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Abstract

In survival analysis with competing risks the transformation model allows different functions 

between the outcome and explanatory variables. However, the model's prediction accuracy and the 

interpretation of parameters may be sensitive to the choice of link function. We review the 

practical implications of different link functions for regression of the absolute risk (or cumulative 

incidence) of an event. Specifically we consider models in which the regression coefficients β 

have the following interpretation: The probability of dying from cause D during the next t years 

changes with a factor exp(β) for a one unit change of the corresponding predictor variable, given 

fixed values for the other predictor variables. The models have a direct interpretation for the 

predictive ability of the risk factors. We propose some tools to justify the models in comparison 

with traditional approaches which combine a series of cause-specific Cox regression models, or 

use the Fine-Gray model. The methods are illustrated using bone marrow transplant data.
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1. Introduction

Competing risks models are nowadays in routine use for the analysis of clinical trials and 

epidemiological studies. A boom in biomarker research and the aim to predict the future 

disease course of patients have increased the demand for statistical methods that quantify the 

predictive ability of genotype, phenotype, treatment and environmental factors. For 

example, a patient diagnosed with diabetes may be interested in the risk of cardiovascular 

disease related death. In a broader context, it is of interest to quantify how multiple risk 

factors change the predicted risk of death caused by cardiovascular disease. In this article we 

review and compare the practical properties of different regression models for competing 

risks, specifically for predicting the individual risks of cancer patients (Figure 1).

In applications the choice of a prediction model relies on a number of considerations, 

including:

• Size of prediction error

• Fit of model

• Interpretation of model parameters
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• Mathematical coherence of models

The estimation of absolute risk based on estimates of the cause-specific hazard functions 

was discussed for example in [1, 2]. Unfortunately, hazard ratios as obtained by cause-

specific Cox regression analyses do not directly quantify the ability of the single markers to 

predict the unconditional absolute risk of an event of interest. The Fine-Gray model [3] can 

be used to test if the cumulative incidence depends on a risk factor, but the absolute values 

of the resulting regression coefficients are difficult to interpret [3, 4]. We specifically 

discuss multiple regression models that directly quantify the expected change of the 

predicted absolute risk of an event (cumulative incidence) for a one unit change of one 

predictor's value given fixed values for the other predictor variables. Such models include 

the ratio between cumulative incidences in two groups as the special case with exactly one 

binary predictor variable. Recently, Zhang et al. [5] investigated the difference, the odds 

ratio and also the ratio between two cumulative incidence functions. Another useful model is 

the logistic risk regression model which is an extension of the odds ratio to multiple 

regression in competing risks. However, relative absolute risks are easier to understand [6].

These models are not new and the mathematical properties are well-studied in the context of 

the linear transformation model [7]. The reasons why alternatives to cause-specific Cox 

regression and Fine-Gray regression are not used in practice or discussed in monographs on 

competing risks models are not clear. From a purely mathematical viewpoint the absolute 

risk regression models have the problem that their formulation does not guarantee that the 

predicted probability of an event is between 0% and 100%. However, we exemplify in this 

article that the predictions can be as good as those from the Fine-Gray model and from 

combined cause-specific Cox regression analyses. The logistic link yields mathematically 

coherent models, but in the presence of competing risks the interpretation of the resulting 

odds ratios maybe more cumbersome than usual, because one minus the absolute risk of an 

event is the sum of the survival chance and the risk of competing events.

We present a worked example where we consider data from patients who received a bone 

marrow transplant. We compare the predictive ability of different models using scatterplots 

at single time-points, and via cross-validated time-dependent mean squared error of 

prediction adapted to censored data and competing risks [8-10].

For the convenience of the reader we provide the library riskRegression, a collection of user-

friendly R-functions to fit the different models considered in this article. Sample code is 

provided in an online appendix.

2. Competing risks regression

In a competing risks framework, let T be the exit time from the initial state to one of the 

absorbing states (events), and D indicate the type of event [11]. We are interested in 

regression models for the cumulative incidence function F1 whose values are the time-

dependent absolute probabilities of occurrence of event 1:

(1)
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Here X = (X1, . . . , XK) is a vector of predictor variables measured at baseline for subject i, 

α1 is the cause-specific hazard function for event 1 (Figure 1), and S denotes the event-free 

survival function. More precisely, S(t|X) is the time-dependent probability that a patient with 

risk factors X stays in the initial state until time t.

