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In this paper, absolute stability of nonlinear systems with time delays is investigated.
Sufficient conditions on absolute stability are derived by using the comparison
principle and differential inequalities. These conditions are simple and easy to check.
In addition, exponential stability conditions for some special cases of nonlinear delay
systems are discussed. Applications of those results to cellular neural networks are
presented.
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1 INTRODUCTION

Since its inception in the 1940s, the concept of absolute stability has
attracted the attention of many researchers including mathematicians
and engineers, and numerous results have been published in the lit-
erature, [1-5]. The significance of this concept is that it does not re-
quire very precise information on certain nonlinear portion of a
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control system. However, most of the results are with respect to linear
control systems or systems described by ordinary differential equations
(ODEs), while the real control systems in general are nonlinear sys-
tems with time delays. In this paper, absolute stability of nonlinear
system with time delays is studied. By constructing suitable Lyapunov
functions, sufficient conditions to guarantec absolute stability of the
systems are derived. These conditions are simple and easy to check. In
addition, existence of a unique equilibrium point and its exponential
stability for some special cases of the system are discussed.

The remainder of this paper is organized as follows. Section 2 gives
the definitions of absolute stability and equilibrium points. In section
3, sufficient conditions on absolute stability as well as those on ex-
ponential stability for some special cases are derived in detail. Appli-
cations of those conditions to celiular neural networks are presented in
section 4. Conclusions are given in section 5.

2 PRELIMINARIES

Consider a nonlinear system with time declays given as follows
Uho= a0 S (W) 20 gt — ti(0) + didp
¢ =h(), d=2 paki—ro, i=1,....n,

where a;,d;,p; and r are constants, fy,g;,t; € C'(R,R), f;(0)=
gi{0) =0and 0 < 74(r) < 1,7>0.
Let

(2.1)

U={h:lhe C(R R), h(0)=0,h(5)0>0,3d+#0}.
Definition 2.1 The trivial solution of (2.1) is called globally asymp-
totically stable if it is stable and all solutions of (2.1) satisfy

Ilim (1) =0, ’lim =0, i=12...,n

Definition 2.2 System (2.1) is catled absolutely stable if for any A € U
and any 1 > 0, it is globally asymptotically stable.

When h(5) =0, ¢ becomes a constant. Let [;=dip and
Xi=1;, i=1,2,...,n(2.1) becomes
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Np=—axi+ Y i)+ gt =) L (2.2)
=1 =1

Definition 2.3 A point x* = (x’f,...,x,’;)T € R" is called an equili-
brium point of (2.2) if

1 n
aix; = Z.ﬁj(x;‘) + Zg,j(xj’f) +IL, i=12,...,n
= =1

Definition 2.4 The equilibrium point x* = (xf},... ,x,’;)T € R" of sys-
tem (2.2) is called exponentially stable if there exists ¢ 4 > 0 such that

n

[xl'_xﬂSM(Z sup Ixj_x;tl)e—“’—"))a i=12...,n

=1 f—t<t<ty

Definition 2.5 [8] A real n x n matrix A with nonnegative diagonal
and nonpositive off-diagonal elements is called M-matrix if all its ei-
genvalues have a nonnegative real parts or its principal minors are
positive. If A has all eigenvalues with positive real parts, then it is
called a nonsingular M-matrix. Usually, N is used to denote the class of
all nonsingular M-matrices.

LEMMA 2.1 [8] If A = (ay) €N, then there exists a positive diagonal
matrix P such that ATP is strictly diagonally dominant, i.e.,

aiipi + Z pai; >0, i=12...,n
J=1.j#

LEMMA 2.2 [7] Let g € C(R" x R, R), g(1,0) =0 and r(t) = r(t, to,
o) be the maximal solution of

o =g(t,u), u(ty) =uy >0,
existingon J = [to, tg + &), 0 < o0 < 00. if m € C(R*, R*) and
Dm(t) < g(t,m(1)), teJ,
where D is any fixed Dini derivative, then m(ty) < ug implies
m(t) <r(t), tel

LEMMA 2.3 Let E be a complete matric space and T : E — E be a
contraction mapping, i.e. |T(x) - TQ)| <alx—-y|,a€{0,1),x,y € E,
then T has unique fixed point.
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3 MAIN RESULTS

This section establishes some sufficient conditions on absolute stability
for system (2.1), and on exponential stability for some special case of
(2.1). Two examples are given to illustrate the derived conditions.

