A R T I C L E S
Published on Web 05/08/2002

Absolute $\mathrm{p} K_{\mathrm{a}}$ Determinations for Substituted Phenols

Matthew D. Liptak, ${ }^{\dagger}$ Kevin C. Gross, ${ }^{\ddagger}$ Paul G. Seybold, \ddagger Steven Feldgus, ${ }^{\dagger}$ and George C. Shields*, \dagger
Contribution from the Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, New York 13323, and Department of Chemistry, Wright State University, Dayton, Ohio 45435

Received November 5, 2001. Revised Manuscript Received April 20, 2002

Abstract

The CBS-QB3 method was used to calculate the gas-phase free energy difference between 20 phenols and their respective anions, and the CPCM continuum solvation method was applied to calculate the free energy differences of solvation for the phenols and their anions. The CPCM solvation calculations were performed on both gas-phase and solvent-phase optimized structures. Absolute $\mathrm{p} K_{\mathrm{a}}$ calculations with solvated phase optimized structures for the CPCM calculations yielded standard deviations and root-meansquare errors of less than $0.4 \mathrm{p} K_{\mathrm{a}}$ unit. This study is the most accurate absolute determination of the $\mathrm{p} K_{\mathrm{a}}$ values of phenols, and is among the most accurate of any such calculations for any group of compounds. The ability to make accurate predictions of $\mathrm{p} K_{\mathrm{a}}$ values using a coherent, well-defined approach, without external approximations or fitting to experimental data, is of general importance to the chemical community. The solvated phase optimized structures of the anions are absolutely critical to obtain this level of accuracy, and yield a more realistic charge separation between the negatively charged oxygen and the ring system of the phenoxide anions.

Introduction

The ability to determine the equilibrium constant for the ionization of an acid in water, K_{a} (or the negative logarithm, $\mathrm{p} K_{\mathrm{a}}$), from first principles would be very useful to the chemical community. Accurate predictions of $\mathrm{p} K_{\mathrm{a}}$ values using a coherent, well-defined approach, without external approximations or fitting to experimental data, are of general significance. The acid/base behavior of phenols is of inherent importance in environmental and biochemical contexts. Four groups have published papers where they correlate experimental $\mathrm{p} K_{\mathrm{a}}$ values for phenols with quantum mechanical parameters, ${ }^{1-4}$ but no one has used gas-phase and liquid-phase quantum chemical calculations to predict absolute $\mathrm{p} K_{\mathrm{a}}$ values for phenols. We have recently published calculations of $\mathrm{p} K_{\mathrm{a}}$ values accurate to within half a $\mathrm{p} K_{\mathrm{a}}$ unit for a set of six carboxylic acids. ${ }^{5,6}$ In the present work, we extend our predictions to a set of 20 phenols.

The definition of $\mathrm{p} K_{\mathrm{a}}$ is

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}} \tag{1}
\end{equation*}
$$

and since

[^0]\[

$$
\begin{gather*}
\Delta G^{\circ}=-2.303 R T \log K_{\mathrm{a}} \tag{2}\\
\mathrm{p} K_{\mathrm{a}}=\Delta G^{\circ} / 2.303 R T \tag{3}
\end{gather*}
$$
\]

The calculation of accurate $\mathrm{p} K_{\mathrm{a}}$ values is demanding, as a 1.36 $\mathrm{kcal} / \mathrm{mol}$ error in ΔG° results in an error of $1 \mathrm{p} K_{\mathrm{a}}$ unit. In a previous work we have extensively examined different treatments of H^{+}and $\mathrm{H}_{2} \mathrm{O}$ in a thermodynamic cycle for $\mathrm{p} K_{\mathrm{a}}$ calculations. We concluded that the following cycle is the most effective. ${ }^{7}$

$$
\begin{array}{lll}
& \Delta \mathrm{G}_{\mathrm{gas}} & \mathrm{~A}_{\mathrm{gas}}^{-} \\
\mathrm{Alas} & + & \mathrm{H}_{\mathrm{gas}}^{+} \\
\uparrow-\Delta \mathrm{G}_{\mathrm{s}}(\mathrm{AH}) & \downarrow \Delta \mathrm{G}_{\mathrm{s}}\left(\mathrm{~A}^{-}\right) & \downarrow \Delta \mathrm{G}_{\mathrm{s}}\left(\mathrm{H}^{+}\right) \\
& & \\
\mathrm{AH}_{\mathrm{aq}} \xrightarrow{\Delta \mathrm{G}_{\mathrm{aq}}} & \mathrm{~A}_{\mathrm{aq}} & + \\
\mathrm{H}_{\mathrm{aq}}^{+}
\end{array}
$$

In this cycle we calculate $\Delta G_{\text {gas }}$ with the CBS-QB3 model, ${ }^{8}$ which has been shown to be accurate to within $1.2 \mathrm{kcal} / \mathrm{mol}$ when compared against gas-phase deprotonation reactions in the National Institute of Technology (NIST) database. ${ }^{9,10}$ The ΔG_{s} values were calculated using CPCM continuum solvation methods. ${ }^{11}$ The absolute $\mathrm{p} K_{\mathrm{a}}$ values are calculated using the following equation derived from eq 3 where $\Delta G^{\circ}=\Delta G_{\text {aq }}$,
(7) Liptak, M. D.; Shields, G. C. Int. J. Quantum Chem. 2001, 85, 727-741.
(8) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1999, 110, 2822-2827.
(9) Bartmess, J. E., Ed. Negative Ion Energetics Data; National Institute of Standards and Technology: Gaithersburg, MD, 2000; http:// webbook.nist.gov.
(10) Pokon, E. K.; Liptak, M. D.; Feldgus, S.; Shields, G. C. J. Phys. Chem. A 2001, 105, 10483-10487.
(11) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001.

$$
\begin{equation*}
\mathrm{p} K_{\mathrm{a}}=\Delta G_{\mathrm{aq}} / 2.303 R T \tag{4}
\end{equation*}
$$

For our thermodynamic cycle,

$$
\begin{equation*}
\Delta G_{\mathrm{aq}}=\Delta G_{\mathrm{gas}}+\Delta \Delta G_{\mathrm{sol}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \Delta G_{\mathrm{sol}}=\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right)+\Delta G_{\mathrm{s}}\left(\mathrm{~A}^{-}\right)-\Delta G_{\mathrm{s}}(\mathrm{AH}) \tag{6}
\end{equation*}
$$

