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We consider a class of observation-driven Poisson count processes where the current value of the accom-
panying intensity process depends on previous values of both processes. We show under a contractive
condition that the bivariate process has a unique stationary distribution and that a stationary version of the
count process is absolutely regular. Moreover, since the intensities can be written as measurable functionals
of the count variables, we conclude that the bivariate process is ergodic. As an important application of
these results, we show how a test method previously used in the case of independent Poisson data can be
used in the case of Poisson count processes.
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1. Introduction

The modeling and the analysis of count data has received increasing attention during the last
decade. There are possible applications in various fields, such as biometrics, econometrics and
finance; see Davis, Dunsmuir and Wang [9] and Davis and Wu [10] for examples. A comprehen-
sive account of models for time series of counts is given in Kedem and Fokianos [20], Chapter 4.
In the majority of cases the count variables are assumed to be Poisson distributed, conditioned
on the past and perhaps some additional regressor variables. Models for count data consist of at
least two processes: an observable process of counts and an accompanying intensity process that
is usually not observed. Cox [6] and later Davis, Dunsmuir and Wang [9] classified these models
into parameter-driven and observation-driven specifications. In the first case, the accompanying
intensity process evolves independently of the past history of the observation process while, in
the latter case, the values on the intensity process do depend on past observations. The major
aim of this paper is to derive important properties such as stationarity, mixing and ergodicity for
a certain class of observation-driven processes. Davis, Dunsmuir and Wang [9] mentioned that,
in contrast to parameter-driven models where these properties are inherited by the observation
process from the accompanying intensity process, there is much less theory available in the case
of observation-driven models. Actually, ergodicity has been shown so far in a few special cases
only – see Grunwald, Hyndman, Tedesco and Tweedie [19], Streett [27], Davis, Dunsmuir and
Streett [8], Zheng and Basawa [28] and Fokianos, Rahbek and Tjøstheim [17]. In these papers,
the authors could use classical Markov chain theory.

In the present paper, we study a model where the observations Nt are Poisson distributed, con-
ditioned on the past, with an intensity λt depending on one lagged value of the count process and
the intensity process; that is, λt = f (λt−1,Nt−1), for some function f . Models of this type have
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been considered before by Rydberg and Shephard [26], Streett [27], Davis, Dunsmuir and Streett
[8], Fokianos, Rahbek and Tjøstheim [17] and Fokianos and Tjøstheim [18]. An important as-
pect is that such models allow for an autoregressive (AR) feedback mechanism in the intensity
process and it can be expected that this leads to a parsimonious parametrization. For clarity of
exposition, we do not include additional regressor variables that are often also incorporated in
specifications of the intensity. Under a contractive condition on f , we state in Section 2 that the
bivariate process ((Nt , λt ))t∈N has a unique stationary distribution. The proof of this result is
based on a simple construction, where independently started versions of the process are coupled
in such a way that they converge to each other. Section 3 contains the main results. For a sta-
tionary version of the process, we prove absolute regularity (β-mixing) of the univariate count
process. Since the latter process is not Markovian, we cannot rely on standard arguments from
Markov chain theory; rather, we use coupling arguments to derive this result. We also discuss an
example that shows that the bivariate process ((Nt , λt ))t∈Z and even the intensity process (λt )t∈Z

are not absolutely regular in general. However, since the intensities can be written as measurable
functionals of the count variables, we conclude from the mixing property of the count process
that the bivariate process is ergodic. In Section 4, we propose a test for a particular specification
of the intensity process. We use a test statistic that has been applied before by several authors
in connection with independent Poisson random variables. Using the ergodicity result from Sec-
tion 3, we can show that the test statistic is asymptotically normal. All proofs are deferred to a
final Section 5.

2. Stationarity of the bivariate process.

We assume that (Nt )t∈N is a time series of counts, accompanied by an intensity process (λt )t∈N.
Denote by BN,λ

t = σ(λ1, . . . , λt ,N1, . . . ,Nt ) the σ -field generated by the past and present values
of the two processes at time t . We assume throughout that

Nt |BN,λ
t−1 ∼ Poisson(λt ) (2.1)

and

λt = f (λt−1,Nt−1) (2.2)

for some function f : [0,∞) × N0 → [0,∞) (N0 = N ∪ {0}). For the time being, the start-
ing value λ1 may be random or non-random. It follows from the structure of the model that

BN,λ
t−1 = σ(λ1,N1, . . . ,Nt−1) and that the bivariate process ((Nt , λt ))t∈N forms a homogeneous

Markov chain. Throughout this paper we will assume that the function f satisfies the following
contractive condition:

|f (λ, y) − f (λ′, y′)| ≤ κ1|λ − λ′| + κ2|y − y′| ∀λ,λ′ ≥ 0,∀y, y′ ∈ N0, (2.3)

where κ1 and κ2 are non-negative constants with κ := κ1 +κ2 < 1. This includes as a special case
a linear specification where λt = θ0 + θ1λt−1 + θ2Nt−1 and θ0, θ1, θ2 are non-negative constants
with θ1 + θ2 < 1. Rydberg and Shephard [26] proposed such a model for describing the number
of trades on the New York Stock Exchange in certain time intervals and called it the BIN(1,1)
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model. Stationarity and other properties for this model were derived by Streett [27] and Ferland,
Latour and Oraichi [16], who referred to it as the INGARCH(1,1) model, and Fokianos, Rahbek
and Tjøstheim [17]. The generality of Condition (2.3) is chosen to include nonlinear specifi-
cations such as the exponential AR model proposed in Fokianos, Rahbek and Tjøstheim [17].
In this case, the intensity function is specified as f (λ, y) = (a + c exp(−γ λ2))λ + by, where
a, b, c, γ > 0. It follows from ∂

