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ABSOLUTELY CONTINUOUS CONVOLUTIONS OF SINGULAR

MEASURES AND AN APPLICATION TO THE SQUARE

FIBONACCI HAMILTONIAN

DAVID DAMANIK, ANTON GORODETSKI, AND BORIS SOLOMYAK

Abstract. We prove for the square Fibonacci Hamiltonian that the density
of states measure is absolutely continuous for almost all pairs of small coupling

constants. This is obtained from a new result we establish about the absolute

continuity of convolutions of measures arising in hyperbolic dynamics with
exact-dimensional measures.

1. Introduction

1.1. Quasicrystals and Spectral Theory. Quasicrystals are structures that are
aperiodic and yet display a strong form of long-range order. Their discovery in 1982
by Shechtman, reported in 1984 in [63], gave rise to a paradigm shift in materials
science and ultimately led to the award of the 2011 Nobel Prize in Chemistry
to Shechtman. The study of electronic transport properties in quasicrystals is
fascinating from several perspectives. On the one hand, the phenomena that seem
to occur are quite different from phenomena associated with transport (or absence
thereof) in ordered and random structures. On the other hand, establishing these
phenomena rigorously in the context of commonly accepted abstract quasicrystal
models turns out to be very hard. While progress has been made in one space
dimension (e.g., [5, 10, 11, 20, 23, 24, 26, 35, 40], culminating in a rigorous proof
of anomalous transport for the central model, the Fibonacci Hamiltonian [25]), the
situation in higher dimensions is essentially unresolved on a rigorous level. This is
mainly due to the fact the we currently lack tools and machinery that apply to the
standard higher-dimensional quasicrystal models and that would give information
about their spectral and transport properties.

It should be emphasized that the standard higher-dimensional models present a
challenge even for numerical investigations. As a consequence, simpler models have
been proposed and studied numerically [27, 28, 29, 34, 67, 68, 69, 70, 76]. These
simpler models are separable and may be written as a sum of tensor products
of one-dimensional models. Questions about the spectrum, the density of states
measure, and transport for the separable higher-dimensional model then reduce to
corresponding questions for the one-dimensional models. This leads to questions
about sums of Cantor sets and convolutions of singular measures that are highly
interesting from a purely mathematical perspective, independently of the physical
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2 D. DAMANIK, A. GORODETSKI, AND B. SOLOMYAK

relevance. In fact, questions of this kind have been studied for a long time within
the Harmonic Analysis, Fractal Geometry, and Dynamical Systems communities.
It is therefore natural that the present paper will present results at the interface
between these areas and mathematical physics.

We will present new tools that allow one to study the density of states measure
(or the spectral measures) of a separable higher-dimensional model. While these
tools are quite general, for definiteness we will concentrate in our applications on a
specific model, the square Fibonacci Hamiltonian.1 This operator acts as

[H
(2)
λ1,λ2,ω1,ω2

ψ](m,n) = ψ(m+ 1, n) + ψ(m− 1, n) + ψ(m,n+ 1) + ψ(m,n− 1)+

+
(
λ1χ[1−α,1)(mα+ ω1mod 1) + λ2χ[1−α,1)(nα+ ω2mod 1)

)
ψ(m,n)

in `2(Z2), with α =
√

5−1
2 , coupling constants λ1, λ2 > 0 and phases ω1, ω2 ∈ T =

R/Z. The associated one-dimensional operators are Hλ1,ω1
, Hλ2,ω2

, where Hλ,ω

acts in `2(Z) by

[Hλ,ωψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ ω mod 1)ψ(n).

One is interested in the spectrum and the density of states measure of H
(2)
λ1,λ2,ω1,ω2

,

as well as the long-time behavior of the quantum evolution e−itH
(2)
λ1,λ2,ω1,ω2ψ for

some initial state ψ ∈ `2(Z2).

By the general theory, the spectrum of H
(2)
λ1,λ2,ω1,ω2

(resp., Hλ,ω) does not depend

on ω1, ω2 (resp., ω), and may therefore be denoted by Σ
(2)
λ1,λ2

(resp., Σλ), and
moreover,

Σ
(2)
λ1,λ2

= Σλ1
+ Σλ2

.