The value for $G_{\text {gas }}\left(\mathrm{H}^{+}\right),-6.28 \mathrm{kcal} / \mathrm{mol}$, comes from the Sackur-Tetrode equation, ${ }^{12}$ and the value for $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right),-264.61$ $\mathrm{kcal} / \mathrm{mol}$, was derived from experiment (see discussion). ${ }^{6}$ The calculation of $\Delta G_{\text {gas }}$ uses a reference state of 1 atm and the calculation of ΔG_{s} uses a 1 M reference state. Converting the $\Delta G_{\text {gas }}$ reference state (24.46 L at 298.15 K) from 1 atm to 1 M is accomplished by using

$$
\begin{equation*}
\Delta G_{\mathrm{gas}}(1 \mathrm{M})=\Delta G_{\mathrm{gas}}(1 \mathrm{~atm})+R T \ln (24.46) \tag{7}
\end{equation*}
$$

Using these numbers, the $\mathrm{p} K_{\mathrm{a}}$ values reported in this work are calculated with eq 8 .

$$
\begin{align*}
\mathrm{p} K_{\mathrm{a}}=\left\{G\left(\mathrm{~A}_{\mathrm{gas}}^{-}\right)-G\left(\mathrm{AH}_{\mathrm{gas}}\right)+\Delta G_{\mathrm{s}}\left(\mathrm{~A}^{-}\right)-\right. \\
\left.\Delta G_{\mathrm{s}}(\mathrm{AH})-269.0\right\} / 1.3644 \tag{8}
\end{align*}
$$

In this paper we report on our absolute calculations for phenol and the meta-, para-, and ortho-substituted aminophenols, chlorophenols, cyanophenols, fluorophenols, hydroxyphenols, methoxyphenols, methylphenols, and nitrophenols. The approach outlined in this work is a general one, using well-defined methods, without fitting or correlating data to obtain "correct" results. We provide a realistic assessment of the errors for each different method used in this study.

Methods

We studied 20 different substituted phenols ranging in size from 50 to 66 electrons (Figure 1). All calculations were performed on SGI Origin 200 servers with Gaussian $98 .{ }^{13}$ Initial geometry optimizations were performed with B3LYP/CBSB7, identical to the first step in a CBS-QB3 ${ }^{8}$ calculation. CBS-QB3 was used to obtain the values for $G_{\text {gas }}$ at 298.15 K for a 1 atm standard state. $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ and $\mathrm{HF} / 6-$ $31+G(d)$ geometry optimizations were also performed on each species, and the absence of negative frequencies verified that all structures were true minima.

One set of solvated phase geometries was obtained with the CPCM/ HF/6-31+G(d) method for each phenol by using the B3LYP/CBSB7 gas-phase geometry as a starting point. In one case, p-aminophenoxide, the solvated phase optimization produced a lower energy conformer than the gas-phase optimization. For this species, a CBS-QB3 calculation was performed on the lowest energy solvated phase geometry, and the difference between the lowest energy gas-phase conformation and the lowest energy solvated phase conformation was used to correct ΔG_{s}.

[^1]Phenol Backbone

Figure 1. Phenol backbone and the various R groups used in this work.
In addition, convergence criteria on o-nitrophenoxide needed to be loosened (RMS force of 0.0017 au ; OPT $=$ LOOSE) to achieve convergence in the solvated optimization.

The CBS-QB3 model ${ }^{8}$ is one of the Complete Basis Set models developed by Petersson and co-workers. ${ }^{8,14-18}$ In these models, a series of calculations are made on a particular geometry, and a complete basis set quadratic configuration interaction model chemistry is defined to include corrections for basis set truncation errors. These methods use fairly large basis sets for the structure calculation, medium sized basis sets for the second-order correlation correction, and small sized basis sets for higher order correlation corrections. This method has been described in more detail in previous papers, ${ }^{5-7}$ and has been shown to be accurate to within $1 \mathrm{kcal} / \mathrm{mol}$ when compared to the most accurate experimental data for gas-phase deprotonation reactions. ${ }^{10}$

Free energy of solvation values were calculated by using the CPCM^{19} implicit solvation model, ${ }^{11}$ based on the polarized continuum model (PCM) of Tomasi and co-workers. ${ }^{20-27}$ In the Barone and Cossi implementation of this method the cavities are modeled on the molecular shape, using optimized parameters, and both electrostatic and nonelectrostatic contributions to the energies are included. The solute molecules are embedded in cavities using interlocking spheres, and the surface is smoothed. The cavity surface is divided into small domains, known as tesserae, by projecting onto the surface the faces of suitable polyhedra. The total free energy is the sum of the free energies obtained for electrostatic interactions, formation of the cavity in the continuum medium, dispersion interactions, and repulsion interactions. The dispersion and repulsion terms are calculated following the procedure pioneered by Floris and Tomasi ${ }^{28,29}$ so that the nonelectrostatic terms in the Barone and Cossi CPCM method are exactly the same as for the PCM method provided that equal sized cavities are used in each case.

[^2]Table 1. CBS-QB3 Energies (in hartrees)

	acid	anion
phenol	-306.968099	-306.412675
m-aminophenol	-362.248941	-361.692804
p-aminophenol	-362.246537	-361.686573
o-chlorophenol	-766.135761	-765.589834
m-chlorophenol	-766.133728	-765.591353
p-chlorophenol	-766.133090	-765.587991
m-cyanophenol	-399.095423	-398.562773
p-cyanophenol	-399.096184	-398.568500
m-fluorophenol	-406.137560	-405.591989
p-fluorophenol	-406.136153	-405.584605
m-hydroxyphenol	-382.119456	-381.568684
p-hydroxyphenol	-382.117048	-381.560697
m-methoxyphenol	-421.332371	-420.779768
p-methoxyphenol	-421.330159	-420.774032
o-methylphenol	-346.202215	-345.648593
m-methylphenol	-346.201903	-345.646543
p-methylphenol	-346.201547	-345.644834
o-nitrophenol	-511.269946	-510.733557
m-nitrophenol	-511.266427	-510.734710
p-nitrophenol	-511.267116	-510.745914

Figure 2. Phenoxide geometries for gas-phase optimized (left) and solvation phase optimized (right) structures. Natural charges on the oxygen are in bold.

