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The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive
local denoising scheme to the modulo-2π noisy phase; the second step applies a robust phase unwrapping
algorithm to the denoisedmodulo-2π phase obtained in the first step. The adaptive local modulo-2π phase
denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-
order approximations of the phase are calculated in sliding windows of varying size. The zero-order ap-
proximation is used for pointwise adaptive window size selection, whereas the first-order approximation
is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently intro-
duced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Im-
age Process. 16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed
algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image
details. © 2008 Optical Society of America

OCIS codes: 100.5088, 110.5086, 280.0280.

1. Introduction

Many remote sensing systems exploit phase coher-
ence between transmitted and scattered waves to in-
fer information about physical and geometric
properties of illuminated objects, such as shape, de-
formation, movement, and structure of an object’s
surface. Phase estimation plays, therefore, a central
role in these coherent imaging systems. For instance,
in synthetic aperture radar interferometry (InSAR),
the phase values are proportional to the terrain ele-
vation height; in magnetic resonance imaging, the
phase is used to measure temperature, to map the
main magnetic field inhomogeneities, to identify
veins in the tissues, and to segment water from

fat. Other examples can be found in adaptive optics,
diffraction tomography, nondestructive testing of
components, and deformation and vibration mea-
surements (see, e.g., [1–6]).

In all these applications the observation mechan-
ism is a 2π-periodic function of the true phase, here-
after termed absolute phase. The mapping of this
function in the interval ½−π; πÞ yields the so-called
principal phase values, or wrapped phases, or inter-
ferogram; if the true phase is outside the interval
½−π; πÞ, the associated observed value is wrapped into
it, corresponding to the addition/subtraction of an in-
teger number of 2π. It is thus impossible to unam-
biguously reconstruct the absolute phase, unless
additional assumptions are introduced into this in-
ference problem.

Many approaches to absolute phase estimation fol-
low a two-step procedure: in the first step, the
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wrapped phase is inferred from noisy wrapped obser-
vations; in the second step, the absolute phase is
inferred from the wrapped estimate obtained in
the first step. The latter procedure is known as phase
unwrapping.
Owing to the periodic observation mechanism,

phase unwrapping is a hard problem that has since
long fostered active research. In fact, if the magni-
tude of phase variations between neighboring pixels
is larger than π, i.e., the so-called Itoh condition [7] is
violated, then the inference of the 2π multiples is an
ill-posed problem. These violations may be due to
spatial undersampling, discontinuities, or noise. To
deal with these difficulties, some sort of a priori in-
formation has to be used. A classical approach imple-
ments path-dependent local techniques [8,9], where
a pixel-by-pixel unwrapping is confirmed by local
phase congruence tests. Work [10] exploits special
wrapped regions where the phase have the same
2π multiple. The algorithm is based on imitation of
four phase-shifts in observations (by π=2Þ. The four
different wrapped phases generated in this way
are used for unwrapping. A more recent direction
formulates the phase unwrapping as a regularized
inverse problem, leading to path-independent opti-
mization techniques [11–16] (see also [8] for a com-
plete account of the path-following techniques and
a partial account of global methods). In some appli-
cations, such as in InSAR, it is possible to infer maps
indicating the quality of the observed phase in each
pixel. Irrespective of the approach, the use of this ex-
ternal information eases, often significantly, the
phase unwrapping problem.
The observation noise plaguing many coherent

imaging systems introduces further difficulties in
the phase reconstruction, as the phase unwrapping
methods developed for noiseless data are very sensi-
tive to noise. One of the first and natural ideas is pre-
filtering the noisy wrapped data and then using it for
further processing, in particular for phase unwrap-
ping. However, a phase fringe pattern (sets of points
in the phase image domain for which the absolute
phase takes values between two consecutive 2π-
multiples) is a very delicate object with crucial de-
tails that are easily damaged in prefiltering. If the
noise level is small, any reasonable filtering leads
to acceptable results. However, as the noise level
increases the standard approaches often damage
data in such a way that further unwrapping becomes
impossible.
Prefiltering the noisy wrapped phase for unwrap-

ping is a difficult problem because of the nonadditive
nature of the phase noise, undersampling (aliasing),
and wrapping effects. Time–frequency analysis
based on Fourier transform is a conventional tool
in fringe analysis and fringe filtering. In particular,
it has been demonstrated in [17] that a fringe pattern
processed locally or block by block using the wind-
owed Fourier transform method removes artifacts
in phase measurements better than the simple car-
rier based Fourier transform methods such as the

windowed Fourier ridges, the wavelet transform,
and the regularized phase tracking. Presently, the
windowed Fourier transform method is considered
to be a promising tool among the spatial techniques
in use for phase measurement [6].

