modeled by limiting the pulse rate across all
elements. The location of the stimulus within the continuum of
elements is the sum of the activation of the elements between the
stimulus and known anchors (cf. Braida et al., 1984). The anchors
are assumed to be at or outside the location of the extreme stimuli.
Marley and Cook (1984) showed that, under these assumptions,
the variability of the total activity of elements to one side of the
stimulus increases with the number of elements.

Marley and Cook (1984) demonstrated that the model can
account for (a) the asymptote in information transmission as stim-
ulus range increases, with the number of stimuli held constant, or
as the number of stimuli increases, with the spacing held constant,
and (b) the bow effect. Karpiuk et al. (1997) extended the model
to predict reaction time distributions. Marley and Cook provided
no account of the sequential effects observed. Marley and Cook
also pointed out that, if one were to extend their model to provide
the necessary account by assuming that the range of the rehearsal
is determined by the immediately preceding context, it is not clear
how the model could explain assimilation and contrast without a
further addition to the model.

Lacouture and Marley (1991). Lacouture and Marley (1991)
demonstrated that a simple network model could provide a rea-
sonable account of the limit in information transmitted. The model
is a three-layer feed-forward network that learns by mean-variance
back-propagation of error. Input vectors of adjacent stimuli over-
lap. For example, if Stimulus 5 is presented, Input Unit 5 will be
activated and neighboring Input Units 4 and 6 will also be acti-
vated to a lesser extent. The model predicts the limit in information
transmitted when the number of hidden units is one, although the
observed characteristic shape of the information transmitted
against set size (see our Figure 1) is not well reproduced. The
model does, however, produce a good fit to Braida and Durlach’s
(1972) data, in which information transmitted was measured as
stimulus range was varied (with set size held constant). Modeling
of bow and sequence effects is not described. The model cannot
provide an account of sequence effects without substantial modi-
fication because, once learning has reached asymptote, the repre-
sentation and processing of a stimulus are independent of imme-
diately preceding stimuli.

Lacouture and Marley (1995, 2004). Lacouture and Marley’s
(1995, 2004) mapping model is a feed-forward network with one
single input unit, one single hidden unit, and an output unit for
each response. The activation of the input unit represents the
magnitude of the stimulus. Perception is assumed to be noisy, and
repeated presentation of the same stimulus does not always lead to
the same activation. The hidden unit normalizes this activation via
a lower and an upper anchor value, so that the resulting activation
falls within the range 0 to 1. Fixed magnitude noise that represents
a noisy mapping process is then added, resulting in a limited
channel capacity. With a large number of stimuli, the resulting set
of possible mean hidden unit activations is closer together than for

a smaller set, and, thus, the fixed magnitude noise has a greater
effect on performance for larger sets. The mapping of the hidden
unit activation onto output units acts to partition the unit interval
into response categories. For each output unit, activation is accu-
mulated over the course of the trial, with the corresponding re-
sponse being emitted once the accumulator reaches a given thresh-
old (Lacouture & Marley, 1995). The assumption of repeated
intratrial sampling of the output units allows the model to predict
response times as well as accuracy, providing an extension over
previous models. Lacouture and Marley (2004) replaced the accu-
mulator and threshold with a leaky, competing accumulator (Usher
& McClelland, 2001) to capture full correct response time
distributions.

The mapping model provides an account of the limit on infor-
mation transmitted and of the bow effect for different set sizes. By
incorporating the (unmotivated) assumption that, after a response
is made, there will be less variation in the output of that unit and
those immediately adjacent to it on the next trial, the model also
accounts for the data from the sequence manipulation experiments
(Luce et al., 1982). However, this model suffers the same difficulty
as the attention band model described above in accounting for
sequence effects. Lacouture and Marley (2004) suggested three
modifications to the model that might allow a future version of the
model to account for sequential effects: (a) Instead of normalizing
hidden unit activation through the use of two anchor values,
previous stimulus values could be used. (b) Hidden unit activations
may be contaminated with hidden unit activations from previous
stimulus presentations. (c) The leaky competing accumulators may
begin each trial with some residual activation carried over from
previous trials.

Laming’s (1984, 1997) RJM

Laming (1984) described a model that accounts for the limit in
information transmission and the effects of constraining possible
jump sizes between successive stimuli (i.e., Luce et al., 1982). The
crucial assumption in Laming’s model is that all judgments are
relative to the immediately preceding context (i.e., that the differ-
ences between successive stimuli are used, not the absolute mag-
nitudes of the stimuli). Further, Laming proposed that such relative
judgments are limited. In particular, Laming suggested that the
current stimulus can be judged as “much less than,” “less than,”
“equal to,” “more than,” or “much more than” the previous stim-
ulus. This judgment limit provides a limit in the information
transmitted. Numerical estimates of the stimulus magnitudes are
assigned such that they follow the same pattern. If the difference
between stimuli is judged as “less than,” for example, then the
number assigned to the estimate of the magnitude of the current
stimulus is less than the estimate of the magnitude of the previous
stimulus. The ordering of Luce et al.’s (1982) conditions is also
explained by Laming’s model. Laming showed that the variability
in responding depends mainly on the mean squared jump sizes in
the sequence, and, as jump size predicts perfectly the ordering of
performance in Luce et al.’s conditions, so does Laming’s model.

Laming (1984) did not offer an account of the bow in the serial
position curve or of assimilation and contrast. Indeed, Laming
stated that an additional principle is required to provide an account
of the sequential effects observed in magnitude estimation and
absolute identification. He suggested that researchers take into
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account the prior expectations of the distribution of stimulus
magnitudes as a candidate principle.

Exemplar Models

Exemplar models (Medin & Schaffer, 1978; Nosofsky, 1986)
assume a long-term memory for each stimulus’s magnitude, to-
gether with the label associated with that stimulus. On presentation
of a stimulus, the probability of a given response is given by the
similarity of the presented stimulus to the memory of the stimulus
associated with that response divided by the summed similarity of
the presented stimulus to each stimulus memory.

Brown et al. (2002). Brown et al.’s (2002) model of scale-
invariant memory, perception, and learning has been applied to
absolute identification data (as well as free, serial, and probed
recall memory tasks). The model is an exemplar model of absolute
identification and is equivalent to the generalized context model
(GCM; Nosofsky, 1986) in its application to absolute
identification.

Exemplar models of absolute identification provide a reasonable
account of bow effects. Bow effects are accounted for because
items at the end of the range have fewer similar neighbors to be
confused with. However, exemplar models do not predict the
gradual bowing that is typically observed: Instead, all items tend to
show almost identical levels of performance, except for superior
performance on the very edge items. It is possible to provide a
better fit by biasing the responses associated with more extreme
stimuli. However, this bias for extreme responses is at odds with
the central tendency in responding that is typically observed.
Further, as described above, the bow effect is still observed in data
in which each response is used equally often (W. Siegel, 1972) or
in which middle responses are used more often (see Experiment 1).

Exemplar models face a further problem. Recall that increasing
the spacing of stimuli does not remove the bow effect and leads
only to a slight improvement in accuracy. Exemplar models,
however, predict a large improvement in accuracy, as items be-
come more discriminable. Brown et al. (2002) introduced the
assumption that discriminability is inversely related to stimulus
range and showed that, with this additional assumption, the bow
effects are invariant under stimulus range. Exemplar models do not
predict any curves in d� without further assumptions.

In their simplest form, exemplar models offer no account of
sequence effects. When adapted to predict sequence effects, typi-
cally by the assumption that more recent exemplars are more
available in memory and/or weighted more heavily in the subse-
quent decision process (e.g., Nosofsky & Palmeri, 1997; see also
Elliott & Anderson, 1995), the models do not correctly predict
sequence effects observed in classification (Stewart & Brown,
2004; Stewart, Brown, & Chater, 2002). Increased weighting of
more recent items makes a prediction similar to assimilation, as
repetition of the previous response is more likely. However, the
criticism applied to the Thurstonian models applies: An increased
probability of repetition is not equivalent to assimilation. Further,
this modification provides no account of contrast.

Nosofsky (1997). Nosofsky (1997) applied Nosofsky and
Palmeri’s (1997) exemplar-based random walk model, which is an
extension of the GCM (Nosofsky, 1986), to predict responses and
reaction times in absolute identification. Stimuli are represented by
normal distributions on a psychological continuum, with stimuli at

the edges of the range assumed to be less variable. In this way, an
account of bow or edge effects is built into the model. On presen-
tation of a test item, the model assumes memories race to be
retrieved. The probability of a memory being retrieved at a given
time is a function of the exemplar’s similarity to the test item and
the exemplar’s strength in memory. Once an item is retrieved, a
counter for the associated category label is incremented, and all
others are decremented. The remaining items then race again.
When any counter falls too low, the response associated with the
counter leaves the race. When a counter reaches a given threshold,
the response associated with that counter is emitted, with the
reaction time being a function of the sum of the times for each
retrieval. No mechanism is outlined for prediction of sequence
effects, and no explanation is offered on the invariance of the bow
in serial position when stimulus range is altered.

Petrov and Anderson (2005). Petrov and Anderson (2005)
presented a scaling model (ANCHOR) based on the ACT-R ar-
chitecture (Anderson, 1990; Anderson & Lebière, 1998) that they
applied to absolute identification and category rating. The percep-
tion of the absolute magnitude of a stimulus is compared with
anchors or exemplars stored in memory. Perception is assumed to
be stochastic. The selection of exemplars is also stochastic and
depends on the similarity between the exemplars and the target
stimulus and also on the frequency and recency with which each
exemplar was previously used. Exemplars compete for selection.
One exemplar is selected, and the associated response is retrieved.
If there is a discrepancy between the exemplar magnitude and the
percept magnitude, then an adjustment is applied to the response to
correct it either up or down. The system is adaptive, and, after
feedback, the location of the associated exemplar is assimilated
toward the percept.

Petrov and Anderson (2005) fitted the model to their own data
from an absolute identification of nine stimuli. The model was able
to fit simultaneously the information transmitted, central tendency
in responding, assimilation (on average), and a small practice
effect. The model did not predict bows in d� but was able to predict
an accuracy advantage for end stimuli because of the limited
opportunity for errors at the ends of the range.

Petrov and Anderson (2005) did not model the effect of increas-
ing the number of stimuli (with the range held constant) or the
range of the stimuli (with the number held constant), and, thus, it
is uncertain whether the model can account for the effects of these
variables. However, the model does include noisy components that
are independent of the spacing of the stimuli, so it may well be able
to account for the effects without modification.

Petrov and Anderson (2005) did not examine assimilation in
detail. In Figure 7, we show the predictions of ANCHOR (a) for
the effect on the current response of the previous stimulus and
current stimulus (top panel) and (b) for the effect of the stimulus
at different lags (bottom panel). We used the parameters that
Petrov and Anderson (2005, pp. 406, 416) reported as best fitting
their data and ran 200 simulations of 450 trials. Although AN-
CHOR does predict assimilation on average, it does not predict the
detailed pattern that is normally observed (e.g., Figure 4 and
Experiment 1), in which assimilation increases as the difference
between the previous and the current stimuli increases. In AN-
CHOR, sequential effects are caused by exemplars being weighted
by their recency of use. Thus, ANCHOR fails to predict the more
detailed pattern of assimilation for the same reason as Treisman’s
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(1985) and Luce et al.’s (1976) models fail: Predicting that the
response associated with the previous stimulus is more likely to be
repeated is not the same as predicting that the current response will
be biased toward the previous stimulus. Further, the model does
not predict contrast to stimuli at lags of two or greater and instead
predicts assimilation to stimuli at these lags.

Kent and Lamberts (2005). Kent and Lamberts (2005) pre-
sented an application of Lamberts’s (2000) extended GCM
(EGCM) to absolute identification. The EGCM differs from the
GCM in assuming that the amount of information about a stimulus
magnitude increases over the time course of the stimulus presen-
tation as stimulus elements are sampled. The probability that
sampling will be halted and a response given increases as more
elements are sampled. The EGCM was able to predict bow in
accuracy and mean correct reaction times as well as the complete
reaction time distributions for individual stimuli. By allowing
more generalization for larger set sizes and less sampling for larger
set sizes, the EGCM could also predict changes in accuracy and
reaction time as set size varied. An alternative, more parsimonious
modification, in which the information contributed by each addi-
tional sample was a decreasing function of the number of samples,

also allowed the model to account for set-size effects. Kent and
Lamberts did not model the effect of changing the stimulus spac-
ing. However, without altering the discriminability (cf. Brown et
al., 2002), the EGCM predicts that performance will increase
greatly with increased spacing (limits in information transmitted
also have not been modeled). The model does not predict any
sequential effects.

Motivation of the RJM

Having reviewed the key empirical phenomena and the existing
models of absolute identification, we next lay out the motivation
for the RJM. We have made two main choices in developing the
RJM. First, we assume that the locus of the limit in performance is
not perceptual but judgmental. Second, we assume that judgment
is relative and not absolute. We give our motivation for these
assumptions below.

The Locus of the Effects Is Not Perceptual

As we have reviewed above, as the range of the stimuli is
increased, performance quickly reaches asymptote (Braida &
Durlach, 1972; Brown et al., 2002; Eriksen & Hake, 1955a;
Gravetter & Lockhead, 1973; Hartman, 1954; Luce et al., 1976;
Pollack, 1952). Further, stimuli that can be identified perfectly
when presented in isolation are poorly identified when presented
within a larger set (Lacouture & Marley, 1995; see also Nosofsky,
1983b; Pollack, 1953). Typically, the variability in magnitude
estimates is approximately two orders of magnitude greater than
variability in threshold discriminations of the same stimuli (Lam-
ing, 1997; see also Miller, 1956; Shiffrin & Nosofsky, 1994).
Theorists have taken two different approaches in accounting for
these effects. One approach is to assume that the locus of the limit
in performance is perceptual and that when the range of stimuli is
increased, there is a large increase in perceptual noise that keeps
the information transmitted at the same level. For example, Luce et
al. (1982) assumed that perceptual noise increases with stimulus
range because of a limit in the range over which attention can be
focused. Braida and Durlach (1972) and Gravetter and Lockhead
(1973) assumed that the noise in the location of the criteria in a
Thurstonian model increases with stimulus range. (Although
Braida and Durlach’s and Gravetter and Lockhead’s assumption
concerns noise in the location of criteria rather than percepts, it is
still noise on a perceptual scale with perceptual units.) Instead, in
the RJM, we assume that what limits performance is noise in the
processes of mapping a continuous valued estimate of the response
onto response categories. Lacouture and Marley’s (1995, 2004)
mapping model makes the same assumption. They assumed that
stimulus magnitudes are scaled onto a hidden unit activation that
ranges over the unit interval and that constant variance noise
(completely independent of the stimulus range) is responsible for
the limit in capacity. In the RJM, in assuming that mapping rather
than perceptual noise is responsible for the limit in capacity, we do
not require any additional assumptions to explain the lack of an
improvement in performance when stimulus range is increased.

