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Purpose: To examine the between-day absolute reliability of gait parameters acquired
with Theia3D markerless motion capture for use in biomechanical and clinical settings.

Methods: Twenty-one (7 M, 14 F) participants aged between 18 and 73 years were
recruited in community locations to perform two walking tasks: self-selected and fastest-
comfortable walking speed. Participants walked along a designated walkway on two
separate days. Joint angle kinematics for the hip, knee, and ankle, for all planes of
motion, and spatiotemporal parameters were extracted to determine absolute reliability
between-days. For kinematics, absolute reliability was examined using: full curve analysis
[root mean square difference (RMSD)] and discrete point analysis at defined gait events
using standard error of measurement (SEM). The absolute reliability of spatiotemporal
parameters was also examined using SEM and SEM%.

Results: Markerless motion capture produced low measurement error for kinematic full
curve analysis with RMSDs ranging between 0.96◦ and 3.71◦ across all joints and planes
for both walking tasks. Similarly, discrete point analysis within the gait cycle produced
SEM values ranging between 0.91◦ and 3.25◦ for both sagittal and frontal plane angles
of the hip, knee, and ankle. The highest measurement errors were observed in the
transverse plane, with SEM >5◦ for ankle and knee range of motion. For the majority
of spatiotemporal parameters, markerless motion capture produced low SEM values
and SEM% below 10%.

Conclusion: Markerless motion capture using Theia3D offers reliable gait analysis
suitable for biomechanical and clinical use.

Keywords: measurement error, repeatability, digital biomarkers, kinematics, rehabilitation outcomes, gait,
markerless motion capture, spatiotemporal gait parameters

INTRODUCTION

Walking represents an individual’s capacity for independence, autonomy, and self-efficacy making
it an important benchmark of human health. Biomechanical gait analysis has been used extensively
for evaluating human movement with findings applied in clinical populations to identify changes
that occur in neuropathologies (Chen et al., 2005a; Albani et al., 2014). Gait is such a fundamental
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manifestation of human health that White et al. (2013) proposed
gait speed, a spatiotemporal parameter (STP), as the sixth
vital sign. More recently, various gait parameters (e.g., reduced
hip flexion range of motion, increased stride time variability,
swing time, step width) have been proposed as biomarkers for
disease identification, progression, and rehabilitation outcomes
in neuropathologies and cognitive disorders (Chen et al., 2005a,
2011; Jonkers et al., 2009; McDonald et al., 2013; Albani
et al., 2014; Mancini et al., 2015; Valkanova et al., 2018;
De Cock et al., 2019).

Joint kinematics, generated through biomechanical analyses,
can be assessed over the entire time series of a gait cycle through
curve analysis (Edwards et al., 2017) which offers the ability
to characterize the pattern of excursion across the entire gait
cycle (Fellin et al., 2010). For clinical use, however, gait analysis
typically focuses on key determinants of gait such as the ankle,
knee, and hip joint angles at specific events within the gait cycle,
and may evaluate joint angles at initial contact, maximum angles
in stance phase, and range of motion (RoM) across the entire
gait cycle (El-Tamawy et al., 2012; Bonnyaud et al., 2015). Each
of these variables has been used to explore movement behaviors
in individuals with pathological gait (Chen et al., 2005a,b; Chen
and Patten, 2008; Tenniglo et al., 2018; Penko et al., 2020).
Additionally, STPs such as gait speed, cadence, stance, swing, and
stride time, are used to describe gait dysfunction (Chen et al.,
2005a,b), while STP variability has been used to characterize
age-related and cognitive decline (Bahureska et al., 2017; Ceïde
et al., 2018; De Cock et al., 2019).

Gait analysis is typically measured in a dedicated laboratory
requiring specialized equipment and expertise. Laboratory
three-dimensional (3D) motion capture systems rely on
researcher expertise to perform data collection where required
anthropometric measures such as stature, leg length, knee, and
ankle breadth are required (Sun et al., 2020; Moreira et al., 2021;
Reznick et al., 2021). Marker placement on specific anatomical
landmarks is a critical skill that influences the accuracy of
calculations derived from the collected data. Indeed, marker
placement has been identified as a key source of error in motion
analysis (Ferber et al., 2002; Noehren et al., 2010). For example,
a marker misplacement of 10 mm on the ankle or knee can cause
an error up to 7◦ (Osis et al., 2016). An additional challenge
is for securing markers to reduce noise resulting from skin
and tissue artifacts (Akbarshahi et al., 2010; Tsai et al., 2011;
Osis et al., 2016).

