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The branching fractions of D�s meson decays serve to normalize many measurements of processes
involving charm quarks. Using 298 pb�1 of e�e� collisions recorded at a center of mass energy of
4.17 GeV, we determine absolute branching fractions for eight D�s decays with a double tag technique. In
particular we determine the branching fraction B�D�s ! K�K���� � �5:50� 0:23� 0:16�%, where the
uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for
kinematic subsets of the K�K��� decay mode.

DOI: 10.1103/PhysRevLett.100.161804 PACS numbers: 13.25.Ft

Uncertainties in the decay probabilities (branching frac-
tions) of the D�s meson to various detectable final states
significantly impact the precision of a diverse array of
measurements, including tests of the standard model pre-
diction of the coupling of the Z0 boson to charm quarks,

measurements of B meson properties such as B0
s mixing

parameters, tests of light quark SU(3) symmetry in the D
system, and tests of lattice gauge theory in leptonic D�s
decays. Any rate measurement where a D�s meson is an
intermediate step in a decay chain demands that the rele-
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vant normalizing branching fractions be known precisely
to reduce systematic uncertainties. Most D�s branching
fractions are presently obtained by combining measure-
ments of ratios with a single absolute branching fraction of
one decay mode, thus introducing strong correlations and
compounding uncertainties. In this Letter we present the
first simultaneous high-statistics determination of multiple
D�s absolute branching fractions, using a technique with
significantly different systematic uncertainties from pre-
vious branching fraction measurements, which results in
precision better than current world averages by a factor of
2. The eight decays considered in this analysis are D�s !
K0
SK
�, K�K���, K�K����0, K0

SK
�����, ������,

���, ���0, and K�����. Except where noted, mention
of a decay implies the charge-conjugate process as well.

The most precise measurements of absolute Ds branch-
ing fractions are currently obtained using partial recon-
struction techniques to obtain the total number of Ds

mesons produced, either from B! D���D����s�J� decays
[1,2] or from e�e� ! D��s D�s1�2536� events [3].
References [1,2] quote results for the resonant decay
D�s ! ���, while Ref. [3] measures B�D�s !
K�K����.

Here we employ a technique extensively used by
CLEO-c, pioneered by the MARK III Collaboration for
measuring D0 and D� branching fractions [4,5] and limit-
ing Ds branching fractions [6], which exploits a feature of
near-threshold production of charmed mesons. Below the
DsDK threshold of 4.33 GeV, production of aD�s meson in
a charm- and strangeness-conserving process requires the
existence of a D�s meson elsewhere in the event (possibly
with additional photons or pions). Events where at least
one Ds candidate is reconstructed (‘‘single tag’’ or ST
events) thus provide a sample with a known number of
Ds events. Absolute branching fractions can then be ob-
tained by finding events with two reconstructed Ds candi-
dates (‘‘double tag’’ or DT events). In this analysis, yields
for charge-conjugate ST modes are considered separately,
but charge-conjugate branching fractions are assumed to
be equal, ignoring the possibility of direct CP violation.
There are 16 ST yields, corresponding to two charges for
each considered Ds decay, and 64 DT yields, one for each
pairing of a D�s and a D�s decay.

This analysis uses �298� 3� pb�1 of data taken at a
center of mass energy of 4.17 GeV. At this energy the
dominant Ds production mechanism is the process
e�e� ! D��s D�s with a cross section of 	1 nb [7]; the
D�s then decays to either �Ds or �0Ds in a	16:1 ratio [8].
The very small rate of e�e� ! D�s D

�
s is not used for this

analysis. The transition photon or �0 is not reconstructed.
To illustrate the method, consider two ST modes, D�s !

i and D�s ! �|, and one DT mode D�s ! i, D�s ! �|. For a
given number of produced Ds pairs ND�sDs

, branching
fractions Bi and Bj, and efficiencies for the ST (�i and
��|) and DT (�i�|) events, we expect to observe the yields

 yi � ND�sDs
Bi�i; y�| � ND�sDs

Bj��|;

yi�| � ND�sDs
BiBj�i�|;

where yi and y�| are the ST yields and yi�| is the DT yield.
Using �i, ��|, and �i�| from Monte Carlo simulations, we can
solve for the branching fractions and ND�sDs

:

 B i �
yi�|
y�|

��|

�i�|
; Bj �

yi�|
yi

�i
�i�|
; ND�sDs

�
yiy�|

yi�|

�i�|
�i��|

:

In practice, to maximize the statistical power of the analy-
sis, the parameters ND�sDs

and Bi are simultaneously opti-
mized using a maximum likelihood fit to the observed
yields, where the ST yields use Gaussian likelihood func-
tions and the considerably smaller DT yields use Poisson
likelihood functions. The statistical properties of the fit
were checked with pseudoexperiments.