A desirable conclusion sentence from a regression analysis of F1 would be: “The probability 

of dying from cardiovascular disease during the next t years is exp(β) times as high for a 

patient with diabetes than for a patient without diabetes, given fixed values for the other 

predictor variables.” The regression parameters β = (β1, . . . , βK) in the following absolute 

risk regression model (ARR) have the desired interpretation:

(2)

Here F1,0 is an unspecified function of time which represents the cumulative incidence for 

subjects with X = 0. The logarithmic link function yields that predictor variable changes are 

translated into ratios of the corresponding cumulative incidences:

(3)

Consistent estimators of the model parameters are defined as solutions to generalized 

estimation equations [12] suitably adapted for censored data and competing risks. A 

corresponding semi-parametric theory is available for the transformation model:

(4)

where g is a known differentiable function. The transformation model includes the model (2) 

as the special case where g(p) = log(p) and β0(t) = log F1,0(t). The logistic-link model 

corresponds to g(p) = log(p/(1 – p)) and the Fine-Gray model to the complementary log-log 

link: g(p) = log(–log(p)). The properties of the transformation model have been studied by 

many [3,13-17]. Specifically, to deal with right censored data, estimation techniques are 

available based on inverse of the probability of censoring weights (IPCW) [3, 15, 17] or 

jackknife pseudo-values [18].

3. Illustration: Bone marrow transplant study

For the purpose of illustrating the methods we consider the data from 1715 leukemia 

patients who received a bone marrow transplant (BMT) [19]. The endpoints are what comes 

first: relapse of the disease or death in remission (Figure 1). A total of 847 patients survived 

the follow-up period in remission, follow-up ended in relapse for 311 patients and in death 

in remission for 557 patients. According to the (reverse) Kaplan-Meier for the censoring 

times the median follow-up time was 37.2 months (inter quartile range: [23.7,52.7]), see 

Figure 2.

The following predictor variables were used to predict the absolute risks of relapse and 

death: disease type (levels: ALL, AML, CML), time waiting for transplant in months since 
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diagnosis (median: 10.95 months; IQR: [6,23]; Range: [0.4;200]), patient gender (male: 985; 

female:727), dichotomized Karnofsky index (positive: 1382; negative: 333), disease stage 

(early: 1026; intermediate: 410; advanced: 279), and type of donor (sibling:1224; matched/

unrelated:383; mismatched/unrelated:108).

3.1. Inverse of the probability of censoring weights

For the purpose of using the IPCW methods for fitting direct regression models as described 

in [17] we investigated the association between censoring times and predictor variables. 

Based on a Cox regression model for the censoring times, Table 1 shows significant effects 

of several predictor variables. Positive Karnofsky index, disease type AML (compared to 

disease type ALL), and intermediate disease stage (compared to early disease stage) have a 

negative effect on the censoring hazard and indicate longer follow-up, and a matched/

unrelated donor versus a sibling donor has a positive effect on the censoring hazard and 

indicates a shorter follow-up period given fixed values for the other predictors.

This result leads to the well-known dilemma of the IPCW technique: Ignoring the covariates 

and using weights based on the marginal Kaplan-Meier estimate of the censoring 

distribution may introduce a bias if there is a true relation between the predictors and the 

censoring distribution, and will not yield efficient estimates because the predictor values of 

the patients that were lost to follow-up (eventfree) will not enter into the statistic. On the 

other hand, if a parametric model, like the Cox regression model presented in Table 1, is 

biased then the results of IPCW may also be biased. Note that a purely nonparametric 

approach is often not feasible due to the curse of dimensionality. In the BMT data 

considered here, if the continuous predictor “transplant waiting time” is ignored, then a 

stratified Kaplan-Meier estimate could be used for the IPCW technique. However, all 

possible combinations of the values of the variables disease stage and type, Karnofsky index 

and donor matching generate 54 different classes of which 12 classes would include less 

than 4 patients. Hence, we do not consider nonparametric weights and in all what follows 

below work with IPC weights derived from the Cox regression model (Table 1).

3.2. Regression models

The following regression analyses were performed to predict the event probabilities: 1. 

Absolute risk regression, 2. Log-odds regression, 3. Fine-Gray regression, 4. Combination of 

cause-specific Cox regression. For each of the four approaches we separately performed one 

regression analysis for each of the two endpoints, relapse and death in remission. For each 

model we included the same predictor variables in additive form and did not consider 

interactions. The models 1-3 were implemented in the statistical software R [20] using 

IPCW based on weights derived from the Cox regression model presented in section 3.1 and 

Table 1. For details on the implementation see [21]. Note that the combination of the cause-

specific Cox regression models can be estimated using partial likelihood, and does not 

require a model for the censoring distribution. Instead one has to specify models for the 

cause-specific hazard functions of all competing risks.