One reason for this approach is parsimony. As described above,
the limit in information transmitted is approximately constant
across a wide range of stimulus types (see Table 1; Garner, 1962;
Laming, 1984; Miller, 1956). The differences in the exact amount

Figure 7. Sequential effects predicted by the ANCHOR model (Petrov &
Anderson, 2005). A: En (error in responding on trial n) as a function of Sn–1

parameterized for different Sn (rank of the stimulus presented on trial n). B:
En as a function of lag k parameterized for different Sn–k. Perceptual noise
(kp) � 0.04; learning rate (�) � .3; memory noise (km) � 0.058, softmax
temperature (T) � 0.050, history weight (H) � 0.071, and cutoff (c) �
0.036.
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of information that can be transferred are perhaps less important
than the fact that the limit in channel capacity seems to be gener-
ally so low. Miller (1956) concluded, “There seems to be some
limit built into us either by learning or by the design of our nervous
system, a limit that keeps our channel capacities in this general
range” (p. 86). The fact that similarly low limits in channel
capacity are found across such a wide range of stimulus attributes
suggests that there is a common cause of this limitation, especially
as the same bow and sequential effects are observed across the
same wide range. Of course, it could be that this cause is dupli-
cated across the different sensory apparatuses used in each task.
However, a more parsimonious explanation is that the cause re-
sides not in the perceptual system but in the judgment system
responsible for producing responses.

Relative Rather Than Absolute Judgment

A limitation in all of the above models (excepting Lockhead and
King’s, 1983, descriptive model) is the difficulty in predicting the
ubiquitous pattern of assimilation and contrast (see, e.g., Figure 5
and Experiment 1). For example, a variety of modifications of the
Thurstonian model have not proved adequate: Allowing the loca-
tion of the criteria to be updated from trial to trial (Treisman, 1985)
and allowing a resolution-improving attention band to shadow
stimuli (Luce et al., 1976) have both failed. Similarly, an adequate
account of sequential effects has also eluded exemplar models, in
which the weighting of recent exemplars and the updating of their
locations from trial to trial have also failed (Petrov & Anderson,
2005). Here, we propose that these models find accommodating
sequential effects difficult because they are based on the assump-
tion that long-term absolute magnitude information is the basis for
absolute identification performance. In the Thurstonian models,
the position of the criteria provides long-term absolute magnitude
information. In Lacouture and Marley’s (1991, 1995, 2004) con-
nectionist model, long-term absolute magnitude information about
the most extreme stimuli is used in rescaling each stimulus mag-
nitude. In the exemplar models, the memory for the magnitude of
each exemplar provides long-term absolute magnitude informa-
tion. It may be that some future modification of these models will
allow them to fully predict the pattern of sequential effects, but in
the RJM we show how these sequential effects follow naturally
from a relative judgment account.

J. A. Siegel and Siegel (1972) reviewed evidence that long-term
representation of attributes such as pitch and loudness may be very
poor: Memory for pitch, as measured in a same–different judg-
ment task, decays very rapidly with the duration of tone or unfilled
interval between the standard and comparison tones (Bachem,
1954; Harris, 1952; Kinchla & Smyzer, 1967; Koester, 1945, as
cited in Massaro, 1970, and Wickelgren, 1966; König, 1957;
Tanner, 1961; Wickelgren, 1966, 1969; Wolfe, 1886, as cited in
Massaro, 1970, and Wickelgren, 1966). Massaro (1970) found
that, if the intervening tone was similar to the standard, this
disrupted judgment further. In their review article, J. A. Siegel and
Siegel concluded that the limit in absolute identification perfor-
mance “is not limited by stimulus information, but rather by
subjects’ inability to maintain multiple representations of sensory
stimuli in memory” (p. 313). If a long-term representation of the
absolute magnitude of a stimulus cannot be maintained success-
fully across only a single intervening stimulus or even an unfilled

interval in a trial of a same–different judgment task (in which the
intervening stimulus can be ignored), then it is very unlikely that
long-term representations of absolute magnitude can be main-
tained across the (on average) larger number of intervening trials
in an absolute identification experiment.

In the RJM, we instead suggest that, in the absence of stable and
accurate long-term representations of the absolute magnitudes of
stimuli, participants instead rely on a relative comparison of the
current stimulus with the previous stimulus. This relative differ-
ence is then used in conjunction with the feedback from the
previous trial to generate a response (cf. Holland & Lockhead,
1968). Our intuition, which we test below, was that a model in
which responding on the current trial depends on information from
the preceding trial might offer a simple account of sequential
effects. We are not the first to suggest that psychophysical judg-
ment might be relative. In reviews of the psychophysical literature,
Helson (1964) and Laming (1997) both suggested that psycho-
physical judgment is relative. Lockhead (1992, 2004) also reached
this conclusion, although he suggested that, because single at-
tributes cannot be abstracted from the object in which they occur,
entire objects, rather than their constituent attributes, are judged
relative to one another. In absolute identification, in which objects
(stimuli) vary on only a single attribute, these alternatives are
equivalent.

Stewart and Brown (2004) have found evidence in perceptual
categorization that supports the idea that participants generate the
response on the current trial by comparing the current stimulus
with the preceding stimulus. They examined sequential effects in
a binary categorization of tones varying in frequency, where low-
frequency tones belonged to one category and high-frequency
tones belonged to the other. If participants could maintain even a
single long-term absolute magnitude (the category boundary), then
this categorization task should have been trivial, as stimuli could
simply be compared with this reference point and categorized
accordingly. Instead, Stewart and Brown found strong sequential
effects, consistent with participants making an ordinal comparison
between the current stimulus and the preceding stimulus. Accuracy
was only high when comparison with an immediately preceding
stimulus determined the categorization. For example, if a stimulus
was lower in magnitude than the preceding stimulus and the
preceding stimulus was from the low category, then the current
stimulus was correctly categorized as a member of the low cate-
gory. These data are consistent with the idea that the categorization
of the previous stimulus together with a judgment of the difference
between the current stimulus and the previous stimulus inform the
current categorization decision.

Other data are difficult to explain with an absolute account. If
judgment is absolute, then the effect of the previous stimulus on
the current response should be viewed as a biasing of absolute
judgment. Attenuation of sequential effects should therefore lead
to an improvement in identification performance. Stewart and
Chater (2003) found that a manipulation that attenuated sequential
effects instead reduced identification accuracy. Stewart and Chater
had participants perform an absolute identification of eight loud-
nesses. However, each loudness was randomly presented as either
a pure, sinusoidal tone or a white noise hiss. When consecutive
stimuli were of different types (a hiss followed by a tone or a tone
followed by a hiss), there was a significantly smaller correlation
between the previous stimulus and the current response compared
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with when stimuli were of the same type (two consecutive hisses
or two consecutive tones). Accuracy was also significantly lower
when consecutive stimuli were of different types compared with
when consecutive stimuli were of the same type. This result is the
opposite of what would be expected if absolute judgments were
being made: Reducing the biasing caused by the previous stimulus
should have increased accuracy. However, this result is expected if
the loudness of the current stimulus is judged relative to the
previous stimulus: A switch in the stimulus type will make the
comparison of loudnesses more difficult, reducing the accuracy on
the current trial.

The idea that long-term representations of absolute magnitudes
are not available may well be too strong. There are some data that
are problematic for this view. Ward and Lockhead (1970) and
Ward (1987) ran several psychophysical tasks requiring either
absolute or relative judgment (absolute identification, category
judgment, estimation of the ratio of successive magnitudes, abso-
lute magnitude estimation, and cross-modality matching). On dif-
ferent days, they varied the loudness of the entire stimulus set.
Whether participants were performing relative or absolute judg-
ment tasks, the judgments on each day were systematically biased
toward the stimulus–response mapping from the previous day.
This suggests that some representation of the absolute magnitudes
of stimuli persists over an interval of at least 1 day. Thus, it may
be that long-term absolute magnitude information is available in
absolute identification but that its representation is rather poor or
“fuzzy” (Ward, 1987, p. 226) and not sufficient to support absolute
identification. Alternatively, the information may be available but
(for some unknown reason) not used. Consistent with this possi-
bility, long-term absolute magnitude information seems to be
weighted more heavily when instructions suggest the use of a
long-term frame of reference (DeCarlo, 1994; DeCarlo & Cross,
1990) or when intertrial intervals are large (DeCarlo, 1992). (Stew-
art & Brown, 2004, gave a more detailed discussion of these data).
Our core claim—that absolute identification is achieved by relative
judgment—is consistent with both the possibility that long-term
representations of absolute magnitudes are poor and the possibility
that the long-term representations are (for some unknown reason)
unused.

Summary

In summary, two shortcomings of existing models have moti-
vated the RJM. Models that assume that the locus of the limit in
information transmitted is perceptual fail to predict (or require
modification to predict) that channel capacity will remain severely
limited even for very large stimulus spacings. In the RJM, the limit
in channel capacity is not perceptual. Models that use long-term
representations of absolute magnitudes do not capture the sequen-
tial effects adequately. In the RJM, as the name suggests, judgment
is instead relative to the immediately preceding stimulus. Next, we
give a detailed specification of the RJM.

Mathematical Specification of the RJM

In what follows, we refer to the current trial in an experiment as
trial n, the previous trials as trial n � 1, and the kth most recent
trial as trial n � k. The physical magnitude of the stimulus on trial
n is denoted Xn, the rank of the stimulus within the set is Sn, the

response is Rn, the feedback is Fn, and the error in responding is
En � Rn � Sn.

The elemental unit admitted to the decision process is assumed
to be the difference between Sn and Sn�1. In other words, what is
admitted to the decision process on trial n is not some represen-
tation of the magnitude of Sn but a representation of the difference
between Sn and Sn�1. This difference, Dn,n�1, is given by the
logarithm of the ratio of the physical magnitudes,

Dn,n�1 � A ln� Xn

Xn�1
� , (1)

where A is a constant that depends on the sensory dimension. The
use of the ratio follows from Weber’s law. A rearrangement of
Equation 1 gives Dn,n�1 � A ln�Xn� � A ln�Xn�1�. If Fechner’s
logarithmic law relating physical magnitude to the subjective,
psychological percept holds, then Dn,n�1 is the arithmetic differ-
ence between psychological magnitudes. If stimuli are geometri-
cally spaced with spacing r (i.e., each stimulus is a constant ratio
r larger in physical magnitude than the next highest in magnitude),
as is nearly always the case in absolute identification experiments,
then

Dn,n�1 � A ln�r��Sn � Sn�1�. (2)

This difference Dn,n�1 is assumed to be contaminated by resid-
ual representations of earlier differences Dn�1,n�2, Dn�2,n�3, and
so forth. Alternatively, elements of the representation of Dn,n�1 are
assumed to be confused with elements of the representations of
Dn�1,n�2, Dn�2,n�3, and so forth (cf. Estes, 1950). The result of
this confusion or contamination is labeled Dn,n�1

C .

Dn,n�1
C � �

i�0

n�2

�iDn�i,n�i�1. (3)

The � coefficients are constrained to be in the range 0 � � � 1.
The coefficient for the current difference �0 is fixed at 1. Further,
the coefficients are constrained to be monotonically decreasing
(i.e., �i � �i�1), so that more recent differences are more likely to
be confused with the current difference. The idea that representa-
tions may be confused is quite ubiquitous in psychology. What is
unique in the RJM is the assumption that stimulus differences
rather than stimulus absolute magnitudes are confused, and this
follows from our initial assumption that stimulus differences,
rather than absolute magnitudes, are elemental. That is, Dn,n�1

C can
be considered the result of a confusion of stimulus differences in
exactly the same way as any other representations might be
confused.

To produce a response, one converts the difference Dn,n�1
C to a

difference on the response scale by dividing by a constant �. (�
represents the subjective size of the difference that corresponds to
a single unit on the response scale; see Luce & Green, 1974, and
Marley, 1976, for a similar approach in magnitude estimation.)
The result is then added to the feedback from the previous trial (cf.
Holland & Lockhead, 1968). It is at this point that we assume that
there is a limit in channel capacity. Next, we outline the form that
this limit takes in the RJM.

The limit in the channel capacity in the RJM is assumed to arise
from noise in mapping the stimulus difference onto the response
scale. Lacouture and Marley (1995, 2004), Marley and Cook
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(1984, 1986), and Petrov and Anderson (2005) also assumed that
the limit in channel capacity is (at least partly) a result of noisy
mapping. These authors gave detailed mechanistic accounts of the
mapping process: in terms of a limited capacity rehearsal of the
context in a Thurstonian model (Marley & Cook, 1984, 1986), in
terms of noisy activation of a single connectionist unit (Lacouture
& Marley, 1995, 2004), or in terms of exemplars competing for
selection (Petrov & Anderson, 2005). Here, we do not choose
among these accounts or offer our own mechanistic account.
Instead, we borrow a general principle from all of these accounts.
In each account, as the number of response categories is increased,
fixed magnitude noise in the mapping process leads to greater
confusion among response categories. For example, in Lacouture
and Marley’s mapping model, stimulus magnitudes are represented
by the activation of a hidden unit in a connectionist network. The
activation of the hidden unit varies between 0 and 1. Fixed mag-
nitude noise is added to the activation of the hidden unit. In
experimental blocks in which the set size is larger and, thus, the
spacing of stimuli on the hidden unit’s unit interval is closer, the
fixed magnitude noise causes greater confusion among response
categories. In the RJM, we make the additional assumption that, on
a given trial, some responses can be ruled out because of knowledge
of Fn�1 and the sign of Dn,n�1

C . The limited capacity is then used to
represent only the remaining responses. For example, if Sn is per-
ceived as being less than Sn�1, then only those responses less than
Fn�1 are represented. If Sn is greater than Sn�1, then only those
responses greater than Fn�1 are represented. This assumption follows
directly from the initial assumption that judgment is relative.