It is known that Σλ is a zero-measure Cantor sets for every λ > 0 [75].
Moreover, the general theory also implies that the density of states measure of

the family {H(2)
λ1,λ2,ω,ω′

}ω,ω′∈T is given by the convolution of the density of states

measures of the families {H(1)
λ1,ω
}ω∈T and {H(1)

λ2,ω′
}ω′∈T. That is, the measures

defined by

lim
N→∞

1

N
#{eigenvalues of H

(1)
λ,ω that are ≤ E} = νλ((−∞, E])

and

lim
N→∞

1

Nd
#{eigenvalues of H

(2)
λ1,λ2,ω1,ω2

that are ≤ E} = ν
(2)
λ1,λ2

((−∞, E])

(which are known to not depend on ω (resp., ω1, ω2)) obey

ν
(2)
λ1,λ2

= νλ1 ∗ νλ2 .

The physics papers mentioned above containing numerical results for separable
operators of this kind suggest a very interesting global picture. For small values of

the coupling constants, Σ
(2)
λ1,λ2

has no gaps, whereas for large values of the coupling
constants it is a Cantor set of zero Lebesgue measure. In fact these conjectures
based on numerical experiments have recently been confirmed rigorously [13, 15].

1Similar questions to the ones studied for the square Fibonacci Hamiltonian here and in [15]

have been asked in the case of the labyrinth model (and similar models) in the physics literature
[67, 68, 69, 70]. We do not elaborate on those models here, but we expect that our methods can

be applied in those cases too.
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The situation is less clear for intermediate values of the coupling constants, but
appealing to the existing theory of sums of Cantor sets, one may venture to expect
Cantorval structures (see [46]) to appear.

Based on the numerics, the density of states measure ν
(2)
λ1,λ2

is expected to be
absolutely continuous in the small coupling regime and singular in the large coupling
regime. Since this measure is supported by the spectrum, the latter statement is of
course an immediate consequence once zero-measure spectrum has been established.
The former statement, on the other hand, is not automatic, as there are examples
of Schrödinger operators with positive-measure spectrum and singular density of
states measure (see, e.g., [1]). Given that the density of states measures νλ of the
one-dimensional models are singular, and the measure of interest is a convolution
of such measures, establishing the expected result in the small coupling regime
calls for a method that implies the absolute continuity of the convolution of two
singular measures, which applies to the singular measures in question. Thus, we
will establish such a criterion, show that it may be applied to the one-dimensional
density of states measures, and derive the conjectured absolute continuity of the
density of states measure of the weakly coupled square Fibonacci Hamiltonian (in
a full measure sense). In particular, this confirms the dimension-dependence of the
type of the density of states measure since this measure is purely singular for all
one-dimensional quasicrystal models that have been studied so far.

1.2. Sums of Cantor Sets and Convolutions of Singular Measures. Mo-
tivated by questions in smooth dynamics, Palis asked whether it is true (at least
generically) that the arithmetic sum of dynamically defined Cantor sets either has
measure zero, or contains an interval (see [52]). This claim has become known as
the “Palis Conjecture”, it has been investigated in various settings and levels of
generality by many authors. Without giving a comprehensive review of the prob-
lem, we mention that such questions are known to be extremely hard. The Palis
conjecture is still open for affine Cantor sets. The question has been answered af-
firmatively in [48] for generic dynamically defined Cantor sets, but the genericity is
rather unpleasant: it occurs in an infinite-dimensional space, and there seems to be
no chance to obtain results for one-parameter families. The study of convolutions of
measures supported on Cantor sets is naturally related to that of arithmetic sums,
since these convolutions are supported on them.

Starting from the mid-90’s the so-called “transversality method” has been devel-
oped, first to compute the dimensions, and then to establish absolute continuity for
almost every parameter in one- and multi-parameter families of self-similar sets and
measures with overlaps [58, 71, 56, 73, 53, 50, 51]. It was later extended to some
families of nonlinear systems, but the crucial “transversality condition” is difficult
to check; this has been done only in a few special cases [65, 66, 2]. On the other
hand, it turned out that similar methods can also work for sums of linear Cantor
sets and convolutions of measures on them [72, 55, 53]. The key property that is
used there to show transversality is the monotonicity of the contraction coefficient
with the change of parameter. In the present paper we manage to extend these
methods and results, first to measures on nonlinear dynamically defined Cantor
sets on the line, and then to a class of hyperbolic invariant measures. We use
monotonicity of the Lyapunov exponent of the invariant measure under consider-
ation (instead of the monotonicity of the contraction coefficient), thereby opening
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the door for an enormous number of potential applications in dynamical systems,
number theory, etc.