∂y
f (λ, y) = b and | ∂

∂λ
f (λ, y)| ≤ a + c that (2.3) is fulfilled if

a + b + c < 1.
Note that (2.3) implies that

f (λ, y) ≤ f (0,0) + κ1λ + κ2y. (2.4)

It follows from (2.4) that E(λt |λt−1) ≤ f (0,0) + κλt−1, which leads to

E(Nt |λ1) = E(λt |λ1) ≤ f (0,0)
1 − κt−1

1 − κ
+ κt−1λ1. (2.5)

Hence, the bivariate chain ((Nt , λt ))t∈N is bounded in probability on average. Moreover, it fol-
lows from (2.3) that, for any open set O ∈ 2N0 ⊗ B, the transition probabilities P((Nt , λt ) ∈
O|(Nt−1, λt−1) = ·) are a continuous, and therefore also a lower semicontinuous, function.
Hence, the Markov chain is a weak Feller chain and it follows from Theorem 12.1.2(ii) in Meyn
and Tweedie [23] that there exists at least one stationary distribution. Uniqueness of this station-
ary distribution, however, requires more than (2.4) and will follow from the contractive condition
(2.3). The following theorem summarizes this and a few other useful facts.

Theorem 2.1. Suppose that the bivariate chain ((Nt , λt ))t∈N obeys (2.1)–(2.3). Then

(i) There exists a unique stationary distribution π .
(ii) If (N1, λ1) ∼ π , then Eλ1 < ∞.

(iii) If f (0,0) = 0, then π({0,0}) = 1. If f (0,0) > 0, then π({y,λ}) < 1 for all y ∈ N0,
λ ∈ [0,∞).

Remark 1. Using the contractive property (2.3), we will show in the proof of Theorem 2.1 that
the n-step transition laws P((Nn+1, λn+1) ∈ ·|(N1, λ1) = x) converge to a common limit π not
depending on the starting value x, where π is a probability measure. This will imply that π is
the unique stationary distribution.

There are alternative ways to prove Theorem 2.1. Introducing a sequence of independent “in-
novations” (Ut )t∈N with Ut ∼ Uniform[0,1], we could re-express the process values as

(Nt+1, λt+1) = G((Nt , λt ),Ut+1) := (
F−1

f (λt ,Nt )
(Ut+1), f (λt ,Nt )

)
,

where Fλ denotes the cumulative distribution function of a Poisson(λ) distribution. This gives
us a representation of ((Nt , λt ))t∈N as a randomly perturbed dynamical system with indepen-
dent and identically distributed innovations. In such a context and under a contractive condition
similar to our (2.3), Diaconis and Freedman [13] also proved existence and uniqueness of a sta-
tionary distribution. To this end, these authors used backward iterations to identify a random
variable which has the desired stationary distribution. The approach used here is more direct and
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uses also elements of standard Markov chain theory as described in Meyn and Tweedie [23].
Finally, we would like to mention that Lasota and Mackey [21] also proved the existence of a
unique stationary distribution under conditions similar to our (2.3) and (2.4); see, in particular,
equations (2) and (3) in their paper. Their proof contains similar ingredients to our proof; how-
ever, it is more analytic in nature while we establish a coupling to represent the convergence facts
in a simple stochastic language.

3. Absolute regularity of the count process and ergodicity

In this section, we state the main results of our paper, absolute regularity of the count process and,
as a consequence, ergodicity of the bivariate process ((Nt , λt ))t . Actually, Grunwald, Hyndman,
Tedesco and Tweedie [19], Case II of Proposition 3, Streett [27] and Davis, Dunsmuir and Streett
[8] proved ergodicity in special cases. However, they made heavy use of the particular form of
their link function f and could show that Doeblin’s condition is fulfilled. Hence, they could
employ Markov chain technology to prove ergodicity. We cannot use this approach in the case
considered here since Doeblin’s condition will not be satisfied in general. Another commonly
used approach to proving ergodicity, which is not restricted to the case of Markov chains, consists
in proving first strong mixing as a sufficient condition for ergodicity. It turns out, however, that
the bivariate process ((Nt , λt ))t is not strongly mixing in general; a counterexample is given in
Remark 3 below. The problem lies in the discreteness of the distribution of the “innovations”
Nt while the λt take values on a continuous scale. This makes the commonly used coupling
approach to proving mixing properties of Markov chains impossible. To give some idea why a
discrete distribution of the innovations may cause problems, we recall the well-known example
of a stationary AR(1) process, Xt = θXt−1 + εt , where the innovations are independent with
P(εt = 1) = P(εt = −1) = 1/2 and 0 < |θ | ≤ 1/2. This process has a stationary distribution
supported on [−2,2]. It follows from the above model equation that Xt has, with probability 1,
the same sign as εt . Hence, we could perfectly recover Xt−1,Xt−2, . . . from Xt , which clearly
excludes any of the common mixing properties. (Rosenblatt [25] mentioned the fact that a process
similar to (Xt )t∈Z is purely deterministic going backwards in time. A rigorous proof that it is not
strong mixing was given by Andrews [1].) On the other hand, we can prove absolute regularity
for the (univariate) count process (Nt )t . For this purpose, the discrete nature of the distribution of
the Nt does not harm. To see why, note that we have either π({0,0}) = 1 or P(λt−1 > 0 or λt >