We assume that the noise in the mapping process is normally
distributed with variance �2 and that this variance is constant from
trial to trial (and also from experiment to experiment). However, as
we outlined above, the effect of this noise on responding is not
constant from trial to trial, because the number of candidate
responses varies from trial to trial. Consider the example illustrated
in Figure 8A for the absolute identification of 10 stimuli. If Sn�1 �
4 and Sn � 8, then because Dn,n�1

C /� 	 8 � 4 � 4 is positive, Rn

must be higher than Fn�1 � 4. The response scale must now be
partitioned into six responses (i.e., 5, 6, 7, 8, 9, and 10). Compare
this case with the case illustrated in Figure 8B. Now, Sn�1 � 6,
and, as before, Rn must be higher than Fn�1 � 6. Now, however,
the same limited capacity can be used to represent only four
candidate responses (i.e., 7, 8, 9, and 10). In this latter condition,
the same variance noise in mapping translates into less confusion
among responses, because the limited capacity is partitioned into
fewer response categories.

Two pieces of empirical evidence support this assumption. First,
there is almost never a problem deciding whether Sn is higher or lower
than Sn�1. In only 1.2% of the responses in Experiment 1 was the sign
of the differences between consecutive stimuli mistaken (i.e., partic-
ipants responded with a higher number than Fn�1 when Sn was lower
in frequency than Sn�1, or vice versa). We describe the second piece
of evidence in Experiment 2, which provides a direct test of the
assumption that Fn�1 is used together with Dn,n�1

C in generating Rn.
Equation 4 implements the conversion of Dn,n�1

C into a difference
on the response scale and then the subsequent addition to Fn�1

within a fixed limited capacity that is used to represent the range
of possible responses.

Rn � Fn�1 �
Dn,n�1

C

�
� 	Z, (4)

where Z is a normally distributed random variable that represents
the noise in the mapping process with a mean of 0 and a standard
deviation of � and 	 represents the range of possible responses
(given the sign of Dn,n�1

C and Fn�1) and scales the fixed noise within
the limited capacity onto the response scale. Thus, Rn is a normally
distributed random variable. 	 is specified exactly in Equation 5.

	 � �N � Fn�1 if Dn,n�1
C 
 � �

1 if � � � Dn,n�1
C � � �

Fn�1 � 1 if Dn,n�1
C � � �

� , (5)

where N is the number of stimuli and � is a criterion whose
magnitude Dn,n�1

C must exceed for Sn and Sn�1 to be assumed to be
different. � is assumed to be fixed at half of the stimulus spacing
throughout this article.

It is important to acknowledge here that Equations 4 and 5 do
not represent a detailed mechanistic account of how the difference
between the current stimulus and the previous stimulus is com-
bined with the feedback from the previous trial to produce a
response. We simply intend Equations 4 and 5 to represent the
assumption that a fixed magnitude noise in the mapping process
has a greater effect on trials in which there are more candidate
responses. As we described above, the prediction that noise in the
mapping process will increase as the set size increases emerges
from many accounts of absolute identification in which the map-
ping process is specified in detail (e.g., Lacouture & Marley, 1995,
2004; Marley & Cook, 1984, 1986; Petrov & Anderson, 2005). In
the RJM, we assume that the noise varies not only from block to
block in an experiment as the set size is manipulated but also from
trial to trial as the number of available responses varies (con-
strained by Fn�1 and Dn,n�1

C ). In Equations 4 and 5, we assume that
the noise in responding will grow linearly with the number of
available responses. We return to this issue later in this article and
suggest that this simple assumption may need to be modified.

We assume that the location of the N � 1 criteria, labeled x1, x2,
. . . , xN�1, that partition the response scale is such that accuracy is

Figure 8. An illustration of how the limited capacity is used. A: Sn�1 �
4, Sn � 8. B: Sn�1 � 6, Sn � 8. In each case, the same limited capacity is
used to represent the range of possible responses, given the sign of Dn,n�1

C .
Noise of the same variance is present in each case. However, because
responses are more compressed in A compared with B, the variability in
responding will be greater in A. Sn � rank of the stimulus presented on trial
n; Dn,n�1

C is the perception of the difference between the current stimulus
and the previous stimulus after it has been confused with elements of or
contaminated by perceptions of earlier differences.
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maximized. The probability of a given response r is given by the
total density of Rn within the range

xr�1 � Rn � xr, (6)

with the lower and upper bounds replaced by �
 and 
 for the
lowest and highest responses, respectively. Figure 9 shows the
placement of criteria that maximizes the proportion of correct
responses for the parameters that best fit the data from Experiment
1. The dashed lines are drawn at 1.5, 2.5, . . . , 9.5. Notice that the
optimal placement for criteria is more extreme than criteria half-
way between integer values on the scale. This displacement is
approximately a linear function of the distance of the criteria xr

from the center of the scale. (When the model predicts the dis-
placement of xr from r � 1/2 as a linear function of r, 99.96% of
the variance is accounted for.)

This outward displacement of optimal criteria happens because
of a mathematical fact proved by James and Stein (1961). James
and Stein demonstrated that when one predicts three or more
population means from three or more observations (one from each
population), the best estimate of each mean is not given by each
observation. Instead, estimates derived by shrinking each obser-
vation toward the grand mean of all the observations are better.4

Efron and Morris (1977) provided an accessible introduction to
James–Stein estimators and gave the example of baseball players:
The best estimate of a player’s batting average in the next season
is not given by his or her score in the previous season. A better
estimate is derived if the player’s score is shrunk toward the grand
mean of all baseball players’ scores. Here, we are trying to esti-
mate the correct response from a single noisy estimate (i.e., a
single sample from Rn). James and Stein’s result tells us that the
single sample from Rn will be too extreme compared with the
mean response. Thus, it is optimal to place the criteria at more
extreme locations. Equation 7 gives the location of each criterion.

xr � �R �

r �
1

2
� �R

1 � c
, (7)

where �R is the mean of the response scale (i.e., [N � 1]/2) and 0 �
c � 1 is a James–Stein estimator. As c becomes larger, criteria are
more outwardly displaced.

Fitting the RJM to Existing Data

In this section, we describe the mechanics of fitting the RJM to
the data reviewed above. The RJM has a set of � parameters that
describe the confusion of the representations of the differences
among stimuli; a � parameter that scales between differences and
response scale units; a noise parameter, �; and a James–Stein

estimator, c. For simplicity, the quantity 1/(A ln(r)) is absorbed
into the � parameter. Thus, when � � 1, the size of the difference
between stimuli that corresponds to a single unit on the response
scale is perfectly estimated. � � 1 represents an underestimation of
the stimulus spacing, and � � 1 represents an overestimation.

Except where specified otherwise, the data modeled in this section
were collected from experiments in which a random sequence of
stimuli was used. In modeling these data, we used the RJM to
generate predictions of the probabilities of each response for every
possible combination of the preceding and current stimuli. We then
calculated the relevant descriptive statistics as in the original experi-
ments. For fits to these existing data sets, we minimized the MSE
between each data point and the predicted value. We found the best
fitting parameter values using both a downhill simplex procedure and
Brent’s method (Press, Flannery, Teukolsky, & Vetterling, 1992). Fits
were repeated with a large set of random starting values. Best fitting
parameters for each model are given in Table 3. Some data sets did
not adequately constrain all of the parameters. For example, in fitting
the pattern of assimilation and contrast in Figure 5, we observed a
wide range of sigma parameters in the fits. When this happened, we
chose a fit from the subset of fits with an MSE within 1% of the best
fit MSE that had values for the unconstrained parameters similar to
those we found in fitting other data sets.

The RJM Account of the Bow Effect

In Figure 2, a single fit is presented for all three stimulus spacing
conditions in Brown et al.’s (2002) experiment. The data did not
constrain the � parameters for less recent stimuli, so a restricted
version of the RJM with �3 � �4 � �5 � 0 was fitted. The RJM
provides an excellent fit to the characteristic bow.

The primary explanation for the bow effect is that there is a
limited opportunity to make errors at the end of the stimulus range.
For example, Stimulus 1 can only be mistaken for larger stimuli,
but Stimulus 5 can be mistaken for smaller or larger stimuli.
However, given that the error observed is normally only one or
maybe sometimes two response units (see, e.g., the confusion
matrices in Figure 2), the restricted opportunity to make mistakes
can really only account for the peaks at each end of the accuracy
against stimulus magnitude curve and does not offer an account of
the gradual, smooth curve over the entire stimulus range.

The gradual bowing is accounted for because the effect of the
limited decision capacity is greatest for the central stimuli. When

4 The James–Stein estimator was not proved to be the best estimator, just
a better estimator than the single observation. In the absence of a best
estimator, the James–Stein estimator is used as that which best approxi-
mates optimality.

Figure 9. The optimal location for response scale criteria for relative judgment model parameters that best fit
data from Experiment 1. Dashed lines represent criteria halfway between integer values on the response scale.
Solid lines are the optimal criteria. Rn � response on trial n.
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Sn lies in the center of the range, averaging over all possible Sn�1,
the range of possible Rn constrained by Fn�1 and Dn,n�1 is, on
average, larger than when Sn lies at an extreme. For example,
Table 4 shows the range of possible responses for two cases, Sn �
1 and Sn � 5. Averaged over all possible Sn�1, the range of
possible responses is smaller for the extreme stimulus. Thus, the
differences leading to extreme stimuli can, on average, be trans-
lated more accurately than differences leading to central stimuli
within the limited capacity. Optimal use of a limited capacity
decision scale, then, acts to reduce accuracy in the center of the
range more than it reduces accuracy at the edge of the range.
Together with the limited opportunity for errors at the edge of the
range, the effects produce the characteristic smooth bow.

We used a single set of parameters across all of the set sizes
in fitting the bow effects in accuracy in Lacouture and Marley’s

(1995) data (see Figure 3). With only the set size differing
among fits, the RJM is able to provide a good account of the
bows. A key observation is that the limited capacity for repre-
senting the range of possible responses can represent two pos-
sible alternatives nearly perfectly, but not many more. For this
reason, the decision process does not add noise in a task in
which two stimuli are identified but does add noise when there
are more than two stimuli. The RJM is able to account for the
dependency of the bow effect on set size because, as the set size
increases, the average magnitude of both the differences be-
tween stimuli and the range of possible responses on any given
trial increases. Both of these increases lead to more variability
in responding.

A shortcoming of the RJM in its present instantiation is that it
does not make predictions about reaction times. Reaction times are
faster for extreme stimuli (e.g., Kent & Lamberts, 2005; Lacouture
& Marley, 1995). As described above, some models can predict
this effect (e.g., Lacouture & Marley, 1995; Nosofsky, 1997), and
other models go further and predict reaction time distributions for
each stimulus (Karpiuk et al., 1997; Kent & Lamberts, 2005;
Lacouture & Marley, 2004). Though we have not addressed this
issue in this article, it may be possible to extend the RJM to predict
response time distributions. In its present form, noise is added to
the quantity Fn�1 � Dn,n�1

C /� (see Equation 4), and the result Rn

is partitioned into response categories (see Equation 6) via fixed
criteria. Instead of assuming that response probabilities are given
directly by the integrals of the probability density among relevant
criteria, we could use a set of leaky competing accumulators
(Usher & McClelland, 2001; following Lacouture & Marley,
2004). By using Fn�1 and the sign of Dn,n�1

C to restrict which
accumulators from the full set (one for each response category)
enter into the competition on each trial, we could predict full
response time distributions that are conditional on the current
stimulus and previous stimuli. Although it would be hard to test the
fully conditional distribution predictions because of the large num-
ber of data required (e.g., for absolute identification of 10 stimuli
and sequence effects up to a lag of five trials, there would be 106

possible sequences, each requiring on the order of 100 repetitions

Table 3
Best Fitting Parameter Values of the Relative Judgment Model

Data Figure �1 �2 �3 �4 �5 c � � r2

Garner (1953) 1 .161 .017 .205 0.078 0.800 .20a

Pollack (1952) 1 .161 .034 .162 0.064 0.833 1.00
Brown, Neath, and Chater (2002) 2 .308 .187 .235 0.297 0.816 .98
Lacouture and Marley (1995) 3 .171 .138 .155 0.133 0.808 .95b

Ward and Lockhead (1970)c 4 .187 .152 .104 .049 .000 .188 0.069 0.962 .89
Holland and Lockhead (1968) 5 .223 .174 .125 .088 .058 .083 0.113 0.885 .98
Lacouture (1997) 5 .125 .111 .079 .054 .033 .159 0.104 0.930 .92
Ward and Lockhead (1970)c 5 .187 .152 .104 .049 .000 .188 0.069 0.962 .93
Luce, Nosofsky, Green, and Smith (1982) 6 .069 .050 .103 0.211 0.860 .92d

Experiment 1e 20–24 .112 .101 .076 .054 .035 .111 0.216 0.961 f

W. Siegel (1972) 25 .160 .200 .141 0.144 0.883 .93

a This r2 is low because there is almost no variation in the data to be explained. b Fit to accuracy data only; r2 � .60 for d� data. c These data were fitted
simultaneously. d Fit to accuracy data only; r2 � .63 for d� data. e Best fitting parameters to data averaged across participants. f r2 values for response
biases, confusion matrices, assimilation plots, assimilation and contrast plots, and d� were .98, .98, .89, .94, and .88, respectively.

Table 4
The Range of Possible Responses Available in an Absolute
Identification of 10 Stimuli

Sn�1

Sn � 1 Sn � 5

Set of possible
responses

Range,
	

Set of possible
responses

Range,
	

1 1 {2, 3, 4, 5, 6, 7, 8, 9, 10} 9
2 {1} 1 {3, 4, 5, 6, 7, 8, 9, 10} 8
3 {1, 2} 2 {4, 5, 6, 7, 8, 9, 10} 7
4 {1, 2, 3} 3 {5, 6, 7, 8, 9, 10} 6
5 {1, 2, 3, 4} 4 1
6 {1, 2, 3, 4, 5} 5 {1, 2, 3, 4, 5} 5
7 {1, 2, 3, 4, 5, 6} 6 {1, 2, 3, 4, 5, 6} 6
8 {1, 2, 3, 4, 5, 6, 7} 7 {1, 2, 3, 4, 5, 6, 7} 7
9 {1, 2, 3, 4, 5, 6, 7, 8} 8 {1, 2, 3, 4, 5, 6, 7, 8} 8

10 {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 {1, 2, 3, 4, 5, 6, 7, 8, 9} 9

Note. For simplicity in calculating 	, we assume Dn,n�1
C � Dn,n�1 in this

table, where Dn,n�1
C is the perception of the difference between the current

stimulus and the previous stimulus after it has been confused with elements
of or contaminated by perceptions of earlier differences and Dn,n�1 is the
difference between the current stimulus and the previous stimulus. Sn �
rank of the stimulus presented on trial n.
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to construct full reaction time distributions), we could test this
extension of the RJM with data conditional on, for instance, just
the current stimulus.

