ABSOLUTE MAGNITUDES AND INTRINSIC COLOURS OF WOLF-RAYET STARS

$$
\begin{gathered}
\text { Lindsey F. Smith } \\
\text { (Received 1968 May 2) } \dagger
\end{gathered}
$$

 those in the lowest excitation subclasses are the most luminous.
It is found that the WR stars in the Large Magellanic Cloud ar
 WC 7 , WC 8 and WC 9 are completely absent from the Magellanic Clouds, and
WN 6 stars are rare.
The relationship between absolute magnitude and spectral appearance of
the WC $5+$ OB stars and the WN $4+$ OB stars is consistent with the hypothesis
that these are binary systems in which WR stars, similar to single stars of the that these are binary systems in which WR stars, similar to single stars of the same type, are associated with O or B stars.
I. Introduction. In the Galaxy, determinations of absolute magnitudes are severely hampered by lack of knowledge of distances, and by the irregularity of
 values of M_{V} range from -5.2 mag . to -7.1 mag . Rublev (1963) obtains a range of

 absolute magnitudes of the various subclasses.

The most reliable absolute magnitudes come from observations of WR stars in
 photometry, a range of absolute magnitude from -3.6 mag . to -9.3 mag . (for

 !! un d Ω suo!
 magnitude on subclass.

The present paper presents the results of five-colour narrow band photoelectric photometry of WR stars in the Magellanic Clouds and in the southern Milky Way

$$
\text { Vol. } 140
$$

Lindsey F. Smith

 ЧІ!

 magnitudes in any of the conventional broad band systems and the size of this effect
 possible to select regions of the spectrum containing virtually no emission lines, or

 reasonably accurate measurement of a fifteenth magnitude star with a $40-\mathrm{in}$. telescope.
Consistent spectral classification of galactic WR stars has been given in a previous

 Clouds. These are assigned from consideration of slit spectrograms or of photo-
 absolute magnitude for each subclass represented in the Magellanic Clouds (Section 3.3). In Section 3.5 it is established that the WR stars in the Large Mag-

In a later paper the distribution of WR stars in the Galaxy and in the Magellanic
Clouds will be considered.

2. Observations

 in the spectra of WN stars. The transmission bands of the other two filters include
 classification parameters. The transmission curves of the filters were obtained on a Beckman ratio recording spectrophotometer in April 1964, before the observing
 changes were observed. Information regarding the manufacturers and the trans-

 рлемлоуәоиәч (561) ч referred to as HJS).

Most of the observations were made at the Cassegrain focus of the $40-\mathrm{in}$. reflector at Siding Spring Observatory, supplemented by a few nights at the
 Since all Oke and Code standards are near the equator, secondary standards were chosen from the photometric sequences of Wesselink (1963) near the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC), and from the list of Morris (196r) along the galactic plane.

$$
\begin{aligned}
& \text { O }
\end{aligned}
$$

 from observations of the same star at different zenith angles. Table III gives the adopted values of the magnitudes and colours of the primary and secondary standards. Differences between the observed values for the colours of the primary standards and those derived from the work of Oke and Code are generally of the
 implying that some inconsistencies occur in the Oke and Code magnitudes near the Balmer discontinuity.
Observations of the programme stars were reduced by direct comparison with a nearby standard which was always measured within an hour, usually within half an hour, of the observation of the programme star. A correction for differential extinction was applied. In this way, the derived magnitudes and colours are independent of slow changes of extinction with time and direction.

[^0]| | 21.0 | 01.0 | 81.0 | oz.0 | oz.o | $\mathrm{S}_{1}<$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 90.0 | L0.0 | 21.0 | 11.0 | EI.O | $¢_{\text {I }}^{\text {- }}$ I |
| | to. 0 | E0.0 | to. 0 | E0.0 | 90.0 | カI-ZI |
| | zo.0 | zo.0 | zo.0 | zo.0 | to. 0 | zI-6 |
| | 10.0 | 10.0 | 20.0 | 10.0 | zo.0 | $6>$ |
| | , $2 \sim q$ | a-q | $q-n$ | $n-n$ | q | q |
| | | | | | | |
| $\triangle \mathrm{I}$ gTaviL | | | | | | |
| | | | | | | |
| | | | | | | |
| әч7 S! IIA pue In səlqe | | | | | | |
| | | | | | | |
|
 | | | | | | |
| | | | | | | |
| $\varepsilon_{\text {I }}{ }^{\text {b }}$ | | | | | | |