Wearable inertial measurement units (IMUs) address some
of these challenges inherent to 3D motion capture and also
offer potential for cost-effective portable clinical gait analysis
(Wu et al., 2021; McDevitt et al., 2022). Wearable devices
such as the APDM Opal IMU-based system have been
promoted for use in clinical populations to monitor gait
and mobility in individuals with neurodegenerative conditions
such as Parkinson’s disease and have recently been advanced
as digital biomarker endpoints for clinical trials (Mancini
et al., 2015; Mancini and Horak, 2016). IMU development
has seen much progress and is under rapid expansion with
offering the potential for accurate detection of kinematics
(Al Borno et al., 2022).

In addition to IMUs, markerless motion capture (MLMC)
systems have been under development by multiple investigators
for purposes ranging from surveillance to motion analysis
(Mündermann et al., 2006a, 2007). Several authors have worked
on progressing the technology for clinical use (Mündermann
et al., 2006a,b; Sandau et al., 2014; Kanko et al., 2021a,b;
Lonini et al., 2022). Contributions from the fields such as
machine learning have made critical advances to the accuracy
and feasibility of this approach (Mündermann et al., 2007;
Corazza et al., 2010). Corazza et al. (2010) introduced an
automatic generation of subject-specific models that produced
a comparable error in joint identification to marker placement
errors for 3D motion capture. Implementation of MLMC
comes with an underlying premise for robust detection and
quantification of gait (Kanko et al., 2021a,b,c). Furthermore,
MLMC technology improves data collection efficiency by
eliminating the need for marker placement while providing
accurate, high-resolution data (Sandau et al., 2014; Verlekar
et al., 2019). Importantly, while IMUs may reduce some burden
associated with data collection, they still require direct contact
with the participant and accurate placement of sensors on body
segments (Mancini and Horak, 2016; Al Borno et al., 2022).
A distinct advantage of MLMC is the ability to capture data
without the need for a dedicated laboratory or requirements
for specialized attire, including footwear. Freedom from these
requirements greatly improves the accessibility of gait analysis to
clinical and community settings while simultaneously lowering
the experimental burden on participants.

Theia3D, a machine learning algorithm-based MLMC
software, has been recently developed with an aim for clinical
use (Kanko et al., 2021a,b,c). This algorithm uses current
biomechanical standards (i.e., inverse kinematics and rigid body
tracking) to estimate the three-dimensional pose of the body
segments. The Theia3D algorithm has been carefully examined
by the developers demonstrating comparable outcomes to
kinematics acquired with the putative gold standard, marker-
based 3D motion capture (Kanko et al., 2021a). Kanko et al.
(2021a) examined lower extremity joint motions during gait
and found that data acquired using MLMC are comparable
to traditional maker-based methods in sagittal, frontal, and
transverse planes. Subsequently, Kanko et al. (2021b) reported
repeatable inter-session data using MLMC by evaluating the
variability of segmental kinematics captured across the full gait
cycle (i.e., curves). Their analysis, however, did not provide a
between-day measurement error of discrete points associated
with Theia3D.

Assessment of measurement error is necessary for
discriminating between healthy and abnormal gait while
avoiding over-interpretation of small differences such as those
intrinsic to human motor behavior or technical attributes
of instrumentation (Schwartz et al., 2004; McGinley et al.,
2009). Absolute reliability can provide clinicians a value of the
magnitude of measurement error associated with the equipment
and an index of expected trial-to-trial noise in the data (Weir,
2005). For kinematics, measurement errors typically reported
from marker-based methods range from 2 to 5◦, while errors
greater than 5◦ are cause for concern (McGinley et al., 2009).
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While the developers have demonstrated data acquired with
MLMC that may be comparable to marker-based motion capture
with acceptable inter-session variation (Kanko et al., 2021a,c),
the absolute reliability of kinematic data acquired with Theia3D
has not been reported. The aims of this study are to investigate
(i) test-retest (between days) measurement error of lower
extremity kinematics—(a) over the entire joint curve; and (b) at
specific points within the gait cycle commonly used to evaluate
gait; and (ii) spatiotemporal parameters of gait acquired using
MLMC. The data captured during this study were collected in
community and clinic-adjacent settings to establish the feasibility
of using MLMC for gait analysis as a clinical outcome for the
assessment of impairment and intervention effects in persons
with neuropathological conditions.

METHODS

Participants
Following a review of literature (McGinley et al., 2009), we
determined that 20 participants were necessary to establish
reliability. A total of 21 individuals meeting the following broad
criteria: (i) ability to follow three-step commands; (ii) ability to
ambulate 15 meters, independently; and (iii) ability to provide
written informed consent, participated in two sessions of gait
assessment conducted in community and clinically-adjacent
settings (detailed in the companion article, McGuirk et al., 2022).
Participant characteristics and demographics are presented in
Table 1. Participants were recruited in real-time, thus were given
no prior instruction regarding clothing or footwear. Participants
provided electronically written informed consent and completed
health history and demographics questionnaires hosted on
the Research Electronic Data Capture (REDCap) infrastructure
(Harris et al., 2009, 2019). All procedures were approved by
the University of California, Davis Institutional Review Board
(#1386142) and conducted according to the Declaration of
Helsinki.