The RJM Account of the Limit in Information
Transmission

In modeling the limit in information transmitted (see Figure 1),
we used a single set of best fitting parameters across all set sizes.
Again, the data did not constrain the � parameters for less recent
stimuli, so we fitted a restricted version of the RJM with �3 �
�4 � �5 � 0. Dashed lines represent the fits to the Pollack (1952)
and Garner (1953) data. Information transmitted is completely
defined by the confusion matrix. Thus, the RJM’s account of the
limit in information transmitted as the number of stimuli is in-
creased is the same as that given above for the confusion matrix.

The RJM Account of the Restricted Sequence Designs

Fits of the RJM to Luce et al.’s (1982) proportion correct data
are shown in Figure 6, with a single set of parameters used for all
conditions. In fitting these data, we restricted responses that the
RJM could generate on each trial to be those available to partici-
pants. There were 10 criteria dividing the response scale into 11
categories positioned according to Equation 7. However, in the
small step (3) condition, for example, when each stimulus was
either one smaller than, the same as, or one larger than the previous
stimulus, we used only the relevant 2 of these 10 criteria that
divided the response scale into the categories Fn�1 � 1, Fn�1 and
Fn�1 � 1.

As before, the data did not constrain the � parameters for less
recent stimuli, so we fitted a restricted version of the RJM with
�3 � �4 � �5 � 0. The RJM fits the bow effect in mean
proportion correctly and orders the sequences correctly. Within the
RJM, the advantage for conditions with smaller transitions results
from the cumulative effect of the smaller transitions, in agreement
with Nosofsky’s (1983b) and Luce et al.’s (1982) conclusions.
With smaller transitions, because the range of previous stimuli is
smaller, Dn,n�1

C is less variable (Equation 3). Together with reduced
noise in the mapping process when a stimulus is repeated (Equa-
tions 4 and 5), which is more likely with smaller transitions, these
two properties of the RJM give higher accuracy for sequences with
smaller transitions. (As we noted in the initial presentation of Luce
et al.’s data, accuracy is higher in the large step condition than the
random condition, because the responses available on each trial are
restricted in the large step condition. However, performance mea-
sured by d� is higher for the random step condition than for the
large step condition. Immediately below, we show that the RJM
predicts this.)

The RJM Account of Bows in Discriminability

Using the parameter set from fitting the accuracy data (above),
we also generated predictions for d� for Brown et al.’s (2002; see
our Figure 10) data, Lacouture and Marley’s (1995; our Figure 3)
data, and Luce et al.’s (1982; our Figure 6) data. We used param-
eters from the accuracy fits because the optimization algorithm
performed very poorly when we fitted d� directly. The RJM does
predict bows in d� because the effect of the limited decision

capacity is greatest for central stimuli, as described above. How-
ever, the size of this effect is systematically underestimated. The
RJM predicts that the confusion between the lowest two stimuli
and also between the highest two stimuli will be larger than is
actually observed. Below, we consider two modifications that
should allow the RJM to predict better the bows in d�.

In the RJM, we assume that the limit in channel capacity is
caused by fixed variability noise in mapping between stimulus
differences and the response scale. In Equation 4, we make the
perhaps overly simple assumption that the effect of this fixed
mapping noise � on the variability in responding on a given trial
is a linear function of the number of available responses 	 (see
Equation 5). If one assumes a different relationship (i.e., a convex
relationship when the effect on the response scale is plotted against
the range of possible responses), then greater bows in d� can be
predicted. Motivating the functional form of this relationship re-
quires more detailed assumptions about the procedural nature of
the mapping from stimulus differences to the response scale.
Lacouture and Marley (1995, 2004) assumed that the limit results
from the range of stimulus magnitudes being represented by the
activation of a single noisy unit in a connectionist network. Marley
and Cook (1984, 1986) assumed that the limit in mapping arises
because of a limited rehearsal capacity in maintaining the context
against which a stimulus is judged. Either one of these assumptions
could be incorporated into the RJM.

An alternative modification is to assume that the edge stimuli
are somehow privileged, as other authors have (e.g., Braida et al.,
1984; Marley & Cook, 1984, 1986; Nosofsky, 1997). For example,
participants may use representations of the magnitude of the ex-
treme stimuli if the stimuli occurred two or three trials ago that
they do not use for interior stimuli. Alternatively, maybe a limited
number of long-term representations of absolute magnitudes can
be maintained, and the extreme stimuli are preferentially selected.
Though these assumptions would complicate the RJM, they may
prove to be necessary in a fuller account of the d� data.

The RJM Account of Assimilation and Contrast

Fits of the RJM to the sequential effects of Holland and Lockhead
(1968), Lacouture (1997), and Ward and Lockhead (1970) are shown
in Figures 4 and 5. In the RJM, sequence effects result from the

Figure 10. d� from Brown, Neath, and Chater (2002). The relative
judgment model fit is to data averaged across the three spacings. Dashed
lines are the best fits of the relative judgment model. d�i,i�1 � measure of
the confusibility of Stimulus i and Stimulus i � 1.
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confusion of the representation of the current difference with the
representation of other differences. The complex pattern of first as-
similation and then contrast emerges naturally from the RJM, as a
consequence of the assumption that more recent differences are more
likely to be confused or contaminated with the current difference than
less recent differences are. Equations 2 and 3 may be substituted

into Equation 4 to give Rn � Fn�1 �
A ln�r�

�
��0�Sn � Sn�1�

� �1�Sn�1 � Sn�2� � �2�Sn�2 � Sn�3� � . . .� � 	Z.
If we recall that, when feedback is provided, Fn�1 � Sn�1,

rearranging by collecting together Sn�i terms gives

Rn �
A ln�r�

�
�0Sn � 1 �

A ln�r�

�
��1 � �0�Sn�1 �

A ln�r�

�

 ��2 � �1�Sn�2 �
A ln�r�

�
��3 � �2�Sn�3 � . . . � 	Z (8)

For assimilation of Rn to Sn�1 to occur, 1 �
A ln�r�

�
��1 � �0�


 0.
Given an approximately correct estimate of the stimulus differ-

ence corresponding to a single unit on the response scale, that is,
� � A ln(r), and if we recall that the availability of the current
difference was set at �0 � 1, then this inequality reduces to �1 �
0. �1, which represents the extent to which Dn�1,n�2 is confused
with Dn,n�1, is positive, so assimilation is predicted. Assimilation
is still predicted if �  A ln(r) unless � is greatly overestimated.

For contrast of Rn to Sn�2 to occur,
A ln�r�

�
��2 � �1� � 0 (with

similar expressions for less recent stimuli). Given that A ln(r) and �
are both positive and that �1 � �2 (reflecting a greater confusion of
Dn,n�1 with Dn�1,n�2 than with Dn�2,n�3), contrast is always
predicted.

In summary, in the RJM, the awkward pattern of assimilation
and then contrast follows in a straightforward way from the as-
sumption that the current difference is confused more with more
recent differences. To capture this pattern in a model in which
absolute stimulus magnitudes are used would be difficult, because
one would need to motivate a switch in the sign of the coefficient
for Sn �1 compared with Sn�2, Sn�3, . . . .

The RJM Account of the Response Scale Shrinkage

The data in Figure 4 show that, irrespective of Sn�1, if Sn is
small it is overestimated (i.e., En � 0) and if Sn is larger it is
underestimated (En � 0). The RJM model accounts for this pattern
because optimally located response criteria xr are spread outward
from the center of the scale.

Extensions of the RJM

The Effect of Range

Thus far, we have accounted for the key phenomena in absolute
identification by assuming that the locus of these effects lies purely
in the response process. We have assumed that the effects are not
perceptual, because all of the effects are seen with very widely
spaced stimuli. When stimuli are already widely spaced, increasing
their spacing does little to improve performance (e.g., Brown et al.,

2002). However, if stimuli are closely spaced, then increasing their
spacing does improve performance (e.g., Braida & Durlach, 1972;
see our Figure 11), up to an asymptotic limit. So, at least for
closely spaced stimuli, stimulus noise does play some role in
limiting performance in absolute identification. The version of the
RJM presented above cannot account for this result, because the
RJM predicts no effect of increasing the range of the stimuli.
Because of the ratio in Equation 1, the RJM is scale free (Chater
& Brown, 1999). That is, the magnitude of all of the stimuli could
be increased by any factor, and the same predictions would be
made (see Lacouture, 1997, for an empirical demonstration). How-
ever, it is straightforward to extend the model to include a stimulus
noise component by replacing Equation 1 with

Dn,n�1 � A ln� Xn

Xn�1
� , (9)

where stimulus magnitudes are now random variables. Substituting
Equation 9 into Equation 3 gives

Dn,n�1
C � �0A ln Xn � ��1 � �0�A ln Xn�1 � ��2 � �1�

 A ln Xn�2 � . . . .

Thus, Dn,n�1
C is also a random variable, which we assume to be

normally distributed (which follows from the assumption that the
distribution of the logarithm of stimulus magnitudes is normal)
with standard deviation �s. This version of the model can account
for the data in Figure 11 using a single parameter set for all
stimulus ranges (�1 � .271, �2 � .253, c � .109, � � 0.025, � �
0.892, and �s � 0.129).

Even with this modification, there are still some data that are
problematic for the RJM. Nosofsky (1983a) investigated whether
stimulus noise or criterial noise was increased when the stimulus
range was increased in absolute judgment of the intensity of tones.
By fitting a simple Thurstonian model, Nosofsky found evidence
that both stimulus and criterial noise increased with range. In its
present form, the RJM does not predict an increase in stimulus
noise and would require a further assumption, such as a limit in the
width of an attention band (cf. Luce et al., 1976).

Designs With Uneven Stimulus Spacing

Stimuli are not always evenly spaced in absolute identification
designs. For example, Lockhead and Hinson (1986) investigated

Figure 11. Information transmitted in absolute identification of 10 stim-
uli as a function of stimulus range. Data (indicated by plus signs) are from
Braida and Durlach (1972).
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performance in an absolute identification of three tones differing in
intensity. They used three different stimulus sets. In the even-
spread condition, stimuli were evenly spaced at 58, 60, and 62
dBA. In the low-spread condition, the lowest stimulus was 4 dB
less intense (i.e., a set of 54, 60, and 62 dBA intensities). In the
high-spread condition, the highest stimulus was 4 dB more intense
(i.e., a set of 58, 60, and 66 dBA intensities). Figure 12 gives the
confusion matrices for each condition. When we compare the low-
and even-spread conditions, we see that identification performance
of the common stimuli (Stimuli 2 and 3) is affected by the location
of Stimulus 1. Stimuli 2 and 3 are more likely to be confused when
Stimulus 1 is lower. We see a similar (mirror image) pattern when
we compare the high- and even-spread conditions.

The RJM can capture this pattern. Because stimuli are no longer
evenly spaced, we have not used Equation 7 to place criteria.
Instead, we have left the criteria as free parameters. In the even
condition, we introduced the constraint x2 � 4 � x1 to ensure that
x2 is displaced away from the center of the scale in exactly the
same way as x1. (Although parameterized slightly differently, this
model is exactly equivalent to the RJM described in the Mathe-
matical Specification of the RJM section.) In the low- and high-
spread conditions, x1 and x2 were allowed to vary freely, with the
constraint that there was symmetry between the low- and high-
spread conditions (i.e., x1, low � 6 � x1, high and x2, low � 6 �
x2, high). Figure 12 shows the best fits that minimize MSE between
the data points and the model predictions (� � .073, � � 0.373,

� � 0.285, x1, even � 0.578, x1, low � 1.047, x2, low � 5.886). The
model fits the data reasonably well (r2 � .98). Comparing the
low-spread and even conditions, the model correctly predicts that
Stimuli 2 and 3 are more likely to be confused when Stimulus 1 is
low. Comparing the high-spread and even conditions, the model
correctly predicts that Stimuli 1 and 2 are more likely to be
confused when Stimulus 3 is high. (Deviations of the data from
model predictions are mainly caused by a lack of symmetry in the
data; e.g., in the data for the even condition, Stimulus 2 was
responded to with Stimulus 3 more often than Stimulus 1, which
suggests that stimuli were not exactly evenly spaced
psychologically.)

The Effect of Omitting Feedback

The RJM relies on the previous feedback in generating a re-
sponse (see Equation 4). Here we extend the RJM to situations in
which feedback is omitted. Omitting feedback also alters the
sequential effects in absolute identification. When feedback is
omitted, information transmitted from the previous response in-
creases, and information transmitted from the previous stimulus is
reduced (Mori & Ward, 1995). Note that, in this task, Mori and
Ward held accuracy constant across the feedback and no-feedback
conditions. The change in sequential effects is thus not due to an
overall change in accuracy or task difficulty. In addition to the
change in the pattern of information transmission, assimilation,
rather than contrast, is observed to stimuli further back in the
sequence, and the effect of previous responses is greater than the
effects of previous stimuli (see Lockhead, 1984, for a review).

In the RJM, an estimate of the difference between the current
and previous trials is used together with the feedback from the
previous trial to generate a response (see Equation 4). In the
absence of feedback, we assume that participants use their re-
sponse from the previous trial as the best estimate of the correct
answer on the previous trial (i.e., Fn�1 is replaced with Rn�1 in
Equation 4). To test this assumption, we ran 100,000 simulated
trials of an absolute identification of 10 stimuli using the RJM with
the best fitting parameter values for the data from Experiment 1.
Following Mori and Ward’s (1995) design, we alternated the
presence of feedback every 20 trials (i.e., 20 trials with feedback
followed by 20 trials without feedback). We then calculated the
amount of information transmitted from the previous stimulus and
from the previous response to the current response separately for
feedback and no-feedback trials (see Table 5). Consistent with
Mori and Ward’s finding, when feedback was omitted, the amount
of information transmitted from the previous response was in-
creased and the amount of information transmitted from the pre-
vious stimulus was reduced. We also examined sequential effects
separately for feedback and no-feedback trials (see Figure 13).
Again, consistent with experimental results (Lockhead, 1984), we
found that assimilation at larger lags, instead of contrast, was
observed when feedback was omitted. In summary, the assumption
that participants use their previous response as the best estimate of
the correct answer in the absence of feedback and then proceed
with a relative judgment strategy correctly predicts the effects of
omitting feedback.

Figure 12. Confusion matrices for the three different stimulus spacings
from Lockhead and Hinson’s (1986) Experiment 2. Dashed lines are the
best fits of the relative judgment model. Rn � response on trial n; Sn � rank
of the stimulus presented on trial n.
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Experiment 1

Although the RJM is able to provide an account of all of the
main phenomena described above, there are no raw data available
that allow these effects to be simultaneously observed and mod-
eled. It is possible, therefore, that although the RJM can provide an
account of each effect in isolation, the relative sizes of the effects
are such that they cannot be simultaneously modeled. For this
reason, we ran a standard absolute identification of frequency
experiment to provide the raw data necessary to rule out this
possibility. We crossed two stimulus spacings with three set sizes
to produce six conditions.

