General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ABSOLUTE RATE OF THE REACTION OF $\mathrm{Cl}\left({ }^{2} \mathrm{P}\right)$ WITH METHANE FROM 200-500K

(NASA-TM $-X-7$ 1221) ABSOLUTE RATE OF THE
N77-11136
REACTICN OF C L(2P) WITH METHANE FROM
200-500 K (NASA) 25 p HC A02/MF A0 1
CSCL 07 D
\(\mathrm{G} 3 / 25 \quad \begin{array}{ll}Unclas
55739\end{array}\)

D. A. WHYTOCK
J. H. LEE
J. V. MICHAEL
W. A. PAYNE
L. J. STIEF

OCTOBER 1976
—— GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

D．A。Whytock Department of Chemistry University of Essex
Colchester，Essex
and

J．H．Lee＊＊，J。V．Michael＊＊＊，W。A．Payne and L。J。Stief Astrochemistry Branch
Laboratory for Extraterrestrial Physics
NASA／Goddard Space Flight Center
Grernbelt，Mnryland 20771
＊On leave 1975－76 at Catholic University of America， Washlngton，D．C． 20017
＊＊NAS／NRC Resident Research Associate
＊＊＊NAS／NRC Senior Resident Research Associate

ABSTRACT

Rate Constants for the reaction of atomic chlorine with methane have been measured from $200-500 \mathrm{~K}$ using the flash photolysis-resonance fluorescence technique。 When the results from fourteen equally spaced experimental determinations are plotted'n Arrhenius form a definite curvature is noted. The results are best represented by the least squares equation, $k=\left(5.44 \pm \begin{array}{c}16.34 \\ 4.08\end{array}\right) \times 10^{-19}$ $\left.T^{(2.50} \pm 0.21\right) \exp (-608+62 / T) \mathrm{cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$ 。 The results are compared to previous work and are theoretically discussed.

INTRODUCTION

Rate constants for the reaction of chlorine atoms with hydrogenous species are of great current interest due to the potential importance of such reactions in determining the rate of ozone depletion in the earth's jcratosphere ${ }^{1}$. Thus, termination of $C i$ atom chains in the stratosphere can occur via

$$
\begin{equation*}
\mathrm{C} \ell+\mathrm{RH} \rightarrow \mathrm{HC} \ell+\mathrm{R} \tag{I}
\end{equation*}
$$

which woald result, at least temporarily, in the destruction of $C \mathfrak{C}$ atoms and interxuption of the $C\{-C \ell O$ chain which destroys ozone. The reaction of Cl atoms with CH_{4} is of particular importance in this respect because of its abundance in the stracosphere ${ }^{1}$.

Until very recently, only three direct studies had been made of the rate constant for the reaction

$$
\begin{equation*}
\mathrm{Cl}+\mathrm{CH}_{4} \rightarrow \mathrm{HCl}+\mathrm{CH}_{3} \tag{2}
\end{equation*}
$$

Davis, Braun and Bass^{2} reported a value of $\mathrm{k}_{2}=(1,5+0.7)$ $\times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 298 K using the flash photolysisresonance fluorescence ($F P-R F$) technique. Clyne and Walker ${ }^{3}$ measured k_{2} using a discharge flow - nass spectrometric (DF-MS) technique and obtained $\mathrm{k}_{2}=(5.08 \pm 0.53) \times 10^{-11}$ $\exp (-1790+40 / \mathrm{T}) \mathrm{cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$ from $300-686 \mathrm{~K}$, while
poulet, leBras and Combourieu ${ }^{4}$, using a similar technique, reported $k_{2}=(1.84+0.14) \times 10^{-11} \exp (-1400 \pm 100 / \mathrm{T}) \mathrm{cm}^{3}$ molecule ${ }^{-1} s^{-1}$ from 295-490K. The room temperature values of k_{2} from all three studies are in reasonable agreement, but the two temperature dependent studies clearly do not agree.