TABLE 1 | Participant characteristics represented as mean ± standard deviation.

Participants (n) 21
Male 7
Female 14

Age (years) 37.8 ± 18.8
Height (m) 1.7 ± 0.1
Mass (kg) 70.8 ± 11.0
Leg Length (m)

Right 0.84 ± 0.1
Left 0.84 ± 0.1

Race/Ethnicity (n)
Asian, not Hispanic, or Latino 3
More than one race, not Hispanic or Latino 2
White, Hispanic, or Latino 2
White, not Hispanic, or Latino 14

Data Capture
Gait analysis was performed at three University of California,
Davis locations. Nineteen (of 21) participants were studied in the
same location. All participants performed two sessions separated

FIGURE 1 | Illustrating data capture experimental setup.

by 10 ± 12 days (range, 1–52 days). The same camera setup
was deployed at all locations (see Figure 1). Eight video cameras
(Basler ace acA1300-75gc GigE, Ahrensburg, Germany) were
arranged to produce a capture volume approximately six meters
long, four meters wide, and two meters high. Four cameras
were positioned along each side of the walkway with cameras
nearest the ends of the walkway shifted 0.5 m to the center.
The cameras were calibrated during set up at each location
and recalibrated between each data collection session. Brightly
colored sports cones were placed 10 m apart at the far ends of
the walkway to mark the start and finish targets. Synchronized
videos were collected at 60 Hz using AccuPower 4.0 software
(v1.3.6.1978 Treadmetrix, Park City, Utah, USA).

Procedure
Participants performed two walking tasks: self-selected walking
speed (SSWS) and fastest comfortable walking speed (FCWS).
For the SSWS task, participants were instructed to walk normally
at their usual pace. For FCWS, participants were instructed to
imagine seeing oncoming traffic while being in a crosswalk and
navigating to safety without running or jogging. Participants
performed approximately six to eight passes for each task. These
procedures were repeated in the second session.

Data Analysis
Video data were processed using Theia3D (v2021.2.0.1675,
Theia Markerless Inc., Kingston, ON, Canada) to obtain three-
dimensional (3D) subject pose estimates of limb segments.
The resulting 4 × 4 pose estimates for each body segment
were exported to Visual3D Professional (v2021.06.02, C-Motion,
Inc., Germantown, MD, USA) for further analysis. The gait
events, initial contact (IC), and toe-off, were determined
using methods described by Zeni et al. (2008), with quality
checks performed in Visual3D. Lower limb joint kinematics
for the hip, knee, and ankle were calculated for the sagittal,
frontal, and transverse planes (see Table 2). Variables of
interest at defined points in the gait cycle and spatiotemporal
parameters were calculated and analyzed in MATLAB (v2020a,
Mathworks, Natick, MA, USA; see Table 3). Data were analyzed
from the participant’s self-identified dominant leg. For each

Frontiers in Human Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 867474

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Riazati et al. Reliability of Markerless Motion Capture

TABLE 2 | Gait event descriptions and abbreviations.

Gait Event Description

ST1 Stance phase I, ipsilateral initial contact to mid-stance, representing the first half of the stance phase
ST2 Stance phase II, mid-stance to ipsilateral toe-off, representing the second half of the stance phase
ST/SW Transition from stance-to-swing phase
RoM The entire range of motion over the full gait cycle, presented for hip, knee, and ankle joints in sagittal, frontal, and transverse planes
MaxFlexStance Maximum flexion angle (sagittal plane) achieved by the hip or knee joint during the stance phase
MaxFlexSwing Maximum flexion angle (sagittal plane) achieved by the hip or knee joint during the swing phase
MaxFlexST1 Maximum flexion angle (sagittal plane) achieved by the knee joint during stance phase I
MaxExtStance Maximum extension angle (sagittal plane) achieved by the hip or knee joint during the stance phase
MaxExtSwing Maximum extension angle (sagittal plane) achieved by the hip or knee joint during swing phase
MaxDorsiflexionST2 Maximum dorsiflexion angle (sagittal plane) achieved by the ankle joint during the stance phase II
MaxPlantarflexionST/SW Maximum plantarflexion angle (sagittal plane) of the ankle joint at stance-to-swing transition
MaxAddDLS1 Maximum adduction angle (frontal plane) achieved by the hip joint during double limb support phase I
MaxAbdSwing Maximum abduction angle (frontal plane) achieved by the hip joint during the swing phase
MaxVarusSwing Maximum varus angle (frontal plane) achieved by the knee joint in the swing phase
MaxInvSwing Maximum inversion angle (frontal plane) achieved by the ankle joint during the swing phase
MaxEvST1 Maximum eversion angle (frontal plane) achieved by the ankle joint during the stance phase I
MaxIntRotST1 Maximum internal rotation (transverse plane) achieved by the hip or ankle joint during the stance phase I
MaxExtRotST2 Maximum external rotation (transverse plane) achieved by the hip or ankle joint during the stance phase II
MaxExtRotSwing Maximum external rotation (transverse plane) achieved by the hip or ankle joint during the swing phase
AnkleInitialContact Ankle joint angle (sagittal or frontal plane) at initial contact
KneeMidStance Knee joint angle (frontal or transverse plane) at mid-stance
KneeMidSwing Knee joint angle (frontal or transverse plane) at mid-swing