0) = 1; see the proof of part (iii) of Theorem 2.1. Therefore, the support of the conditional
distribution of Nt+2 given Nt,Nt−1, . . . is equal to the support of the stationary distribution of
the Nt and we can actually construct a successful coupling. Since absolute regularity implies
strong mixing, we immediately obtain ergodicity of the count process (Nt )t . Moreover, as a by-
product of our coupling, we see that the random intensities λt can be expressed as measurable
functionals of past variables of the count process. Hence, we finally obtain the desired ergodicity
of the bivariate process ((Nt , λt ))t .

It was stated in Section 2 that the bivariate process ((Nt , λt ))t has a unique stationary distri-
bution under the contractive condition (2.3). In this section, we will assume throughout that this
process is in its stationary regime. Moreover, it proves to be quite convenient to have a two-sided
stationary version, with time domain Z rather than N, which exists by Kolmogorov’s extension
theorem; see Durrett [15], page 293. Here is the main result of the paper.
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Theorem 3.1. Suppose that the bivariate chain ((Nt , λt ))t∈Z is in its stationary regime and
obeys (2.1)–(2.3). Then

(i) The count process (Nt )t∈Z is absolutely regular with coefficients satisfying

β(n) ≤ 2Eλ1κ
n−1/(1 − κ1).

(ii) There exists a measurable function g : N∞
0 := {(n1, n2, . . .): ni ∈ N0} −→ [0,∞) such

that λt = g(Nt−1,Nt−2, . . .) holds almost surely.
(iii) The process ((Nt , λt ))t∈Z is ergodic.
(iv) Eλ2

1 < ∞.

Remark 2. In the case of a so-called INGARCH(1,1) process where λt is specified as λt = θ0 +
θ1λt−1 + θ2Nt−1, Ferland, Latour and Oraichi [16] proved the stronger result that all moments
of λt and Nt are finite. Since it follows from (2.4) that λt ≤ f (0,0) + κ1λt−1 + κ2Nt−1, we
conjecture that their result can be generalized by simple majorization arguments to our more
general framework. However, since higher-than-second moments are not needed for the purposes
of this paper, we do not make the attempt to adapt their proof, which was already quite involved
in the special case of a linear specification of λt .

Remark 3. Theorem 3.1 states that the count process (Nt )t∈Z is absolutely regular and, there-
fore, also strongly mixing under condition (2.3). This allows us to conclude that the bivariate
process ((Nt , λt ))t∈Z is ergodic. However, the process ((Nt , λt ))t∈Z and even the intensity pro-
cess (λt )t∈Z alone are not strongly mixing in general. To see this, consider the specification
f (λ, y) = g(λ) + y/2, where g is strictly monotone and satisfies 0 < c1 ≤ g(λ) < 0.5 and
|g(λ) − g(λ′)| ≤ c2|λ − λ′| for some c2 < 0.5 and for all λ,λ′. Then f satisfies our contrac-
tive condition (2.3). Using the fact that g(λ) ∈ [c1,0.5), we obtain that 2g(λt−1) = 2λt − [2λt ],
which implies that we can perfectly recover λt−1 once we know the value of λt . Iterating this
argument, we see that we can recover from λt the entire past of the intensity process. Taking
into account that the above choice of f excludes the case that the intensity process is purely
non-random, we conclude that a stationary version of (λt )t∈Z cannot be strongly mixing.

Remark 4. The primary intention of the author was to devise a method of proving ergodicity
of certain count processes. This is done, mainly for clarity of presentation, for the simple case
where the intensity depends only on one lagged value of the count process and the intensity
process. In contrast to previous work in this area, the coupling approach used here does not
require Markovianity of the process. The results of this paper, and in particular the ergodicity
stated in Theorem 3.1, can be generalized to more complex models with more than one or even
infinitely many lagged variables. Moreover, it seems to be possible to include covariates, at least
if they are exogeneous. These generalizations are well beyond the scope of this paper and should
be the subject of future research.
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4. A specification test for the intensity function

There might be good reasons for assuming that the count variables are Poisson distributed, con-
ditioned on the past. However, a particular specification for the intensity function seems to be
more questionable and such a choice should be supported by a statistical test. Here we propose a
test statistic that was originally designed for testing overdispersion in the context of i.i.d. obser-
vations; see Lee [22] and Cameron and Trivedi [5].