Very recently several further studies have been performed. Leu and DeMore ${ }^{5}$ obtained $k_{2}=(1.2+0.3) \times 10^{-13} \mathrm{~cm}^{3}$ molecule e^{-1} s^{-1} at 298 K using the $\mathrm{DF}-\mathrm{MS}$ technique, while the temperature dependence of k_{2} has been further studied in severai laboratories. Watson, Machado, Fischer and Davis, ${ }^{6}$ using the $F P-R F$ technique, obtained $\mathrm{k}_{2}=(7,94 \div 0.70) \times 10^{-12}$ $\exp (-1260 \pm 35 / \Upsilon) \mathrm{cm}^{3}$ molecule $\mathrm{s}^{-1} \mathrm{~s}^{-1}$ from $218-401 \mathrm{~K}$. The possibility of non-Arrhenius behariour of k_{2} is clear from the above studies, in that A_{2} and E_{2} are both higher at higher temperatures, with reasonabie agreement on the value of k_{2} at room temperature. The possibility of a curved Arrhenius plot was suggested by Manning and Kurylo ${ }^{7}$ who obtained $\mathrm{k}_{2}=(7.93+1.53) \times 10^{-12} \exp (-1273 \pm 51 / \mathrm{T})$ using FP-RF from 218-322K. However, they noted that their highest and lowest temperature points lay above the Arrhenius line,
while the mid-range points lay below the line. Their results from 277-322K could be fitted by the Arrhenius expression $k_{2}=(2.77 \pm 1.28) \times 10^{-11} \exp (-1647 \pm 138 / \mathrm{T})$ cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1}$ which was close to that derived from the results of Zahniser and Kauiman ${ }^{8}$ from 300-504K. The latter workers measured k_{2} from $200-504 \mathrm{~K}$ using the discharge flow-resonance fluorescence (DF-RF) technique and observed non-linear Arrhenius behaviour.

Much of the apparent discrepancies between the various Arrhenius equations reported for k_{2} might be explained if the non-linear Arrhenius behavior obtained by Zahniser and Kaufman were conitimed using an independent technique, To this end, reaction (2) has been studied here at short temperature intervals in the range $200-500 \mathrm{~K}$ using the FP-RF technique.

The FP-RF apparatus used in this study has been described in detail previously. 9 Consequently, only those aspects of the apparatus and procedures which are specific to the study of this reaction will be emphasized here. In all of the reported experiments, chlorine atoms wexe produced by the flash photolysis of phosgene. ${ }^{10}$ Except for one series of experiments at room temperature using a LiF filter, a sapphire filter was used to restrict photolyzing wavelengths to $\lambda \geq 143 \mathrm{~nm}$ so that photolysis of methane in the flash was negligible. Several preliminary experiments at room temperature using a suprasil filter with carbon tetrachloride as the atom source gave results identical to those reported here.

Chlorine atom resonance radiation was produced by flowing a mixture of C_{2} in He through the microwave discharge resonance lamp. The lamp output was observed with a McPherscn Model 218 vacuum monochromator for a variety of compositions and pressure. Optimum conditions were established with $0.1 \% \mathrm{Cl}_{2}$ in He at a pressure of approximately 0.5 torr. The multiplet structure showed only moderate reversal under these operating conditions. 11 Resonantly scattered photons were viewed at right angles through a
BaF_{2} filter without wavelength resolution, and the signal was asmumed to be ineariy proportional to the atom concentration. ${ }^{12}$ The 3 -component reaction mixtures of methane, phosgene source and argon diluent flowed through the cell at a rate sufficient to replenish the reaction mixture between successive dlashes. preliminary experiments showed that pseudo-fixst-order rate constants, obtained from exponential decay of the resonance fluorescence, were slightly higher under either static or very slow flow condiむions, indicating that secondary complications could contripute at insufficiently fast flow rates.

The pseudo-first-order rate constants obtained in the presence of a large excess of methane were composite since, in addition to reaction with CH_{4} and any impurities, C (atoms were lost by diffusion out of the reaction viewing zone. The diffusion correction, k_{d}, was determined independently in the normal way ${ }^{9}$ by flash photolyzing mixtures of phosgene and argon at the various experimental temperatures and pressures employed to obtain the kinetic results. At very high incident flash intensities, i, e. at high flash energies and with the optical train from the flash lamp to the reaction cell freshly cleaned, k_{d} was observed to depend upon the intensity of the flash. Such variations were easily allowed for in practice. The k_{d} correction,term under such conditions
never exceeded 10% of the observed decay rate constant and was normally $\ll 10 \%$. For most series of experiments k_{d} was independent of intensity and was again typically $\ll 10 \%$, although it was ~15\% at the highest temperatures studied here.