TABLE 3 | Sagittal plane variables—Self-Selected Walking Speed: mean ±

standard deviation (std) for Session 1 and Session 2, and Standard Error of
Measurement (SEM).

Session 1 Session 2
Sagittal Mean ± std Mean ± std SEM

Hip(degrees)

RoM 46.2 ± 5.4 47.6 ± 4.5 2.16
MaxFlexStance 26.2 ± 3.6 26.7 ± 3.5 1.81
MaxFlexSwing 26.1 ± 3.1 26.9 ± 2.8 1.50
MaxExtStance −18.9 ± 4.2 −19.7 ± 2.9 1.94

Knee(degrees)

RoM 65.1 ± 4.1 65.8 ± 3.9 1.96
MaxFlexST1 16.8 ± 6.7 17.5 ± 6.9 2.36
MaxFlexSwing 63.8 ± 3.7 64.9 ± 3.9 1.66
MaxExtStance 2.7 ± 4.2 2.8 ± 3.4 1.78

Ankle(degrees)

RoM 39.3 ± 4.6 41.7 ± 5.7 2.47
InitialContact −4.6 ± 3.5 −5.2 ± 4.3 2.84
MaxDorsiflexionST2 10.1 ± 2.8 10.6 ± 4.2 1.82
MaxPlantarflexionST/SW −28.9 ± 4.6 −31.0 ± 4.4 2.42

condition, the number of strides was matched between the two
sessions.

Statistical Analysis
Error examination was performed using the approach described
by Kanko et al. (2021a) where root-mean-square differences
(RMSD) were calculated to evaluate between-day differences
in the full curves of all three joints and planes of motion.
For each session, the average RMSD was computed using
the ensemble average of the participant’s within-session data.
Absolute reliability was examined using standard error of
measurement (SEM) of discrete points within the gait cycle
and spatiotemporal parameters (Weir, 2005). Standard error

of measurement represents a combination of random and
systematic error and quantifies the precision of the equipment.
Additionally, the SEM provides a value of error in the same units
as the measurement (Weir, 2005). Measurement errors between
2◦ and 5◦ are to be considered acceptable (McGinley et al.,
2009). The percentage of SEM expressed from the mean (SEM%)
was derived for all spatiotemporal parameters. All statistical
analysis was performed via custom-writtenMATLAB scripts and
SPSSv27 (SPSS Inc., Chicago, IL, USA).

RESULTS

The RMSDs from full curve analysis of kinematics for both
SSWS and FCWS are reported in Figures 2 and 3. Absolute
reliability expressed as SEM and RMSD was <5◦ for the majority
of variables, thus deemed acceptable (McGinley et al., 2009).
Results of discrete point kinematics and spatiotemporal variables
expressed as SEM are presented in Tables 3–9.

Curve Analysis
The RMSD ranged from 0.96◦ to 3.56◦ for SSWS (see Figure 2)
and 0.97◦ to 3.71◦ for FCWS (see Figure 3). Across all
joints, planes of motion, and walking tasks, the lowest RMSD
was observed in hip frontal plane angles (see Figures 2D,
3D) while the highest RMSD was observed at the knee joint
in the transverse plane (see Figures 2H, 3H), across both
walking tasks.

SEM
Sagittal Plane
Our data revealed SEM values of less than 3◦ for sagittal plane
kinematics for all three joints (range: 1.5◦–2.84◦ for SSWS and
1.40◦–2.83◦ during FCWS; see Tables 3, 6).