THEOREM 3.1 The system (2.1) is absolutely stable if the following
hwo conditions are satisfied.

(Ar): [f5(9)] < my,

gi() < My, [ti(s)] < 1

(Az): —-Qen,
where
Q= ((1){‘,')
—ay +myy + My, my + M, my, + M, I |
nay + My —y+ N+ My ... iy, + My, |d2!
A+ My myy + M, oo = Ay My + My, l‘ln|
1 il . pal ~r

Proof Let

al‘//l + Z fll W + Z Ql/ l// (f ’C,,'(f))) + (/,'(/)

(3.3)
0= Zi:l pipi—rg, i=1,....m,

then system (2.1) becomes

= —aiX; + ZI 0 dS/I]
nod
3 st = () = ) + (@) O
P Z”tl pixi—rh(9), i=1,2,...,n.

Since —Q e N, by Lemma 2.1, there exist positive real numbers
Bi: B, sy such that
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n+1

D Bwp<0, i=12,...n+1 (3.5)
=1

Define a Lyapunov functional v(x, x,, ) by

t

i+ My [ b(olds| 4Bl (30
=1

1=1y(t)

o(x, x,8) =) _B;
i=1

It is clear that

n
U(X, Xty 5) Z Zﬁi‘xil + ﬂn+1|5|'
i=1
The generalized derivative D*v along with system (3.4) is

D*v< Z/}{ - ailx;

fJ(S

(1 = 75(0) + |dih(3)|

+Z Lot~ y(0)
" Z Myl = bt — (DIt - r'(r))]}
+ ; Builpixil — By r|h(8)]
< ’2;:/3,-{ — aixi + jz;:m,-j]xj]
+ ; M|x;(t — 1 () |(1 = 1(1)) + |dih(6)]
+ gMi,-nx,-l ~ gl — ey (O)I(1 - r’(rm}

+ Z ﬂn-{-l lpixil - ﬁn+lr|h(6)|
i=1
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< Z/ff{ —ailxi + Y (my + My)lx|
i=1

=1

+ ldh (S } + Zﬂn—kl Iplxl' - ﬁ/H—l’ |h (s)l

5

{ = Biai+ B lpil + D Bl + M/,-)}Ix;]
=

=1

+ (ijﬂ,-wfl - /f,,+u~> Ih(3)] <.

=1
With (3.5), we conclude that

lim x;(t) =0, 1lim (¢) =0. (3.7

t—0C 00

On the other hand, from (3.3), we have
1 Di 0
o= By, (38)
=1

where § satisfy the condition lim,_, d(f) =0
Next, we show that

}im Yi(6) =0, and lim ¢(r) =0. (3.9)

—00

Let the auxiliary function

w= Z Bilil
=1

then along with system (2.1), we get
Dfw < Zﬁi{_ aily;| + Z i)l
=1 =

+ Z ‘gu ‘// Tl/ ))I + |d¢‘}
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< Zlﬂ{ — ) + imﬂw
ZM,,W (o) + |d¢>|}

- Zp{ ~ ] + Zmultﬂjl
+ ZM,,

+|did|

v / V() ds

t—y(0)

1 i
< Zﬁ,{ — aily;| + Z{mij + My}l
=1 =1
1 ! i p 5
+ZM,-,~/ |x;|ds + di(z?fl//j—;>
J=1 J=1

}

t—1
n n i n
<3~ { -+ S+ i+ 2 > sial
= =1 =1

t
+ Z (ZﬁzMu> / |x;jlds + Zﬁildiikg’
J=1 i=1 P J=1

< —CZﬂjlel + F(1)
=

= —ew + F(1)
where
—czlrglgg{ﬂjaﬂ—Zﬁ, my + M) + 2] Zﬁ,|d|}/ﬁ,
nt i+
< e { S [ S ponn s <o
and

n n { h

)

= <§ ﬁiMij) / xlds + ﬁf|di||;‘~
=1\l 2 =
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By Lemma 2.2, w(z) < r(), where r(¢) is the maximal solution of
W' = —cu+ F(t), ulte) = w(to).