Argon (Matheson, 99.9995\%) and helium (Airco, 99.9999\%) were used without further purification. Chlorine (Matheson, 99.5\%) was further purified by fractional distillation at 195 K and phosgene (Matheson, 99%) was similarly purified by fractionation at 163k. Methane (Matheson, 99.97\%) was used without further purification。 Gas chromatographic analysis of the CH_{4} showed it to contain 32 ppm of $\mathrm{C}_{2} \mathrm{H}_{5}$ as impurity, but no other hrdrocarbon impurities were detectable.

Under the pseudo-first-order conditions employed here with $\left[\mathrm{CH}_{4}\right] \gg[\mathrm{C} \ell]$, the decay of $\mathrm{C} \ell$ atoms may be represented by

$$
\begin{equation*}
\ln [C \ell]=-k_{\text {observed }} t+\ell_{n}[C \ell]_{0} \tag{3}
\end{equation*}
$$

where the observed pseudo-first-order rate constant is given by

$$
\begin{equation*}
\mathrm{k}_{\text {observed }}=\mathrm{k}_{\mathrm{bi}}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{\mathrm{d}} \text {. } \tag{4}
\end{equation*}
$$

plots of $i_{n}[C \ell]$ vs t were linear and k observed, and hence $k_{b i}$, was obtained from such plots using a Iinear least squares analysis. The xesults are presented in Table 1 , and as shown there, $k_{b i}$ was independent of substantial variations in both total pressure and $\left[\mathrm{CH}_{4}\right]$. The essential correctness of equation (4) is indicated by the Iinearity of plots of $k_{\text {observed }} \mathrm{vs}\left[\mathrm{CH}_{4}\right]$, as shown in Fig. 1 .

Despite the very high [stable reactant] / [atom] ratios accessible in this system, it has been shown previously ${ }^{13,14}$ that contributions from secondary reartions resulting in additional atom loss can become important at very high incident flash intensities i.e。, at relatively high atom and/or free radical concentrations. Consequently, the reaction was studied over a wide range of flash intensity, and hence a wide range of $[\mathrm{c}]$, under all conditions. For most experimental conditions, the measured $k_{b i}$ was
independent of the accessible flash intensity range. However, for some series of experiments, in particular for those performed with a freshly cleaned optical train from flash lamp to reaction cell, the resulting $k_{b i}$ was observed to increase slowly from its low flash energy limit to $\sim 20 \%$ above that limit at very high flas’ energies. This increase in k_{bi} was indicative of secondary complications and, in the few series of experiments where this occurred (at and around room temperature), only those experiments which were clearly independent of a range of intensity are included in Table 1.

In order to obtain k_{2} from the $k_{b i}$ values listed in Table 1, corrections to $k_{b i}$ must be applied to account for the fast reaction ${ }^{7}$ of C \& with the $32 \mathrm{ppm} \mathrm{C}_{2} \mathrm{H}_{6}$ impurity always present in the CH_{4} used here。 Table lincludes a listing of $k_{b i}$ (corrested), ihe latter being equal to k_{2}. The correction decreases from $\sim 10 \%$ at 200 K to $\sim 0.2 \%$ at 500 K .

Fig. 2 shows an Arrhenius plot of the mean k_{2} obtained at each of the 14 temperatures. A linear least squares treatment yields the equation $\mathrm{k}_{2}=(11.0 \pm 1.2) \times 10^{-12}$ $\exp (-1350 \pm 30 / \mathrm{T}) \mathrm{cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$. However, a definite curvature is apparent in Fig. 2. Thus the results may be
better represented by an equation of the form $k=A T^{n} \exp (-B / T)$ and the least squares fit, shown as the dashed line in Fig. 2 is given by the equation $\mathrm{k}_{2}=\left(5.44^{+16.34}-4.08\right) \times 10^{-19} \mathrm{~T}(2.50+0.21)$ $\exp (-608+62 / \mathrm{T}) \mathrm{cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$ 。