Method

Participants. One hundred twenty University of Warwick undergrad-
uates participated in this 45-min experiment for course credit or payment
of £5 (approximately $8). Participants had, at most, one previous experi-
ence of an absolute identification of frequency experiment.5

Stimuli. Stimuli were two sets of 10 tones varying in frequency. In the
wide-spacing condition, the lowest tone had a frequency of 600.00 Hz, with
each subsequent tone increasing in frequency by 12%. Thus, the wide tones
had a total range of 1063.85 Hz. In the narrow-spacing condition, the
lowest tone had a frequency of 768.70 Hz, with each subsequent tone
increasing in frequency by 6%. Thus, the total range in the narrow condi-
tion was 530.00 Hz. Because, in both conditions, frequency increased by a
constant percentage, tones were equally spaced in log space and were
intended to be approximately evenly spaced psychologically. The center of
the range of the wide-spacing condition coincided with the center of the
range of the narrow condition in log space (i.e., in each condition, the tones
had the same geometric mean). In the set-size-8 conditions, only the middle
8 tones were used. Similarly, in the set-size-6 conditions, only the middle
6 tones were used. Each tone was 500 ms in duration, with the beginning
50 ms ramped linearly from silence to maximum amplitude and the end 50
ms ramped linearly from maximum amplitude to silence.

Design. Two factors were varied between participants: (a) The spacing
of the tones was narrow or wide, and (b) the set size was 6, 8, or 10 stimuli.
These two factors were crossed, which produced six conditions. Partici-
pants were assigned to each condition at random, with the constraint that
there were an equal number of participants in each condition.

Procedure. Participants were tested individually in a quiet room. Par-
ticipants experienced seven blocks of 120 tones, with each tone occurring
equally often in each block. The ordering of the tones within a block was
random. The breaks between blocks were self-timed by participants. Tones
were delivered to participants through Sennheiser (Wedemark, Hanover,
Germany) eH2270 headphones. The headphones were of high quality to
ensure that tones sounded approximately equally loud over the entire
frequency range. At the same time as the tone was played, a “?” prompt

appeared on the screen until participants responded. Participants were free
to respond from the onset of each tone using the number keys along the top
of a standard keyboard. Other key presses were ignored. For half of the
participants in each cell, tones were numbered from lowest to highest, and
for the other half of the participants, this mapping was reversed.

Participants were told that each tone was 1 of a set of 6, 8, or 10 varying
in frequency and were also told the ordering of the responses (either low
numbers for low stimuli and high numbers for high stimuli or vice versa).
Immediately after their response, the prompt was removed and the correct
answer was displayed on the screen for 750 ms. There was a silent pause
and blank screen for a duration of 500 ms before the next trial began
automatically.

Results

As sequence effects in absolute identification are of concern
here, data from the first 10 trials in every block are excluded from
analysis, so that only data in which participants were some way
into the sequences are considered. The descriptive statistics pre-
sented were calculated for each participant and then averaged
across participants.

Average accuracy. For each of the six cells in the design (three
set sizes � two stimulus spacings), the proportion of correct
responses made by each participant was calculated. Participants
whose proportion was more than two interquartile ranges above
the upper quartile or below the lower quartile were to be excluded
as outliers. In fact, only 1 participant in the narrow-spacing set-
size-6 cell was eliminated from subsequent analysis (the partici-
pant’s accuracy was too low).

To test our intention that stimuli would be evenly psychologi-
cally spaced, we compared average accuracy on the lower pitched
half of the stimuli with average accuracy on the higher pitched half
of the stimuli. There was a significant, t(118) � 5.07, p � .0001,
but small (3%) accuracy advantage for higher pitched stimuli. This
suggests that stimuli were not quite psychologically evenly spaced
but that higher pitched stimuli were more widely spaced. To
remove this asymmetry from the data in the following analyses, we

5 This previous experience is unlikely to matter, as there are only very
small practice effects in absolute identification (Alluisi & Sidorsky, 1958;
Hartman, 1954; Weber et al., 1977; but see Rouder et al., 2004).

Figure 13. Sequential effects predicted by the relative judgment model
for absolute identification of 10 stimuli with and without feedback. For
clarity, lines for Stimuli 2–9 have been omitted. En � error in responding
on trial n; Sn � rank of the stimulus presented on trial n.

Table 5
Information Transmitted Predictions From the Relative
Judgment Model for Absolute Identification With and Without
Feedback

Feedback U(Rn) U(Rn:Sn) U(Rn:Sn�1|Sn) U(Rn:Rn�1|Sn, Sn�1)

Yes 3.321 1.229 0.158 0.054
No 3.310 0.729 0.025 0.821

Note. U(X:Y|Z) is information transmitted from Y to X after the effect of
Z is removed. See Mori and Ward’s (1995) appendix for details of the
calculation of these terms. Rn � response on trial n; Sn � rank of the
stimulus presented on trial n.
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collapsed data across mapping (so that Stimulus 1 was the lowest
pitched for half of participants and the highest pitched for the other
half).

Figure 14 shows how the proportion of correct responses varied
through the experiment for each cell of the design. Accuracy was
higher for the smaller set sizes and for the wider stimulus spacings.
Accuracy also improved slightly over blocks. This description of
results was confirmed by a three-way analysis of variance
(ANOVA), with three levels of set size (6, 8, and 10), two levels
of stimulus spacing (narrow and wide), and seven levels of block.
All of the main effects were significant: set size, F(2, 113) �
45.98, p � .0001; stimulus spacing, F(1, 113) � 11.13, p � .0012;
and block, F(6, 678) � 26.47, p � .0001. None of the interactions
was significant.

In the remainder of this analysis, only data from the last five
blocks were used, where performance was approximately at as-
ymptote. Using data from all blocks gives a very similar pattern of
results.

Information transmitted. Table 6 shows the average informa-
tion transmitted from stimulus to response. Information transmit-
ted was approximately constant across set sizes and increased with
spacing. This pattern was confirmed by a two-way ANOVA with
spacing and set size as factors. There was no main effect of set
size, F(2, 113) � 0.49, p � .61. There was a significant effect of
spacing, F(1, 113) � 7.87, p � .0059. There was no significant
interaction, F(2, 113) � 0.39, p � .68.

Central tendency in responding. There was a significant cen-
tral tendency in responding. Figure 15 shows the proportion of
times each response was used for each stimulus spacing and set
size. We determined the significance by fitting a quadratic to the
proportions for each participant. The coefficient of the squared
term was, on average, significantly below zero, t(118) � 6.77, p �
.0001.

In addition to the central tendency in responding, there was a
tendency for people to press the keys on the right of the keyboard
more than those on the left. However, as the assignment of re-
sponse numbers to keys was counterbalanced across participants,
this tendency is not seen in the averaged data.

Bow in the serial position curve. The proportion of correct
responses is plotted against stimulus for each stimulus spacing and
set size in the top panel of Figure 16. Separate two-way ANOVAs
(Stimulus � Spacing) were run for each set size. For set size 10,

there was a main effect of stimulus, F(9, 342) � 59.19, p � .0001
(Huynh–Feldt � � .86); no main effect of spacing, F(1, 38) �
1.72, p � .19; and a significant Stimulus � Spacing interaction,
F(9, 342) � 2.67, p � .0052. For set size 8, there was a main effect
of stimulus, F(7, 266) � 93.34, p � .0001 (Huynh–Feldt � � .93);
no main effect of spacing, F(1, 38) � 1.30, p � .26; and no
significant Stimulus � Spacing interaction, F(7, 266) � 1.44, p �
.20. For set size 6, there was a main effect of stimulus, F(5, 185) �
43.16, p � .0001 (Huynh–Feldt � � .94); a main effect of spacing,
F(1, 37) � 7.81, p � .0082; and no significant Stimulus � Spacing
interaction, F(5, 185) � 0.92, p � .47. Although the effect of
spacing was only significant for set size 6, we have already seen
that there was a significant main effect of spacing on accuracy (see
the Average accuracy section).

The bottom panel in Figure 16 plots bows in d�. Again, separate
two-way ANOVAs were run for each set size. Each of these
revealed a main effect of spacing, smallest F(8, 304) � 3.88, p �
.0001. There was a marginal main effect of spacing for set size 6,
F(1, 37) � 1.85, p � .06. The effect was not significant for set
sizes 8 and 10, larger F(1, 38) � 1.85, p � .18. There was a
significant interaction between stimulus and spacing for set size
10, with smaller edge effects in the larger set size, F(8, 304) �
3.89, p � .0002. The interaction was not significant for set sizes 6
or 8, larger F(6, 288) � 1.48, p � .18.

Figure 17 plots the confusion matrices for each of the six cells
in the design (3 set sizes � 2 spacings).

Assimilation and contrast. Figure 18 plots En as a function of
the Sn�1 for different Sn. There was a tendency for the responses
to small stimuli to be too large and for the responses to large
stimuli to be too small, as shown by the spacing of the lines. The
positive slope of the lines indicates that the response given to Sn

was biased toward Sn�1 (i.e., assimilation). We ran six ANOVAs

Figure 14. Mean proportion of correct responses by block for each
condition in Experiment 1. Figure 15. The response biases for each condition in Experiment 1.

Table 6
Average Information Transmitted (in Bits) for Each Condition of
the Absolute Identification Experiment

Spacing

Set size

6 8 10

Narrow 1.26 1.26 1.26
Wide 1.52 1.39 1.41
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to confirm this description, one for each cell in the design (3 set
sizes � 2 stimulus spacings). In every ANOVA, there was a
significant main effect of Sn, a significant main effect of Sn�1, and
no significant interaction.

Figure 19 plots En (averaged over all possible stimuli) against
the lag k for different Sn�k. When Sn�1 (k � 1) was large, a
positive error was made, and when Sn�1 was small, a negative
error was made (i.e., assimilation). For trials further back, the
opposite pattern was seen (i.e., contrast). When k � 2, the error
dependency was small, which shows that the stimulus two trials
ago had little effect on responding. We ran six ANOVAs to
confirm this description, one for each cell in the design (3 set
sizes � 2 stimulus spacings). Apart from the two set-size-8 con-
ditions, there was no main effect of Sn�k. Apart from the two
set-size-6 conditions, there was no main effect of lag, k. It is
important to note that in every ANOVA there was a significant
interaction.

Discussion

Experiment 1 has replicated the standard findings described in
the introduction, demonstrating that all of the effects can occur
simultaneously. As set size increased, information transmitted
remained constant. This limit is below the limit for absolute
identification of pitch observed by Hartman (1954) and Pollack
(1952) but approximately the same as that observed by W. Siegel

(1972). (Hartman used very large intertrial intervals, and Pollack
played white noise between trials.) We found a significant ten-
dency for participants to give responses in the center of the scale
(see also Balakrishnan, 1997). The bow in the serial position curve

Figure 16. The proportion of correct responses (A) and d� (B) against
stimulus for each condition in Experiment 1. d�i,i�1 � measure of the
confusibility of Stimulus i and Stimulus i � 1.

Figure 17. The confusion matrices for the conditions in Experiment 1.

Figure 18. Average En (error in responding on trial n) for each Sn (rank
of the stimulus presented on trial n) as a function of Sn�1 for Experiment
1. Data have been collapsed across pairs of stimuli.
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was shown in every condition. With larger set sizes, the bow effect
was larger (replicating the findings of Alluisi & Sidorsky, 1958;
Durlach & Braida, 1969; Lacouture & Marley, 1995; Pollack,
1953; and Weber et al., 1977), and doubling the spacing of the
stimuli had only a slight effect on accuracy (replicating the find-
ings of Braida & Durlach, 1972; Brown et al., 2002; Lacouture,
1997; Luce et al., 1976; and Pollack, 1952). For the larger two set
sizes (8 and 10 stimuli), increasing the spacing did not improve
accuracy significantly, and the actual magnitude of the improve-
ment was slight, if there was any. This is consistent with Brown et
al.’s (2002) findings. The bow effect was evident in every condi-
tion, even in the last block of this experiment, consistent with
previous findings where the bow remained even after extensive
practice (Rouder et al., 2004; Weber et al., 1977).

The standard sequential effects were also evident in these data.
The current stimulus was assimilated toward the preceding stim-
ulus (replicating the findings of Garner, 1953; Holland & Lock-
head, 1968; Hu, 1997; Lacouture, 1997; Lockhead, 1984; Long,
1937; Luce et al., 1982; Purks et al., 1980; Rouder et al., 2004;
Staddon et al., 1980; Stewart, 2001; and Ward & Lockhead, 1970,
1971). Rn was also contrasted away from earlier stimuli (replicat-
ing the findings of Holland & Lockhead, 1968; Lacouture, 1997;
and Ward & Lockhead, 1970, 1971). Though Holland and Lock-
head found the contrast effect to be biggest for Sn�2, these data
show the greatest contrast for stimuli three or four trials back. This
pattern is more consistent with Lacouture’s data, though perhaps
slightly more extreme. Unpublished data from our laboratory sug-
gest that the spacing between trials is likely to be an important
factor in accounting for this difference.

In summary, each of the three main types of phenomenon
reviewed in the introduction—the limit in information transmitted,

bow in the serial position curve, and sequential effects—has been
demonstrated simultaneously in this experiment.

Modeling

A single fit to average data. As a proof of concept, we fitted
the RJM to the average data presented above. The purpose of the
modeling described below is to demonstrate that the RJM can fit
the main phenomena accurately for a single set of parameter
values. We took the slightly ad hoc strategy of minimizing the sum
squared error (SSE) among the data points presented in Figures 15,
17, 18, and 19 and the RJM’s fits to these data points. The choice
of how the SSEs from each figure are combined is necessarily
quite arbitrary, as the SSEs for different figures are the SSEs of
quite different things (probabilities and errors on the response
scale). However, the exact weightings (1.0, 1.0, 0.1, and 0.5 for
Figures 15, 17, 18, and 19, respectively) are not important, as very
similar best fits are obtained for different weightings.

The RJM does not predict an effect of changing the spacing of
the stimuli in the set. In Experiment 1, there was a significant
effect of spacing for only the smallest set size. For this reason, the
RJM was fitted to data for each set size averaged across the two
different stimulus spacings. We present one fit (see Table 3 for
parameter values) as the dashed lines in Figures 20, 21, 22, 23, and
24. r2 values for response biases, confusion matrices, assimilation
plots, and assimilation and contrast plots were .98, .98, .89, and
.94, respectively. Fits to d� data were poorer (r2 � .88), and the
RJM systematically underpredicts the bow in the d� data, as
described above.