It can be seen that, for any 7,lim,_, F(¢) = 0 since lim,_[x;] =0
and lim;_..|0(r)| = 0. This implies that lim, .. |r{#)| = 0 and hence
lim, oo pi(f)] = 0. Thus (3.9) is true in view of (3.8). The proof is
complete.

In the following, we study two special cases of system (2.1).

Case 11 fi(4;) = @y, gi;(Y;) = biplrj, the system becomes a linear
system of the form

I/I; = —(lil//i + Z;Z, (I!'/‘l//j -+ Z;Ll b{jl/{i([ — ‘L',:,‘(I)) -4 d,-gb,
o =ho), 6= piri—ro,

where a;, d;, pi, 1, I; are constants and 0 < 7,(¢) < 1 = const.

(3.10)

COROLLARY 3.1 If —Q € W, then system (3.10) is absolutely stable,
where

Q=(wy)
—ar+lap|+bnl a0l - Jaw| 0wl |di]
l(lzl I + l/)2| | —ar+ |(Izj_| + |/)22| |(Iz,,| + ‘/)2,,1 l([zl
I”ul | + {bnl’ I({112| + ‘/7/12! =yt launl + |bnn! |dnl
pil 2] e Pl -

Example 3.1 Consider the following system

Y= =3+ s+ P (1 —cost) — (1 —sine)
Yh = — 6y + 2 (1 — cos(t/2)) + (1 —sin(2/2)) +2¢  (3.11)
@' =h(), =4, —¢,—5¢

-3 2 0
Q= ((1)!']') = 3 -5 2 .
| I =5

In this system,
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It can be seen that —Q € R, and hence system (3.11) is absolutely stable.

Case 2 If n =1, system (2.1) reduces to

{ W o= —ay +fi(¥) + g (W(t — o(2)) + do

, (3.12)
¢ =£0), d=py—r¢

COROLLARY 3.2 If |f{| <m, |gi| < My, |¢/(9)| < 1, and there exist
B, By > 0, such that

Bi(=a+mi+ M)+ Bolpl <0;  Bild| < o,
then system (3.12) is absolutely stable.
Example 3.2 Consider the following system
Y'(6) = =5y(8) +sin (1) + y(t — cos t) + 2¢,
{ ¢'(1) =f(6), 8(t) = 2y(e) — 3¢(1).

Here, a=5m =1,M=1,ld =2,lp|=2,r=3,17/(f)] <1. Since
—a+m +M;+|p|=-1<0and |d| —r = -1 <0, by Theorem 2.2,
system (3.13) is absolutely stable.

(3.13)

On the other hand, system (2.1) can be generalized to a highly
nonlinear system of the following form

& =—aé&i+ g, En it —ta ()., & (t — (1)) + bin
n=fo), o=3"1 p—ro, i=12,...,n,
(3.14)

where g;,t; € C',g/(0,...,0)=0,and fe U (i,j=1,2,...,n).
The next result establishes absolute stability for system (3.14) under
suitable conditions on the function g;.

THEOREM 3.2 If

0gi
a_ij(élvﬂ-’émCIa'--)Cn)‘ _<.n1ija

Ogi /
i( Ia'“7€rlaC]1-'-aC11) SMU I‘EU(I)ISI,
o,

(A3):
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then —Q € X implies absolute stability of system (3.14), where ) is the
same of Theorem 3.1.