Assume that we have observations N1, . . . ,Nn from a stationary process ((Nt , λt ))t∈Z obey-
ing (2.1) and (2.2) and that we want to test the simple hypothesis

H0: f = f0 against H1: f �= f0,

for some f0 satisfying (2.3), or the composite hypothesis

H ′
0: f ∈ {fθ : θ ∈ �} against H ′

1: f /∈ {fθ : θ ∈ �},
where � ⊆ R

d and the fθ satisfy (2.3).
To motivate a particular test statistic, pretend that we additionally observe the starting value

λ1 of the intensity process. Then we could take, for testing H0 against H1, the statistic

Tn,0 = 1√
n

n∑
t=1

{(Nt − λ0
t )

2 − Nt },

where λ0
1 = λ1 and, for t = 2, . . . , n, the λ0

t are recursively defined as λ0
t = f0(λ

0
t−1,Nt−1). The

idea behind this statistic is very simple. If the the intensity function f is correctly specified,
then λ0

t = λt , which implies E[(Nt − λ0
t )

2 − Nt ] = 0 and, as stated in Proposition 4.1 below,

Tn,0
d−→ N (0,2Eλ2

1). On the other hand, if f is not correctly specified by f0, then the random
variables (Nt − λt )

2 − Nt are not centered and we can expect consistency of the test.
In the more relevant case of unknown λ1, we replace this by any arbitrarily chosen, random

or non-random, starting value λ̃1, then define recursively λ̃t = f0(̃λt−1,Nt−1), for t = 2, . . . , n,
and take the test statistic

Tn = 1√
n

n∑
t=1

{(Nt − λ̃t )
2 − Nt }.

In the case of testing H ′
0 against H ′

1, we estimate the parameter θ by some estimator θ̂n first and
take then the test statistic

T̂n = 1√
n

n∑
t=1

{(Nt − λ̂t )
2 − Nt }.

Here λ̂1 is again any starting value and λ̂t = fθ̂n
(̂λt−1,Nt−1), for t = 2, . . . , n.

Remark 5. In the context of independent observations, Lee [22] and Cameron and Trivedi [5]
considered a test statistic similar to ours for testing the Poisson hypothesis against the alternative
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that the distribution belongs to the so-called Katz family of distributions. This family contains
as special cases the Poisson, negative binomial and binomial distributions. While the variance
equals the mean in the Poisson case, the latter two classes contain distributions for which the vari-
ance mean ratio is strictly greater or less than 1, respectively. Therefore, Lee [22] and Cameron
and Trivedi [5] interpreted their tests as tests for over- or underdispersion. The same test statistic
was also suggested in Cox [7]. It was also used by Brännäs and Johansson [4] for testing for
the existence of a latent process in the context of Poisson count models. Again, in the case of
independent data, Dean and Lawless [11] and Dean [12] came up with adjusted versions of Lee’s
and Cameron and Trivedi’s test statistic that have the same limit distribution as the unadjusted
statistic but are closer to this limit in small samples.

We will prove that the above statistics, Tn,0, Tn and T̂n, are asymptotically normal with the
same limit. This can be most easily done for Tn,0 since this statistic is a sum of martingale
differences that allows us to apply an appropriate central limit theorem.

Proposition 4.1. Suppose that the bivariate process is stationary and obeys (2.1) and (2.2). If
H0 is true and f0 satisfies the contractive condition (2.3), then

Tn,0
d−→ N (0,2Eλ2

1).

Next, we will show that Tn and T̂n have the same limit distribution as Tn,0. To this end, we will
simply show that the difference between the former statistics to Tn,0 converges to zero in proba-
bility. This is not surprising at all for Tn since it follows from (2.3) that |̃λt −λt | ≤ κt−1

1 |̃λ1 −λ1|.
The following lemma shows that λ̂t will also be close to λt if θ̂n is a

√
n-consistent estimator

of θ and if fθ (λ, y) is a smooth function in θ .

Lemma 4.1. Suppose that the bivariate process is stationary and obeys (2.1) and (2.2) with
f = fθ0 . We assume that θ̂n − θ0 = OP (n−1/2). Furthermore, we assume that there exist C < ∞,
κ1, κ2 ≥ 0 with κ := κ1 + κ2 < 1 such that

(i) |fθ ′(λ, y) − fθ0(λ, y)| ≤ C‖θ ′ − θ0‖(λ + y + 1) ∀λ,y,

(ii) |fθ ′(λ, y) − fθ ′ (̃λ, ỹ)| ≤ κ1|λ − λ̃| + κ2|y − ỹ|
hold for all θ ′ ∈ � with ‖θ ′ − θ0‖ ≤ δ, for some δ > 0.

Then
n∑

t=1

(λt − λ̂t )
2 = OP (1).

We think that the above assumption on the estimator θ̂n is a realistic one in many cases. It
is fulfilled, for example, by the conditional maximum likelihood estimator studied in Fokianos,
Rahbek and Tjøstheim [17].

Theorem 4.1. Suppose that the assumptions of Lemma 4.1 are fulfilled.
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Then

T̂n
d−→ N (0,2Eλ2

1).

Remark 6. The same assertion holds true for Tn instead of T̂n since this is obviously a special
case of that considered in Theorem 4.1.

Note that the limit distribution of T̂n still contains the parameter Eλ2
1 that is usually not known

in advance and has to be estimated. We obtain from Lemma 4.1 by the Minkowski inequality

that |
√

n−1
∑n

t=1 λ̂2
t −

√
n−1

∑n
t=1 λ2

t | ≤
√

n−1
∑n

t=1(λt − λ̂t )2 = OP (n−1/2), which leads in
conjunction with ergodicity of (λt )t∈Z to

1

n

n∑
t=1

λ̂2
t

P−→ Eλ2
1. (4.1)

For a prescribed size α ∈ (0,1), we propose a test for H ′
0 against H ′

1 as

ϕn = I

((
(2/n)

n∑
t=1

λ̂2
t

)−1/2

T̂n > uα

)
,

where uα = �−1(1 − α) denotes the (1 − α)-quantile of the standard normal distribution. From
Theorem 4.1 and (4.1) we conclude that this test has asymptotically the correct size.