otr ${ }^{10}{ }^{0} \Lambda$

it ópo
チ8 ($\mathrm{m}_{\mathrm{M}}^{\mathrm{N}}$

웅ㅇNNNㅇㅇㅇ

か

known in the SMC and were included in the programme. The results are given in
Table VI which contains in successive columns:
I. For WR stars in the LMC, the numbers assigned by WdS, designated WS, or those assigned by Feast, Thackeray \& Wesselink (1960), designated R. The two WR stars in the SMC are assigned numbers SMC 1 and SMC 2 and are identified in footnotes to the table.

2.2. which the colour $(b-v)$ was observed.
In the Galaxy, 77 of the 84 stars south of declination - 10° have been observed. The programme also included four Of stars and one possible Of star. The results are given in Table VII which contains in successive columns:
> I. For WR stars, the MR (Roberts 1962) or LS (Paper I) number; for the Of stars, the HD number.
> 2. Spectral types as given and defined in Paper I.

> 3-7. Magnitudes and colour indices.
8. Number of nights on which the co
> 8. Number of nights on which the colour ($b-v$) was observed.
No．4，I968 Absolute magnitudes and intrinsic colours
3．Absolute magnitudes and intrinsic colours
3．I Reddening lines．It has been suggested（e．g．Johnson ig65；Wampler ig6r）
that the shape of the reddening curve is different in different regions of the Galaxy．
This means that both the slope of the reddening lines in the two colour diagrams
and the ratio of total to selective absorption vary and must be determined for each

FIg．I．The reddening lines． region．In the present programme，this is impracticable．Fortunately，the predicted slopes of the reddening lines do not vary a great deal，so that the assumption of uniformity introduces little error and we shall adopt the observed slopes．For the sake of consistency with the majority of previous work，I assume

$$
R=A_{V} / E_{B-V}=3 \cdot 0,
$$

in the $U B V$ system and derive the corresponding ratio，R^{\prime} ，in the present system． Because the intrinsic colours of the stars in the various subclasses are not necessarily the same，the reddening lines will be parallel but will have different zero points．The slopes of the reddening lines have been determined from the two colour Table Vili

$$
\begin{aligned}
& \text { 都 : } \\
& \text { 育 } \\
& 3 \cdot 0 \\
& \text { 『i }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { N }}{\substack{\text { N } \\
0 \\
0}}
\end{aligned}
$$

Vol. 140

0	θ
$\dot{0}$	

No. 4, 1968	Absolute magnitudes and intrinsic colours							419
	Table IX (continued)							
Star	Δ	ξ	φ		Star	Δ	ξ	φ
	Of			Standards (continued)				
HD 9142I	+0.18	$+0.02$	-0.02	HD	3719	+1.13	-0.24	-0.03
148937	+0.03	+0.05	0.00		25938	+1.12	-0.23	-0.04
151804	+0.04	+0.05	-0.01		52812	+0.39	-0.02	-0.03
152408	+0.02	+0.04	+0.04		63308	+0.44	-0.04	-0.04
163758	+0.03	+0.05	-0.02		72350	+0. 55	-0.09	+0.01
$\xi^{2} \quad$ Cet	Standards				86659	+0. 53	-0.05	-0.02
			-0.03		116226	+0.63	-0.16	-o.or
ν Ori	+0.13	+0.05	-0.03		125721	+0.17	+0.03	-0.03
η Hya	+0.44	-0.02	-0.02		${ }_{158186}$	+0.12	+0.04	0.00
$\theta \mathrm{Crt}$	+0.99	-0.21	-0.02		170978	+0. 53	-0.06	-0.01
θ Vir	+I.12	-0.30	-0.03		180183	+0.39	-0.01	-0.01
109 Vir	+ I. 08	-0.26	0.00					
58 Aql	+1.09	-0.26	0.00					
\star Classification from ξ, Δ diagram.								