The CPCM calculations were performed with the $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ and HF/6-31+G(d) basis sets on the gas-phase B3LYP/CBSB7, HF/6-31G(d), and HF/6-31+G(d) geometries and CPCM/HF/6-31+G(d) solvated phase geometry yielding a total of eight different solvation procedures. Additional test calculations with larger basis sets and with MP2 theory were also made. The CPCM calculations were performed with default parameters. All of the final geometries and energies are available as Supporting Information.

Results

The CBS-QB3 gas-phase free energies (in au) for all of the acids and their corresponding anions are given in Table 1 for a standard state of 1 atm . The ΔG_{s} values for all of the acids and the anions are reported in Table S2 (standard state of 1 M), using eight different solvation procedures, $\mathbf{S 1} \mathbf{- S 8}$. Procedures S1-S6 use the B3LYP and HF gas-phase structures, while $\mathbf{S 7}$ and $\mathbf{S 8}$ use the CPCM/HF/6-31+G(d) optimized geometries. Geometry optimization in solution has little effect on the phenols, but has a significant effect on the phenoxide anions (Figure 2). Table S2 is available as Supporting Information and Table 2 contains the results for the CPCM optimized geometries along with available experimental values. Table S 3 gives the $\mathrm{p} K_{\mathrm{a}}$ values calculated with CBS-QB3 gas-phase calculations and the eight different solvation procedures. Table S 3 is available as Supporting Information and Table 3 contains the results for the $\mathbf{S 7}$ and $\mathbf{S 8}$ solvation procedures. The reported error is obtained by subtracting the experimental $\mathrm{p} K_{\mathrm{a}}$ from the calculated $\mathrm{p} K_{\mathrm{a}}$ (Table 4). The mean unsigned error (MUE), standard

Table 2. Solvation Energies of Acids and Their Anions (in kcal/mol)a

	Acids $\exp ^{34}$	S7	S8
phenol	-6.62	-7.21	-7.92
m-aminophenol		-10.83	-11.68
p-aminophenol		-10.85	-11.76
o-chlorophenol		-4.20	-4.61
m-chlorophenol		-7.16	-7.73
p-chlorophenol		-7.50	-8.08
m-cyanophenol		-9.71	-10.48
p-cyanophenol		-10.42	-11.21
m-fluorophenol		-7.63	-8.44
p-fluorophenol		-8.03	-8.92
m-hydroxyphenol		-12.79	-13.81
p-hydroxyphenol		-13.23	-14.32
m-methoxyphenol		-8.37	-9.10
p-methoxyphenol		-9.04	-9.83
o-methylphenol	-5.87	-6.60	-7.18
m-methylphenol	-5.49	-7.01	-7.70
p-methylphenol	-6.14	-7.04	-7.72
o-nitrophenol		-4.44	-5.13
m-nitrophenol		-9.64	-10.54
p-nitrophenol		-10.65	-11.58
	Anions exp ${ }^{24,34}$	S7	S8
phenoxide	$-75,-72$	-73.26	-73.49
m-aminophenoxide		-77.27	-77.68
p-aminophenoxide		-78.50	-79.47
o-chlorophenoxide		-67.32	-67.58
m-chlorophenoxide		-65.83	-66.34
p-chlorophenoxide		-67.13	-67.80
m-cyanophenoxide		-63.99	-64.55
p-cyanophenoxide		-61.35	-62.10
m-fluorophenoxide		-68.25	-68.52
p-fluorophenoxide		-71.62	-72.06
m-hydroxyphenoxide		-76.64	-77.15
p-hydroxyphenoxide		-80.11	-81.07
m-methoxyphenoxide		-73.46	-73.74
p-methoxyphenoxide		-74.75	-75.46
o-methylphenoxide		-70.65	-70.91
m-methylphenoxide		-72.90	-73.26
p-methylphenoxide		-73.23	-74.06
o-nitrophenoxide		-61.81	-62.39
m-nitrophenoxide		-63.20	-63.89
p-nitrophenoxide		-57.92	-58.59

${ }^{a} \mathbf{S 7}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}) . \mathbf{S 8}=\mathrm{CPCM} / \mathrm{HF} /$ 6-31+G(d)//CPCM/HF/6-31+G(d).
deviation (STDEV), and root-mean-square error (RMS) are listed for each solvation procedure. Table 5 presents the errors in the gas-phase calculations as compared to experiment, ${ }^{30-33}$ for a standard state of 1 atm . The experimental error bars are reported as $\pm 2 \mathrm{kcal} / \mathrm{mol}$. Table 6 analyzes the errors in the solvation calculations. The experimental values for $\Delta \Delta G_{\mathrm{s}}$ are derived from experimental values for $\Delta \mathrm{G}_{\text {gas }}$ and $\mathrm{p} K_{\mathrm{a}}$ by using our thermodynamic cycle and eqs 4-6. All values in Table 6 are for a 1 M standard state.

The accuracy of the raw gas-phase data reported in Table 1 is evaluated by comparison to experiment in Table 5. ${ }^{30-33}$ All of the $\Delta \mathrm{G}_{\text {gas }}$ values reported are for the reaction $\mathrm{HA} \rightarrow \mathrm{H}^{+}+$ A^{-}, using a standard state of 1 atm , and the experimental values are taken from the NIST website. ${ }^{9}$ The CBS-QB3 value for $\Delta G_{\text {gas }}$ was compared to an average of all experimental values

[^3]Table 3. Absolute $\mathrm{p} K_{\mathrm{a}}$ Values and Signed Error from Experiment