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 867474

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Riazati et al. Reliability of Markerless Motion Capture

FIGURE 2 | Between-session reproducibility of full curve analysis for subject-average joint angles during self-selected walking speed (SSWS). Data illustrate joint
angles for hip (row 1), knee (row 2), and ankle (row 3) in the sagittal (A–C), frontal (D–F), and transverse planes (G–I). Each curve represents the ensemble average of
each individual’s trials for Session 1 (blue lines) and Session 2 (gold lines). The average RMS difference across all subjects is shown below the respective joint angle
plot; across all joints and planes of motion, the largest RMSD was 3.71◦.
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FIGURE 3 | Between-session reproducibility of full curve analysis for subject-average joint angle during fastest comfortable walking speed (FCWS). Data illustrate
joint angles for hip (row 1), knee (row 2), and ankle (row 3) in the sagittal (A–C), frontal (D–F), and transverse planes (G–I). Each curve represents the ensemble
average of each individual’s trials for Session 1 (blue lines) and Session 2 (gold lines). The average RMS difference across all subjects is shown below the respective
joint angle plot; across all joints and planes of motion, the largest RMSD was 3.56◦.
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Frontal Plane
Kinematics for all three joints produced errors ranging from
0.91◦ to 3.01◦ during SSWS and 0.91◦ to 3.25◦during FCWS. For
both walking tasks (see Tables 4, 7), ankle RoM produced the
highest SEM >3◦. The lowest values were observed for hip joint
maximum abduction angle during swing phase (SEM<1◦) across
both walking tasks.

Transverse Plane
For all joints, the largest measurement errors were observed in
the transverse plane (range: 2.80◦–4.95◦ in SSWS and 2.52◦–5.50◦

for FCWS; see Tables 5, 8). Ankle and knee RoM angles for
both walking tasks produced measurement errors >5◦. Hip joint
kinematics produced the lowest SEM across both walking tasks.

Spatiotemporal Parameters
All spatiotemporal parameters produced SEM% ranging between
2.6 and 16.8 percent during SSWS and 1.9 and 12.0 percent
during FCWS (see Table 9). During SSWS, first and second
double limb support time, and stride width produced SEM%
>10%. During FCWS, only stride width produced an SEM%
above >10% (12.0%).

DISCUSSION

To our knowledge, this is the first study to report measurement
errors associated with the Theia3D MLMC software. To date,
no study has reported concurrent measurement of absolute
reliability for both full curve and discrete point analysis
kinematics and spatiotemporal parameters using either marker-
based or markerless 3D motion capture. Our results show
that MLMC is able to provide acceptable measurement error
for the assessment of both full curve and discrete point
kinematics, and spatiotemporal parameters. The full curve
analysis reported here shows acceptable error for between-day
kinematics examination. For between-day reliability, gait data
acquired withMLMC largely producedmeasurement errors<3◦.
The highest measurement error was observed in the transverse
plane, a typical observation when performing 3Dmotion capture
of human walking (McGinley et al., 2009). This result is
consistent with previous findings and not surprising as transverse
plane motions are susceptible to error due to the limited range
of movement (McGinley et al., 2009). Specifically, McGinley
et al. (2009) identified hip rotation angles to be susceptible
to the highest error when using the current gold standard,
marker-based 3D motion capture. The results of this study,
however, show that, with the exception of hip joint RoM during
FCWS (3.39◦), the hip transverse plane motion produced RMSD
and SEM values <3◦ which tend lower than data acquired
with marker-based motion capture (McGinley et al., 2009).
The SEM of spatiotemporal parameters reported here is similar
to previous studies that have examined reliability using 3D
motion capture, IMU sensors, or pressure sensing walkways
(Paterson et al., 2008; Meldrum et al., 2014; Posada-Ordax et al.,
2021).

The low measurement errors observed from data acquired
with Theia3D MLMC reported in this study demonstrate the
sensitivity necessary to detect small changes in clinically

TABLE 4 | Frontal plane variables—Self-Selected Walking Speed:
mean ± standard deviation (std) for Session 1 and Session 2, and Standard Error
of Measurement (SEM).

Session 1 Session 2
Frontal Mean ± std Mean ± std SEM

Hip(degrees)

RoM 7.4 ± 2.6 7.7 ± 3.2 1.05
MaxAddDLS1 6.4 ± 2.2 6.7 ± 2.3 1.03
MaxAbdSwing 0.45 ± 2.1 0.23 ± 2.6 0.91

Knee(degrees)

RoM 9.8 ± 4.0 10.6 ± 4.0 2.53
MidStance −2.0 ± 2.7 −1.4 ± 3.4 1.61
MaxVarusSwing 4.74 ± 4.2 5.4 ± 4.3 2.82

Ankle(degrees)

RoM 16.2 ± 4.4 16.0 ± 4.1 3.01
Initial Contact 4.3 ± 4.3 4.6 ± 4.1 2.18
MaxInvSwing 10.9 ± 3.6 10.3 ± 4.2 2.59
MaxEvST1 −4.1 ± 3.2 −4.3 ± 3.5 2.32
MaxExtSwing −0.18 ± 3.3 −0.86 ± 3.1 2.50

TABLE 5 | Transverse plane variables—Self-Selected Walking Speed:
mean ± standard deviation (std) for Session 1 and Session 2, and Standard Error
of Measurement (SEM).