Fits to individual participants’ data. The purpose of Experi-
ment 1 was to demonstrate that the main phenomena occur simul-
taneously. This was observed above in the data averaged across
participants. Of the 119 participants, 100 showed bows in the
proportion of correct responses plotted against stimulus rank (as
defined by greater average accuracy on edge stimuli compared
with internal stimuli) and assimilation to the previous stimulus and
contrast to those further back (as defined by the coefficients of the
simple regression model Rn � a0 Sn � a1 Sn�1 � a2 Sn�2 � . . .)
simultaneously.

To fit the RJM to the data from a single participant, we maxi-
mized the likelihood of the model generating the data produced by

Figure 19. Average En (across all Sn) as a function of the lag k for each
possible Sn�k for Experiment 1. Data have been collapsed across pairs of
stimuli. En � error in responding on trial n; Sn � rank of the stimulus
presented on trial n.

Figure 20. The relative judgment model’s fits to the response bias for
each set size (collapsed across spacing) in Experiment 1. The solid lines are
data from Experiment 1. The dashed lines are the best fits of the relative
judgment model.
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the participant. The best fitting RJM predicts a bow in accuracy,
assimilation to the previous stimulus, and contrast to stimuli at
greater lags for every participant. When the predictions for the
RJM are generated for each participant and then averaged across
the participants in each condition, plots are obtained that are
almost identical to those obtained from fitting the averaged data.
The median best fitting parameter values across participants are
given in Table 7, together with the upper and lower quartiles.
These values are very similar to those obtained above in fitting the
averaged data (see Table 3). In summary, the average data fit and
the individual participant fits provide an existence proof, demon-
strating that the RJM is able to provide a good account of all of the
main phenomena simultaneously.

A Discrepancy: Conditional Accuracy and d�

There is a discrepancy in the literature that we have deferred
discussion of until after we have presented Experiment 1. W.
Siegel (1972) found that accuracy was much higher when the
current stimulus was a repetition of the previous stimulus (see also
Petrov & Anderson, 2005; Rouder et al., 2004). In the panels of

Figure 21. The relative judgment model’s fits to the confusion matrices
for each set size (collapsed across spacing) in Experiment 1. The solid lines
are data from Experiment 1. The dashed lines are the best fits of the relative
judgment model.

Figure 22. The relative judgment model’s fits to d� data from Experiment
1 (collapsed across stimulus spacing). Dashed lines are the best fits of the
relative judgment model. d�i,i�1 � measure of the confusibility of Stimulus
i and Stimulus i � 1.

Figure 23. The relative judgment model’s fits to the effects of Sn�1 and
Sn (the rank of the stimulus within the set) on En (error in responding on
trial n) for each set size (collapsed across spacing) in Experiment 1. The
solid lines are data from Experiment 1. The dashed lines are the best fits of
the relative judgment model.
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Figure 25, we plot the bow effect for three different set sizes. The
effect is parameterized by the number of stimuli that intervened
since the current stimulus was last repeated. When a stimulus was
repeated immediately, accuracy was practically perfect. With one
intervening stimulus, performance dropped considerably, and fur-
ther intervening stimuli led to a smaller further drop. This pattern
can be fit by the RJM. When a stimulus is repeated, Dn,n�1 � 0,
and, according to Equations 3 and 4, only the confusion of differ-
ences makes a small contribution to En. However, when Sn�1

��Sn, then Dn,n�1 �� 0, and the limited decision capacity adds
error to Rn. (The RJM fails to fit the difference between one and
more than one trial intervening between repetitions. This is be-
cause, as a first approximation, we have assumed no memory for
magnitudes other than Sn�1. Modifying the model to allow for
some memory of Sn�2 allows the model to predict the effect.
Stewart & Brown, 2004, found this modification necessary for
modeling unidimensional categorization data.)

In contrast, Purks et al. (1980), Luce et al. (1982), and Nosofsky
(1983b) found that there was only a small (though significant)
increase in d� when, in a random sequence of stimuli, the current
stimulus was within one stimulus of the previous stimulus. There
are obvious explanations. First, the experiments used different
stimuli. W. Siegel (1972) used tones varying in frequency, and
Luce et al. and Purks et al. used tones varying in intensity. Second,
the performance measure was different. W. Siegel reported accu-
racy, and Purks et al., Luce et al., and Nosofsky reported d�. Third,
the partitioning of the data was different. W. Siegel used repetition
trials (i.e., Sn � Sn�1), Purks et al. examined data for every
combination of Sn and Sn�1, and Luce et al. and Nosofsky had
stimuli that differed by no more than 1 (|Sn � Sn�1| � 1).

We have examined our own data from the narrow and wide
set-size-10 conditions of Experiment 1. Consistent with W. Sie-
gel’s (1972) data, we found very high accuracy (more than 98%
correct for every stimulus) on trials when the stimulus was re-

Figure 24. The relative judgment model’s fits to the effects of Sn�k (k �
1 to 6) on En for each set size (collapsed across spacing) in Experiment 1.
The solid lines are data from Experiment 1. The dashed lines are the best
fits of the relative judgment model. En � error in responding on trial n;
Sn � rank of the stimulus presented on trial n.

Table 7
Summary Statistics for the Best Fitting Parameter Values for Individual Participant Data From
Experiment 1

Statistic �1 �2 �3 �4 c � �

Median .107 .080 .051 .026 .109 0.227 0.959
LQ .088 .062 .036 .011 .077 0.192 0.920
UQ .124 .100 .066 .037 .130 0.280 1.003

Note. LQ � lower quartile; UQ � upper quartile.

Figure 25. Accuracy against stimulus rank for three different set sizes
(spacing between adjacent stimuli held constant). Lines are for different
numbers of intervening stimuli between Sn (rank of the stimulus presented
on trial n) and the last time that stimulus occurred. The solid lines are data
from W. Siegel (1972). The dashed lines are the best fits of the relative
judgment model.
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peated from the previous trial. We also followed Luce et al.’s
(1982) analysis and calculated accuracy and d� separately for trials
in the random sequence that were preceded by a stimulus no more
than one different from the current stimulus (near transitions) and
trials that were more than one different from the preceding stim-
ulus (far transitions). Figure 26 shows our results. Unlike Purks et
al. (1980), Luce et al. (1982), and Nosofsky (1983b), we found a
large advantage in accuracy and d� when the current and previous
stimuli were similar. This finding enables us to rule out the
accuracy versus d� difference and the repetition versus similar
stimuli difference as explanations of the differences among the
experimental results and suggest that the difference in findings is
due to the use of different stimuli (or other procedural differences).
The finding of a d� advantage in the Experiment 1 data also
enables us to rule out a response bias account of our accuracy data
(and W. Siegel’s data), whereby the advantage for repeated stimuli
comes from a strong tendency to repeat the previous response.
Instead, we think that the reduction in accuracy and d� found when
the previous and current stimuli differ occurs because stable,
long-term magnitudes to which the current stimulus can be com-
pared are not available, and thus the current stimulus must be
compared with only the previous stimulus.

In Figure 26, we have shown the accuracy and d� predictions of
the RJM using the parameters from Table 3 for the Experiment 1

data. (Note that these parameters were not chosen to best fit this
pattern specifically.) The RJM predicts that accuracy and d� will be
higher when Sn and Sn�1 are similar, because we assume that there
is less noise in the mapping process in this case (rho is small when
Sn � Sn�1; see Equation 5).

At present, the RJM incorrectly predicts a difference in accuracy
and d� for the Luce et al. (1982) random data (as we describe above
for the Experiment 1 data). The RJM could possibly be modified
in two ways to correctly predict only a very small difference
between accuracy and d�. First, if the � parameter (which repre-
sents the magnitude below which Dn,n�1

C is so small that the Sn is
considered a repetition of Sn�1) were smaller, reflecting a greater
uncertainty in establishing whether a stimulus was a repetition,
then accuracy and d� would differ much less between the near and
far conditions because the low noise mapping for stimulus repeti-
tions would occur less often. Alternatively, the preliminary form of
Equation 5 could be altered. Further experimental work is required
to constrain these possible extensions.

One question remains. If Luce et al. (1982) did not find an
increase in d� or accuracy when Sn was similar to Sn�1 in their
random condition, why was performance best in the small-step
conditions that we described earlier? Nosofsky (1983b) found
evidence that the advantage comes from the cumulative effect of a
series of small transitions between consecutive stimuli (rather than
just a single small transition between Sn�1 and Sn). Nosofsky took
the trials in which Sn was no more than one stimulus different from
Sn�1 and partitioned the data further, depending on whether Sn�2

was no more than one stimulus different from Sn�1. Accuracy on
trial n was higher when Sn�2 was more similar to Sn�1. The RJM
can account for this qualitative pattern, because of the assumption
that consecutive differences are confused (see Equation 3). When
Sn�2 is more similar to Sn�1, then Dn,n�1

C varies less, and thus
responding is also less variable.

Experiment 2

An important question is whether the RJM is falsifiable. We
address this issue directly in Experiment 2, which pits the predic-
tions of absolute magnitude models (i.e., the Thurstonian models,
the restricted capacity models, and the exemplar models) and the
RJM against each other directly. The models make different pre-
dictions regarding the effect of misleading feedback. In the RJM,
the feedback from the preceding trial is used together with a
judgment of the difference between the preceding and current
stimuli to produce a response. If participants are given misleading
feedback on the previous trial, then, according to Equation 4, their
response on the current trial should reflect this directly. In contrast,
the absolute-magnitude-based models described above do not use
the feedback from the previous trial in generating the response on
the current trial and so predict no effect of misleading feedback.
Below, we consider how, if the misleading feedback is attended to
at all, the absolute-magnitude-based models might use the feed-
back to adjust the mapping between the stimulus scale and the
response scale. Even with this adjustment, these models still make
different predictions from the RJM.

The experiment was designed such that performance on the final
trial of eight critical triplets of trials (defined by Sn�2, Sn�1, Rn�1,
Fn�1, and Sn) could be compared in the analysis. The triplets differed
from one another in two ways. First, Fn�1 could be either correct or

Figure 26. Accuracy (top) and d� (bottom) against Sn conditional on Sn�1

being either near to Sn (i.e., |Sn � Sn�1| � 1) or far from Sn (i.e., |Sn � Sn�1|
� 1) for data from the set-size-10 condition of Experiment 1 (collapsed
across spacing). The d�9, 10 point for the near data is not plotted because
discrimination was perfect (i.e., d�9, 10 � 
). The solid lines are data from
Experiment 1. The dashed lines are the best fits of the relative judgment
model. Sn � rank of the stimulus presented on trial n. d�i,i�1 � measure of
the confusibility of Stimulus i and Stimulus i � 1.
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misleading. Second, Rn�1 could be either correct or incorrect. Four of
the triplets are listed in Table 8. The remaining four triplets are the
mirror image of the four listed in Table 8 (one can generate the values
of Sn�2, Sn�1, Rn�1, Fn�1, and Sn for these mirror image triplets by
subtracting the values in Table 8 from 11, and one can generate �En

predictions by swapping the sign of the value in Table 8). In the
remainder of this article, for simplicity of exposition, we discuss the
triplets in terms of those listed in Table 8.

In each triplet, Sn�2 was far from Sn�1, so that if Fn�1 were
misleading, the deception would not be obvious. When Fn was too
great by one, according to the RJM (see Equation 4), En should
also have been too great by one (see the RJM �En column of Table
8). We can test this prediction by comparing the first two triplets
in Table 8: En when Fn�1 was misleading and En when Fn�1 was
not misleading (to provide a baseline measure of the bias due to
assimilation and contrast).

However, under the alternative assumption that judgment is
absolute, there is an alternative explanation of an increased error
when Fn�1 is misleading. Suppose that, on being told that his or
her response was incorrect, the participant adjusted his or her
mapping of stimuli to responses. If the response was too small by
one, then responses should be remapped onto stimuli so that each
stimulus is now mapped onto the response that previously be-
longed to the next highest stimulus. For example, in a Thurstonian
model (e.g., Durlach & Braida, 1969; Luce et al., 1976; Treisman,
1985), all of the criteria should be shifted down the perceptual
scale by one stimulus spacing. In an exemplar model (e.g., Brown
et al., 2002; Kent & Lamberts, 2005; Nosofsky, 1997; Petrov &
Anderson, 2005), each exemplar should be remapped so that it is
associated with the label that was originally associated with the
immediately higher exemplar. Thus, after the misleading feedback
that is too large by one, each stimulus will now be associated with
a response that is also one too large (see the Mapping �En column
of Table 8).

Though the RJM and the mapping alternative make the same
predictions when Rn�1 is correct, they make different predictions
when Rn�1 is incorrect (see the last two triplets listed in Table 8).
Take, for example, the case illustrated in the third row of Table 8.
Within a Thurstonian framework, if the perception of Sn�1 � 4 is
noisy so that the percept falls below the criteria between Response
Categories 3 and 4, then Rn�1 will be incorrectly underestimated
as 3. Truthful feedback (i.e., Fn�1 � 4) will indicate that an error
has been made, and the participant might adjust the criteria in
response by shifting them one unit down the response scale. Now,
when Sn � 6 is presented, Rn will be an overestimate. The same
argument can be made for an exemplar framework. If perception of

Sn�1 � 4 is noisy so that the percept is more similar to the
exemplar for Category 3 than for Category 4, then Rn�1 will be
incorrectly underestimated as 3. Truthful feedback (i.e., Fn�1 � 4)
will indicate that an error has been made, and the mapping between
exemplars and category labels should be adjusted so that each
exemplar is now mapped to the label previously belonging to the
next highest exemplar. Now, when Sn � 6 is presented, Rn will be
an overestimate. When Fn�1 is misleading and confirms a mis-
taken Rn�1 (see the fourth row of Table 8), the match between
response and feedback should mean that the participant thinks no
error has been made and does not adjust his or her mapping. Thus,
no error is predicted in the identification of Sn.

In summary, the RJM predicts an effect of misleading feedback.
Absolute magnitude models predict the same effect if one aug-
ments them with the ability to adjust the mapping between stimuli
and responses in response to an error. However, the RJM and these
augmented mapping models make different predictions in the case
when the previous response is wrong but misleading feedback
suggests that it was correct.

Method

Participants. Twelve female and 7 male students from the University
of Warwick, aged between 19 and 32 years, participated for payment of £6
(approximately $10).