At this point, we would like to emphasize that pre-
filtering, although desirable, is a rather delicate
task. In fact, if prefiltering is too strong, the essential
pattern of the absolute phase coded in the wrapped
phase is damaged, and the reconstruction of absolute
phase is compromised. On the other hand, if we do
not filter, the unwrapping may be impossible because
of the noise. A conclusion is, therefore, that filtering
is crucial but should be designed very carefully. One
of the ways to ensure efficiency is to adapt the
strength of the prefiltering according to the phase
surface smoothness and the noise level.

A. Proposed Approach

Here we propose a novel filtering technique based on
local polynomial approximation with a varying adap-
tive neighborhood used in reconstruction [18]. We as-
sume that the absolute phase is a piecewise smooth
function, which is well approximated by a polynomial
in a neighborhood of the estimation point. Besides
the wrapped phase, the size and possibly the shape
of this neighborhood are estimated. The technique is
based on two independent ideas: local approximation
for design of nonlinear filters (estimators) and adap-
tation of these filters to unknown smoothness of the
spatially varying absolute phase. We use local poly-
nomial approximation (LPA) for approximation in a
sliding varying size window (Chap. 2 of [18]) and in-
tersection of confidence intervals (ICI) for window
size adaptation (Chap. 6 of [18]).

The adaptiveness introduced by ICI trades bias
with variance in such a way that the window size
stretches in areas where the underlying true phase
is smooth and shrinks otherwise, namely in the pre-
sence of discontinuities. The phase unwrapping
equipped with this adaptive LPA prefiltering yields
very good accuracy of the phase reconstruction, quite
often overcoming the state-of-the-art algorithms de-
veloped for noisy phase unwrap.

The polynomial modeling is a popular idea for both
wrapped phase denoising and noisy phase unwrap.
Using the local polynomial fit in terms of the phase
tracking for the phase unwrap is proposed in [19],
where it is exploited for the initialization of a global
optimization procedure. The efficiency of the local
fitting of the phase is demonstrated in [20], in
particular for phase unwrapping for two-dimensional
magnetic resonance imaging data. In [21] the linear
local polynomial approximation of height profiles is
used for the surface reconstruction from themultifre-
quency InSAR data.

Different modifications of the local polynomial
approximation oriented to wrapped phase denoising
are introduced in regularized phase-tracking [22,23],
multiple-parameter least squares [24], and wind-
owed Fourier ridges [17]. The comparative analysis
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of these methods produced in [25] shows that they
yield comparable performance and that the differ-
ences are mainly due to calculations and algorithm
implementations.
Compared with these works, the main novelty in-

troduced in this paper is the window size selection
adaptiveness introduced by the ICI technique, which
locally adapts the amount of smoothing according to
the data. In particular, the discontinuities are pre-
served, what is a sine qua non condition for the suc-
cess of the posterior unwrapping; in fact, as discussed
in [15], it is preferable to unwrap the noisy interfer-
ogram than a filtered version in which the disconti-
nuities or the areas of high phase rate have been
washed out.
The material herein presented is an elaboration of

[26] and a development of the phase-tracking
unwrap proposed in [27], where the ICI adaptive
varying windows are used for the phase estimates
calculated by recursive local minimization of the
least square criterion. In this paper we are mainly
focused on filtering the wrapped phase as the prefil-
tering procedure for the forthcoming unwrapping.
Experiments based on simulations and real data

gives evidence that the developed filtering is very ef-
ficient. We come to this conclusion by comparing the
true phase with the unwrapping obtained with
PUMA [16] applied on the filtered wrapped phase.
PUMA is able to preserve discontinuities by using
graph cut based methods to solve the integer optimi-
zation problem associated with phase unwrapping.
The reconstructed error is comparable to or better
than state-of-the-art algorithms developed for noisy
phase unwrapping, of which the ZπM [15] and the
PhaseLa [27] are two examples.
The paper is organized as follows. Section 2 intro-

duces the zero and the first orders polynomial local
approximations of the phase. Section 3 introduces
the ICI concept. Section 4 presents the pseudocode
of the overall algorithm which we have termed
PEARLS (for phase estimation using adaptive
regularization based on local smoothing). Finally,
Section 5 presents a series of experiments with
simulated data and a SAR data set generated from
real data.