Table 2 shows the results of the absolute risks regression models. A sample conclusion 

sentence derived from the table is the following:
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“A positive Karnofsky index significantly increased the absolute risk of relapse, by a factor 

1.3 (95%-CI=[1.01;1.65]), and significantly decreased the risk of dying in remission, by a 

factor 0.81 (95%-CI=[0.7;0.94]).”.

Table 3 shows results obtained with different multiple regression models for the effects of 

the factor donor on the two competing risks.

The parameters  obtained with the logistic-link regression models can be interpreted 

as ratios between the odds of experiencing the event of interest. However, the 

complementary probability of “not experiencing the event” includes both the chance of no 

event and the risk of the competing event. As usual the absolute deviations of the odds ratios 

from the reference value 1 are systematically higher compared to absolute relative risks.

The values of the estimated parameters obtained with the Fine-Gray regression model are 

difficult to interpret within the context of the proportional hazard model for the sub-

distribution hazard function [3, 4].

However, the first three models agree with respect to statistical significance of all four 

parameters shown in Table 3. The effect of matched/unrelated donor vs. sibling quantified 

by an estimated cause-specific hazard ratio of 1.05 (95% confidence interval: [0.78;1.42]) is 

not statistically significant (p > 0.05) in the cause-specific Cox regression model for relapse. 

This observation has been documented elsewhere [18, 22].

4. Model checking

The models discussed in the previous section all assumed that the regression effects do not 

depend on time.

To explore this assumption we consider an extension of the models that allow time-

interaction [23]. In the absolute risk context a model that captures a potential time-

interaction is

where the regression coefficients γk are functions of time. Fitting this type of model for the 

absolute risk, logistic, and Fine-Gray models reveals that all models have severe problems 

with the disease stage variable. This is illustrated in Figure 3 which shows the time-varying 

effect of intermediate vs early disease stage for the absolute risk model. All other covariates 

can approximately be described as having constant effects (not shown). Figure 3 also shows 

the estimate of the effect of matched/unrelated donors compared to sibling donors for the 

absolute risk regression model, that (for all link functions) indicate some slight time-

interaction. A formal test can be constructed as described in detail in [24]. The time-varying 

coefficient model is used here for the purpose of model checking, and it is important to note 

that estimates may not be be valid subdistributions. Another way of examining whether the 

effect (on the proper scale) is time-constant is to use pseudo-observations as discussed in 

[25].
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To fully comply with the assumption that the effects do not change with time, one 

possibility is to restrict attention to a different time-interval. The figures can be translated 

into p-values using resampling techniques [23] but the key is really to consider the graphical 

display of the effects.

5. Prediction accuracy

To justify the absolute risk regression model, in particular the link function, a good starting 

point is to compare the predictions and prediction accuracy to that obtained with established 

models. A simple first check is to compare the predictions of event probabilities at a given 

time-point.

Using the BMT data and models introduced in section 3, the scatterplots comparing the 

predicted risks of relapse, respectively of death in remission, do not show great differences 

of individual predictions (Figure 4). The time-fixed coefficient absolute risk regression 

model predicted on average (over the 1715 patients in the BMT data) a 0.48 % (min: 

−10.2%; max: 5.5%) higher probability of relapse after 3 years than the cause-specific Cox 

regression model and a 0.3% (min: −2.6%; max: 3.1%) higher probability of relapse after 3 

years than the Fine-Gray regression model. The differences were slightly larger for 

predicting death in remission than for predicting relapse. Here the time-fixed coefficient 

absolute risk regression model predicted on average a 0.04 % (min: −15.9%; max: 12.4%) 

lower probability than the cause-specific Cox regression model and a 0.04% (min: −16.5%; 

max: 7.9%) lower probability than the Fine-Gray regression model.

The next question is whether these deviations in predicted probabilities differentiate the 

prediction accuracy of the alternative models. The time-dependent Brier score can be 

estimated separately for the different events using a weighted average of individual residuals 

[26, 10, 27]:

Here, inverse of the probability of censoring weights W (t, X) are based on an estimate of the 

conditional censoring distribution given the predictor variables [10]. Again, these weights 

are derived from the Cox regression model shown in Table 1.