	$\mathrm{p} K_{\text {a }}$	experiment	error		$\mathrm{p} K_{\text {a }}$	experiment	error
phenol				m-cyanophenol			
S7	9.88	9.98	-0.10	S7	8.03	8.61	-0.58
S8	10.23	9.98	0.25	S8	8.19	8.61	-0.42
m-aminophenol				p-cyanophenol			
S7	9.92	9.87	0.05	S7	8.21	7.95	0.26
S8	10.25	9.87	0.38	S8	8.24	7.95	0.29
p-aminophenol				m-fluorophenol			
S7	10.80	10.30	0.50	S7	9.33	9.28	0.05
S8	10.75	10.30	0.45	S8	9.73	9.28	0.45
o-chlorophenol				p-fluorophenol			
S7	7.66	8.56	-0.90	S7	9.90	9.95	-0.05
S8	7.77	8.56	-0.79	S8	10.23	9.95	0.28
m-chlorophenol				m-hydroxyphenol			
S7	9.29	9.02	0.27	S7	9.36	9.44	-0.08
S8	9.33	9.02	0.31	S8	9.73	9.44	0.29
p-chlorophenol				p-hydroxyphenol			
S7	9.84	9.38	0.46	S7	9.70	9.96	-0.26
S8	9.77	9.38	0.39	S8	9.80	9.96	-0.16
m-methoxyphenol				p-methylphenol			
S7	9.29	9.65	-0.36	S7	10.37	10.14	0.23
S8	9.62	9.65	-0.03	S8	10.26	10.14	0.12
p-methoxyphenol				o-nitrophenol			
S7	10.45	10.21	0.24	S7	7.49	7.23	0.26
S8	10.51	10.21	0.30	S8	7.57	7.23	0.34
o-methylphenol				m-nitrophenol			
S7	10.52	10.29	0.23	S7	8.13	8.40	-0.27
S8	10.75	10.29	0.46	S8	8.29	8.40	-0.11
m-methylphenol				p-nitrophenol			
S7	9.97	10.08	-0.11	S7	7.91	7.15	0.76
S8	10.21	10.08	0.13	S8	8.10	7.15	0.95

Table 4. Summary of Errors in Absolute $\mathrm{p} K_{\mathrm{a}}$ Calculation ${ }^{a}$

	MUE	STDEV	RMS error
S1	3.34	3.76	3.67
S2	3.56	3.96	3.86
S3	2.92	3.22	3.13
S4	3.13	3.39	3.30
S5	2.62	2.92	2.85
S6	2.81	3.08	3.00
S7	0.30	0.39	0.38
S8	0.35	0.42	0.41

${ }^{a} \mathbf{S 1}=$ CPCM/HF/6-31G(d)//B3LYP/CBSB7, S2 $=$ CPCM/HF/6$31+\mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{LYP} / \mathrm{CBSB} 7, \mathbf{S 3}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}), \mathbf{S 4}=$ CPCM/HF/6-31+G(d)//HF/6-31G(d), S5 = CPCM/HF/6-31G(d)//HF/6$31+\mathrm{G}(\mathrm{d}), \mathbf{S 6}=\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}), \mathbf{S} 7=\mathrm{CPCM} / \mathrm{HF} /$ 6-31G(d)//CPCM/HF/6-31+G(d), S8 = CPCM/HF/6-31 $+\mathrm{G}(\mathrm{d}) / / \mathrm{CPCM} / \mathrm{HF} /$ $6-31+G(d)$.
for a particular reaction. Since the reported experimental uncertainties for all of these experiments is $\pm 2 \mathrm{kcal} / \mathrm{mol}$, all of the calculated CBS-QB3 values fall within experimental error. Of the 20 phenols, 18 have calculated values that are more negative than the average experiment. This raises the possibility of a systematic error in either the experimental data, the CBSQB3 method, or the value of $G_{\mathrm{gas}}\left(\mathrm{H}^{+}\right)$.

Table 2 reports the ΔG_{s} values for all of the acids and anions (in $\mathrm{kcal} / \mathrm{mol}$). The use of a diffuse basis set in the wave function of the CPCM calculation consistently lowers the ΔG_{s} value. Switching from $\mathbf{S} 1$ to $\mathbf{S} 2$ lowers the values by an average of $0.84 \mathrm{kcal} / \mathrm{mol}$ for the acids and $0.54 \mathrm{kcal} / \mathrm{mol}$ for the anions (Table S2, Supporting Information). Changing from S3 to S4 lowers the values by an average of $0.75 \mathrm{kcal} / \mathrm{mol}$ for the acids and $0.47 \mathrm{kcal} / \mathrm{mol}$ for the anions. Switching from $\mathbf{S 5}$ to $\mathbf{S 6}$ also lowers the values by an average of $0.75 \mathrm{kcal} / \mathrm{mol}$ for the acids while lowering the value of the anions by $0.49 \mathrm{kcal} / \mathrm{mol}$. Finally, changing from $\mathbf{S 7}$ to $\mathbf{S 8}$ lowers the values by an average of $0.77 \mathrm{kcal} / \mathrm{mol}$ for the acids and the anions by $0.55 \mathrm{kcal} / \mathrm{mol}$.

All of these examples illustrate the larger effect diffuse functions have on the acids than on the anions. We have also seen this effect in our work on carboxylic acids and their anions. ${ }^{6}$ Barone and Cossi have acknowledged this limitation, which they attribute to larger basis sets allowing more solute charge to escape the cavity. ${ }^{11,25}$ Since Table 6 shows that the error in $\Delta \Delta G_{\mathrm{s}}$ is almost always positive, it follows that the larger decrease in the acid than the anion should increase the error in $\Delta \Delta G_{\mathrm{S}}$ (eq 6). This is supported by the error analysis in Table 6 , as the errors get worse going from $\mathbf{S 1}$ to $\mathbf{S 2}$, $\mathbf{S 3}$ to $\mathbf{S 4}, \mathbf{S 5}$ to S6, and $\mathbf{S 7}$ to $\mathbf{S 8}$.