2. Local Polynomial Phase Approximations

The details of the observation models relating the
noisy wrapped phase with the true phase depend
on the coherent imaging system under consideration
(see, e.g., [8,15,27] for an account of observation mod-
els in different coherent imaging systems). Neverthe-
less, the essential of all these observation
mechanisms is captured by the relation

z ¼ A expðjφÞ þ n; A > 0; ð1Þ

where n ¼ nI þ jnQ is complex-valued zero-mean cir-
cular white noise of variance 2σ2 (i.e., nI and nQ are
zero-mean independent Gaussian random variables
with variance σ2). Given that the noise is additive, we

define the signal-to-noise-ratio as SNR≡ 1=ð2σ2Þ.
Figure 1 illustrates the different components of
the observed model in the complex plane: φ is
the true phase, ϕ is the observed phase, and ϕn is
the phase component of ϕ due to noise vector n.
The phase ϕ is given by

ϕ ¼ angleðzÞ ¼ Wðφþ ϕnÞ; ϕ ∈ ½−π; πÞ;

whereW is the wrapping operator mapping the noisy
phase φþ ϕn into the basic phase interval ½−π; πÞ. For
ϕn ¼ 0, there is an obvious link between the wrapped
ϕ and nonwrapped absolute phase φ, φ ¼ ϕþ 2πk,
ϕ ∈ ½−π; πÞ, where k is an integer. The basic unwrap-
ping problem is to reconstruct φðx; yÞ, x, y ∈ X⊂Z2,
from the observations ϕðx; yÞ. There is, of course,
no one-to-one relation between the wrapped and
the absolute phases.

Let us define the parameterized family of first-or-
der polynomials:

φ
∼
ðu; vjcÞ ¼ pTðu; vÞc; ð2Þ

where p ¼ ½p1;p2;p3�
T ¼ ½1;u; v�T and c ¼ ½c1; c2; c3�

T

is a vector of parameters. Assume that in some neigh-
borhood of the point ðx; yÞ, the phase φ is well ap-
proximated by an element of the family (2); i.e., for
ðxs; ysÞ in a neighborhood of the origin, there exists
a vector c such that

φðxþ xs; yþ xsÞ≃ φ
∼
ðxs; ysjcÞ: ð3Þ

To infer this vector, we compute

ĉ ¼ argmin
c

LhðcÞ;

where LhðcÞ is a measure of the data misfit with re-
spect to zϕ ≡ z=jzj ¼ ejϕ, defined as

Fig. 1. Illustration of the observed phase model (1): φ is the true
phase, ϕ is the observed phase, and ϕn is the phase component of ϕ
due to noise vector n.
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LhðcÞ ¼
1

2

X

s

wh;sjzϕðxþ xs; yþ ysÞ

− expðjφ
∼
ðxs; ysjcÞj

2

¼
X

s

wh;sf1

− cos½ϕðxþ xs; yþ ysÞ − φ
∼
ðxs; ysjcÞ�g;

where wh;s are window weights parameterized by h,
for h ∈ H ≡ fh1 < h2 < … < hJg, and s is a window
relative index. It can be verified by routine calcula-
tions that, for the considered linear phase model,
the optimal solution ĉ is given by (see, e.g.,
Chap. 6 of [28])

ðĉ2; ĉ3Þ ∈ argmax
c2;c3

jFhðc2; c3Þj; ð4Þ

ĉ1 ¼ angleFhðĉ2; ĉ3Þ; ð5Þ

where Fhðc2; c3Þ is the windowed discrete Fourier
transform of the normalized data zϕ ¼ z=jzj at point
ðx; yÞ and frequency ðc2; c3Þ, i.e.,

Fhðc2; c3Þ ¼
X

s

wh;szϕðxþ xs; yþ ysÞe
−jðc2xsþc3ysÞ:

Then, the phase estimate ĉ1 is the argument (angle)
of the complex-valued discrete Fourier transform Fh

calculated at the point where the maximum value of
the Fourier spectrum is achieved. Equations (4) and
(5) show that the standard fast Fourier transform
(FFT) algorithm can be used to efficiently compute
the vector ðc1; c2; c3Þ.
According to the model in Eq. (2) and the hypoth-

esis in Eq. (3), we have φðx; yÞ ¼ φ
∼
ð0; 0jcÞ ¼ c1. Since

we just have an estimate of c1, we write

φ̂hðx; yÞ ¼ ĉ1ðx; yÞ; ð6Þ

where argument ðx; yÞ and index h stress, respec-
tively, the local nature of the phase estimate and
its dependency on window size h.
We wish to emphasize the nonparametric nature of

the introduced estimator. Indeed, we start with the
parametric model in Eq. (2) linear on x and y and
could expect that the approximation (estimate) is
also linear on x and y. However, the fit is used in
the polynomial approximation in Eq. (2) only for
one central point, xs ¼ ys ¼ 0. The result of this
pointwise use of the approximation is that the para-
metric estimate in Eq. (2) becomes nonparametric,
with φ̂hðx; yÞ depending in a nonlinear way on x
and y [18]. All ideas of the standard LPA concerning
window w (shape, anisotropy, directionality, etc.),
scaling h (scalar, multivariate), and the estimation
of the signal and derivatives are naturally valid in
this nonparametric pointwise estimation.
By setting c2 ¼ 0 and c3 ¼ 0 in Eq. (2), a minor

modification, the calculus carried out for the first-

order polynomial approximation leads to the zero-
order polynomial based estimate:

φ̂hðx; yÞ ¼ ĉ1ðx; yÞ ¼ angle½Fhð0; 0Þ�: ð7Þ

To characterize, very briefly, the zero-order and the
first-order phase approximations, let us assume that
observed data is exactly modeled, within a given win-
dow, by a first-order polynomial of parameter vector
c
0 ¼ ðc0

1
; c0

2
; c0

3
Þ. We have then zϕðxþ xs; yþ ysÞ ¼

ejðc
0
1
þc0

2
xsþc0

3
ysÞ and

Fhðc2; c3Þ ¼
X

s

wh;szϕðxþ xs; yþ ysÞe
−jðc2xsþc3ysÞ

¼ ejc
0
1

X

s

wh;se
−j½ðc2−c

0
2
Þxsþðc3−c

0
3
Þys�

¼ ejc
0
1Wh½ðc2 − c0

2
Þxs þ ðc3 − c0

3
ÞysÞ�;

where Wh½ðc2 − c0
2
Þxs þ ðc3 − c0

3
Þys� is the Fourier

transform of the window weightswh;s. Assuming that
wh;s are nonnegative, the maximum of jWsðc2; c3Þj
happens for (c2 ¼ 0, c3 ¼ 0) and then we have the fol-
lowing approximations:

a. Zero-order approximation (c2 ≡ 0 and
c3 ≡ 0)

φ̂hðx; yÞ ¼ angle½Fhð0; 0Þ� ¼ c0
1
þ angle½Whð−c

0
2
;−c0

3
Þ�;

b. First-order approximation

φ̂hðx; yÞ ¼ angle½Fhðĉ2; ĉ3Þ� ¼ c0
1
:

We conclude, therefore, that the zero-order approxi-
mation produces biased estimates, whereas the first-
order does not. However, if the window is symmetric,
Wh is real and positive for frequencies close to the
origin. For these frequencies, the zero-order approx-
imation is, thus, unbiased. According to the scaling
property of the Fourier transform, increasing win-
dow spreads in the spatial domain corresponds to de-
creasing spreads of the respective Fourier transform.
We conclude, therefore, that the zero-order approxi-
mation based on symmetric windows tends to yield
unbiased wrapped phase estimates, at least for low
window sizes and low frequencies (phase slopes) c2
and c3.