Proof  Let

X = —(liéi + gi(élv‘ (X é;n f](f - Til(t))a s én(’ - Ti"(’))) + b’ﬂ
o= pié—ro, i=12,....n

then the system (3.14) become

,\‘:. = —d;X; + Z;;I %%(il seeey 6117(:]7' . '7C!7)xj
+ Z/ t 32’/ (gla sy fm&:l P 7CH)(”¥/’(’ - T[j(’)))(l — T;](f)) + d,-f(()’)
o =3 pixi—ifle), i=1,2,....n

(3.13)
Since —€ € N, then there exist 8, ;, ..., f,4 such that
n+1
DB <0, i=12,... 041 (3.16)
J=1

Define a Lyapunov functional v by

t

v(x, X1, 0) Z/ﬁ |\,|+ZM,, /

- T//()

Xj S)ldS +/3n+ll($| (317)

Using the similar proof of Theorem 3.1, we can obtain

lim || =0 and ’lim 1= 0.

=00

The proof is complete.
Example 3.3 Consider the following system
G =4 +1(E, & G (t—Tn(n), &t—Ta(n)) +1

&= =5 +g(8, 6,8 (t—1(0), &(t—1n(r)+2n  (3.18)
W =fo), o=-¢ +2& 60,
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In(1 + & + E(1 — t(1)); 111, 112, € C,f € U and |7}, (1)] < 1,7,
(O] < 1,175 (0| < 1. It can be shown that

19
(r_)gvl (613625C1a62) <1 = my;, Iacl (61’62751 CZ) <1= Mll» i= 1,27
g2 —0=
é (élaéZ,Cl C2) < 1 = myy, 6 (51562’61 CZ) _0‘”’”22
sz(ihfz,ﬁ 0)f = 0= My, 5%(51,52,51,52) <l=My

and

-2 2 1
Q=11 -4 2
1 2 -6

Since —Q € R, by Theorem 3.2, system (3.18) is absolutely stable.

In system (2.2), assume there exist m; > 0, M; > 0 and 7 > 0 such
that

|fi(x) = fsO) < mylx — pl, 1ga(x) — gy(¥)] < Mylx — ¥,
0<t(t)<t<o00, ij=12,...,n

For any x = (x,...,x,)’ € R", we define the norm of x as

n
el = > Jxil
i=1

THEOREM 3.3 If

4)ZZ[ﬂ1ij+Mij]/ai<11 i’j:172""?n’
i=l

then system (2.2) has a unique equilibrium.

Proof For x € R", we define a mapping T: R”" — R" by

n n
Tx = | > filx) + > gi(x) +1,~] /af, i=12...,n
j=1 J=1
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It is obvious that T is continuous for any x= (xl,...,x,,)r,
-
y= (,VI,“-vyn) € an

n

ITx — Tyl = 2; Tx; — Ty
<y { ;[(i./%/(x/) ~ 100D +les(%) = 211}/ }
<y { S loms+ M) )/ }
< { [Z( + Mf,->/a,»] (b - m)}

<8y =yl =dx =,
=
where

n
J = max I:Z(”w -+ Mi,')/(l,‘:l < 1.

1<j<n e
This indicates that 7 is a contraction mapping and hence, by Lemma

2.3, T has a unique fixed point, that is, there exists
X* = (x},x3,...,x;) € R" such that

1 i
X = {Zﬁ-f(x;f) + > gi(x]) + 1
J=1 Jj=1

The proof is complete.

Jai, i=1,2,...,n

THEOREM 3.4 If condition {Ay) is satisfied, then the equilibrium point
of system (2.2) is exponentially stable.

Proof Assume that x* = (x],...,x) € R” is the unique equilibrium
of system (2.2). Take ¢ > 0 such that

d(¢) = max { Z[m,;,- + My /(a; — ) < 1}.