Session 1 Session 2
Transverse Mean ± std Mean ± std SEM

Hip(degrees)

RoM 12.7 ± 3.7 12.6 ± 4.3 2.80
MaxIntRotST1 6.1 ± 3.4 6.4 ± 4.3 2.96
MaxExtRotST2 −5.2 ± 4.2 −4.2 ± 4.1 2.81

Knee(degrees)

RoM 19.2 ± 5.7 19.4 ± 6.3 4.69
MidStance −9.4 ± 7.2 −10.9 ± 6.7 4.11
MidSwing −10.9 ± 4.5 −11.0 ± 5.0 3.39

Ankle(degrees)

RoM 20.2 ± 6.6 21.0 ± 6.4 4.95
MaxIntRotST1 5.8 ± 5.7 6.4 ± 6.5 3.71
MaxExtRotSwing −11.3 ± 5.9 −10.5 ± 6.2 3.37

important outcome measures. Thus, Theia3D provides
confidence for detecting gait pathology or monitoring outcomes
in response to rehabilitation. Data currently reported in the
literature, derived from marker-based motion capture, reveal
mean differences greater than the SEM values reported here.
For example, Albani et al. (2014) examined sagittal plane
kinematic differences between healthy controls and individuals
with Parkinson’s disease. The authors reported differences
between healthy and patient groups of 5.1◦ for hip RoM,
7.5◦ for knee RoM, 1.7◦ for max knee flexion angle during
swing, and 1.3◦ for ankle RoM. Chen et al. (2005a) reported
a difference of 20.8◦ between stroke survivors and healthy
controls for sagittal plane max knee angle during swing. While
an SEM value of 2.47◦ for the ankle sagittal plane RoM is
reported here, Albani et al. (2014) reported a difference of
1.3◦ between healthy and impaired gait. However, within
Parkinson’s disease, ankle kinematics are less likely to be
altered when compared to healthy (Zanardi et al., 2021).
Regardless, the knowledge of SEM values of hip, knee, and ankle
kinematics should aid future studies using Theia3D and avoid
potential over-interpretation of results when reporting kinematic
differences.
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TABLE 6 | Sagittal plane variables—Fastest Comfortable Walking Speed:
mean ± standard deviation (std) for Session 1 and Session 2, and Standard Error
of Measurement (SEM).

Session 1 Session 2
Sagittal Mean ± std Mean ± std SEM

Hip(degrees)

RoM 53.3 ± 5.0 54.0 ± 4.4 1.82
MaxFlexStance 29.9 ± 3.1 30.3 ± 3.0 1.53
MaxFlexSwing 28.8 ± 3.0 28.6 ± 2.8 1.48
MaxExtStance −22.9 ± 3.1 −23.4 ± 2.6 1.40

Knee(degrees)

RoM 65.5 ± 5.0 65.9 ± 4.5 2.38
MaxFlexST1 21.2 ± 7.7 22.6 ± 7.6 2.54
MaxFlexSwing 65.1 ± 3.9 65.6 ± 4.3 2.09
MaxExtStance 0.94 ± 4.2 1.4 ± 5.1 2.83

Ankle(degrees)

RoM 40.3 ± 5.5 41.5 ± 6.4 2.52
Initial Contact −2.4 ± 4.1 −3.2 ± 4.8 2.59
MaxDorsiFlexionST2 8.7 ± 3.6 9.4 ± 4.8 1.97
MaxPlantarflexionST/SW −31.2 ± 4.7 −31.6 ± 4.8 2.02

TABLE 7 | Frontal plane variables—Fastest Comfortable Walking Speed:
mean ± standard deviation (std) for Session 1 and Session 2, and Standard Error
of Measurement (SEM).

Session 1 Session 2
Frontal Mean ± std Mean ± std SEM

Hip(degrees)

RoM 7.3 ± 2.4 7.3 ± 2.2 0.95
MaxAddDLS1 6.5 ± 2.4 6.8 ± 2.2 1.34
MaxAbdSwing 0.72 ± 1.9 0.55 ± 1.9 0.91

Knee(degrees)

RoM 9.6 ± 3.6 9.6 ± 3.5 2.33
MidStance −2.2 ± 2.8 −1.8 ± 3.1 1.10
MaxVarusSwing 4.3 ± 4.5 3.7 ± 3.7 2.28

Ankle(degrees)

RoM 15.0 ± 4.2 15.4 ± 5.0 3.25
InitialContact 5.4 ± 4.3 5.9 ± 4.2 2.25
MaxInvSwing 10.4 ± 3.6 10.1 ± 3.7 2.34
MaxEvST1 −3.0 ± 3.3 −3.7 ± 4.1 2.79
MaxExtSwing −0.18 ± 3.8 −0.04 ± 3.8 2.69

TABLE 8 | Transverse plane variables—Fastest Comfortable Walking Speed:
mean ± standard deviation (std) for Session 1 and Session 2, and Standard Error
of Measurement (SEM).