Concerning computational complexity, the zero-
order approximation is much lighter than the first-
order approximation. Furthermore, as seen in
Section 3, the inference of the best window size at
a given point ðx; yÞ implies the determination of a ser-
ies of wrapped phase estimates corresponding to an
equal number of windows with different sizes. Aim-
ing at a balance between computational complexity
and quality of the estimates, we adopt the zero-order
approximation to infer the window sizes and the
first-order approximation to compute the wrapped
phase estimates on the windows determined by
the zero-order approximation.
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3. Estimate Accuracy and Adaptation

Given a two-dimensional symmetric window func-
tion w and a window size (scale) parameter h > 0,
we define the scaled window wh;s ≡wðxs=h; ys=hÞ,
centered at ðx; yÞ. In particular, if we take the square
uniform window w ¼ 1 for jxj ≤ 1 and jyj ≤ 1, and w ¼
0 otherwise, we have wh ¼ 1 for jxj ≤ h and jyj ≤ h,
and wh ¼ 0 otherwise. A smaller or larger h narrows
or widens window wh, respectively.
It is shown in Proposition 2 of [27] that, asympto-

tically for small noise level and small h, the phase
estimate φ̂hðx; yÞ ¼ ĉ1ðx; yÞ given in Eq. (6) is un-
biased with the variance:

σ2h ¼ σ2

P
s w

2

h;s�P
s wh;s

�
2
: ð8Þ

This result is used for the adaptive selection of the
window size. Let φ̂hðx; yÞ, for h ∈ H, be the respective
phase estimates. The ICI rule is exploited to select
the best window size. Given the estimates φ̂hðx; yÞ
and the respective variance, for h ∈ H, the confidence
intervals of these estimates are defined as

Qh ¼ fφ̂h − Γ · σh; φ̂h þ Γ · σhg; ð9Þ

where Γ > 0 is a parameter of the algorithm, and σh
is calculated according to Eq. (8).
The ICI rule defines the adaptive window size, de-

noted by hþ, as the largest h ∈ H for which the esti-
mate φ̂h does not differ significantly from the
estimates corresponding to the smaller window sizes.
To identify this adaptive hþ, the successive intersec-
tion of the confidence intervals Qh is considered
starting from Qh1

and Qh2
. Specifically, the pairwise

intersection of the intervals Qhj
, 1 ≤ hj ≤ hi, is consid-

ered with increasing hi. Let h
þ be the largest of those

hi for which the intervalsQhj
, 1 ≤ hj ≤ hi, have a point

in common. This hþ defines the adaptive window size
and the adaptive estimate as φ̂hþ.
For the varying pointwise adaptive estimation,

these calculations are produced for all points (pixels).
In implementation, the ICI algorithm is used when
the estimates for all points ðx; yÞ are already calcu-
lated for all h. Then the algorithmworks as a selector
of the proper window size estimate for each point
from a given set of the estimates for all window sizes
(Chap. 6 of [18]).
Parameter Γ in Eq. (9) controls the bias-variance

balance in the estimate. Decreasing Γ means a shift
of this balance in favor of the bias, as smaller Γ re-
sults in smaller bias of the estimate. On the contrary,
increasing Γmeans a shift in favor of the variance, as
larger Γ results in smaller variance of the estimate
but possible larger bias.

4. PEARLS Algorithm

We name the proposed algorithm the phase estima-
tion using adaptive regularization based on local

smoothing (PEARLS). The pseudocode for this algo-
rithm is as follows:

1. For every pixel ðx; yÞ ∈ X and h ∈ H:

a. Calculate the zero-order phase estimate ac-
cording to Eq. (7), i.e.,

φ̂hðx; yÞ ¼ angle

�X

s

wh;szϕðxþ xs; yþ ysÞ

�
;

b. Apply the ICI rule to the estimates φ̂hðx; yÞ for
the selection of the best window size hþðx; yÞ;

c. Using Eq. (5) with h ¼ hþðx; yÞ, calculate φ̂hþ ,
the first-order phase estimates with adaptive win-
dow size;

End for
2. Unwrap phase φ̂hþ using the PUMA algo-

rithm [16].

PEARLS computational complexity, measured in
number of floating points operations, is dominated
by steps 1c and 2. Step 1c computes the vector
ðĉ1; ĉ2; ĉ3Þ for every pixel in the image according to
Eqs. (4) and (5). These estimates are efficiently deter-
mined by means of a zero-padded FFT. For FFTs of
size L2, the leading term of the computational com-
plexity of step 1c is, thus, ð2L2log2LÞn, where n is the
number of image pixels.

Step 2, the PUMA phase unwrapping algorithm,
has complexity Oðn2:5Þ, This is, however, the worst
case figure. The practical complexity is very close
to OðnÞ [16]. Therefore, the overall complexity of
PEARLS is OðnÞ. In practice, we have observed that
ð2L2log2LÞn is a good approximation of the time the
algorithm takes. Finally, we note that step 1c can be
parallelized and its time divided, approximately, by
the number of processors used to compute the FFTs.