1 <j<n °
5 i=1
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Let
P,'(t, X,') = |x,~ — X?lee(r—to).
then

i

D*P(t,x;) < ee‘(’“"’)]x,- — x|+ 1) [ - ajlx; — x*
n
+ > i) —fi(x))]
=1
n
+ 3 lgil(t —15(0) — gu(x})l}
=1

n
< (—a,- + C)P,‘ + anijj
=

n
+ D MyeT Pyt — (1), xi(t — 71(2)))-
=1
For any M > 1, we claim that
Pi(t,x;) < MK = M max { sup Pt xi)}
t<isn —1<t<ty

fort>ty—tandi=1,2,...,n

425

In fact, if it were not true, then there would exist i and #; > fy such

that

< MKt<t
P,'(t,X,'){: MKt = l:

Pj(t’xj)SMKa tstl’j:?éi7

ie., DY Pi(t1,x;) = 0. However,
n

D*Pi(tr, xi(1)) < (=ai+ )Pilt, xi(1)) + Y myPy(ti, x,(11))
=

+ > Myt Pyt — ty(ty), xi(th — (1))
J=1
"

n
< (~ar+ OMK+ Y myMK + ) Mye" MK
7=l j=1

"
< |{~ai+¢e)+ Z(ﬂ’lij + Me) | MK < 0.
=1
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This contracdict with D* P;(¢;, x;(t1)) > 0 and hence
Pi(t,x;)) < MK, (i=1,2,...,n)

for all 1 > #. Since Pi(t,x;) = |xi{t) — x} ¢(=) we have

lxi(£) — xt| = Pi(t, x;)e™ 1) < MKe™ =),

The proof is completed.

4 APPLICATIONS TO CELLULAR NEURAL NETWORKS

In this section, applications of the obtained stability conditions in
Section 3 to cellular neural networks (CNNs) are presented. CNNs
represent a new paradigm for nonlinear analog signal processing and
its applications for various practical problems have been demonstrated
[10, 11]. The basic circuit unit of celtular neural networks is called a
cell. It contains linear and nonlinear circuit elements, which typically
are linear capacitors, linear resistors, linear and nonlinear controlled
sources, and independent sources .Any cell in a cellular neural network
is connected only to its neighbor cells. The adjacent cells can interact
directly with each other. Cells not directly connected together may
affect ecach other indirectly because of the propagation effects of the
comtinuous-time dynamics of cellular neural networks. Nonlinear and
delay-type CNNs (DCNNs) were introduced recently in [6] and have
found applications in the areas of classification of patterns and re-
construction of moving images. In general, the dynamic behavior of a
DCNN can be described by the following system [6, 9]

X;(t) = —x(1) + Z“U-}(‘('\‘./(t)) + Z b,,/(\,(f - ‘C,_',‘)) +up, i=12,...,n,
J=1 J=

(4.19)

where  x(.) = {x/(.),...,x,()} is the input state vector,

Jx()) = {fx1()), ..., fx,{.))} is the output vector, f{x) = [|x+ 1|~

lx —1]]/2;0 < 7; < 7 < oo is a delay of the interaction from cell j onto
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the cell i. 4 = {ay} is the feedback matrix, B = {b;} is the delayed

feedback matrix, u = (uy,..., u,,)T is an external input. When used as a

pattern classifier, the DCNN is required to possess a unique and

globally asymptotically stable equilibrium point independently of the

initial conditions [13]. Note that (4.19) is a special case of (2.2) where

0= Lfy(s) = gy(s) =11s) ~ [Is + 1| +ls = 1)/2, 07 = 1,2,...,m.
Since

U ={f1fe C(RR),|fx) —fy)| < |x =,
(fx) = f)(x = ¥) 2 0},

it can be seen that if f{x) = [|]x + 1| — [x — 1]}/2, f € U*. By Theorems
3.3 and 3.4, the following results can be obtained.

THEOREM 4.1 If f€ U and

n

> ap +1bal) <1, i=1,2,...,m,

=1
then network (4.19) has an equilibrium point which is globally ex-
ponentially stable.

Remark

(i) In Theorem 4.1, f(x) is not required to be exactly equal to

(Jx+ 1| —|x — 1])/2 and hence, Theorem 4.1 is more general
and has some robustness;

(ii) Since one function /'€ U* of networks (4.19) is used only for the
equilibrium point in Theorem 4.1, more useful results can be
obtained as follows.

THEOREM 4.2 [If f€ U* and

~1+ > (aj+ byl <0,
i=1

where

4 = Ajiy i=j
v |aij|’ 17‘4‘]:
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then network (4.19) has a unique equilibrium point which is globally
exponentially stable.