Session 1 Session 2
Transverse Mean ± std Mean ± std SEM

Hip(degrees)

RoM 14.7 ± 4.1 14.9 ± 4.8 3.39
MaxIntRotST1 6.5 ± 3.9 6.5 ± 4.4 2.62
Max Ext Rot ST2 −7.0 ± 4.4 −7.2 ± 4.8 2.52

Knee(degrees)

RoM 17.6 ± 5.1 18.4 ± 6.5 5.35
MidStance −9.6 ± 6.5 −9.1 ± 6.6 3.98
MidSwing −10.8 ± 4.5 −9.5 ± 4.9 3.73

Ankle(degrees)

RoM 19.5 ± 5.4 20.6 ± 6.6 5.50
MaxIntRotST1 4.5 ± 5.6 5.1 ± 5.7 3.34
MaxExtRotwing −11.4 ± 5.2 −11.9 ± 6.7 4.49

The absolute reliability of STP, reported here as SEM%,
is comparable to previously reported clinical gait outcome
measures (Flansbjer et al., 2005). Spatiotemporal parameters
have been used widely in determining clinical outcomes

and differences between healthy and pathological populations.
Changes to joint RoM have been reported to influence
spatiotemporal parameters; for example, in individuals with
Parkinson’s disease, reduced step length, increased double
support time, and cadence have been informative in determining
the stage of the disease (Mirelman et al., 2019). Literature
has reported differences in pathological gait compared to
healthy individuals as 0.2–0.42 m for stride length, 0.05–0.13 m
for step width, 0.06–0.14 m for step length (Chen et al.,
2005a; Albani et al., 2014; Pistacchi et al., 2017; Bouça-
Machado et al., 2020). Considering the data reported in the
literature as expected differences, then we can proceed with
confidence that gait analysis performed with Theia3D MLMC
is sensitive and can discriminate spatiotemporal deviations for
clinical use. Similar to kinematics, the measurement errors of
spatiotemporal parameters reported in this study may help
to avoid over-interpretation of results in studies employing
Theia3D.

Full curve examination affords the ability to detect possible
deviations that may not be detected using discrete analysis.
While values at a defined point may be similar between sessions,
such evaluation does not mean that the pattern of motion was
consistent across the full gait cycle. Our inter-session curve
analysis reveals low magnitude differences for the entire gait
cycle providing further confidence for both biomechanists and
clinicians who desire to use MLMC for kinematic investigation.

Previous examinations of the reliability and validity of
MLMC, Theia3D specifically, have been performed by the
developers who bring extensive knowledge and experience with
both deep learning (AI) and biomechanical analysis (Kanko et al.,
2021a,b). The current study has several differences from the
experiments conducted by Kanko and colleagues. Kanko et al.
(2021b) established reliability using data collected in a dedicated
laboratory setting, from eight college-aged participants, while
controlling for clothing and footwear. In the present study,
we leveraged the ability to perform 3D gait analysis outside
of a laboratory, working instead in accessible environments
such as community centers and clinical facilities representative
of where this new technology may be used to evaluate
clinical populations and functional outcomes. Additionally, we
sampled a diverse group of individuals and explicitly did
not control for their attire. We sought to determine how
realistic it will be to use this tool for the evaluation of
gait dysfunction in clinical populations, particularly individuals
participating in neurorehabilitation. Our data show strong
evidence of low measurement error, even in what may be
traditionally considered non-ideal conditions for 3D motion
analysis, demonstrating strong potential for use of MLMC in
clinical environments.

While representing significant and important advances in
biomechanical technologies, it is important to note that, similar
to marker-based motion capture tools, currently available
commercial MLMC products are not turnkey systems. Prior to
conducting the present study, our team performed extensive
development work (described in the companion article, McGuirk
et al., 2022) to determine the requisites (e.g., location, optimal
capture volume, camera configuration, lighting, collection time,
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TABLE 9 | Mean ± standard deviation (std) of the variables for both sessions (session 1 and session 2) along with Standard Error of Measurement (SEM), and
percentage of Standard Error of Measurement expressed from the mean (SEM%) of Spatio-temporal variables during both self-selected walking speed (SSWS) and
fastest comfortable walking speed (FCWS).