5. Experimental Results

Here we present several experiments illustrating the
PEARLS competitiveness. For the phase unwrap of
the filtered wrapped phase we use the PUMA algo-
rithm [16], which is able to work with discontinuities.
In what follows, LPA is exploited with the uniform
square windowswh defined on the integer symmetric
grid fðx; yÞ∶jxj; jyj ≤ hg; thus, the number of pixels of
wh is (2hþ 1). The ICI parameter was set to Γ ¼ 2:0,
the window sizes to H ¼ f1; 2; 3; 4g, and the zero-
padded FFTs sizes to L × L ¼ 64 × 64.

A. Continuous Phase Surfaces

1. Gaussian Surface

In this experiment we consider continuous phase
surface. Here the word continuous is to be under-
stood in the sense that there are no large walks of
neighboring pairs of pixels with phase differences
larger than π in magnitude.
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Figure 2 shows estimation results for the Gaussian
shaped surface φðx; yÞ ¼ Aφ exp½−x

2=ð2σ2xÞ − y2=ð2σ2yÞ�
with σx ¼ 10, σy ¼ 15, and Aφ ¼ 14π. The maximum
value of φ is 14π and the maximum values of the first
differences are about 2:5 rad. With such high phase
differences, even a noise of small variance leads to a
difficult unwrapping problem due to many phase dif-
ferences larger than π. The noisy observations were
generated according to Eq. (1), for A ¼ 1, on the
square grid with integer arguments x, y, −49 ≤ x,
y ≤ 50. The noise standard deviation is set to σ ¼
0:5 corresponding to SNR ¼ 3dB. In spite of this
low value of SNR, PEARLS leads to good estimates.
The improvement in the SNR (ISNR) of the wrapped
estimate [see Fig. 2(c)], which we define as

ISNR ¼ 10 log 10
∥ejϕ − ejφ∥2

∥ejbφhþ − ejφ∥2
;

is ISNR ¼ 10:8dB. The root mean square error
(RMSE) of the absolute phase estimate displayed

in Fig. 2(d), is RMSE ¼ 0:15 rad. Notice the ICI abil-
ity to locally adapt the amount of smoothness: the
larger windows are selected in areas where a first-
order polynomial is a good approximation to the data
and vice versa [see Fig. 2(b)].

Table 1 shows the RMSE values obtained with the
PEARLS algorithm, as a function of the observation
noise standard deviation σ. For comparison purposes,
we have also computed the RMSE obtained with the
PhaseLa [27] and ZπM [15] algorithms, which imple-
ment filtering plus unwrapping. The unwrapping
based on the PEARLS denoising yields consistently
comparable or better performance than PhaseLa and
ZπM algorithms. The advantage increases for large
values of σ, corresponding to the more challenging
scenarios.

The last column of Table 1 displays the times that
each algorithm takes in a PC equipped with a Pen-
tium 4 running at 3:4GHz. There is just one column
as the times depend very little on the noise variances.
These times should be understood only as indicative,
because, although all the algorithms have been coded

Fig. 2. PEARLS estimation results for a Gaussian shaped surface with σ ¼ 0:5 corresponding to SNR ¼ 3dB. The window size parameter
h shown in part (b) illustrates the ICI ability to locally adapt the amount of smoothness: the larger windows are selected in areas were a
first-order polynomial is a good approximation to the data and vice versa. The denoised wrapped phase, shown in part (c) is clearly cleaner;
the SNR improvement is of 10:8dB. The error of the reconstructed image in part (d) is RMSE ¼ 0:15 rad.
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in MATLAB, parts of ZπM and PEARLS are imple-
mented as C functions.

2. Random Elevation Surface

Figure 3(a), shows a noisy wrapped image corre-
sponding to a random surface resulting from low-
pass filtering an image of independent and identi-
cally distributed Gaussian noise. The additive noise
level is SNR ¼ 3dB and the magnitude of the first
order differences is larger than π in many areas
of the image. The low SNR and high phase
renders a hard absolute phase estimation problem.
Figure 3(b) shows the size of the estimation windows.
Again notice the ICI ability to locally adapt the
amount of smoothness. Figure 3(c), shows that the
estimate yielded by PEARLS is much cleaner than

the original noisy wrapped image, corresponding to
an improvement of ISNR ¼ 4:8dB. Figure 3(d) shows
the reconstructed image by PUMA, corresponding to
an RMSE ¼ 0:33 rad.