The CLEO-c detector is a modification of the CLEO III
detector [9–12]. The silicon strip vertex detector was
replaced by a six layer vertex drift chamber. The charged
particle tracking system, consisting of the vertex chamber
and a 47-layer central drift chamber, operates in an axial
1 T magnetic field, and provides a momentum resolution
�p=p	 0:6% at p � 1 GeV=c for tracks traversing every
layer. Photons are detected in an electromagnetic calorime-
ter consisting of 7784 CsI(Tl) crystals, which achieves an
energy resolution �E=E	 5% at 100 MeV. Two particle
identification (PID) systems are used to distinguish
charged kaons and pions: the central drift chamber, which
provides specific ionization measurements (dE=dx), and,
surrounding this chamber, a cylindrical ring imaging
Cherenkov (RICH) detector. The combined PID system
achieves �� and K� identification efficiency exceeding
85% with fake rates less than 5% over the kinematic range
of interest [13]. The detector response is modeled with a
detailed GEANT-based [14] Monte Carlo simulation, with
initial particle trajectories generated by EVTGEN [15] and
final state radiation produced by PHOTOS [16]. The initial
state radiation spectrum is modeled using cross sections for
D�sDs production at lower energies determined during a
CLEO-c scan of this region [7].

Charged tracks are required to be well reconstructed
and, except for K0

S daughters, to be consistent with origi-
nating at the interaction point. The initial selection requires
track momentum >50 MeV=c. Candidate K� and ��

tracks are chosen using dE=dx and RICH information,
using the same criteria as the CLEO-c D0=D� absolute
branching fraction analysis [13]. Charged kaons must have
momentum above 125 MeV=c. Neutral kaon candidates
are reconstructed in theK0

S ! ���� decay. The two pions
have no PID requirements, and a vertex fit is done to allow
for the K0

S flight distance. The pion pair is required to have
an invariant mass within 6:3 MeV=c2 of the nominal K0

S
mass. We form �0 and � candidates using pairs of isolated
electromagnetic showers, keeping combinations within 3
standard deviations of the nominal masses; for further use a
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kinematic fit constrains the candidates to the nominal mass.
Candidate �0 mesons are reconstructed by combining �
candidates with ���� pairs; the pions are subject to the
standard pion PID requirements, and the reconstructed �0

mass must be within 10 MeV=c2 of the nominal value.
We use several samples of simulated events to obtain

efficiencies, study background shapes, and cross check the
analysis. A ‘‘generic’’ decay models a physical Ds decay-
ing into any of its final states; the branching fractions and
intermediate resonant components used for various final
states are motivated by Particle Data Group (PDG) aver-
ages [8]. A ‘‘signal’’ decay is one in which the simulated
Ds always decays to a final state of interest, with the same
ratio of resonant components as in generic decays. We
obtain efficiencies from samples with either one signal
and one generic decay (ST modes) or two signal decays
(DT modes). Backgrounds are investigated using a com-
bined sample of generic D0, D�, and Ds decays with
appropriate production mechanisms and rates at
4.17 GeV, and samples of e�e� ! ����, � �2S�, and
light quarks.

We identify Ds candidates using their momenta and
invariant masses. A candidate may either be the daughter
of a D�s (an ‘‘indirect’’ Ds) or be produced in the initial
e�e� ! D�sDs process (a ‘‘direct’’ Ds). Direct Ds candi-
dates have fixed momentum in the center of mass frame
because they are produced in a two-body process; indirect
Ds candidates have a momentum distribution smeared
around this value due to the extra boost of the D�s !
��;�0�Ds decay. We define the recoil mass variable Mrec

through

 M2
recc4 
 �E0 �

��������������������������������
p2
Ds
c2 �M2

Ds
c4

q
�2 � �p0 � pDs

�2c2;

where (E0, p0) is the e�e� center of mass four-vector, pDs

is the measured Ds momentum, andMDs
is the nominal Ds

mass. For direct Ds candidates, Mrec peaks at the D�s mass
of 2:112 GeV=c2; for indirect Ds candidates, Mrec spreads
roughly �60 MeV=c2 around this peak. For DT and most
ST candidates, we require Mrec > 2:051 GeV=c2; this ac-
cepts all kinematically allowed events. For three ST
modes (K�K����0, ������, K�����) tighter
mode-dependent selections of Mrec > �2:099; 2:101;
2:099� GeV=c2, which are roughly 80% efficient for sig-
nal, are applied to improve the signal to background ratio.
The Mrec requirement eliminates contributions from
e�e� ! D�s D�s events as those occur in a narrow peak
at Mrec � MDs