[^1]
No. 4, ig68 Absolute magnitudes and intrinsic colours
Fig. 3 gives the graph of Δ vs ξ for WR stars in the Galaxy. Different symbols are
used for each subclass; unclassified stars are represented by asterisks. With very few
exceptions, the single stars in different subclasses are separated from each other and
from the binaries. The divisions are marked by dashed lines. WN 7 and WN 8 stars
are not separated and the separation of the WR stars among the binaries is poor: the
dotted line provides approximate separation between WN and WC binaries. Stars
in the very high excitation classes, WN 4 and WN 3, are scattered over the WN 6, 7
and 8 regions of the diagram, as expected (see Fig. 2).

とえも

Absolute magnitudes and intrinsic colours
Fig． 4 shows the graph of Δ vs ξ for the WR stars in the LMC．Of the stars that
 јо s．əәqunu деा！

 corresponding region of Fig．3，and we may assume with reasonable confidence that these stars are WN 5 stars．Unfortunately，both are very faint and confirmation from slit spectrograms is not available．
 values found for galactic WN 5 and WN 6 stars；this is a region of the diagram that is unpopulated in Fig．3．Slit spectrograms are available for the three brightest stars of this group and they are classified $\mathrm{WN}_{4}+\mathrm{OB}, \mathrm{WN} \mathrm{pec}{ }^{\star}$ and WN_{3} ．The remaining

 them all to class WN 4.
\star This star is WS 2．The spectrum shows the He II $\lambda_{4} 686$ line strong and approximately
$0 \AA$ wide；this is broader than observed for any other WN star．Other emission lines are probably also present，but are not distinguished clearly on the rather over－exposed plate available．WS ro appears to be rather similar，although this spectrum has the appearance of
that of a binary．
 The sixth star in the WN 4 region of Fig. 5 is WS 34; in Fig. 4 this star lies in
WN 6 region, below the group of WN 4 stars. In this region we expect to find stars of
 classification is possible from the present data.
 binary and may have a WN 6 star as the WR component (see Plate 2); the single available spectrogram is not of sufficiently good quality for reliable classification. Feast, Thackeray \& Wesselink (1960) assign the star R 140 to class WN 6; we have no further information on this spectrum.
 increase from WN 8 to WN 5 (see Fig. 2). For WC stars, ϕ measures the strength of the $\mathrm{He}_{\text {II }} \lambda_{5412}$, C Iv λ_{5469} and O v λ_{5592} lines, all of which increase from WC 9

 derived from the ξ, Δ diagrams but do not add any further information and are not reproduced here.
3.3 Absolute magnitudes and intrinsic colours for Wolf-Rayet stars in the LMC. Absolute magnitudes and intrinsic colours can be determined with good accuracy in the LMC-the distance is effectively constant for all objects, the distance modulus absorption are minimal.
Reddening in the LMC has been studied by Feast, Thackeray \& Wesselink (1960, henceforward referred to as FTW), by Bok, Bok \& Basinski (1962) and by
 Bok et al. for NGC 1955, as an estimate of the foreground absorption. This is lower -в!ооse әи tions, indicate that FTW may have made an overestimate. I adopt, however, FTars in value, $E_{B-V}=0.06$ mag.,
Three WR stars, WS 24, WS 26 and WS 27, are in the clusters NGC 1962-5-670 and NGC 1984, for which Westerlund finds reddening values of $E_{B-V}=0.13$ оЕ әчъ јо ио! Doradus Nebula, where it is known that the absorption is high and irregular (e.g. Faulkner 1964). The reddening for stars in this nebula has been derived on the assumption that they have an intrinsic value of $(b-v)$ equal to the mean value for

 The table is divided according to spectral type.
 among the Magellanic Cloud stars observed, no stars in the subclasses WC 6, 7, 8

	$\stackrel{\infty}{0}$	\because	$\hat{8}$		3	$\hat{i}+$
${ }_{8}^{80}$	\pm	苗 0	$+$		$+$	nnoin
${ }^{2}$	$\stackrel{0}{0}$	＋0	～			又
$\widetilde{\square}$	3	B	¢	B	¢	3838

$\stackrel{\text { IT }}{\substack{\text { P1 }}}$		$\begin{gathered} \infty \\ \underset{\substack{\Gamma \\ \underset{\sim}{n}}}{ } \end{gathered}$	$\begin{aligned} & \text { M } \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & 00 \\ & 0.0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { 欠 } \\ & \text { ón } \\ & \text { N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\infty}{N} \stackrel{+}{N} \\ & \stackrel{N}{N} \\ & \underset{N}{N} \end{aligned}$		$\begin{aligned} & \infty \\ & N_{0}^{\infty} \\ & 0 \\ & \infty \\ & \hline \end{aligned}$	