Session 1 Session 2
Task Mean ± std Mean ± std SEM SEM%

SSWS
Gait Speed (m.s−1) 1.35 ± 0.26 1.41 ± 0.26 0.07 5.3
Gait Speed_LL (m.s−1) 1.59 ± 0.28 1.68 ± 0.29 0.09 5.2
Cadence (steps/min) 109.5 ± 10.65 111.95 ± 10.00 2.92 2.6
Stride Time (sec) 1.11 ± 0.12 1.08 ± 0.10 0.04 3.8
Stance Time (sec) 0.74 ± 0.10 0.72 ± 0.07 0.04 5.5
Double Leg Support Time 1 (sec) 0.18 ± 0.04 0.17 ± 0.03 0.02 10.5
Double Leg Support Time 2 (sec) 0.18 ± 0.05 0.17 ± 0.03 0.03 16.8
Single Leg Support Time (sec) 0.38 ± 0.04 0.37 ± 0.03 0.02 4.6
Swing Time (sec) 0.38 ± 0.05 0.37 ± 0.03 0.03 7.0
Stride Length (meters) 1.43 ± 0.19 1.47 ± 0.20 0.06 4.0
Stride Length_LL (meters) 1.71 ± 0.18 1.76 ± 0.20 0.07 3.8
Step Time (sec) 0.55 ± 0.06 0.53 ± 0.05 0.02 4.6
Step Length (meters) 0.71 ± 0.10 0.73 ± 0.11 0.04 5.1
Step Length_LL (meters) 0.85 ± 0.10 0.87 ± 0.12 0.04 5.1
Step Width (meters) 0.19 ± 0.06 0.20 ± 0.05 0.02 11.3

FCWS
Gait Speed (m.s−1) 1.95 ± 0.33 1.97 ± 0.26 0.06 3.0
Gait Speed_LL (m.s−1) 2.31 ± 0.37 2.34 ± 0.29 0.07 2.8
Cadence (steps/min) 134.9 ± 15.5 135.3 ± 13.5 2.51 1.9
Stride Time (sec) 0.90 ± 0.10 0.89 ± 0.09 0.02 2.6
Stance Time (sec) 0.58 ± 0.07 0.57 ± 0.07 0.02 3.7
Double Leg Support Time 1 (sec) 0.13 ± 0.02 0.13 ± 0.02 0.01 8.0
Double Leg Support Time 2 (sec) 0.13 ± 0.02 0.13 ± 0.02 0.01 7.7
Single Leg Support Time (sec) 0.32 ± 0.04 0.32 ± 0.03 0.01 3.8
Swing Time (sec) 0.32 ± 0.04 0.32 ± 0.03 0.01 4.6
Stride Length (meters) 1.68 ± 0.21 1.70 ± 0.18 0.06 3.3
Stride Length_LL (meters) 2.01 ± 0.22 2.04 ± 0.19 0.07 3.4
Step Time (sec) 0.44 ± 0.05 0.44 ± 0.05 0.02 3.6
Step Length (meters) 0.83 ± 0.12 0.85 ± 0.10 0.04 4.9
Step Length_LL (meters) 1.0 ± 0.12 1.02 ± 0.11 0.05 4.8
Step Width (meters) 0.22 ± 0.07 0.23 ± 0.07 0.03 12.0

sampling frequency, and the number of trials required for
each task and location) for feasibly acquiring 3D kinematics
in free living spaces. This development process revealed the
majority of clothing allows for detection of expected limb and
segment motion. One challenge encountered, however, was with
calf/ankle length skirts, which did not allow the modeling of the
pelvis and legs. Of the 21 individuals who participated in this
study, 10 wore similar clothing for both sessions (e.g., t-shirt
and shorts). Six individuals wore shorts or a short (above-knee
length) skirt for one session and switched to long trousers for the
other; all six also wore different shoes. One individual switched
from sandals to shoes between sessions; another walked barefoot
for both sessions.

CONCLUSION

The results of this study show that 3D gait analysis conducted in
open, participant-facing environments with markerless motion
capture affords repeatable, accurate 3D gait data suitable for
both biomechanists and clinicians. Measurement error of 3D
kinematics examined through both full curve and discrete point
analysis and spatiotemporal parameters was low, providing a
basis for interpretation of both clinical status and monitoring
rehabilitation outcomes. This study shows that implementation

of Theia3D MLMC does not require specific procedures to
control for clothing as is the case for marker-based motion
capture. The findings of this study also support the feasibility
of using the MLMC tools in various settings and populations.
While the reliability of the data acquired using markerless
motion capture was comparable to that reported from marker-
based systems, in some cases—such as hip transverse plane
kinematics—we observed lower measurement errors. Together,
these findings provide confidence in MLMC and indicating
strong potential for its future use in the neurorehabilitation
setting.
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