DISCUSSION

The apparent uncertainty in the Arrhenius parameters for k_{2} is evident in the very recent review compiled by Watson. ${ }^{15}$ The reported A_{2} values range from 5.08×10^{-11} to $7.5 \times 10^{-12} \mathrm{~cm}^{3}$ molecule $\mathrm{s}^{-1} \mathrm{~s}^{-1}$ while the E_{2} values range from 3.56 to $2.50 \mathrm{kcal} \mathrm{mol}^{-1}$. It is possible that nonlinear Arrhenius behaviour may, at least in part, be responsible for these discrepancies. This has been suggested by Manning and Kurylo ${ }^{7}$ and is reinforced by the results obtained here. Thus it the present results are aralyzed Ger temperature ranges equivalent to those used in other studies, as shown in Table 2, the agreement with other studies using resonance fluorescence detection is excellent. The agreement with the DF-MS study of poulet et al ${ }^{4}$ also is good. However this may be fortuitous, given the poor precision of the data from reference (4). The other DF-MS study of Clyne and Walker ${ }^{3}$ yields Arrhenius parameters significantly higher than the resonance fluorescence results. Nevertheless, it is clear that much of the apparent conflict in Arrhenius parameters of different studies may be explained by non-linear Arrhenius behavior, with the resulting A_{2} and E_{2} depending on the T range.

The discrepancy between the DF-MS results, obtained under Cl-rich conditions, and those obtained using resonance fluorescence detection under $\mathrm{CH}_{4}-$ rich conditions, is presented graphically in Fig。 3. The DF-MS results, represented by filled symbols, seem generally -20% higher than the open symbols of the resonance fluorescence data and in general the two sets of results do not quite overlap within the claimed uncertainties. Nevertheless it is clear frum Fig。 3 that the rate constant k_{2} is known with a great deal more precision than most gas kinetic rate constants. This is particularly so between $200-300 \mathrm{~K}$, since all of the resonance fluorescence results, both $\mathrm{DF}-\mathrm{RF}$ and $\mathrm{FP}-\mathrm{RF}$, are in remarkably good agreement. The present results are essentially identical to those of Manning and Kurylo ${ }^{7}$ and lie between the slightly higher values of Watson et al ${ }^{6}$ and the slightly lower values of Zahniser and Kaufman. ${ }^{8}$

However, as indicated in Fig. 2 and Table 2, the present results over the complete $200-500 \mathrm{~K}$ range seem best represented by a 3 -parameter fit given by $\mathrm{k}_{2}=(5.44-16.34) \times 10^{-19}$ $T^{(2.50 \pm 0.21)} \exp (-608 \pm 62 / T) \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$. All of the resonance fluorescence results from references (2), (6), (7), and (8), together with the present results, can be fitted to the similar expression $k_{2}=(2.08+8.03) \times 10^{-17}$
$T^{(1.96+0.56)} \exp (-766+168 / T) \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ for 200504 K . The difference between these two equatinme is largely a result of the uneven distribution of the combined data over this temperature range, in particular the paucity of data at $T>407 \mathrm{~K}$ 。

A theoretical description of reaction (2) has already been reported with the BEBO method in order to explain measured kinetic isotope effects, ${ }^{16,17}$ and these calculations included one dimensional tunneling corrections. We have extended the BEBO calculation by including triplet repulsion and using separate values for bond indices. ${ }^{17}$ Also one dimensional Eckart tunneling factors have been included after the method of Truhlar and Kuppermann ${ }^{18}$ in contrast to that of Johnston. 17,19 The two methyl wags in the activated complex are assumed to be degenerate, and its frequency is taken as a parameter in fitting the data. For a value of $1140 \mathrm{~cm}^{-1}$, the computed values are well represented by $k=8.4 \times 10^{-19} T^{2.5} \exp (-748 / T)$ over the temperature range $200-500 \mathrm{~K}$ 。