Changing the level of theory used for the gas-phase geometry optimization affects the CPCM solvation SPCs ($\mathbf{S 1} \mathbf{- S 6}$). The addition of diffuse functions is unimportant for the acid geometries; changing from $\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})$ to $\mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d})$ only lowers the ΔG_{s} value of the acids by an average of $0.02 \mathrm{kcal} /$ mol. As expected, reoptimizing with diffuse functions has a much greater effect on the anions, lowering their ΔG_{s} value by an average of $0.86 \mathrm{kcal} / \mathrm{mol}$. Changing from B3LYP/CBSB7 to HF/6-31G(d) geometries raises the ΔG_{s} value by $2.37 \mathrm{kcal} /$ mol for the acids and just $1.23 \mathrm{kcal} / \mathrm{mol}$ for the anions. Changing from B3LYP/CBSB7 to HF/6-31+G(d) geometries raises the ΔG_{s} by $2.35 \mathrm{kcal} / \mathrm{mol}$ for the acids and only $0.36 \mathrm{kcal} / \mathrm{mol}$ for the anions. The addition of diffuse functions has a negligible effect on the acid geometry, but a very significant effect upon the anion geometry. There is also a very large difference between the B3LYP and the HF geometries, especially for the acids. As mentioned previously, since the error in $\Delta \Delta G_{\mathrm{s}}$ is almost always positive (Table 6), the solvation method with the least negative ΔG_{s} for the acids and most negative ΔG_{s} for the anions will give the most accurate results. It follows that the HF/6-31+G(d) geometry should produce the best results if a gas-phase geometry is used for the solvation calculation. By

Table 5. Analysis of Errors in Gas-Phase Calculations (in $\mathrm{kcal} / \mathrm{mol})^{a}$

	Exp. 1	Exp. 2	Exp. 3	Exp. 4	av	CBS-QB3		error
phenol	342.3	343.4			342.9	342.3		-0.6
m-aminophenol	343.7		344.3		344.0	342.7		-1.3
p-aminophenol	345.6		347.6		346.6	345.1		-1.5
o-chlorophenol			337.1		337.1	336.3		-0.8
m-chlorophenol	335.0		335.5		335.3	334.1		-1.2
p-chlorophenol	336.2		336.8		336.5	335.8		-0.7
m-cyanophenol	328.9		329.0		329.0	328.0		-1.0
p-cyanophenol	325.3		325.7		325.5	324.8		-0.7
m-fluorophenol	336.8		337.6		337.2	336.1		-1.1
p-fluorophenol	339.9		340.8		340.4	339.8		-0.5
m-hydroxyphenol	339.8		338.3		339.1	339.3		0.3
p-hydroxyphenol	343.1				343.1	342.8		-0.3
m-methoxyphenol	341.1		341.9		341.5	340.5		-1.0
p-methoxyphenol	343.5		344.2		343.9	342.7		-1.2
o-methylphenol	342.0		342.7		342.4	341.1		-1.2
m-methylphenol	342.7		343.8		343.3	342.2		-1.0
p-methylphenol	343.4		344.7	343.4	343.8	343.1		-0.8
o-nitrophenol			329.5		329.5	330.3		0.8
m-nitrophenol	327.5		327.7		327.6	327.4		-0.2
p-nitrophenol	320.9				320.9	320.8		-0.1
							MUE	0.8
							STDEV	0.9
							RMS	0.9

${ }^{a}$ Exp. 1, ref 30. Exp. 2, ref 31. Exp. 3, ref 32. Exp. 4, ref 33.
Table 6. Analysis of Errors in $\Delta \Delta G_{\mathrm{s}}(\text { in } \mathrm{kcal} / \mathrm{mol})^{a}$

		S1	S2	S3	S4	S5	S6	S7	S8	exp.
phenol		5.1	5.5	4.2	4.6	3.9	4.2	0.5	0.9	-331.1
m-aminophenol		7.0	7.5	5.6	5.9	5.1	5.5	1.2	1.7	-332.3
p-aminophenol		11.9	12.1	10.2	10.3	9.8	9.9	2.6	2.6	-334.9
o-chlorophenol		-0.5	-0.2	0.6	0.9	0.3	0.6	-2.4	-2.2	-325.4
m-chlorophenol		3.0	3.2	3.5	3.8	3.2	3.4	0.2	0.3	-323.5
p-chlorophenol		5.9	5.9	4.8	4.7	4.3	4.2	0.5	0.4	-324.8
m-cyanophenol		1.6	2.1	1.4	1.8	0.4	0.8	-1.7	-1.5	-317.2
p-cyanophenol		0.9	1.1	0.9	1.2	0.6	0.9	-1.8	-1.7	-313.8
m-fluorophenol		3.5	4.2	3.2	3.9	3.0	3.7	0.2	0.8	-325.5
p-fluorophenol		6.3	6.8	4.7	5.0	4.3	4.7	0.4	0.9	-328.6
m-hydroxyphenol		4.9	5.4	3.7	4.1	3.2	3.7	-1.1	-0.6	-327.3
p-hydroxyphenol		5.2	5.3	6.6	6.8	6.2	6.3	-0.1	0.0	-331.4
m-methoxyphenol		5.5	5.9	3.7	4.1	3.3	3.7	0.1	0.5	-329.8
p-methoxyphenol		8.1	8.2	7.1	7.1	6.6	6.5	1.8	1.9	-332.1
o-methylphenol		6.9	7.2	6.1	6.4	5.1	5.3	2.0	2.3	-330.6
m-methylphenol		6.2	6.5	4.9	5.2	4.6	4.9	1.0	1.4	-331.5
p-methylphenol		7.6	7.4	6.1	6.0	5.7	5.5	1.3	1.2	-332.1
o-nitrophenol		-2.7	-2.6	-2.4	-2.2	-2.5	-2.3	-4.2	-4.1	-317.8
m-nitrophenol		0.4	0.8	0.7	1.1	0.3	0.7	-2.3	-2.1	-315.9
p-nitrophenol		-0.8	-0.4	-0.8	-0.4	-1.0	-0.6	-2.7	-2.4	-309.2
	MUE	4.7	4.9	4.1	4.3	3.7	3.9	1.4	1.5	
	STDEV	5.7	5.9	4.9	5.0	4.5	4.6	1.8	1.8	
	RMS	5.5	5.8	4.7	4.9	4.4	4.5	1.8	1.8	

${ }^{a} \mathbf{S 1}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{LYP} / \mathrm{CBSB} 7, \mathbf{S} 2=\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{B} 3 \mathrm{LYP} / \mathrm{CBSB} 7, \mathbf{S 3}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}), \mathbf{S 4}=\mathrm{CPCM} / \mathrm{HF} /$ $6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}), \mathbf{S 5}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}), \mathbf{S 6}=\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}), \mathbf{S 7}=\mathrm{CPCM} / \mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d}) / / \mathrm{CPCM} / \mathrm{HF} /$ $6-31+\mathrm{G}(\mathrm{d}), \mathbf{S 8}=\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d}) / / \mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d})$.
this reasoning, the CPCM calculation using the HF/6-31G(d) basis set on the HF/6-31+G(d) geometry should give the best results for methods not using a solvated phase geometry optimization. This is true as Table 6 shows that $\mathbf{S 5}$ has the smallest error. The analysis presented in Table 6 also shows that the geometry has a much more important effect on the CPCM calculations than the basis set of the CPCM/HF wave function. $\mathbf{S 5}$ and $\mathbf{S 6}$ give the best results followed by $\mathbf{S 3}$ and S4. The B3LYP geometries, S1 and $\mathbf{S 2}$, give the worst results.