Theorem 4.2. Suppose that the assumptions of Lemma 4.1 are fulfilled and that fθ0(0,0) > 0.
Then we have, under H ′

0, (
(2/n)

n∑
t=1

λ̂2
t

)−1/2

T̂n
d−→ N (0,1),

which implies that

P(ϕn = 1) −→
n→∞α.

5. Proofs

As already mentioned in the text, the main results of this paper, Theorems 2.1 and 3.1, are both
proved by coupling arguments. Necessary technical prerequisites are summarized in the follow-
ing lemma.

Lemma 5.1. For arbitrary λ1, λ2 ≥ 0, we can construct on an appropriate probability space
X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) such that

(i) E|X1 − X2| = |λ1 − λ2|,
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(ii) P(X1 �= X2) ≤ |λ1 − λ2|.

Proof. Let, without loss of generality, λ1 ≤ λ2. We take independent random variables X1 ∼
Poisson(λ1), Z ∼ Poisson(λ2 − λ1) and define X2 = X1 + Z. Then X2 ∼ Poisson(λ2),

E|X1 − X2| = EZ = |λ1 − λ2|
and

P(X1 �= X2) = P(Z �= 0) ≤ EZ = |λ1 − λ2|.
�

Proof of Theorem 2.1. As mentioned above, we could use the fact that ((Nt , λt ))t∈N is a weak
Feller chain that is bounded in probability on average to conclude from Theorem 12.1.2(ii) in
Meyn and Tweedie [23] that it has at least one stationary distribution. Uniqueness could then
eventually be derived from the contraction property (2.3). We think, however, that it is more
instructive for the reader when a self-contained proof that uses arguments closely tied to the
particular case at hand is presented.

Let P t
λ be the conditional distribution of (Nt , λt ) given λ1 = λ, where λ ∈ [0,∞) is an ar-

bitrarily chosen but fixed starting value. It follows from (2.5) that the sequence of distributions
(P t

λ)t∈N is tight. Hence, there exists a subsequence (nk)k∈N of N such that P
nk

λ converges weakly
to some probability measure πλ, as k → ∞. We will show that this limit does not depend on the
starting value λ and that the full sequence (P n

λ )n∈N converges. This will immediately imply that
πλ is a stationary distribution that is unique.

The latter conclusions will follow after we have derived a few convergence properties of the
process. To this end, we construct, on an appropriate probability space (�′, A′,P ′), two Markov
chains ((N ′

t , λ
′
t ))t∈N and ((N ′′

t , λ′′
t ))t∈N with transition laws according to (2.1) and (2.2) and with

starting values λ′
1 and λ′′

1, respectively. We construct these chains iteratively. Given λ′
1 and λ′′

1,
(i) of Lemma 5.1 allows us to construct N ′

1 and N ′′
1 in such a way that

E(|N ′
1 − N ′′

1 ||λ′
1, λ

′′
1) = |λ′

1 − λ′′
1|.

The values of λ′
2 and λ′′

2 are then given by equation (2.2) and it follows from (2.3) that

E(|λ′
2 − λ′′

2||λ′
1, λ

′′
1) ≤ κ1|λ′

1 − λ′′
1| + κ2E(|N ′

1 − N ′′
1 ||λ′

1, λ
′′
1)

= κ|λ′
1 − λ′′

1|.
In the next step we can construct N ′

2 and N ′′
2 such that E(|N ′

2 − N ′′
2 ||λ′

1, λ
′′
1, λ

′
2, λ

′′
2) = |λ′

2 − λ′′
2|,

which also implies that

E(|N ′
2 − N ′′

2 ||λ′
1, λ

′′
1) ≤ κ|λ′

1 − λ′′
1|.

Now we can proceed in the same way and construct the pairs (N ′
3,N

′′
3 ), (N ′

4,N
′′
4 ), . . . . With the

above construction, we obtain that

E(|λ′
t − λ′′

t ||λ′
1, λ

′′
1) ≤ κt−1|λ′

1 − λ′′
1|. (5.1)
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and

E(|N ′
t − N ′′

t ||λ′
1, λ

′′
1) ≤ κt−1|λ′

1 − λ′′
1|. (5.2)

Hence, it follows that (P
nk

λ′
1
)k∈N and (P

nk

λ′′
1
)k∈N converge for any choice of λ′

1 and λ′′
1 to the same

limit, which we denote by π in the following. Now we can translate this result to a convergence
result for the conditional distributions of the Markov chain ((Nt , λt ))t∈N. Since the above con-
vergence is uniform in λ′

1 over compact sets and since f as a continuous function maps compact
subsets of [0,∞) × N0 to compact subsets of [0,∞), we obtain that

sup
x∈K

|P nk (x,A) − π(A)| −→
k→∞ 0 (5.3)

holds for every compact subset K of N0 ×[0,∞) and every π -continuity set A. Here P n(x,A) =
P((Nt+n, λt+n) ∈ A|(Nt , λt ) = x) denotes the n-step transition probability of the bivariate pro-
cess. Equation (5.3) will allow us to show convergence of the full sequence. For any n ∈ N, let
k(n) be the largest integer such that nk(n) < n. From tightness of (P n

λ )n∈N and (5.3), we conclude
that

P n
λ =

∫
P nk(n) (x, ·)P n−nk(n)

λ (dx) �⇒ π for all λ ∈ [0,∞). (5.4)