Figure 5 compares the estimated Brier scores for the absolute risk regression model with 

time-fixed coefficients to Fine-Gray regression and cause-specific Cox regression. The 

analysis shows that the three models have quite similar prediction performance. For 

example, the Brier scores for predicting relapse during the first three years are estimated as 

12.73%, 12.64% and 12.72% for the absolute risk regression, the Fine-Gray regression and 

the cause-specific Cox regression, respectively.
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6. Discussion

Prediction of absolute risk is an important activity in many disciplines, including medicine. 

In this paper we have studied a number of different regression models for prediction of 

relapse and of death in remission in a bone marrow transplantation setting (Tables 2 and 3). 

In this data set we reviewed the choice of link function and observed that, in terms of 

individual predictions (Figure 4) and prediction error (Figure 5), no substantial differences 

were identified among the models. This was in spite of the fact that for all direct models, 

deviations from the assumption of time-constant effects (on the appropriate scale) were seen 

(Figure 3).

When it comes to parameter interpretation, some of the fitted models are more attractive 

than others. The two standard competing risks regression models are Cox models for cause-

specific hazards and the Fine-Gray regression model. For the former, exp(β) parameters 

have standard rate ratio interpretations as known from epidemiology. However, in a 

competing risks model rate ratios do not directly translate to relationships between risks 

(cumulative incidences) [28] as also illustrated for the effect of donor in Table 3. For the 

Fine-Gray model, exp(β) parameters are “subdistribution hazard ratios” and since a 

subdistribution hazard (being the rate of event among those who are either still alive or have 

already died from a competing cause) has a quite indirect interpretation, so have the 

regression coefficients from that model. However, the Fine-Gray model does establish a 

useful direct link between covariates and cumulative incidence.

This link is also evident for the other two models fitted to the bone marrow transplantation 

data in Section 3. Thus, for the logit link model, exp(β) parameters are ratios between odds 

of the form

i.e. the cumulative incidence divided by its complement, the probability of either having 

survived or having died from a competing cause by time t. Such odds parameters may suffer 

from some of the same drawbacks as the subdistribution hazard and below, we discuss a 

possible model for an alternative odds parameter. For the log link model we argue that the 

parameter interpretation is simple and useful: exp(β) parameters are ratios between 

cumulative incidences.

So, why is the log link model not the standard direct regression model for a cumulative 

incidence? One reason may have to do with the mathematical properties of the model. 

Probabilities from the model may exceed 1. How large a practical problem this may be is 

hard to say in general and in our view this is most likely to be a problem if unwarranted 

extrapolations beyond the range of observed covariates are aimed at. On the more technical 

side, some care must be exercised when fitting the model due to numerical instabilities for 

small values of time t arising from the fact that the log cumulative incidence is undefined for 

t = 0. This is also a problem for the logit link model but not for the Fine-Gray model.
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However, a problem possessed by all direct regression models for cumulative incidences is 

that the sum of all predicted cumulative incidences, that is,  for two 

competing causes may exceed 1. If focus is on a single cause then one might argue that this 

is a minor problem but for a thorough competing risks analysis, all causes should be studied 

and the problem does become relevant. This problem does not occur for cause-specific 

hazard (Cox or other) models for which predicted probabilities add up to 1:

The following alternative logit model also has this desirable property. Consider the case 

with two competing causes and assume that

This is a continuous time multinomial logistic model (see e.g., Hosmer and Lemeshow [29, 

Sect. 8.1] for a presentation of the standard multinomial logistic model) and the three 

probabilities

the corresponding F2(t | X) and

do add up to 1. The exp(βj) parameters from this model have a simpler interpretation than 

those from the logit model fitted in section 3. Thus, exp(βj) parameters are ratios between 

“odds” of the form Fj(t | X)/S(t | X), that is, the risk of a cause j failure in relation to the 

probability of no failure. A drawback, however, is that (like cumulative incidences predicted 

from cause-specific hazards) the cause 1 cumulative incidence predicted from this logit 

model depends on both the β1 parameters and the corresponding parameters, β2, for the 

competing cause.

How to balance the criteria for choosing among competing prediction models in a given 

situation may not be obvious. We have discussed some of the considerations which we have 

found relevant and this has led us to the conclusion that, in spite of its mathematical 

inconveniences, the log link cumulative incidence regression model (2) due to its desirable 

parameter interpretation may be a serious competitor to more standard models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

A competing risks model describes the time course of subjects that share a common initial 

state at the time origin (Remission). The time course is terminated when either of the 

competing events (Event 1: relapse or Event 2: death without relapse) has occurred. The 

cause-specific hazard functions α1 and α2 describe the instantaneous rates of the two events 

at time t.
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Figure 2. 