The agreement between calculated and experinental results is excellent but may be fortuitous given the approximate nature of BEBO and the uncertainties surrounding both the application of one dimensional tunneling theory ${ }^{19}$
and the ambiguities of activated complex vibration frequency assignments．These inadequacies are further reflected in isotope effect calculations．Consistent extension of the model to $\mathrm{Cl}+\mathrm{CD}_{4}$ predicts $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right) 300 \mathrm{~K}=4 \mathrm{~s}$ whexeas the measured value is 11.0 .10 Thus，the experimentally observed non－Arrhenius behavior cannot be used to imply the correctness of the model and，in particular，the presence of tunneling．On the other hand the model as described is consistent with experiment．We point out for the present case that the greatest ambiguities arise from tunneling corrections and vibration frequency assignments and not from the method of obtaining the potential energy of interaction（BEBO）．Even with more sophisticated methods （eg．LEPS），the above mentioned ambiguities will still be present and will make the theoretical results somewhat arbitrary。

Acknowledgements：We thank Dr 。 $\mathrm{R}_{\mathrm{c}} \mathrm{E}$ 。 Rebbert for the analysis of the methane used in this study，$D r$ 。 R 。 T。 Watson for a pre－publication copy of the review cited in ref． 15 ，and $D r$ 。 R 。E．Weston，$J r$ 。for helpful discussions． D．A．W．acknowledges support by NASA under grant NGR09－005－103 to Catholic University of America。

1．F．S．Rowland and M．J．Molina，Rev．Geophys．Space Phys．13， 1 （1975）．

2．D．D．Davis，W．Braun and A．M．Bass，Int．J．Cheno Kinetics 2， 101 （1970）．R．T．Watson（ref．15） recommends a recalculated $\mathrm{k}_{2}=(1.35 \pm 0.1) \times 10^{-13}$

3．M．A．A．Ciyne and R． R_{0} ．Walker，J。 C 。 S ．Faraday I 69， 1547 （1．973）．

4．G．Poulet，G．LeBras and J．Combourieu，J．Chimie physique 71， 101 （1974）．

5．M．T．Leu and W．B．DeMore，Chem．Phys．Lett．4I， 121 （1976）．

6．R．T．Watson，E．Machado，S．Fischer and D，D．Davis， J．Chem．Phys．65， 2126 （1976）。

7．R．G．Manning and M．J．Kurylo，J．Pnys．Chem．， in press．

8．M．S，Gahniser and Fo Kaufman，private communication， 1976．

9．R．B．Klemm and L．J．Stief，J．Chemopinys．61， 4900 （1974）；W．A。 Payne and L．J．Stief，J．Chem．Dinys． 64， 1150 （1976）．

10．H．Oisabe，A．H．Laufer and J．J．Ball，J．Cnem．Phys． 55， 373 （1971），and references therein．

11．M，A．A．Clyne and W．S．Nip，J．C．S．Faraday II 72， 838 （1976）．

12．M．S．Zahniser，F．Kautman and J．G．Anderson，Chem． Pays．Lett．37． 226 （1976）；P．P．Bemand and M．A．A． Ciyne，J。C．S．Faraday II 71，lly̆ž（1975）．

13．D．A．Whytock，R，B．Timmons，J．H．Lee，J，V．Michael， W．A，Payne ad L．J．Stief，J．Cnem．Phys．65， 2052 （1976）．

14．D．A．Whytock，J．V．Michae？，W．A．Payne and L．J． Stief，J．Chem．Phys．，in press．

15．R．T．Watson，＂Rate constants of $\mathrm{C}_{2} \mathrm{O}_{2}$ of Atmospheric Interest，＂Jo Phys．Chem．Ref．Data，in press．

16．G．Chiltz，R．Eckling，P。Goldfinger，G。Huybrechts， H．S．Johnston，L．Meyers，and G．Berbeke，J．Chem． Phys．38， 1053 （1963）．

17．H．S．Johnston，Gas Phase Reaction Rate Theory， （Ronald，New York，1966），

18．D，G．T：Mhlar and A．Kuppermann，JoAm。Chem。Soco 93， 1840 （1971）．

19．For a discussion see M．J．Stexn and R．E．Weston，Jr．， J。Chem．Piys．60， 2803 （1974）；ibid， 2808 （1974）： ibid， 2815 （1974）．
Table 1. Rate data for the reaction $\mathrm{Cl}+\mathrm{CH}_{4} \rightarrow \mathrm{HCl}+\mathrm{CH}_{3}$