Discussion

Since the HF/6-31+G(d) geometry gave the most accurate results for the solvation calculations among the gas-phase geometries, we tried the equivalent solvated phase geometry
optimization, $\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}(\mathrm{d})$. Changing from the gasphase HF/6-31+G(d) geometry to the solvated phase CPCM/ HF/6-31+G(d) geometry lowers the ΔG_{s} by $0.37 \mathrm{kcal} / \mathrm{mol}$ for the acids and $3.93 \mathrm{kcal} / \mathrm{mol}$ for the anions. This leads to a change in $\Delta \Delta G_{\mathrm{s}}$ of $3.56 \mathrm{kcal} / \mathrm{mol}$. Using CPCM/HF/6-31+G(d) optimized structures yields accurate $\mathrm{p} K_{\mathrm{a}}$ calculations. Since the experimental values for $\Delta \Delta G_{\mathrm{s}}$ are derived from the experimental gas-phase deprotonation data, the errors in the $\Delta \Delta G_{\mathrm{s}}$ data are also $2 \mathrm{kcal} / \mathrm{mol}$. This means that the vast majority of the $\mathbf{S 7}$ and $\mathbf{S 8}$ values reported in Table 2 are within experimental error. Also, the STDEV and RMS errors are within experimental error for the two data sets. For the same reason that $\mathbf{S 5}$ is slightly better than S6, S7 is slightly better than $\mathbf{S 8}$.

The absolute $\mathrm{p} K_{\mathrm{a}}$ calculations are displayed in Tables 3 and S 3 (Supporting Information). All of the calculated $\mathrm{p} K_{\mathrm{a}}$ values for $\mathbf{S 1} \mathbf{- S 6}$ are higher than experiment (Table S3). As stated earlier, the error in $\Delta G_{\text {gas }}$ is usually a small negative error and the error in $\Delta \Delta G_{\mathrm{s}}$ is a large positive error. Since the error in $\Delta \Delta G_{\mathrm{s}}$ is so much larger than $\Delta G_{\text {gas }}$, this error dominates the $\mathrm{p} K_{\mathrm{a}}$ values and the error in $\mathrm{p} K_{\mathrm{a}}$ is always positive.

The calculated $\mathrm{p} K_{\mathrm{a}}$ values for $\mathbf{S 7}$ and $\mathbf{S 8}$ are quite good (Table $3)$. The errors for both $\Delta G_{\text {gas }}$ and $\Delta \Delta G_{\mathrm{s}}$ are generally within experimental error. Also, the large error in p-aminophenol is fixed by this treatment. The species p-aminophenoxide was found to have significantly different lowest energy conformations between the gas phase and the solvated phase. This difference accounted for the abnormally large error in p aminophenol with $\mathbf{S 1}-\mathbf{S 6}$. There would be no way to fix this problem using the gas-phase geometry solvation calculations.

Table 4 is an analysis of the total errors in the absolute $\mathrm{p} K_{\mathrm{a}}$ calculations. All of the calculations used CBS-QB3 for the gasphase calculation, so the errors are broken down by solvation method. As expected, $\mathbf{S 7}$ gives the best values followed by $\mathbf{S 8}$, $\mathbf{S 5}, \mathbf{S 6}, \mathbf{S 3}, \mathbf{S 4}, \mathbf{S 1}$, and $\mathbf{S 2}$. This is the exact same order as the accuracy in the solvation calculations.

There are a few experimental solvation values available in the literature for the phenols. ${ }^{34}$ These values are listed in Table 2 for phenol, o-methylphenol, m-methylphenol, and p-methylphenol. $\mathbf{S 1}$ and $\mathbf{S 2}$ are off by 1.5 to $3 \mathrm{kcal} / \mathrm{mol}$ for these values. The methods using the gas-phase HF geometries are better. For $\mathbf{S 3}$ and $\mathbf{S 5}$ the errors are 0.3 to $1.2 \mathrm{kcal} / \mathrm{mol}$. This is significantly less than the error in $\Delta \Delta G_{\mathrm{s}}$ reported in Table 6. Therefore, the majority of the error must be in the solvation calculations for the anions. The only experimental value for ΔG_{s} of an anion is $-75 \mathrm{kcal} / \mathrm{mol}$ for the phenoxide anion. The most negative value we can calculate using CPCM with a gas-phase geometry is $-69.92 \mathrm{kcal} / \mathrm{mol}$ with $\mathbf{S 2}$. SM5.42R is another continuum solvation method that uses gas-phase geometries. ${ }^{34,35}$ The most negative value reported for the SM5.42R test set is $-67.2 \mathrm{kcal} /$ mol for the HF/cc-pVDZ parametrization while the most negative value using a DFT parametrization is $-63.3 \mathrm{kcal} / \mathrm{mol}$ for B3LYP/MIDI!. ${ }^{34}$ SM5.42R may have the same difficulties in this situation as CPCM.

The use of solvated phase geometries yields a significant improvement. For the neutrals the errors are 0.6 to $1.5 \mathrm{kcal} /$ mol for $\mathbf{S 7}$. This is on a similar scale as $\mathbf{S 5}$ (Supporting Information, Table S2). However, the error in the phenoxide anion is significantly less. For $\mathbf{S 7}$ the ΔG_{s} value for phenoxide is $-73.26 \mathrm{kcal} / \mathrm{mol}$. This is much more negative than any of the ΔG_{s} values found using gas-phase geometries. Our value of ΔG_{s} for the phenoxide anion using a solvated phase geometry agrees with the two reported experimental values of -72^{24} and $-75^{34} \mathrm{kcal} / \mathrm{mol}$.