No. 4, I968			Absolute magnitudes and intrinsic colours				427
Table XII (continued)							
	Star	HD(E)	V	WS	$\begin{gathered} \text { Spectral type } \\ \mathbf{R} \end{gathered}$	Present	Location
R	134		(12.36)		WN 7		Ni57 D
R	135		(13.15)		WN 7		N157 D
R	136	38268	$9 \cdot 44$		$\mathrm{WN}+\mathrm{O}$	$\mathrm{OB}+\mathrm{WN}$	Ni57 D
R	139		(11.87)		WN 7:+O:	WN 7 $7+\mathrm{OB}$	N157 D
R	140		(II.82)		WN 6		N157 D
SMC	C	5980	$11 \cdot 75$		Wp	$\mathrm{OB}+\mathrm{WN}$	N 66 A
SMC	- 2		13.05			WC $5+\mathrm{OB}$	A

available information regarding the classification of the WR stars in the Magellanic
Clouds.
Table XII contains all available spectroscopic data, and gives in successive
columns:

1. Designation, as in Table VI.

3. v-magnitude as defined in Section 2.1 and 2.2. When a v-magnitude is not available, this column contains the V magnitude given by WdS enclosed in brackets, ().
4. Spectral class as given by WdS. These were determined from objective prism spectra, extended to the fainter objects by B, V, R photographic photometry. The photometrically derived classes are given in brackets, ().
5. Spectral class as given by FTW.
6. Spectral class determined in the pr

 by the number (N) of the nebula in the catalogue of Henize (1956); D ' indicates a member of the 30 Doradus complex, ' A ' a member of an association and ' F ' indicates that the object is apparently a field star.
The classifications assigned by FTW are consistent with those assigned from slit spectrograms obtained in the present programme. Because of the differences between the classification system defined by Beals (r938) (used by FTW) and the system defined in Paper I (used here), stars classified WC 6 by FTW are classified WC_{5} by the author. Other classifications rarely differ by more than half a subclass. WdS assigned only the sequence classification, WC or WN. The only contra-
dictions found between their classifications and the present ones arise amongst the
 No contradictions are found in the classification of single stars.
Absence of WC6-9 stars. Slit spectrograms have been obtained of all stars

Lindsey F. Smith Vol. I40
the brightness, in the sense that v will be fainter than V. Thus, it is clear that the

No. 4, 1968		Absolute magnitudes and intrinsic colours							429
Table XIII									
Absolute magnitudes of some galactic WR stars (by distance moduli by Graham)									
MR	HD	Spectral type	$(b-v)_{0}$	E_{b-v}	A_{v}	A_{V}	v_{0}	$\mathrm{V}_{0}-M_{V}$	Mv
25	92740	WN 7	-0.20	0.23	0.92	I•4	5.52	$12 \cdot 2$	$-6 \cdot 7$
28	93131	WN 7	-0.20	$0 \cdot 14$	$0 \cdot 56$	I 4	5•93	$12 \cdot 2$	$-6 \cdot 3$
29	93162	WN7 7 + ${ }_{7}$	-0.20	0.49	I.96	$1 \cdot 4$	$6 \cdot 21$	12.2	$-6 \cdot 0$
64	151932	WN 7	-0.20	0.41	I. 64	$1 \cdot 7$	4.97	II•3	$-6 \cdot 3$
65	152270	$\mathrm{WC}_{7}+\mathrm{O}_{5}-8$	-0.26	0.27	1.08	$1 \cdot 5$	$5 \cdot 87$	II 3	-5.4
12	68273	WC $8+\mathrm{O}_{7}$					I•74	$8 \cdot 3$	$-6 \cdot 6$

Absolute magnitude estimates. The absolute magnitudes of WR stars in the LMC
have been derived in Section 3.3. In the Galaxy, some WR stars appear to be have been derived in Section $3 \cdot 3$. In the Galaxy, some WR stars appear to be
associated with groups of O and B stars which are sufficiently close to the sun to allow good distance determinations. Graham (1965), using $\mathrm{H} \beta$ and UBV photo-

 mean value for the area because absorption is very uneven in the regions concerned.
The successive columns of Table XIII contain: 1, 2. MR and HD numbers of the WR star.
3. Spectral classification.