Cumulative incidences of events and estimate of follow-up distribution for the BMT study
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Figure 3. 

Time-dependent effects in the absolute risk regression model for relapse. The non-

parametric estimates are shown with 95% pointwise confidence intervals.
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Figure 4. 

Predicted cumulative probabilities for the patient status 3 years after the transplant. 

Compared are the predictions for relapse and death in remission based on absolute risk 

regression (x-axes) and Fine-Gray regression (y-axes top panels), cause-specific Cox 

regression (y-axes middle panels), log-odds regression (y-axes bottom panels). Each of the 

black dots represents the predictions at the predictor values of one patient in the BMT data 

set.
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Figure 5. 

Prediction error (Brier score) estimated for the predictions for relapse and death in remission 

based on the same data used for fitting the models (top panels) and based on 1000 steps of 

bootstrap cross-validation (bottom panels).
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Table 1

Results from Cox regression of the observed censoring times.

Hazard ratio 95% CI P-value

disease:ALL – – –

disease:AML 0.79 [0.63; 0.97] 0.026

disease:CML 0.95 [0.78; 1.15] 0.58

Karnofsky 0.74 [0.60; 0.92] 0.0076

donor:sibling – – –

matched/unrelated 1.75 [1.44; 2.13] < 0.0001

mismatched/unrelated 1.02 [0.69; 1.50] 0.94

stage:early – – –

stage:intermediate 0.78 [0.64; 0.95] 0.011

stage:advanced 1.29 [0.96; 1.75] 0.094

transplant waiting time 1.00 [0.99; 1.00] 0.40
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Table 2

Results from absolute risk regression.

Relapse Death in remission

Factor Relative absolute risk 95% CI P-value Relative absolute risk 95% CI P-value

disease:ALL – – – – – –

disease:AML 0.84 [0.66; 1.06] 0.15 0.97 [0.77; 1.22] 0.8

disease:CML 0.59 [0.45; 0.78] 0.00023 1.4 [1.13; 1.62] 0.0009

Karnofsky 1.3 [l.01; 1.65] 0.041 0.81 [0.7; 0.94] 0.0056

donor:sibling – – – – – –

matched/unrelated 0.76 [0.57; 1] 0.051 1.7 [1.45; 1.96] < 0.0001

mismatched/unrelated 0.27 [0.13; 0.57] 0.00061 2.2 [1.85; 2.63] < 0.0001

stage:early – – – – – –

stage:intermediate 1.8 [1.33; 2.39] 0.00012 1.2 [1.04; 1.42] 0.015

stage:advanced 3.2 [2.51; 4.09] < 0.0001 1.3 [1.08; 1.59] 0.0056

transplant waiting time 0.99 [0.98; 1] 0.021 1 [1; 1.01] 0.00010
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Table 3

Results for donor effects from different competing risk regression models.

Relapse Death in remission

Donor exp(β̂) 95% CI P-value exp(β̂) 95% CI P-value

Absolute risk regression

matched/unrelated vs. sibling 0.76 [0.57; 1] 0.051 1.7 [1.45; 1.96] < 0.0001

mismatched/unrelated vs. sibling 0.27 [0.13; 0.57] 0.00061 2.2 [1.85; 2.63] < 0.0001

Logistic-link regression

matched/unrelated vs. sibling 0.65 [0.43; 0.98] 0.038 2.3 [1.74; 3] < 0.0001

mismatched/unrelated vs. sibling 0.16 [0.06; 0.41] 0.00013 5 [3.21; 7.89] < 0.0001

Fine-Gray regression

matched/unrelated vs. sibling 0.7 [0.5; 0.99] 0.042 1.9 [1.57; 2.37] < 0.0001

mismatched/unrelated vs. sibling 0.21 [0.09; 0.48] 0.00025 3.3 [2.46; 4.41] < 0.0001

Cause-specific Cox regression

matched/unrelated vs. sibling 1.05 [0.78; 1.42] 0.75 2.08 [1.71; 2.52] < 0.0001

mismatched/unrelated vs. sibling 0.40 [0.20; 0.81] 0.01 2.87 [2.20; 3.75] < 0.0001
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