It follows directly from this equation that π is a stationary distribution. To see this, observe that it
follows from (5.4) that Qn

x := n−1 ∑n
t=1 P t

λ converges weakly to π . Furthermore, it also follows
that Q̃n

λ := n−1 ∑n
t=1 P t+1

λ �⇒ π , that is,

Q̃n
λ(A) −→

k→∞π(A) (5.5)

if A is a π -continuity set, that is, π(∂A) = 0. If A is an open set, then x �→ P 1(x,A) is a
continuous and bounded function. Therefore,

Q̃n
λ(A) =

∫
P 1(x,A)Qn

λ(dx) −→
n→∞

∫
P 1(x,A)π(dx). (5.6)

From (5.5) and (5.6) we obtain that the probability measures π and
∫

P 1(x, ·)π(dx) coincide for
all open π -continuity sets A. Since these sets are stable under finite intersections and generate
2N0 ⊗ B, we conclude that

π(A) =
∫

P 1(x,A)π(dx) ∀A ∈ 2N0 ⊗ B,

that is, π is actually a stationary distribution. Let π ′ be an arbitrary distribution. Then we obtain
by majorized convergence, for any π -continuity set A,∫

P n(x,A)π ′(dx) −→
n→∞

∫
π(A)π ′(dx) = π(A).

If π ′ is a stationary distribution, then we also have that
∫

P n(x,A)π ′(dx) = π ′(A), which im-
plies that π = π ′. Hence, (i) is proved.
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We obtain from (2.5) and by Theorem 5.3 in Billingsley [2] that

Eπλ1 ≤ lim inf
t→∞ E(λt |λ1 = 0) ≤ f (0,0)/(1 − κ),

which proves (ii).
To see (iii), note that f (0,0) = 0 implies by (2.5) that E(λt |λ1 = 0) = 0 holds for all t which

in turn implies that π({0,0}) = 1. On the other hand, if f (0,0) > 0, then we can conclude that
P(λt−1 > 0 or λt > 0) = P(λt−1 > 0) + P(λt−1 = 0, λt > 0) = P(λt−1 > 0) + P(λt−1 = 0) =
1. This implies that ((Nt , λt ))t∈Z cannot be non-random, as required. �

Proof of Theorem 3.1. Let, for −∞ ≤ k ≤ l ≤ ∞, BN
k,l = σ(Nk, . . . ,Nl). Recall that the coeffi-

cients of absolute regularity of the count process (Nt )t∈N are defined as

β(n) = E
[

sup
A∈BN

n,∞

∣∣P(A|BN
−∞,0) − P(A)

∣∣].
Hence,

β(n) ≤ E
[

sup
A∈BN

n,∞

∣∣P(A|σ(λ1,N0,N−1, . . .)) − P(A)
∣∣].

Furthermore, it follows from (Nn,Nn+1, . . .)|σ(λ1,N0,N−1, . . .) = (Nn,Nn+1, . . .)|σ(λ1) that

β(n) ≤ E
[

sup
A∈BN

n,∞

∣∣P(A|σ(λ1)) − P(A)
∣∣]. (5.7)

Let B∞ be the σ -field in R
∞ = {(x1, x2, . . .): xi ∈ R} generated by the cylinder sets, that is,

B∞ = σ({B × R
∞: B ∈ Bk, k ∈ N}).

We can rewrite (5.7) in terms of the process variables as

β(n) ≤ E

[
sup

A∈B∞

∣∣P (
(Nn,Nn+1, . . .) ∈ A|λ1

) − P
(
(Nn,Nn+1, . . .) ∈ A

)∣∣]. (5.8)

We will derive an upper estimate for the right-hand side of (5.8) via a coupling approach similar
to that in the proof of Theorem 2.1. To this end, we will construct on an appropriate probability
space (�′, A′,P ′) two versions of the bivariate process, ((N ′

t , λ
′
t ))t∈N and ((N ′′

t , λ′′
t ))t∈N, where

the starting values λ′
1 and λ′′

1 are independent and distributed according to the stationary law π .
Since, for any A ∈ B∞,

P
(
(N ′′

n ,N ′′
n+1, . . .) ∈ A|λ′

1

) = P
(
(Nn,Nn+1, . . .) ∈ A

)
it follows that∣∣P (

(Nn,Nn+1, . . .) ∈ A|λ1 = u
) − P

(
(Nn,Nn+1, . . .) ∈ A

)∣∣
= ∣∣P (

(N ′
n,N

′
n+1, . . .) ∈ A|λ′

1 = u
) − P

(
(N ′′

n ,N ′′
n+1, . . .) ∈ A|λ′

1 = u
)∣∣

≤ P
(
(N ′

n,N
′
n+1, . . .) �= (N ′′

n ,N ′′
n+1, . . .)|λ′

1 = u
)
.
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Therefore, we obtain that

β(n) ≤ P
(
(N ′

n,N
′
n+1, . . .) �= (N ′′

n ,N ′′
n+1, . . .)

)
. (5.9)

Hence, to estimate β(n), we will construct a coupling such that the processes (N ′
t )t∈N and

(N ′′
t )t∈N coalesce after n steps with a high probability.
Using exactly the same construction as in the proof of Theorem 2.1, we can successively

construct pairs (N ′
1,N

′′
1 ), (N ′

2,N
′′
2 ), . . . such that

E(|λ′
n − λ′′

n||λ′
1, λ

′′
1) ≤ κn−1|λ′

1 − λ′′
1|.