. Assumed intrinsic colour, $(b-v)_{0}$.

5. Colour excess, E_{b-v}.
6. v absorption, $A_{v}=$

7. Distance modulus, $V_{0}-M_{V}$, derived by Graham.
o. Derived absolute magnitude, \boldsymbol{M}_{v}.
For the WN 7 stars and for the binary $\mathrm{WN}_{7}+\mathrm{O}_{7}$ star I have assumed that

 unreddened.
The table includes three WN 7 stars. The derived values of M_{v} range from -6.3
to -6.7 mag. This is a smaller range than is found in the LMC $(-5.4$ to $-7.9 \mathrm{mag})$.

 This is near the lower limit of the range of luminosities in the LMC. It is possible that there are no stars in the Galaxy which are comparable to the extremely luminous

 section.

[^2]Lindsey F. Smith Vol. 140
Conclusions. We conclude that WR stars in the LMC are similar to those in the
430
Conclusions. We conclude that WR stars in the LMC are similar to those in the
same subclasses in the Galaxy. The absence of WC 6-9 stars and the rarity of WN 6 stars in the LMC is remarkable. However, I do not believe that this invalidates the assumption that stars in the other subclasses are similar; more reasons for this view will be given in a later paper.
3.6 Absolute magnitudes of galactic WR stars. Classes WC 6, 7, 8 and 9 are not represented in the LMC and no definite examples of class WN 6 are known. Thus, we must determine the absolute magnitudes of stars in these subclasses from observations in the Galaxy. Absolute magnitudes for two stars in these subclasses were derived in the previous section. Further information can be obtained if we assume that any two WR stars which are seen ' near' each other in the sky and which have ' approximately equal' colour excesses are at the same distance. This hypothesis depends upon two observations. Firstly, that several clusters are known which contain two or more WR stars. Secondly, WR stars are sufficiently rare that the probability of chance coincidence in the surface distribution is not very high. Thus, it is likely that the pairs chosen in the above manner will be real.
If we take limits for ' near' and 'approximately equal' to be $I^{\circ} \cdot 0$ and within 0.20 mag., respectively, we have four pairs of stars in which one is of a class whose luminosity is known from observations on the LMC. These are listed in Table XIV.
Table XIV

Absolute magnitudes of some galactic WR stars

$\begin{array}{ccccccc} \\ \text { Pair } & & & \text { WN 6+ } & \text { WC } 7+ & \text { WC } 8\end{array}$
 have $(b-v)_{0}=-0.17 \mathrm{mag}$., the mean value of all the subclasses of WN stars in the LMC; since the range of intrinsic colour over these subclasses is only o.06 mag., this figure is unlikely to be in error by more than 0.03 mag.
I assume that WC 6 and $W_{7} 7$ stars have $(b-v)_{0}=-0.21$ mag., and that binaries
these classes have $(b-v)_{0}=-0.26$ mag., the values found for WC 5 and WC $5+$ OB stars, respectively; however, it is noted that the effect of emission lines makes these values somewhat uncertain.
-0.32 mag., the value of $(b-v)$ for γ^{2} Vel, is taken as an estimate of $(b-v)_{0}$ for
WC 8 and WC 9 stars; this value is also somewhat uncertain.
Some of the stars are binaries; the absolute magnitudes of the O and B stars
 companion to the total luminosity.
The results are given in Table XIV, which contains in successive columns: r. A reference number.
2. MR numbers for the WR stars.

4-8. The resulting absolute magnitudes listed according to the spectral sub-
class.
Single WN 6 stars occur in two 'pairs' of WR stars and their derived values of
 WN $6+\mathrm{BO}: \mathrm{I}$ star occurs in pair 5 . Taking $M_{v}(\mathrm{BO} \mathrm{I})=-6.2 \mathrm{mag}$., we find $M_{v}(\mathrm{WN} 6)=-5 \cdot 9$ mag., in good agreement with the adopted value. In the LMC, there are two possible WN 6 stars: WS 48 is classified as WN $6+$ OB in the present study, and has $v_{0} \approx 12 \cdot 1$ mag.; hence $M_{v} \approx-6.6$ mag. in reasonable agreement with $\boldsymbol{M}_{\boldsymbol{v}}=-5.8$ for a single star. FTW classify the star R 140 in the 30 Doradus
 This is considerably more luminous than found above. It may be that this star is also a binary.
The class WC_{7} is represented in Table XIV by MR 65 in pair 3 , with $M_{v}=$
 of spectral types $\mathrm{O}_{5} \mathrm{~V}$ and O 8 V have $M_{v}=-5.6$ and -5.0 mag ., respectively. The classification O_{5} is obviously incompatible with the total luminosity derived above.