B. Discontinuous Phase Surfaces

1. Clipped Gaussian

In this experiment we illustrate the potential in
handling discontinuities of bringing together the
adaptive denoising and the unwrapping provided
by LPA–ICI and PUMA, respectively. Figure 4 illus-
trates the performance of the algorithm in the Gaus-
sian surface shown in Fig. 2 with one quarter set to
zero. The noise standard deviation is set to σ ¼ 0:5,
corresponding to SNR ¼ 3dB. The denoised wrapped
phase shown in Fig. 4(c) is a clear improvement of the
noisy version presented in Fig. 4(a). The strength of
the smoothness shown in Fig. 4(b), imposed by the
window sizes, is larger in areas where the absolute
phase is smooth and smaller otherwise. In this
way, the phase information in the neighborhood of
discontinuities is not washed out, allowing PUMA

Fig. 3. As in Fig. 2, for the random surface shown in part (a), the denoised wrapped phase, shown in part (c), is clearly cleaner; the SNR
improvement is ISNR ¼ 4:8dB. The error of the reconstructed image in part (d) is RMSE ¼ 0:33 rad.

Table 1. RMSE (in rad.) for PEARLS, PhaseLa, and ZπM Algorithms

Algorithm \σ 0.75 0.5 0.25 0.05 0.01 Time (s)

PEARLS 0.34 0.15 0.09 0.05 0.03 30
PhaseLa fail 0.18 0.11 0.04 0.03 24
ZπM fail 0.21 0.12 0.19 0.08 13
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to produce an acceptable reconstruction. PhaseLa
and ZπM were not compared in this experiment be-
cause they are not conceived to blindly deal with dis-
continuities.
To further assess the added value of bringing to-

gether LPA–ICI and PUMA, we ran PUMA with
and without prefiltering, for the noise standard de-
viation of σ ¼ 0:5 and σ ¼ 0:75, corresponding to
SNR ¼ 3 and −0:5dB, respectively. The results are
presented in Fig. 5. The denoising step obviously im-
proves the reconstruction for the smooth areas where
the larger values of the window sizes are used in the
PEARLS algorithm. This improvement is over-
whelming for the noise level σ ¼ 0:75, where the un-
wrapped nosy phase is totally useless.

2. Simulated SAR Data Based on a Real Surface

with Quality Maps

Here we use a simulated InSAR example supplied in
[8]. The data set was generated based on a real digi-
tal elevation model of mountainous terrain around
Longs Peak, Colorado, using a high-fidelity InSAR si-
mulator that models the SAR point spread function,

the InSAR geometry, the speckle noise, and the lay-
over and shadow phenomena. For a detailed descrip-
tion of the simulator see Chap. 3 of [8] and the
references therein. Figure 6 shows a contour plot
of the terrain used to generate the InSAR data.
The size of the image in pixels is 458 ðazimuthÞ×
152 ðrangeÞ, corresponding to 1.7 and 1:1km, respec-
tively. To compare the estimated surfaces directly
with the ground truth, the surface has been re-
sampled in the SAR slant plane.

Figure 7(a), shows the wrapped noisy phase. This
image, distributed with [8], is the maximum likeli-
hood estimate of the wrapped phase in windows of
4 × 4 assuming that the parameters of the SAR obser-
vation density are constant in these windows. The
two flat regions in gray on the top and on the bottom
of Fig. 7(a) correspond to undefined data due to the
projection of the high terrain relief into the slant
plane. The SAR layover phenomenon leads to very
close fringes in some regions of the interferogram,
clearly visible in the figure. In these sites, let X0 de-
note this set of pixels, the assumption of constant
phase within small windows is far from being true,
leading to incorrect estimates of the principal phase

Fig. 4. As in Fig. 2, for the Gaussian shaped surface with a quarter set to zero shown in part (a), the noise variance is set to σ ¼ 0:5

corresponding to SNR ¼ 3dB.
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values in the SAR layover regions. Therefore, the
wrapped phase in these regions is not used, as it
is inconsistent with the true phase. In terms of the
PEARLS algorithm, this means that the phase
should be inferred from the data observed in the sub-

set X − X0. To determine the set X0, we have adopted
the phase derivative and thresholding procedures
presented in Chap. 3 of [8]. Figure 8 shows this set.
Notice that the pixels in black are mostly in the lay-
over regions.