.
TheDs candidates are subject to mode-dependent vetoes

to reduce structure in the background invariant mass spec-
trum, mostly arising from copiously produced D�D�

events. In all modes except K0
SK
� and K�K���, all

neutral and charged pions, including K0
S daughters, must

have momentum above 100 MeV=c to eliminate the soft
pions from D� decays. Reflections are reduced by vetoing

candidates where certain daughter combinations are con-
sistent with the D0 or D� masses (for example, the K�K�

pair in a K�K��� candidate must not be consistent with a
Cabibbo-suppressed D0 decay). To remove contamination
from K0

S decays in the modes ������ and K�����, no
���� combination may have a mass between 475 and
520 MeV=c2.

For ST yield extraction, every event is allowed to con-
tribute a maximum of one Ds candidate per mode and
charge. If there are multiple candidates, the one with
Mrec closest to MD�s is chosen. An unbinned maximum
likelihood fit is then performed on the invariant mass
spectrum of the candidates in each mode. The expected
signal distribution is obtained from Monte Carlo simula-
tions; in fits to data the Ds mass is allowed to float.
Backgrounds are modeled with linear functions for all
modes except K�K����0 and ������, where qua-
dratic functions are used. The same background shape is
used for both charges in a given mode. The reconstructed
candidate masses M�Ds� and ST yield fits are shown in
Fig. 1. Efficiencies for ST modes range from 5.3% to 51%.

Double tag yields are extracted by defining a signal
region in the two-dimensional plane of the two Ds candi-
date masses, M�D�s � vs M�D�s �. Every event is allowed to
contribute at most one DT candidate per possible final
state; among multiple candidates, the combination with
average mass bM � �M�D�s � �M�D�s ��=2 closest to MDs

is chosen. The distribution of M�D�s � versusM�D�s � for all

FIG. 1 (color online). Invariant masses of the D�s candidates in
data in ST modes. Charge-conjugate modes are combined. The
fits for yields are shown as the dashed red lines (background
component) and solid blue lines (signal plus background). The
total ST yield is �30:9� 0:3�  103 events.
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DT candidates, along with the signal and sideband regions,
is shown in Fig. 2. Combinatoric background tends to have
structure in bM but be flat in the mass difference �M �
M�D�s � �M�D

�
s �; in particular, simulations verify that the

multiple candidate selection does not cause backgrounds to
peak in �M. Both signal and sideband regions require
j bM�MDs

j< 12 MeV=c2. The signal region is j�Mj<
30 MeV=c2, while the sideband region is 50< j�Mj<
140 MeV=c2. Efficiencies for DT modes range from 0.3%
to 38%.

The Ds decay final states under consideration can often
be reached through multiple intermediate resonances. For
example, in our Monte Carlo the final state K�K��� is an
incoherent mixture of �K�0K� (43%), ��� (38%),
�K�0�1430�0K� (8%), nonresonant production (7%), and
f0�980��� (4%). The reconstruction efficiency can depend
significantly on which resonances are produced.
Knowledge of the relative contributions of these intermedi-
ate states is incomplete. We compare invariant mass dis-
tributions of pairs ofDs daughters in data and Monte Carlo,
and use the resulting information on resonant structures to
reweight the assumed intermediate state components. The
resulting excursions in the efficiency are taken as system-
atic uncertainties. Where there is a significant component
that cannot be explicitly assigned to any intermediate state,
we find the worst-case variations between the dominant
components. As an illustration, for K�K��� we find that
��� and �K�0K� have very similar (and lowest) efficien-
cies, while the nonresonant component is 7% higher and

the others lie between these extremes. By selecting on the
K�K� and K��� invariant masses we ascribe 90% of
reconstructed events to ��� or �K�0K�; varying the as-
sumed efficiency for the remaining events within the limits
above changes the inferred average efficiency, leading to a
systematic uncertainty of 1.5%. The uncertainties assigned
vary from zero for the two-body final states to 6% for
K�K����0 (where there is a large efficiency difference
between ��� and �K�0K��). We also include uncertainties
in the PDG 2007 fit values for B��! ��� (0.7%) and
B��0 ! ������ (3.1%), and correct for the difference
between the PDG fit for B�K0

S ! ����� and the value
used in GEANT.