Stimuli. Ten stimuli were generated. The first was 200.00 Hz, with a
between-stimuli spacing of 25%, giving a last stimulus of 1490.00 Hz. This
spacing is just over twice the spacing of the stimuli used in the wide
condition of Experiment 1. The amplitude envelope applied to the stimuli
was the same as that used in Experiment 1.

Design and procedure. The procedure closely follows that of Experi-
ment 1. There were 20 blocks of 40 stimuli. Two of the eight critical
triplets differed from another two only in Rn�1. Thus, there were only six
unique critical triplets (if we ignore Rn�1, which, obviously, was under the
participants’ control). In each block, these were randomly assigned to
begin on Trials 3, 10, 17, 24, 31, and 38. On the remaining trials, the
stimulus was selected at random, with the constraint that all stimuli
appeared equally often in each block. Feedback was always correct, apart
from on the middle trial of two of the six triplets, and thus feedback was
only misleading on 5% of trials.

Results

Figure 27 shows En as a function of whether Fn�1 was correct
or misleading, parameterized by the accuracy of Rn�1 (see Table 8
for a full description of the conditions). En with Fn�1 and Rn�1

correct (as in a standard absolute identification experiment) was
negative, which shows that Rn was assimilated toward Sn�1 and

Table 8
Critical Triplets of Trials Used in Experiment 2

Rn�1 accuracy Fn�1 accuracy Sn�2 Sn�1 Rn�1 Fn�1 Sn RJM �En Mapping �En

Correct Correct 9 3 3 3 5 0 0
Correct Misleading 9 3 3 4 5 1 1
Incorrect Correct 9 4 3 4 6 0 1
Incorrect Misleading 9 3 4 4 5 1 0

Note. Four additional critical triplets were included, which one can generate by subtracting values of Sn�2, Sn�1, Rn�1, Fn�1, and Sn from 11 and reversing
the sign of �En. RJM � relative judgment model; Rn � response on trial n; Fn � feedback given on trial n; Sn � rank of the stimulus presented on trial
n; En � error in responding on trial n.
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contrasted away from Sn�2. When Fn�1 was misleading (Fn�1 �
Sn�1 � 1), En was increased, as predicted by the RJM (and the
mapping hypothesis). The same pattern was seen when Rn�1 was
incorrect, as predicted by the RJM (the opposite of the prediction
of the mapping model). A two-way ANOVA (Fn�1 correct or
misleading � Rn�1 correct or incorrect) revealed a significant
main effect of the accuracy of Fn�1, F(1, 18) � 20.84, p � .0002,
no significant main effect of the accuracy of Rn�1, F(1, 18) �
0.31, p � .59, and no significant interaction, F(1, 18) � 2.95, p �
.10. Though the interaction approached significance, it was in the
opposite direction predicted by the mapping hypothesis.

The increase in En when Fn�1 was too large by one was only .57
(averaged across the accuracy of Rn). The RJM predicts that all of
the increase in Fn�1 should carry over to Rn. However, we have
already seen evidence that there may still be some residual mem-
ory for the absolute magnitude not just of the preceding stimulus
but also of the stimulus before that (e.g., Massaro, 1970; W.
Siegel, 1972; Stewart & Brown, 2004; Wickelgren, 1966). If Sn�2

were also used as an anchor against which to judge Sn, then one
would expect a smaller effect of Fn�1 on En.

The information transmitted in Experiment 1 was lower than the
estimates obtained by Pollack (1952) and Hartman (1954) for
absolute identification of pure tones varying in frequency. In
Experiment 2, the spacing of the stimuli was greatly increased
compared with Experiment 1, but average information transmitted
was 1.41 bits—approximately the same as in Experiment 1 and in
W. Siegel (1972).

Discussion

According to the RJM, the difference between the current stim-
ulus and the previous stimulus is added to the feedback from the
previous trial to generate the current response (see Equation 4).
Thus, the RJM makes the strong prediction that, if the previous
feedback was inaccurate, this error will be transmitted to the
current response. In Experiment 2, we found this to be the case.
When participants were misled and the previous feedback was one
too large, then the current response was significantly increased
compared with when the previous feedback was accurate.

Of all of the existing models of absolute identification, only Hol-
land and Lockhead’s (1968) model, which makes the same assump-

tion about the use of the previous feedback as does the RJM, can
predict this effect. All of the other models fail to predict the effect in
their current forms, because they do not use the previous feedback in
generating the current response. Reasonable assumptions can be made
to allow the models to adapt the mapping between stimulus magni-
tudes and response categories after feedback indicates an error has
been made (e.g., shifting criteria in a Thurstonian model or relabeling
exemplars in an exemplar model). In this way, the models can predict
that there will be an error on the current trial when feedback on the
previous trial is erroneous, because it will appear that an error has
been made on the previous trial, and the model can alter the mapping
between stimuli and responses to compensate. However, the models
then incorrectly predict that there will be no effect of misleading
feedback on the previous trial when the previous response was incor-
rect but the (misleading) feedback indicates that it was correct. In this
case, it will appear as if no error has been made, so no remapping
should take place.

There is an alternative way that the absolute-magnitude-based
models might be able to account for the Experiment 2 data. Instead
of perceptual noise being the cause of an incorrect Rn�1, Rn�1

might be incorrect because the mapping between stimuli and
responses is, for some reason, already incorrect. For example, in
the case illustrated in the last two rows of Table 8, Rn�1 might be
underestimated either because Thurstonian criteria are too far up a
sensory scale or because each exemplar is mapped onto a label that
is too low. Now, if Fn�1 is accurate and indicates an error, the
adjustment of the mapping will correct the initial mismapping. If
Fn�1 is misleading and indicates no error when one has been
made, then no adjustment will be made. These predictions are now
the same as those of the RJM. However, by adopting this expla-
nation, one incorporates the idea of relative judgment. In assuming
that the mapping between stimuli and responses is adjusted after
each piece of feedback and, thus, varies from trial to trial, one is
abandoning a stable long-term association between particular mag-
nitudes and response categories. There seems to be little difference
between, on the one hand, hearing a stimulus two higher than the
previous stimulus and so responding with a response two higher
than the previous feedback and, on the other hand, hearing a
stimulus and aligning a response scale with it on the basis of the
feedback and then hearing another stimulus two higher and thus
responding with a response two units up the response scale. In
allowing the continual adjustment of the mapping between the
stimulus and the response scales, one abandons the stable long-
term mapping between absolute stimulus magnitudes and response
categories, and these models become models of relative judgment
that are really rather similar to the RJM proposed here.

Extending RJMs

In this article, our core claim is that a model of relative judgment
can provide an account of many phenomena in the absolute iden-
tification literature. Our model differs from existing models in
assuming that long-term representations of absolute magnitudes
either are unavailable or, for some reason, are unused in absolute
identification. In the present section, we outline three ways this
relative judgment idea might be extended.

The first way is to test more directly the longevity of absolute
magnitude representations. Above, we cited 10 reports of same–
different judgment tasks in which the memory for the standard de-

Figure 27. En�1 as a function of the accuracy of Fn (feedback given on trial
n) for correct and incorrect Rn (response on trial n) for Experiment 2. Error bars
are standard errors of the means. En � error in responding on trial n.
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cayed rapidly as the interval between the standard and comparison
items is increased in duration or filled with intervening items. How-
ever, in these experiments, the stimulus chosen as the standard varied
from trial to trial. With only one standard, there was little forgetting
across intervening tones (D. A. Anderson, 1914, as cited in Massaro,
1970, and Wickelgren, 1966; Irwin, 1937; Magnussen, Greenlee,
Aslaken, & Kildebo, 2003). We think an important step is to identify
the conditions under which long-term representations of absolute
magnitudes can and cannot be maintained. Researchers could also
adapt the misleading-feedback methodology from Experiment 2 to
measure the longevity of absolute magnitude representations by
remapping stimuli and responses partway through an absolute iden-
tification experiment (e.g., by increasing the feedback by one for the
rest of the experiment) and measuring for how long the initial
stimulus–response mapping persists. The effect of shifting the entire
stimulus set between experimental sessions (e.g., Ward, 1987; Ward
& Lockhead, 1970) should also be investigated for other stimulus
continuums.

A second way the idea of relative judgment could be developed is
to extend relative judgment approaches to other psychophysical tasks.
We have already had some success in modeling empirical results in
unidimensional binary categorization (Stewart & Brown, 2004; Stew-
art et al., 2002) that cannot be fit by existing absolute-magnitude-
based categorization models (e.g., the GCM; Nosofsky, 1986). Lam-
ing (1984, 1997) has been able to account for some key results in
magnitude estimation and cross-modality matching using his RJM.

Our final suggestion is that absolute judgment models and RJMs
might be integrated into a single theoretical framework. Obvi-
ously, at some level, in absolute-magnitude-based models judg-
ment is relative, because the information from previous stimulus–
response pairings provides the basis for generating each response.
Also, at some level, RJMs do assume that a (perhaps peripheral)
representation of a stimulus’s absolute magnitude can be main-
tained in the very short term because, without such a representation
over the interstimulus interval, the following stimulus could not be
compared with the previous stimulus. We have already shown that
our RJM of unidimensional binary categorization and an absolute-
magnitude-based exemplar model (Nosofsky, 1986) are special
cases of a more general model (Stewart & Brown, in press). That
is, the RJM can be thought of as occupying one end of a contin-
uum, where absolute magnitude representations are very short
lived, with the exemplar model occupying the other end, where
absolute magnitude representations are long lived.

Conclusion

We have presented the RJM, in which, in the assumed absence
of stable, long-term absolute magnitudes, the representation of the
difference between the stimulus on the current trial and the stim-
ulus on the preceding trial is used in conjunction with the feedback
from the previous trial to produce a response. We have demon-
strated that a broad class of absolute identification data can be fit
by this model. Assuming relative judgment allows an account of
the ubiquitous sequential effects observed in absolute identifica-
tion. By assuming only that the representation of the difference
between the current stimulus and the previous stimulus is confused
with the representations of earlier differences, the RJM predicts
assimilation to the previous stimulus and contrast to those stimuli
further back. These effects have been problematic for those exist-

ing models that assume that absolute identification is achieved
through long-term representations of absolute magnitudes of stim-
ulus values (as either exemplars, anchors, or criteria). Using dif-
ference information optimally within a limited capacity provides
an account of the bow effect and of the limit in information
transmitted. We conclude, therefore, that absolute identification
may in fact be achieved by relative judgment.

References

Alluisi, E. A., & Sidorsky, R. C. (1958). The empirical validity of equal
discriminability scaling. Journal of Experimental Psychology, 55, 86–95.

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ:
Erlbaum.

Anderson, J. R., & Lebière, C. (1998). The atomic components of thought.
Mahwah, NJ: Erlbaum.

Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual indepen-
dence. Psychological Review, 93, 154–179.

Bachem, A. (1954). Time factors in relative and absolute pitch determi-
nation. Journal of the Acoustical Society of America, 26, 751–753.

Baird, J. C., Romer, D., & Stein, T. (1970). Test of a cognitive theory of
psychophysics: Size discrimination. Perceptual and Motor Skills, 30,
495–501.

Balakrishnan, J. D. (1997). Form and objective of the decision rule in
absolute identification. Perception & Psychophysics, 59, 1049–1058.

Beebe-Center, J. G., Rogers, M. S., & O’Connell, D. N. (1955). Transmis-
sion of information about sucrose and saline solutions through the sense
of taste. Journal of Psychology, 39, 157–160.

Braida, L. D., & Durlach, N. I. (1972). Intensity perception. II. Resolution
in one-interval paradigms. Journal of the Acoustical Society of America,
51, 483–502.

Braida, L. D., Lim, J. S., Berliner, J. E., Durlach, N. I., Rabinowitz, W. M.,
& Purks, S. R. (1984). Intensity perception: XIII. Perceptual anchor
model of context-coding. Journal of the Acoustical Society of America,
76, 722–731.

Brown, G. D. A., Neath, I., & Chater, N. (2002). A ratio model of
scale-invariant memory and identification. Manuscript submitted for
publication.

Chapanis, A., & Halsey, R. M. (1956). Absolute judgments of spectrum
colors. Journal of Psychology, 42, 99–103.

Chater, N., & Brown, G. D. A. (1999). Scale-invariance as a unifying
psychological principle. Cognition, 69, b17–b24.

DeCarlo, L. T. (1992). Intertrial interval and sequential effects in magni-
tude scaling. Journal of Experimental Psychology: Human Perception
and Performance, 18, 1080–1088.

DeCarlo, L. T. (1994). A dynamic theory of proportional judgment: Con-
text and judgment of length, heaviness, and roughness. Journal of
Experimental Psychology: Human Perception and Performance, 20,
372–381.

DeCarlo, L. T., & Cross, D. V. (1990). Sequential effects in magnitude
scaling: Models and theory. Journal of Experimental Psychology: Gen-
eral, 119, 375–396.

Durlach, N. I., & Braida, L. D. (1969). Intensity perception. I. Preliminary
theory of intensity resolution. Journal of the Acoustical Society of
America, 46, 372–383.

Efron, B., & Morris, C. (1977). Stein’s paradox in statistics. Scientific
American, 236, 119–127.

Elliott, S. W., & Anderson, J. R. (1995). Effect of memory decay on
predictions from changing categories. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 815–836.

Engen, T., & Pfaffmann, C. (1959). Absolute judgments of odor intensity.
Journal of Experimental Psychology, 58, 23–26.

Eriksen, C. W., & Hake, H. W. (1955a). Absolute judgments as a function

908 STEWART, BROWN, AND CHATER



of stimulus range and the number of stimulus and response categories.
Journal of Experimental Psychology, 49, 323–332.

Eriksen, C. W., & Hake, H. W. (1955b). Multidimensional stimulus dif-
ferences and accuracy of discrimination. Journal of Experimental Psy-
chology, 50, 153–160.

Eriksen, C. W., & Hake, H. W. (1957). Anchor effects in absolute judg-
ment. Journal of Experimental Psychology, 53, 132–138.

Estes, W. K. (1950). Towards a statistical theory of learning. Psychological
Review, 57, 94–107.

Garner, W. R. (1953). An informational analysis of absolute judgments of
loudness. Journal of Experimental Psychology, 46, 373–380.

Garner, W. R. (1962). Uncertainty and structure and psychological con-
cepts. New York: Wiley.

Gravetter, F., & Lockhead, G. R. (1973). Criterial range as a frame of
reference for stimulus judgment. Psychological Review, 80, 203–216.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-
physics. New York: Wiley.