From here on we deviate from the approach in the proof of Theorem 2.1, where we constructed all
pairs (N ′

t ,N
′′
t ) such that their mean distance was small. By (ii) of Lemma 5.1, we can construct

N ′
n and N ′′

n such that

P(N ′
n �= N ′′

n |λ′
1, λ

′′
1) ≤ κn−1|λ′

1 − λ′′
1|.

If the event {N ′
n = N ′′

n } occurs, then (2.3) reduces to

|λ′
n+1 − λ′′

n+1| ≤ κ1|λ′
n − λ′′

n|,
which allows us to construct the next pair (N ′

n+1,N
′′
n+1) such that

P(N ′
n = N ′′

n ,N ′
n+1 �= N ′′

n+1|λ′
1, λ

′′
1) ≤ κ1κ

n−1|λ′
1 − λ′′

1|.
Continuing in the same way, we arrive at

P(N ′
n = N ′′

n , . . . ,N ′
n+k−1 = N ′′

n+k−1,N
′
n+k �= N ′′

n+k|λ′
1, λ

′′
1) ≤ κk

1 κn−1|λ′
1 − λ′′

1|.
Hence, we finally obtain that

P
(
(N ′

n,N
′
n+1, . . .) �= (N ′′

n ,N ′′
n+1, . . .)

)
= P(N ′

n �= N ′′
n ) +

∞∑
k=1

P(N ′
n = N ′′

n , . . . ,N ′
n+k−1 = N ′′

n+k−1,N
′
n+k �= N ′′

n+k) (5.10)

≤ C0κ
n−1/(1 − κ1),

where C0 := E|λ′
1 − λ′′

1| ≤ 2Eλ1 < ∞. This yields, in conjunction with (5.9), Assertion (i).
To show (ii), define the functions f1 = f and, for d ≥ 2, fd(λ;n1, . . . , nd) = fd−1(f (λ,nd);

n1, . . . , nd−1), where n1, . . . , nd ∈ N0 and λ ≥ 0. It is clear from (2.2) that

λt = fd(λt−d ;Nt−1, . . . ,Nt−d).

It follows from (2.3) that

E|λt − fd(0;Nt−1, . . . ,Nt−d)| ≤ κd
1 Eλt−d .
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Hence, as d → ∞, fd(0;Nt−1, . . . ,Nt−d) converges in L1 to λt . By taking an appropriate subse-
quence, we also get almost sure convergence. This means that there exists a measurable function
f∞ : N∞

0 −→ [0,∞) such that

λt = f∞(Nt−1,Nt−2, . . .) almost surely. (5.11)

By stationarity, (5.11) holds for all t ∈ Z, which proves (ii).
To show (iii), we first recall the well-known fact that absolute regularity implies strong mixing.

That is, it follows from (i) that

α(n) = sup
A∈BN−∞,0,B∈BN

n,∞
|P(A ∩ B) − P(A)P (B)| −→

n→∞ 0; (5.12)

see Doukhan [14], page 20. Furthermore, strong mixing implies ergodicity; see Remark 2.6 on
page 50 in combination with Proposition 2.8 on page 51 in Bradley [3]. Finally, we conclude
from the representation (5.11) by Proposition 2.10(ii) in Bradley [3], page 54, that the bivariate
process ((Nt , λt ))t∈Z is also ergodic.

To prove (iv), we study the asymptotics of the process ((Ñt , λ̃t ))t∈N obeying (2.1), (2.2) and
(2.3), which is started with λ̃1 ≡ 0. We obtain from (2.4) and E(N2

t |λt ) = λ2
t + λt that

E(̃λ2
t |̃λt−1) ≤ E

((
f (0,0) + κ1̃λt−1 + κ2Ñt−1

)2 |̃λt−1
)

= (
f (0,0) + κλ̃t−1

)2 + κ2
2 λ̃t−1

≤ K0 + κ̄ λ̃2
t−1,

for any κ̄ > κ and appropriate K0 = K0(κ̄). We choose κ̄ ∈ (κ,1). Then we obtain that

E(̃λ2
3 |̃λ1) ≤ K0 + κ̄E(̃λ2

2 |̃λ1) ≤ K0 + κ̄(K0 + κ̄ λ̃2
1).

Continuing in the same way we arrive at the inequality

E(̃λ2
t |̃λ1) ≤ K0(1 + κ̄ + · · · + κ̄ t−2).

Since λ̃t
d−→ λ1, we conclude from Theorem 5.3 in Billingsley [2] that

Eλ2
1 ≤ lim inf

t→∞ Eλ̃2
t ≤ K0/(1 − κ̄),

which proves (iii). �

Proof of Proposition 4.1. We will use the central limit theorem (CLT) for martingale differ-
ence arrays given on page 171 in Pollard [24]. We define the filtration (Bt )t∈N with Bt =
σ(λ1,N1, . . . ,Nt ), for t = 0,1, . . . , and we set Zt = (Nt − λt )

2 − Nt . Since Nt |Bt−1 ∼
Poisson(λt ), we obtain that

E(Zt |Bt−1) = 0
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and

E(Z2
t |Bt−1) = 2λ2

t .

Hence, it follows from the ergodicity stated in (iii) of Theorem 3.1 that

1

n

n∑
t=1

E(Z2
t |Bt−1)

a.s.−→ 2Eλ2
1.