Systematic uncertainties for the simulation of track, K0
S,

�0, and � reconstruction and PID efficiencies are deter-
mined using partial versus full reconstruction of events in
CLEO-c’s  �2S� and  �3770� data sets; the methods are
shared with the D0=D� branching fraction analysis [13].
Tracking efficiencies are verified using  �3770� ! D �D
events for �� and K�, and using  �2S� ! ����J= 
for ��. Good agreement is found, and an uncertainty of
0.3% per track is used, correlated among all tracks, with an
additional uncertainty of 0.6% per kaon added in quadra-
ture. Systematic effects in the PID efficiency are studied
using  �3770� ! D �D events; in general data has slightly
lower efficiency than the simulations and corrections are
applied. Because the corrections are momentum dependent
this is also affected by the uncertainty on the inter-
mediate resonant states. The corrections applied range
from ��0:2� 0:2�% for ��� to ��3:7� 1:4�% for
K�K����0. Neutral kaon efficiencies are verified using
D �D events and the D�s ! K0

SK
� mode; a systematic un-

certainty of 1.9% per K0
S candidate is used. The �0 effi-

ciency is checked with  �2S� ! �0�0J= decays, and the
� efficiency with  �2S� ! �J= events. In both cases
there are discrepancies between data and the simulation,
and relative corrections of ��3:9� 2:0�% per �0 and
��5:7� 4:0�% per � are applied.

The nominal signal line shapes used in the ST yield fits
are derived from the simulation, and the backgrounds are
either linear or quadratic. We determine systematic uncer-
tainties in the yields by relaxing each assumption sepa-
rately: the mass resolution is allowed to vary by an overall
scale factor, and the background is parametrized by a
second-order polynomial if the nominal fit uses a linear
one, or vice versa. The size of the resulting excursions
varies from 0.2% (K�K���) to 8.6% (K�K����0) for
background shape and 0.1% (K0

SK
�) to 10.3% (���) for

width.
The efficiency for a reconstructed DT event to lie in the

signal region depends on the mass resolutions for both
candidates. Errors in modeling the resolution will thus
cause errors in the DT efficiency which are correlated
with the ST signal line shape uncertainties. To estimate
this effect we use the best fit results from the ST width

FIG. 2 (color online). Masses of the D�s and D�s candidates for
all 64 DT modes in data. The rectangles show the signal region
(center) and two sideband regions (diagonally offset). There are
1089 events in the signal region and 339 events in the combined
sideband regions.
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check to determine the changes expected in the DT effi-
ciency. The difference due to each decay mode is taken as a
systematic uncertainty completely correlated with the cor-
responding ST uncertainty. The range of these effects is
0%–8%.

In addition, we consider mode-dependent systematic
uncertainties arising from our modeling of average D�sDs
event multiplicity and detector noise (0%–3%), the final
state radiation spectrum generated by PHOTOS (0.2%–
1.2%), and our simulation of initial state radiation (0%–
0.8%).

Peaking backgrounds in ST events are found to be
negligible compared to the size of the background shape
uncertainties. Very small cross feeds (of order 0.5% or less)
are expected between various DT modes and are included
in the fit; peaking DT backgrounds from other sources
mostly arise from D�D� reflections and are again found
to be negligible.

Systematic uncertainties are propagated to the final re-
sults by altering fit inputs (efficiencies and yields) with
appropriate correlations and noting the variations in the
results. The analysis was validated on a simulated generic
sample of open charm production with 30 times the statis-
tics of the data, and successfully reproduced the input
branching fractions.

We have separate yields and efficiencies for D�s and D�s
events, so it is possible to compute asymmetries

 A CP;i �
yi=�i � y�{=��{

yi=�i � y�{=��{
;

which are sensitive to direct CP violation in Ds decays
(expected to be very small in the standard model). Most
systematic uncertainties cancel in this ratio; the ones that
remain are due to charge dependence in tracking and PID,
and the dependence of the ST yields on the signal line
shape and background parametrization.

The obtained branching fractions, branching ratios, and
CP asymmetries are shown in Table I. The values we
obtain are consistent with the world averages [8] and
significantly more precise than any previous absolute mea-
surements of Ds branching fractions. This is also the first

result where all eight modes are measured simultaneously;
the PDG fit combines many disparate branching
ratio results. No significant CP asymmetries are observed.
We additionally obtain the number of D�sDs events
ND�sDs

� �2:93� 0:14� 0:06�  105, which gives
�D�sDs

�4:17 GeV�� �0:983�0:046�0:021�0:010� nb; in
order, the uncertainties are statistical, systematic due to
this measurement, and for the cross section, systematic due
to luminosity measurement [13]. The cross section is con-
sistent with earlier CLEO-c results obtained via a scan of
this energy region [7].