 value derived for WC 5 stars, which makes it seem reasonable
The class WC 6 is not represented in Table XIV. We would expect these stars to
 and, accordingly, we adopt $M_{v}(\mathrm{WC} 6)=-4.4 \mathrm{mag}$.
The class WC 8 is represented by the star MR $12\left(\gamma^{2}\right.$ Vel $)$ in pair I , with
 $M_{v}(\mathrm{O} 7 \mathrm{~V})=-5.2$ mag. yields $M_{v}(\mathrm{WC} 8)=-6.2 \mathrm{mag}$.
 like the class WC 8 and we adopt the same mean absolute magnitude as for that class. ‘(E96i) ^әqп since he considers that little confidence can be placed in his individual values.

 snou!um than estimated above.

[^3]
$\stackrel{N}{7}$

decrease, the classification

 lines. In Fig. 5 it is seen that the increase in luminosity is accompanied by the approach of ξ to zero.
3.8 Conclusions. The derived mean absolute magnitudes and intrinsic colours of

 Velorum and are rather uncertain.

[^4]No. 4, $1968 \quad$ Absolute magnitudes and intrinsic colours 433

 National University Research Scholarship.
 References
Feast, M. W., Thackeray, A. D. \& Wesselink, A. J., 1960. Mon. Not. R. astr. Soc., 121, 337. Faulkner, D. J., Schmidt-Kaler, Th., 1965. Landolt-Bornstein Numerical Data and Functional Relationships in
Science and Technology, New Series group VI, Vol. 1, p. 30I, Springer-Verlag, Berlin. Science and Technology, New Series group VI, Vol. 1, p. 301, Springer-Verlag, Berlin
Sharpless, S., 1952. Astrophys. f., r16, 25 I. Sharpless, S., 1952. Astrophys. J., 116, 251. Smith, L. F., 1968. Mon. Not. R. astr. Soc., 138, 109.
Wampler, E. J., 196r. Astrophys. F., 134, 86r.
Wesselink, A. J., 1962. Mon. Not. R. astr. Soc., 124, 359.
Westerlund, B. E., 1961. Ann. Uppsala Astr. Obs
Westerlund, B. E., 1966. Astrophys. F., 145, 724
Westerlund, B. E. \& Smith, L. F., 1964. Mon. Not. R. astr. Soc., 128, 311.

[^0]: the mean values of the magnitudes and colours have been estimated from the range of values obtained on different nights. For the standard stars, the standard error in each of $v,\left(u^{\prime}-b\right),(u-b)$ and $\left(v-v^{\prime}\right)$ is $0.015 \mathrm{mag} . ;$ the standard error in $(b-v)$ is 3! uoticniasqo әן

[^1]: The presence of a companion will lessen the strength of the emission lines above the continuum and ξ will be numerically less than for a single star of the same WR type.
 Δ measures the non-linearity, in I / λ, of the continuum in the region u, b, v. Thus,
 if a Balmer discontinuity is present, Δ is positive and approximately equal to the value of the discontinuity. (This may be seen in the values of Δ for the standard
 Balmer discontinuity. However, the binary stars display an increase in the slope of
 әЧ7 £! әл! star is a binary.
 For WC stars

[^2]:
 absent from the LMC, and that stars of class WN 6 appear to be rather less common in the LMC than in the Galaxy.

[^3]:
 binary, WR $+O B$, whenever the emission lines stand less strongly above the continuum than they do in the spectrum of a single star of the same WR subclass. Data presented in this paper provides evidence that this is a realistic classification, and shows, simultaneously, that the companions of the WR stars of a given subclass

[^4]:

 uncertainty in the absolute magnitudes derived for WC 8 and WC 9 stars makes this assertion premature.