$\frac{\mathrm{T}}{\mathrm{~K}}$	$\frac{P_{A r}}{\frac{A r x}{}}$	$\frac{\mathrm{P}_{\mathrm{CH}_{4}}}{\text { mTorr }}$	$\frac{\mathrm{P}_{\mathrm{Coc} \ell_{2}}}{\mathrm{mTorr}}$	$\begin{aligned} & \begin{array}{l} \text { Flash } \\ \text { energy } \end{array} \\ & J \end{aligned}$	No. of experiments	$\frac{\mathrm{k}_{\mathrm{bi}}{ }^{\mathrm{c}}}{10^{-14} \mathrm{~cm}^{3} \text { molecule } \mathrm{e}^{-1} \mathrm{~s}^{-1}}$	$\frac{\mathrm{k}_{\mathrm{bi}} \text { (corrected }}{10^{-14} \mathrm{~cm}^{3} \text { molecule } \mathrm{s}^{-1}}$
500	50	50	75	38-182	15	$90.2+8.1$	
500	50	65	75	33-144	1.6	$91.4+6.6$	
					31	$\underline{90.8+7.3^{\text {d }}}$	$90.6 \pm 7.3^{\text {e }}$
447	100	70	75	28-182	12	56.1 ± 4.1	
447	100	100	75	28-203	12	56.6 ± 4.7	
447	200	50	150	44-182	9	$59.9+2.0$	
					33	$57.3 \pm 4.1{ }^{\text {d }}$	$57.1 \pm 4.1{ }^{\text {e }}$
404	80	53.3	53.3	9-110	15	36. 5 ± 3.1	
404	80	160	53.3	9-116	16	$39.3+1.6$	
					31	$73.9 \pm 2.8{ }^{\text {d }}$	$37.7 \pm 2.8{ }^{\text {e }}$
371	50	100	33.3	18-46	6	28.2 ± 1.1	
371	100	66.6	66.6	7-95	13	27.4 ± 1.7	
					19	$27.6 \pm 1.5^{\text {d }}$	$27.4+1.5^{\text {e }}$
343	35	210	70	28-144	12	$21.1+1.6$	
343	50	100	100	9-42	12	$20.2+1.1$	
					24	$\underline{20.6+1.4^{\text {d }}}$	$20.4+1.4{ }^{\text {e }}$

Page 2 $a^{9} 0 \mp 8 \cdot \varepsilon \tau$ 0
5
0
0
0
i
i 0
0
0
0
0
0
0
0
\vdots $\stackrel{0}{4}$

웅
난 아 in 아 응
오 오
150
$\begin{array}{ll}10 \\ \sim & \text { ¢ }\end{array}$

$$
\begin{aligned}
& 35 \\
& 35 \\
& \\
& 40 \\
& 40
\end{aligned}
$$

$$
\begin{array}{r}
754 \\
1129 \\
\\
879 \\
1317 \\
\\
879 \\
1317 \\
\\
1005 \\
1505
\end{array}
$$

$$
\begin{aligned}
& 75 \\
& 75
\end{aligned}
$$

용 융

$$
\begin{aligned}
& 232 \\
& 232 \\
& 220 \\
& 220 \\
& 210 \\
& 210 \\
& 200 \\
& 200
\end{aligned}
$$

$$
\begin{aligned}
& 35 \\
& 3=
\end{aligned}
$$

$$
\begin{aligned}
& 87.5 \\
& 87.5 \\
& 87.5 \\
& 87.5 \\
& \\
& 100 \\
& 100
\end{aligned}
$$

$$
\begin{aligned}
& 56-144 \\
& 56-182 \\
& 29-182 \\
& 29-203 \\
& 50-163 \\
& 56-182 \\
& 36-182 \\
& 31-182
\end{aligned}
$$

$$
\begin{aligned}
& 9 \\
& \frac{91}{20} \\
& \underline{20} \\
& \frac{18}{18} \\
& \underline{30} \\
& \hline 16 \\
& \frac{12}{28} \\
& \hline 16 \\
& \hline \underline{9} \\
& \hline \underline{95} \\
& \hline
\end{aligned}
$$