Proof Let x* = (x7},...,x ”) be an equilibrium of (4.19). Rewrite
(4.19) as

(60) =5 = = o) =)+ 3t (1) = 1)
+Zb’/ flx(r = 1)) -Ax7), i=1,2,...,n. (4.20)

Define a Lyapunov functional V; by

Vim = 3]+ Z il / 05() 105 s,
then along with system (4.20), we have
DUV, <~ b ] + iaﬁl./(x;) )
¥ Z LAt~ ) — 1)
+ Z IBallLA05) = 160 = Lt = 20)) — A
-]+ Z][ b LA) — A,

where f'€ U*. Let V=370 Vi, then V > 37 |x; — x!| and

n "

DV <~ Z|V1_V|+Zzau+|bul|/\’/ ()l
n n n

== xS @+ byl
p =L

) =)
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i
< =Dl = X1 = 1) =)}
Jj=1

+> {— 1+ (ay+ lbzyl)} | /0x) = fTx)]
=1 i=1
< = D A= 1= 1) = DI = 2D 1A0x) = Ax))]
J=1 i=1

n
< =Yl =Xl < -2,
=1

where

—A = max
1<j<n

143 (e + Iy
=1

By Lemma 2.2, we have V < r(t, to, ro), here r(¢, to, ro) = roe=*=") is
the maximal solution of

= —du, ulty) =ro.
Letrg= sup > i|xi— x|, we have
ty—T<5<to

n

n
le,(t)—xﬂﬁVS sup Zl ,— x| M),

fo—1<s5<{fp i—1

The proof is completed.

Example 4.1 Consider the following system

‘(,l = —X{ — 3f(x1(t)) Zf(Yz(t)) —f(xl(t— ‘L’1|)) +f(X3(t— 113)) +u
{ Xy = —xp + flx1 () — 4f(x2(1)) + 2f(x2(t — 122)) + 3 (x3(t — 133)) + w2
vy = —x3 +f(x1(r)) — 6f(x3(2)) + 2f(e3(t ~ t33)) + w3,

(4.21)
where f € U*. Compare with (4.19), we have
aj, = -3, aj,=-2, aj;=0, by=-1, bp=0, b3=1

gy =1, ay=-4, a53=0, by=0, bn=2 by=3,
ay =1, a3=0, aj3=-6, b33 =0, bn=0 byz=2.
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It can be seen that all conditions of Theorem 4.2 are satisfied. Hence,
the unique equilibrium point of (4.21) is globally exponentially stable.

It is worth to mention that the property of exponential stability of
this example can not be obtained by [9-12].

Next, we consider a model of bidirectional associative memory
neural network with delays

Xj(1) = —apixi(t) + L ag(vi(t =t (0)) + I, i=1,2,...,p

i) = =hyi(0) + X bygilxit = (D)) + S, j=1,2,....q
(4.22)
where x=(x1,...,x,) € R, y=(v1,...,¥9) € R, a;,h; >0, gi.g
K

€ C and |g{(s)| < my, |si(s)] < my, 0 < tf(r) <7, 0 < 7j(r) < 7. Note
that

—~a, 0 0 Janlmy - lang\my 1]

Q- 0 0 —a, |ay|my - lapglmy |1
|biyfeny - |Diplmy, — —by o .- 0 [y

[bgt]my o bgplmy, 0 e 0 =by )

Using Theorems 3.3 and 3.4, we can conclude that if —Q; € X, system
(4.22) has an equilibrium point which is globally exponentially stable.

5 CONCLUSIONS

In this paper, we have studied the problem of absolute stability for
nonlincar systems described by differential equations with time delays.
In addition, we have investigated the existence of unique equilibrium
point and its global exponential stability for some special cases. Our
approaches have utilized the method of Lyapunov functions, fixed
point theorem, the comparison principle and the techniques of dif-
ferential incqualities. The stability results may be generalized to other
systems and may be more applicable in real world applications.
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