Figure 7(b), shows the size of estimated windows
by LPA–ICI. As in the previous examples, the
LPA–ICI adaption mechanism has selected the smal-
ler windows in the areas of high phase variability
and vice versa. The denoised phase shown in Fig. 7
(c), is cleaner than the noisy version; nevertheless, its
details are preserved. The improvement obtained in
the set of pixels X − X0 was ISNR ¼ 4dB. Figure 7
(d), shows the histogram of the estimation error in
this set, corresponding to an RMSE ¼ 0:2 rad. The
number of errors larger than π is just 23. If we do
not take these pixels into account, the error de-
creases to RMSE ¼ 0:17 rad.

For comparison purposes, we have run ZπM on
the same data set and in the same conditions. The
results obtained, in line with those published in
[15], are ISNR ¼ 2dB and RMSE ¼ 0:24 rad. The
number of outliers is 27 and the error without these
outliers is RMSE ¼ 0:2 rad. PEARLS yields a better
result owing to the adaptive window size scheme it
implements.

Finally, Fig. 9 shows the true phase surface and the
PEARL estimate. The values for the set X0 have been

Fig. 5. Impact of denoising on PUMA unwrapping.

Fig. 6. Contour map (rad) of the terrain used to generate the In-
SAR data. The surface, a digital terrain elevation model of moun-
tainous terrain around Longs Peak, Colorodo has been resampled
in the SAR slant plane; it can be therefore directly compared with
the estimated surfaces. (Data distributed with [8]).
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extrapolated from its neighbors in the set X − X0.
More precisely, we have solved the constrained opti-
mization problem

min
φi;i∈X0

X

p∼q

ðφp − φqÞ
2 subject to : φi ¼ bφi;

i ∈ X − X0;

where the notation p∼ q stands for first-order
neighbors.

6. Concluding Remarks

We have introduced PEARLS, a new adaptive algo-
rithm to denoise the wrapped phase produced by
many coherent imaging systems, such as interfero-
metric synthetic aperture radar, magnetic resonance,
diffraction tomography, nondestructive testing of
components, and deformation and vibration mea-
surements.
The new methodology is based on local polynomial

approximation with varying adaptive neighborhood
used in reconstruction. We assume that the absolute

phase is a piecewise smooth function, which is
well approximated by a polynomial in a neighbor-
hood of the estimation point. Besides the wrapped
phase, also the size of this neighborhood is
estimated. Thus the name PEARLS stands for phase
estimation using adaptive regularization based on
local smoothing.

The adaptiveness introduced by varying the size of
the neighborhood used in reconstruction according to
the data smoothness trades bias with variance in
such a way that the window size stretches in areas
where the underlying true phase is smooth and
shrinks otherwise, namely in the presence of discon-
tinuities. This is a crucial behavior for the success of
any posterior phase unwrapping procedure.

To unwrap the denoised data, we apply the robust
PUMA unwrapping algorithm to the denoised data.
PUMA is able to deal blindly with discontinuities, as
far as they have not been smoothed by the denoising
step previously applied to the noisy wrapped data.
The effectiveness of the overall scheme is illustrated
in a series of experiments with simulated data and
with data generated from a real digital elevation

Fig. 7. Results obtained on a simulated SAR data based on a real surface with quality maps. Parts (a), (b), and (c) are as in Fig. 2. The
improvement in the SNR of estimate shown in part (c) is ISNR ¼ 4dB. Part (d) shows the histogram of the absolute phase error in the set
X − X0. The correspondent estimation error is RMSE ¼ 0:2 rad.
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model using a high-fidelity InSAR simulator that
models the SAR point spread function, the InSAR
geometry, the speckle noise, and the layover and sha-
dow phenomena. In all experiments, we obtained
comparable or better performance than the state-
of-the-art.
Finally, we make a brief comment on the shape of

the windows used to compute the local polynomial
approximation. Nonsymmetric shapes possibly yield
better fittings. For example, in the neighborhood of a
discontinuity, we may still use large nonsymetrical
windows, assuming that the data is smooth on each
side of the discontinuity. However, for computational
complexity reasons, we have adopted symmetric
windows. The extension of the concepts herein intro-
duced to nonsymmetric window shapes is definitely a
direction we aim to research in the future.
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