We believe that the entire issue of standard states is worth additional discussion. The value we used for $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right),-264.61$ $\mathrm{kcal} / \mathrm{mol}$, was derived from an experimental thermodynamic cycle for acetic acid. ${ }^{6}$ Referring to the thermodynamic cycle in the Introduction, $\Delta G_{\text {aq }}$ is $6.48 \mathrm{kcal} / \mathrm{mol}$ for a $\mathrm{p} K_{\mathrm{a}}$ of $4.75, \Delta G_{\mathrm{s}}$ for acetic acid and acetate anion are known, ${ }^{24,34}$ and the value of ΔG_{gas} of $341.4 \mathrm{kcal} / \mathrm{mol}$ was obtained using the average of

[^4]three experimental determinations. ${ }^{30,31,36}$ Solving for $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right)$ yields a value of $-264.61 \mathrm{kcal} / \mathrm{mol}$. This number can be criticized because of the intrinsic errors in the experimental values used to derive this number. However, we can compare the value of -264.6 with the most recent values available. Our value is the standard state free energy of solvation, defined as the free energy of transfer of 1 M solute from the gas phase to 1 M aqueous solution, at 298.15 K . This is the convention used for implicit solvation programs that calculate the standard state free energy of solution. ${ }^{34,37}$ We have previously discussed how the value for $\Delta G_{\text {vap }}$ for water of $2.053 \mathrm{kcal} / \mathrm{mol}$ is equivalent to the value for ΔG_{s} for water of $-6.3 \mathrm{kcal} / \mathrm{mol}$ when the standard state for $\Delta G_{\text {vap }}\left[\mathrm{H}_{2} \mathrm{O}(1,298.15 \mathrm{~K}, 55.53 \mathrm{M}) \Longrightarrow\right.$ $\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 298.15 \mathrm{~K}, 1 \mathrm{~atm})\right]$ is converted to $\left[\mathrm{H}_{2} \mathrm{O}(1,298.15 \mathrm{~K}\right.$, $\left.1 \mathrm{M}) \Rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 298.15 \mathrm{~K}, 1 \mathrm{M})\right]^{7}$ In a similar manner, converting our value for $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right)$from a standard state of 1 M in the gas phase to 1 atm in the gas phase changes the value of $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right)$to $-262.72 \mathrm{kcal} / \mathrm{mol}$. This number is in good agreement with the most recent experimental and theoretical values. ${ }^{6,38-40}$ Two groups have used high-level ab initio calculations in a combined supermolecule-continuum approach to calculate the free energy of hydration of the proton. ${ }^{38,40}$ They calculate values of -262.5 and -262.4 for $\Delta G_{\mathrm{s}}\left(\mathrm{H}^{+}\right)$using a reference state of 1 atm in the gas phase. Converting their values to the 1 M gas-phase reference state yields values of -264.4 and $-264.3 \mathrm{kcal} / \mathrm{mol} .{ }^{40}$ These calculated results are in excellent agreement with the best experimental estimates of the free energy of hydration of the proton ${ }^{40}$ and strengthen support of our use of the value of $-264.6 \mathrm{kcal} / \mathrm{mol}$, which we derived from available experimental data on deprotonation of acetic acid. ${ }^{6}$

At the suggestion of a referee we performed a series of test calculations on the CPCM/HF/6-31+G(d) phenol and phenoxide geometries. Use of $6-311 \mathrm{G}(2 \mathrm{df}, \mathrm{p})$ and $6-311+\mathrm{G}(2 \mathrm{df}, \mathrm{p})$ basis sets yielded values for phenol of -7.23 and $-7.58 \mathrm{kcal} / \mathrm{mol}$, results very similar to those obtained with the $\mathbf{S 7}$ and $\mathbf{S 8}$ procedures (Table 2). Using these same two basis sets for phenoxide gave values of -72.43 and $-72.55 \mathrm{kcal} / \mathrm{mol}$, about $1 \mathrm{kcal} / \mathrm{mol}$ more positive than the $\mathbf{S 7}$ and $\mathbf{S 8}$ procedures (Table 2). These results are very similar to the results reported previously by Barrone and Cossi, who stated that more solute charge escapes from the cavity for ions than for neutrals, because of the exponential decay of electronic tails. ${ }^{11} \mathrm{We}$ also performed CPCM/MP2 SPCs using the $6-31 \mathrm{G}(\mathrm{d}), 6-31+\mathrm{G}(\mathrm{d}), 6-311 \mathrm{G}-$ ($2 \mathrm{df}, \mathrm{p}$), and $6-311+\mathrm{G}(2 \mathrm{df}, \mathrm{p})$ basis sets on the same two geometric structures. Results were within a few hundredths of a $\mathrm{kcal} / \mathrm{mol}$ to the HF calculations, resulting in no significant differences. We note that the size of the molecular cavities in the CPCM method were optimized at the Hartree-Fock level by using small basis sets, so the use of procedures $\mathbf{S 7}$ and $\mathbf{S 8}$ makes sense within the context of this particular method.