Page 3

$$
\begin{array}{ll}
\begin{array}{l}
3.31 \pm 0.18 \\
3.50 \pm c 17 \\
\hline 3.41 \pm 0.20^{\mathrm{d}}
\end{array} & \\
2.47 \pm 0.14 \\
\frac{2.58 \pm 0.21}{2.51 \pm 0.18^{\mathrm{d}}} & 3.24 \pm 0.20^{\mathrm{e}} \\
\hline \begin{array}{l}
2.02 \pm 0.13 \\
\frac{2.16 \pm 0.13}{2.08 \pm 0.14^{\mathrm{d}}}
\end{array} & 2.34 \pm 0.18^{\mathrm{e}} \\
\hline 1.61 \pm 0.09 & 1.91 \pm 0.14^{\mathrm{e}} \\
\underline{1.68 \pm 0.08} & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathrm{m} \\
& \mathrm{~N}
\end{aligned}
$$

Table 2. Linear least squares Arrhenius parameters for \mathbf{k}_{2}

$\mathrm{T}_{\mathrm{K}}^{\text {range }}$	$\frac{\mathrm{A}_{2}{ }^{\mathrm{a}}}{10^{-12} \mathrm{~cm}^{3} \text { molecule } \mathrm{e}^{-1} \mathrm{~s}^{-1}}$	$\frac{\mathrm{E}_{2}{ }^{\mathrm{a}}}{\mathrm{kcal} \operatorname{mole}}{ }^{-\mathrm{I}}$	Reference
218-322	7.93+1.53	2.53 ± 0.10	7
22c-318	7.83 ± 0.67	2.54 ± 0.04	this work
218-401	7.94 ± 0.70	2.50 ± 0.07	6
220-404	9.91 ± 0.67	$2.66+0.04$	this work
200-504	13.6 ± 2.0	2. 87 ± 0.08	8
200-500	11.0 ± 1.2	2.69 ± 0.06	this work
296-504	$22.5+3.1$	3.23 ± 0.08	8
299-500	18. 4 ± 2.8	3.07 ± 0.10	this work
296-490	$19.2 \pm 5.8^{\text {b }}$	2.86 ± 0.19	4
300-484	$42.4 \pm 14.1^{\text {c }}$	$3.42 \pm 0.22^{\text {c }}$	3

a error limit is the standard deviation.
b recalculated from the original data; the author's quoted A-factor and error limit for A appear to be wrongly calculated in ref. 4 .
c although this study was from $300-686 \mathrm{~K}$, these paraneters apply only to the data from $300-484 \mathrm{~K}$.

FIGURE CAPTIONS

Fig．1．Pseudo－first－order rate constant $k_{\text {observed }}$ vs $\left[\mathrm{CH}_{4}\right]$ for the conditions $0: 276 \mathrm{~K}, \mathrm{p}_{\text {total }}=50 \mathrm{Torr}$ ；： 299 K ， $P_{\text {total }}=50 \mathrm{Torr}$ ，and displaced upwards by $100 \mathrm{~s}^{-1} ;$ ： 318 K ， $P_{\text {total }}=50$ Torr，and displaced upwards by $200 \mathrm{~s}^{-1}$ 。

Fig．2．Plot of $\log _{10} \mathrm{k}_{2}\left(=\log _{10} \mathrm{k}_{\mathrm{bi}}\right.$（corrected）vs $\frac{1}{\mathrm{~T}}$ ．The dashed line represents $\log _{10} \mathrm{k}_{2}$ evaluated from the equation $\mathrm{k}_{2}=5.44 \times 10^{-19} \mathrm{~T}^{2.50} \exp (-608 / \mathrm{T}) \mathrm{cm}^{3}$ molecule $\mathrm{e}^{-1} \mathrm{~s}^{-1}$ 。

Fig．3．Comparison of $\log _{10} \mathrm{k}_{2}$ values；filled symbols represent DF－MS data while ope symbols are DF－RF and FP－RF data， as follows：e，ref．3；v，ref．5；4，ref．4；$口$ ，ref．8； $\nabla_{\text {：}}$ ref．2；Δ ，ref．6；\rangle ，ref．7； 0 ，this work．