It remains to verify the conditional Lindeberg condition,

n−1
n∑

t=1

E
(
Z2

t I
(∣∣Zt/

√
n
∣∣ > ε|Bt−1

)) P−→ 0 ∀ε > 0.

We have E[n−1 ∑n
t=1 E(Z2

t I (|Zt/
√

n| > ε|Bt−1))] = E[Z2
1I (|Z1/

√
n| > ε)], which tends to

zero as n → ∞ since Eλ2
1 < ∞ implies that EZ2

1 < ∞. Hence, the conditional Lindeberg con-
dition is also satisfied and the assertion follows from the CLT mentioned above. �

Proof of Lemma 4.1. Assume for the time being that ‖θ̂n − θ0‖ ≤ δ, which allows us to conve-
niently exploit the smoothness assumptions on fθ . Then we obtain that

|̂λ2 − λ2| ≤ |fθ̂n
(̂λ1,N1) − fθ̂n

(λ1,N1)| + |fθ̂n
(λ1,N1) − fθ0(λ1,N1)|

≤ κ1 |̂λ1 − λ1| + C‖θ̂n − θ0‖(λ1 + N1 + 1)

and

|̂λ3 − λ3| ≤ κ1 |̂λ2 − λ2| + C‖θ̂n − θ0‖(λ2 + N2 + 1)

≤ C‖θ̂n − θ0‖{(λ2 + N2 + 1) + κ1(λ1 + N1 + 1)} + κ2
1 |̂λ1 − λ1|.

Continuing in the same way, we arrive at

|̂λt − λt |
≤ C‖θ̂n − θ0‖{(λt−1 + Nt−1 + 1)

(5.13)
+ κ1(λt−2 + Nt−2 + 1) + · · · + κt−2

1 (λ1 + N1 + 1)}
+ κt−1

1 |̂λ1 − λ1|,
which yields that

(̂λt − λt )
2

≤ 2C2‖θ̂n − θ0‖2{(λt−1 + Nt−1 + 1) + κ1(λt−2 + Nt−2 + 1) + · · · + κt−2
1 (λ1 + N1 + 1)}2

+ 2κ2t−2
1 (̂λ1 − λ1)

2
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holds for all t ≥ 2. Hence, we obtain under ‖θ̂n − θ0‖ ≤ δ that

n∑
t=1

(̂λt − λt )
2 ≤ 2

1 − κ2
1

{
(̂λ1 − λ1)

2 + C2‖θ̂n − θ0‖2

(
n−1∑
t=1

(λt + Nt + 1)

)2}
.

The right-hand side is bounded in probability, which proves the assertion. �

Proof of Theorem 4.1. We show that the difference between the test statistic T̂n and Tn,0 tends
to zero in probability. This will yield the assertion by Proposition 4.1. We have that

T̂n − Tn,0 = 1√
n

n∑
t=1

(̂λt − λt )
2 + 2√

n

n∑
t=1

(Nt − λt )(λt − λ̂t ). (5.14)

According to Lemma 4.1, the first term on the right-hand side converges to zero in probability.
The estimation of the second one, however, is more delicate since λ̂t depends via θ̂n on the whole
sample, which means that this term is not a sum of martingale differences. To proceed, we take
first any non-random θ ′ with ‖θ ′ − θ0‖ ≤ δ and consider the intensity process given by λ′

1 = λ̂1
and, for t = 2, . . . , n, λ′

t = fθ ′(λ′
t−1,Nt−1). We obtain in complete analogy to (5.13) that

|λ′
t − λt |
≤ C‖θ ′ − θ0‖{(λt−1 + Nt−1 + 1) + κ1(λt−2 + Nt−2 + 1) + · · · + κt−2

1 (λ1 + N1 + 1)}
+ κt−1

1 |̂λ1 − λ1|.
Therefore, we obtain that

E

[∣∣∣∣∣ 1√
n

n∑
t=1

(Nt − λt )(λt − λ′
t )

∣∣∣∣∣I (|̂λ1 − λ1| ≤ M)

]
= O(‖θ ′ − θ0‖ + n−1/2). (5.15)

Since ‖θ̂n − θ0‖ = OP (n−1/2) it suffices to establish (5.15) on a sequence of grids Gn on the
set {θ ∈ �: ‖θ − θ0‖ ≤ ε−1

n n−1/2}, where mesh(Gn) ≤ εnn
−1/2, #Gn ≤ εnn

1/2, for some null
sequence (εn)n∈N. It follows from (5.15) that

sup
θ ′∈Gn

∣∣∣∣∣ 1√
n

n∑
t=1

(Nt − λt )(λt − λ′
t )

∣∣∣∣∣ = OP (εn). (5.16)

Moreover, for any value of θ̂n with ‖θ̂n − θ0‖ ≤ ε−1
n n−1/2 we will find some θ ′ ∈ Gn with ‖θ̂n −

θ ′‖ ≤ εnn
−1/2. Since∣∣∣∣∣ 1√

n

n∑
t=1

(Nt − λt )(λ
′ − λ̂t )

∣∣∣∣∣ ≤
√√√√1

n

n∑
t=1

(Nt − λt )2

√√√√ n∑
t=1

(λ′
t − λ̂t )2 = oP (1),

we obtain, in conjunction with (5.16), that the second term on the right-hand side of (5.14) is
oP (1). This completes the proof. �
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