In our previous work on $\mathrm{p} K_{\mathrm{a}}$ calculations of carboxylic acids, geometry optimization in aqueous solution was not necessary to obtain accurate $\mathrm{p} K_{\mathrm{a}}$ values. ${ }^{5-7}$ Yet for phenols, geometry
(36) Taft, R. W.; Topsom, R. D. Prog. Phys. Org. Chem. 1987, 16, 1-83.
(37) Winget, P.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. J. Phys Chem. B 2000, 104, 4726-4734.
(38) Tawa, G. J.; Topol, I. A.; Burt, S. K.; Caldwell, R. A.; Rashin, A. A. J. Chem. Phys. 1998, 109, 4852-4863.
(39) Tissiander, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlack, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, T. R. J. Phys Chem. A 1998, 102, 7787-7794.
(40) Zhan, C.-G.; Dixon, D. A. J. Phys Chem. A 2001, 105, 11534-11540.
optimization is absolutely essential, particularly for the anions, to obtain accurate $\mathrm{p} K_{\mathrm{a}}$ results. We can explain this using simple delocalization arguments. Figure 2 displays the geometry of the phenoxide anion, with the bond distances for geometry optimization at the $\mathrm{HF} / 6-31+\mathrm{G}^{*}$ and $\mathrm{CPCM} / \mathrm{HF} / 6-31+\mathrm{G}^{*}$ levels of theory. The natural charges from natural population analysis ${ }^{41}$ are also presented. The figure shows that geometry optimization in the gas phase results in a short carbon-oxygen bond, and a ring structure with alternating carbon-carbon bond lengths. One of the lone pairs on oxygen conjugates with the π system of the phenyl ring, donating electron density into a molecular orbital that shortens the $\mathrm{C}-\mathrm{O}$ bond and strengthens two $\mathrm{C}-\mathrm{C}$ bonds at the expense of the other four. This removes electron density from oxygen, decreasing its attractive interaction with solvent molecules. In contrast, geometry optimization in water favors the accumulation of electron density on the oxygen, so delocalization into the π system is disfavored, resulting in a strikingly longer $\mathrm{C}-\mathrm{O}$ bond and a more uniform ring structure. In an earlier study the natural charge on the phenoxide oxygen has been shown to be a good parameter to relate to $\mathrm{p} K_{\mathrm{a}}{ }^{4}$ The natural charges in Figure 2 confirm that there is more charge localization on the oxygen atom for the CPCM reoptimized geometry. For the carboxylic acids that we have studied previously, formic, acetic, cyanoacetic, chloroacetic, oxalic, and pivalic acids, there are no ring systems available to diffuse the charge. These carboxylate anions spread the charge evenly over both oxygens and furthermore lack the freedom to redistribute the charge that an aromatic ring provides in the present series. Hence they do not display the dramatic differences between their gas-phase and solution structures that one finds in the phenols. Geometry optimization of the formate anion in solution lengthens each $\mathrm{C}-\mathrm{O}$ bond length by $0.0056 \AA$, and the natural charges on the oxygens increase by 0.0037 . The present work

[^5]suggests that for any molecules that allow significant charge delocalization, geometry optimization in solution will be important.

Conclusion

In this work we have presented a coherent method that uses readily available computational techniques to accurately estimate $\mathrm{p} K_{\mathrm{a}}$ values of substituted phenols. Absolute $\mathrm{p} K_{\mathrm{a}}$ calculations for phenols are not accurate when using the CPCM continuum solvation method on gas-phase optimized geometries. For the best gas-phase geometry solvation method, $\mathbf{S 5}$, the MUE is 2.62 , the STDEV is 2.92 , and the RMS error is $2.85 \mathrm{p} K_{\mathrm{a}}$ units. However, excellent predictions result from using solvated phase geometries in the solvation calculations. For S7, the MUE is 0.30 , the STDEV is 0.39 , and the RMS error is $0.38 \mathrm{p} K_{\mathrm{a}}$ unit. Geometry optimization of the anions in aqueous solution using the CPCM method is essential for accurate $\mathrm{p} K_{\mathrm{a}}$ predictions of phenols. The dramatic improvement in the accuracy of the $\mathrm{p} K_{\mathrm{a}}$ calculations results from the charge redistribution that occurs in going from the gas phase to solution.

Acknowledgment. The authors thank the Petroleum Research Fund, administered by the ACS, the Camille and Henry Dreyfus Foundation, the NIH, and Hamilton College for support of this work. M.D.L. acknowledges support from the Merck/AAAS USRP and the Bristol-Myers Squibb Fund. S.F. and G.C.S acknowledge support from the Camille and Henry Dreyfus Foundation Scholar/Fellow program. We thank Chris Cramer and Ed Sherer for helpful discussions.

Supporting Information Available: Optimized geometries and energies for all stationary points discussed in the text, and Tables S2 and S3, which contain results for eight different solvation procedures (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA012474J

[^0]: * Corresponding author. E-mail: gshields@hamilton.edu.
 \dagger Hamilton College.
 \ddagger Wright State University.
 (1) Gruber, C.; Buss, V. Chemosphere 1989, 19, 1595-1609.
 (2) Schuurmann, G. Quant. Struct.-Act. Relat. 1996, 15, 121-132.
 (3) Hanai, T.; Koizumi, K.; Kinoshita, T. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 363-385.
 (4) Gross, K. C.; Seybold, P. G. Int. J. Quantum Chem. 2001, 85, 569-579
 (5) Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. J. Chem. Phys. 2001, 114, 4595-4606
 (6) Liptak, M. D.; Shields, G. C. J. Am. Chem. Soc. 2001, 123, 7314-7319.

[^1]: (12) McQuarrie, D. M. Statistical Mechanics; Harper and Row: New York, 1970.
 (13) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.

[^2]: (14) Petersson, G. A.; Allaham, M. A. J. Chem. Phys. 1991, 94, 6081-6090.
 (15) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A. J. Chem. Phys. 1991, 94, 6091-6101.
 (16) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598-2619.
 (17) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900-5909.
 (18) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532-6542.
 (19) Klamt, A.; Schuurmann, G. J. Chem. Soc., Perkin Trans. 2 1993, 799805.
 (20) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
 (21) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239.
 (22) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327-335.
 (23) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 30323041.
 (24) Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210-3221.
 (25) Cossi, M.; Barone, V.; Mennucci, B.; Tomasi, J. Chem. Phys. Lett. 1998, 286, 253-260.
 (26) Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem. 1998, 19, 404-417.
 (27) Mennucci, B.; Cammi, R.; Tomasi, J. J. Chem. Phys. 1998, 109, 27982807.
 (28) Floris, F.; Tomasi, J. J. Comput. Chem. 1989, 10, 616-627.
 (29) Floris, F. M.; Tomasi, J.; Ahuir, J. L. P. J. Comput. Chem. 1991, 12, $784-$ 791.

[^3]: (30) Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. Soc. 1981, 103, 4017-4029.
 (31) Cumming, J. B.; Kebarle, P. Can. J. Chem. 1978, 56, 1-9.
 (32) Kebarle, P.; McMahon, T. B. J. Am. Chem. Soc. 1977, 99, 2222-
 (33) Bartmess, J. E.; Scott, J. A.; McIver, R. T., Jr. J. Am. Chem. Soc. 1979, 101, 6046-6056.

[^4]: (34) Li, J.; Zhu, T.; Hawkins, G. D.; Winget, P.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. Theor. Chem. Acc. 1999, 103, 9-63.
 (35) Li, J. B.; Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G. Chem. Phys. Lett. 1998, 288, 293-298.

[^5]: (41) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.