Hake, H. W., & Garner, W. R. (1951). The effect of presenting various
numbers of discrete steps on scale reading accuracy. Journal of Exper-
imental Psychology, 42, 358–366.

Harris, J. D. (1952). The decline of pitch discrimination with time. Journal
of Experimental Psychology, 43, 96–99.

Hartman, E. B. (1954). The influence of practice and pitch-distance be-
tween tones on the absolute identification of pitch. American Journal of
Psychology, 67, 1–14.

Hawkes, G. R., & Warm, J. S. (1960). Maximum It for absolute identifi-
cation of cutaneous electrical intensity level. Journal of Psychology, 49,
279–288.

Helson, H. (1964). Adaptation-level theory. New York: Harper & Row.
Holland, M. K., & Lockhead, G. R. (1968). Sequential effects in absolute

judgments of loudness. Perception & Psychophysics, 3, 409–414.
Hu, G. (1997). Why is it difficult to learn absolute judgment tasks?

Perceptual and Motor Skills, 84, 323–335.
Irwin, C. C. (1937). A study of differential pitch sensitivity relative to

auditory theory. Journal of Experimental Psychology, 21, 642–652.
James, W., & Stein, C. (1961). Estimation with quadratic loss. In J.

Neyman (Ed.), Proceedings of the fourth Berkeley Symposium in Math-
ematical Statistics and Probability (Vol. 1, pp. 361–379). Berkeley:
University of California Press.

Jesteadt, W., Luce, R. D., & Green, D. M. (1977). Sequential effects of the
judgments of loudness. Journal of Experimental Psychology: Human
Perception and Performance, 3, 92–104.

Karpiuk, P., Lacouture, Y., & Marley, A. A. J. (1997). A limited capacity,
wave equality, random walk model of absolute identification. In A. A. J.
Marley (Ed.), Choice, decision and measurement: Essays in honor of R.
Duncan Luce (pp. 279–299). Mahwah, NJ: Erlbaum.

Kent, C., & Lamberts, L. (2005). An exemplar account of the bow and
set-size effects in absolute identification. Journal of Experimental Psy-
chology: Learning, Memory, and Cognition, 31, 289–305.

Kinchla, R. A., & Smyzer, F. (1967). A diffusion model of perceptual
memory. Perception & Psychophysics, 2, 219–229.

König, E. (1957). Effect of time on pitch discrimination thresholds under
several psychophysical procedures: Comparison with intensity discrim-
ination thresholds. Journal of the Acoustical Society of America, 29,
606–612.

Lacouture, Y. (1997). Bow, range, and sequential effects in absolute
identification: A response-time analysis. Psychological Research, 60,
121–133.

Lacouture, Y., Li, S. C., & Marley, A. A. J. (1998). The roles of stimulus
and response set size in the identification and categorisation of unidi-
mensional stimuli. Australian Journal of Psychology, 50, 165–174.

Lacouture, Y., & Marley, A. A. J. (1991). A connectionist model of choice
and reaction time in absolute identification. Connection Science, 3,
401–433.

Lacouture, Y., & Marley, A. A. J. (1995). A mapping model of bow effects
in absolute identification. Journal of Mathematical Psychology, 39,
383–395.

Lacouture, Y., & Marley, A. A. J. (2004). Choice and response time
processes in the identification and categorization of unidimensional
stimuli. Perception & Psychophysics, 66, 1206–1226.

Lamberts, K. (2000). Information-accumulation theory of speeded classi-
fication. Psychological Review, 107, 227–260.

Laming, D. R. J. (1984). The relativity of “absolute” judgements. British
Journal of Mathematical and Statistical Psychology, 37, 152–183.

Laming, D. R. J. (1997). The measurement of sensation. London: Oxford
University Press.

Lockhead, G. R. (1984). Sequential predictors of choice in psychophysical
tasks. In S. Kornblum & J. Requin (Eds.), Preparatory states and
processes (pp. 27–47). Hillsdale, NJ: Erlbaum.

Lockhead, G. R. (1992). Psychophysical scaling: Judgments of attributes or
objects? Behavioral and Brain Sciences, 15, 543–601.

Lockhead, G. R. (2004). Absolute judgments are relative: A reinterpreta-
tion of some psychophysical ideas. Review of General Psychology, 8,
265–272.

Lockhead, G. R., & Hinson, J. (1986). Range and sequence effects in
judgment. Perception & Psychophysics, 40, 53–61.

Lockhead, G. R., & King, M. C. (1983). A memory model of sequential
effects in scaling tasks. Journal of Experimental Psychology: Human
Perception and Performance, 9, 461–473.

Long, L. (1937). A study of the effect of preceding stimuli upon the judgment
of auditory intensities. Archives of Psychology (New York), 30, 209.

Luce, R. D., & Green, D. M. (1974). The response ratio hypothesis for
magnitude estimation. Journal of Mathematical Psychology, 11, 1–14.

Luce, R. D., Green, D. M., & Weber, D. L. (1976). Attention bands in
absolute identification. Perception & Psychophysics, 20, 49–54.

Luce, R. D., Nosofsky, R. M., Green, D. M., & Smith, A. F. (1982). The
bow and sequential effects in absolute identification. Perception &
Psychophysics, 32, 397–408.

Magnussen, S., Greenlee, M. W., Aslaken, P. M., & Kildebo, O. O. (2003).
High-fidelity perceptual long-term memory revisited—and confirmed.
Psychological Science, 14, 74–76.

Marley, A. A. J. (1976). A revision of the response ratio hypothesis for
magnitude estimation. Journal of Mathematical Psychology, 14, 252–254.

Marley, A. A. J., & Cook, V. T. (1984). A fixed rehearsal capacity
interpretation of limits on absolute identification performance. British
Journal of Mathematical and Statistical Psychology, 37, 136–151.

Marley, A. A. J., & Cook, V. T. (1986). A limited capacity rehearsal model
for psychological judgments applied to magnitude estimation. Journal of
Mathematical Psychology, 30, 339–390.

Massaro, D. W. (1970). Retroactive interference in short-term memory for
pitch. Journal of Experimental Psychology, 83, 32–39.

McGill, W. J. (1954). Multivariate information transmission. Psy-
chometrika, 19, 97–116.

McGill, W. J. (1957). Serial effects in auditory threshold judgments.
Journal of Experimental Psychology, 53, 297–303.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification
learning. Psychological Review, 85, 207–238.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some
limits on our capacity for information processing. Psychological Review,
63, 81–97.

Mori, S. (1998). Effects of stimulus information and number of stimuli on
the sequential dependencies in absolute identification. Canadian Journal
of Experimental Psychology, 52, 72–83.

Mori, S., & Ward, L. M. (1995). Pure feedback effects in absolute iden-
tification. Perception & Psychophysics, 57, 1065–1079.

Murdock, B. B. (1960). The distinctiveness of stimuli. Psychological
Review, 67, 16–31.

Norwich, K. H., Wong, W., & Sagi, E. (1998). Range as a factor in

909RELATIVE JUDGMENT MODEL



determining the information of loudness judgments: Overcoming small
sample bias. Canadian Journal of Experimental Psychology, 52, 63–70.

Nosofsky, R. M. (1983a). Information integration and the identification of
stimulus noise and criterial noise in absolute judgment. Journal of
Experimental Psychology: Human Perception and Performance, 9,
299–309.

Nosofsky, R. M. (1983b). Shifts of attention in the identification and
discrimination of intensity. Perception & Psychophysics, 33, 103–112.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology: Gen-
eral, 115, 39–57.

Nosofsky, R. M. (1997). An exemplar-based random-walk model of speeded
categorization and absolute judgment. In A. A. J. Marley (Ed.), Choice,
decision, and measurement (pp. 347–365). Hillsdale, NJ: Erlbaum.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk
model of speeded classification. Psychological Review, 104, 266–300.

Petrov, A. A., & Anderson, J. R. (2005). The dynamics of scaling: A
memory-based anchor model of category rating and absolute identifica-
tion. Psychological Review, 112, 383–416.

Petzold, P., & Haubensak, G. (2001). Higher order sequential effects in
psychophysical judgments. Perception & Psychophysics, 63, 969–978.

Pollack, I. (1952). The information of elementary auditory displays. Jour-
nal of the Acoustical Society of America, 24, 745–749.

Pollack, I. (1953). The information of elementary auditory displays: II.
Journal of the Acoustical Society of America, 25, 765–769.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1992).
Numerical recipes in C: The art of scientific computing. New York:
Cambridge University Press.

Purks, S. R., Callahan, D. J., Braida, L. D., & Durlach, N. I. (1980). Intensity
perception. X. Effect of preceding stimulus on identification performance.
Journal of the Acoustical Society of America, 67, 634–637.

Rouder, J. N., Morey, R. D., Cowan, N., & Pfaltz, M. (2004). Learning in
a unidimensional absolute identification task. Psychonomic Bulletin &
Review, 11, 938–944.

Shiffrin, R. M., & Nosofsky, R. M. (1994). Seven plus or minus two: A
commentary on capacity limitations. Psychological Review, 101, 357–361.

Siegel, J. A., & Siegel, W. (1972). Absolute judgment and paired-associate
learning: Kissing cousins or identical twins? Psychological Review, 79,
300–316.

Siegel, W. (1972). Memory effects in the method of absolute judgment.
Journal of Experimental Psychology, 94, 121–131.

Staddon, J. E. R., King, M., & Lockhead, G. R. (1980). On sequential
effects in absolute judgment experiments. Journal of Experimental Psy-
chology: Human Perception and Performance, 6, 290–301.

Stevens, S. S. (1975). Psychophysics. New York: Wiley.
Stewart, N. (2001). Perceptual categorization. Unpublished doctoral dis-

sertation, University of Warwick, Coventry, England.
Stewart, N., & Brown, G. D. A. (2004). Sequence effects in categorizing

tones varying in frequency. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 30, 416–430.

Stewart, N., & Brown, G. D. A. (in press). Similarity and dissimilarity
as evidence in perceptual categorization. Journal of Mathematical
Psychology.

Stewart, N., Brown, G. D. A., & Chater, N. (2002). Sequence effects in
categorization of simple perceptual stimuli. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 28, 3–11.

Stewart, N., & Chater, N. (2003). No unified scales for perceptual mag-
nitudes: Evidence from loudness. In R. Alterman & D. Kirsh (Eds.),
Proceedings of the twenty-fifth annual conference of the Cognitive
Science Society. Retrieved August 2005, from http://www.warwick
.ac.uk/staff/Neil.Stewart/papers/Stewart_Chater_2003.pdf

Tanner, W. P., Jr. (1961). Physiological implications of psychological data.
Annals of the New York Academy of Science, 89, 752–765.

Treisman, M. (1985). The magical number seven and some other features
of category scaling: Properties for a model of absolute judgment. Jour-
nal of Mathematical Psychology, 29, 175–230.

Treisman, M., & Williams, T. C. (1984). A theory of criterion setting with
an application to sequential dependencies. Psychological Review, 91,
68–111.

Usher, M., & McClelland, J. L. (2001). The time course of perceptual
choice: The leaky, competing accumulator model. Psychological Re-
view, 108, 550–592.

Ward, L. M. (1987). Remembrance of sounds past: Memory and psycho-
physical scaling. Journal of Experimental Psychology: Human Percep-
tion and Performance, 13, 216–227.

Ward, L. M., & Lockhead, G. R. (1970). Sequential effect and memory in
category judgment. Journal of Experimental Psychology, 84, 27–34.

Ward, L. M., & Lockhead, G. R. (1971). Response system processes in
absolute judgment. Perception & Psychophysics, 9, 73–78.

Weber, D. L., Green, D. M., & Luce, R. D. (1977). Effect of practice and
distribution of auditory signals on absolute identification. Perception &
Psychophysics, 22, 223–231.

Wickelgren, W. A. (1966). Consolidation and retroactive interference in
short-term recognition memory for pitch. Journal of Experimental Psy-
chology, 72, 250–259.

Wickelgren, W. A. (1969). Associative strength theory of recognition
memory for pitch. Journal of Mathematical Psychology, 6, 13–61.

910 STEWART, BROWN, AND CHATER



Appendix

Calculation of Conditional d�

d�i,i�1 is calculated as follows. Conditional stimulus–response ma-
trices are drawn up for each possible Sn�1. A response of i � 1 or
greater to Stimulus i � 1 is considered a hit. If a participant makes
any of the same responses to Stimulus i (i.e., one stimulus smaller),
this is considered a false alarm. One then calculates a value of
d�i,i�1 in the normal way (see Green & Swets, 1966) for each condi-
tional matrix. One forms an overall average d�i,i�1 by averaging a
subset of the d�i,i�1 from each conditional matrix. One then selects
the subset by choosing only those matrices in which Sn�1 was such
that both response i and response i � 1 were available on trial n. In
this way, the resulting d�i,i�1 is controlled so that it is not artificially
raised by the restricted opportunity to make responses in nonrandom
sequences.

Figure A1 illustrates the calculation for hypothetical data from an
absolute identification of five stimuli with a small step (3) sequence
from Luce et al. (1982). Recall that in a small step (3) sequence, Sn is
constrained to be Sn�1 � 1, Sn�1, or Sn�1 � 1. The first column shows
five conditional stimulus–response confusion matrices, with the top
matrix representing the confusions when Sn�1 � 1, the next
matrix down when Sn�1 � 2, and so on. Closed circles represent
responses considered hits, and closed squares represent false alarms,
for the calculation of d�1,2. Only the conditional confusion matrices
when Sn�1 � 1 or 2 are used to calculate d�1,2, as it is only when Sn�1 �
1 or 2 that the Responses 1 or 2 are available on the trial n. As
d�i,i�1 is a function of the difference between the proportion of
hits and the proportion of false alarms after each has been trans-
formed by the cumulative normal distribution function, then d�i,i�1 will
be larger to the degree that the heights of the circles are above the
heights of the squares in Figure A1 in each matrix. Compare the left
column with the right column, where hits and false alarms are illus-
trated for d�2,3. As the curves in Figure A1 are steeper at the edges of
the range, the differences are larger, and therefore d�i,i�1 will be larger
for extreme stimuli.
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Figure A1. The proportion of responses defined as hits (circles) and false alarms
(squares) used in calculating the confusion d�i,i�1 between Stimulus i and Stimulus
i � 1 for hypothetical data from a small step (3) absolute identification task with
five stimuli. The pairs of conditional confusion matrices on each row are identical.
The matrices are conditional on Sn�1, and there is a row for each Sn�1. The left
column shows the hits and false alarms for d�1,2, and the right column shows them
for d�2,3. Sn � rank of the stimulus presented on trial n; Rn � response on trial n.
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