TABLE I. Branching fraction results from this analysis, world average branching fractions from the PDG 2007 fit [8], ratios of
branching fractions to B�D�s ! K�K����, and charge asymmetries ACP. Uncertainties on CLEO-c measurements are statistical and
systematic, respectively.

Mode This result B (%) PDG 2007 fit B (%) B=B�K�K���� ACP (%)

K0
SK
� 1:49� 0:07� 0:05 2:2� 0:4 0:270� 0:009� 0:008 �4:9� 2:1� 0:9

K�K��� 5:50� 0:23� 0:16 5:3� 0:8 1 �0:3� 1:1� 0:8
K�K����0 5:65� 0:29� 0:40 � � � 1:03� 0:05� 0:08 �5:9� 4:2� 1:2
K0
SK
����� 1:64� 0:10� 0:07 2:7� 0:7 0:298� 0:014� 0:011 �0:7� 3:6� 1:1

������ 1:11� 0:07� 0:04 1:24� 0:20 0:202� 0:011� 0:009 �2:0� 4:6� 0:7
��� 1:58� 0:11� 0:18 2:16� 0:30 0:288� 0:018� 0:033 �8:2� 5:2� 0:8
���0 3:77� 0:25� 0:30 4:8� 0:6 0:69� 0:04� 0:06 �5:5� 3:7� 1:2
K����� 0:69� 0:05� 0:03 0:67� 0:13 0:125� 0:009� 0:005 �11:2� 7:0� 0:9

FIG. 3 (color online). Yields of D�s ! K�K��� single tag
events versus K�K� invariant mass; no efficiency corrections
have been applied. The ST fit procedure for the full K�K���

sample is applied here to the subsample of each bin of
M�K�K�� and the resulting yields plotted, hence backgrounds
have been subtracted and the yields shown are signal. A � peak
is visible above an additional broad signal component. The lines
show the mass window boundaries for the partial branching
fractions in Table II.

PRL 100, 161804 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2008

161804-5



A quantity conventionally termed B�D�s ! ���� has
often been used as a reference branching fraction for D�s
decays; operationally it is measured by making kinematic
selections on the kaon pair in D�s ! K�K��� events and
assuming a pure �! K�K� signal. However, the Dalitz
plot for this mode shows the presence of a significant broad
scalar component under the � peak, whose contribution to
the observed yield varies from less than 5% to over 10%
depending on the � candidate selection criteria. Figure 3
shows the mass spectrum of D�s ! K�K��� events in
this mass region; when fit by a single Gaussian, the
M�K�K�� resolution is 1:1 MeV=c2. The scalar compo-
nent will additionally interfere with the � contribution,
altering the observed rate of events in the � peak from the
D�s ! ��� fit fraction which would be measured in an
amplitude analysis. These variations are comparable to or
exceed the systematic uncertainties in our measurements.
For this reason, we do not quote a branching fraction for
the resonant mode D�s ! ���; this quantity can only be
unambiguously measured with an amplitude analysis,
which is of limited utility as a reference branching fraction.
We instead provide partial branching fractions B�M,
which are defined as the branching fraction for K�K���

events where the K�K� pair satisfies jM�K�K�� �
1019:5 MeV=c2j<�M �MeV=c2�; the values obtained
are listed in Table II. The systematic uncertainties quoted
for B�M include uncertainties due to resolution. We em-
phasize that these are not measurements of the quantity
B�D�s ! ��� ! K�K����, but are intended as refer-
ences to normalize other D�s branching fractions when
most of the K�K��� phase space must be excluded for
background reasons.

In summary, we have presented the first application of a
tagging technique at a center of mass energy of 4.17 GeV to
measure eight hadronic D�s branching fractions with pre-
cisions exceeding world averages. For the key modeD�s !
K�K���, the statistical and systematic uncertainties are
comparable. As the experimental meaning of B�D�s !

���� is ill defined at this level of precision without a
full amplitude analysis, we do not report it. We instead
provide partial branching fractions for windows centered
on the � mass which do not assume a specific resonant
composition of the decay.
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Value This result B (%)

B5 1:69� 0:08� 0:06
B10 1:99� 0:10� 0:05
B15 2:14� 0:10� 0:05
B20 2:24� 0:11� 0:06
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