We should mention that in [31] absolute continuity of convolutions was also
obtained for a family of nonlinear Cantor sets, but only in one particular case.
Recently substantial progress has been achieved in the problem of computing di-
mensions of sums of Cantor sets and convolutions of measures on them, both for
linear and nonlinear ones [54, 49, 32] (the improvement is that the results hold
under specific checkable conditions rather than typically or generically), but those
methods are inadequate for proving absolute continuity.

One may wonder why we have to deal with convolutions of two different mea-
sures rather than convolution squares. The answer is that the situation becomes
more complicated; essentially, we get a “resonance.” Properties of convolutions
of singular measures have been studied for a long time in Harmonic Analysis; for
instance, even the existence of a singular measure µ with nice convolution square
µ ∗ µ is a non-trivial fact [62, 77]. Almost nothing is known about convolution
squares of dynamically defined Cantor measures, so we look at the linear ones for
guidance. The most basic case is the convolution square of the classical Cantor-
Lebesgue measure νλ on the Cantor set Cλ with contraction ratio λ < 1

2 . Then

the threshold for νλ ∗ νλ to be (typically) absolutely continuous (λ = 1
2
√

2
; see [55,

Cor. 1.5]) is larger than the threshold for the sum Cλ + Cλ to contain an interval
(λ = 1

3 ), which is yet larger than the threshold for the sum of the dimensions to ex-

ceed one (λ = 1
4 ). Analogous questions for more complicated Cantor-like measures

are still open; even in the affine linear case there are no comprehensive results. We
still expect the convolution square to become typically absolutely continuous in the
“heavily overcritical” case, but this is only a speculation.

1.3. Structure of the Paper. The main body of the paper consists of three
parts, addressing the absolute continuity of convolutions of measures on the line,
an application of this to convolutions of projections of hyperbolic invariant measures
with exact-dimensional measures, and the announced absolute continuity results for
the density of states measure of the weakly coupled square Fibonacci Hamiltonian in
a full measure sense, respectively. These topics will be addressed in Sections 2–4. In
addition, Section 5 states a few questions and open problems; and a brief appendix
gives some background on separable operators and explains why their spectra are
sums of spectra and why their density of states measures are convolutions of density
of states measures.

2. A Criterion for the Absolute Continuity of the Convolution of
Measures on the Line

Let AZ+ , with |A| = ` ≥ 2 and Z+ = {0, 1, 2, . . .}, be the standard symbolic
space, equipped with the product topology. Let A be a primitive 0–1 matrix of
size ` × `, and Σ`A ⊂ AZ+ the one-sided topological Markov chain associated with
A. That is, ω = ω0ω1 . . . ∈ AZ+ belongs to Σ`A if and only if Aωmωm+1 = 1 for all

m ≥ 0. The shift transformation σA : Σ`A → Σ`A acts as (σAω)n = ωn+1. Let µ be
a probability measure on Σ`A.

Let J = [λ0, λ1] ⊂ R be a parameter interval. We assume that we are given a
family of continuous maps

Πλ : Σ`A → R, λ ∈ J,
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such that Σλ = Πλ(Σ`A) are the Cantor sets and

νλ = Πλ(µ) := µ ◦Π−1
λ

are the measures of interest.
Let η be another (fixed) compactly supported Borel probability measure on the

real line. We will assume that η is exact-dimensional, having the local dimension
equal to dη at η-a.e. x, that is,

(1) lim
r↓0

log η(Br(x))

log r
= dη for η-a.e. x.

Here Br(x) = [x − r, x + r]. In the first proposition below we assume a stronger,
uniform Hölder condition for the measure η; it is subsequently relaxed to (1) using
a truncation argument.

For a word u ∈ An, n ≥ 0, we denote by |u| = n its length and by [u] the
cylinder set of elements of Σ`A that have u as a prefix. More precisely, [u] = {ω ∈
Σ`A : ω0 . . . ωn−1 = u}. For ω, τ ∈ Σ`A, we write ω ∧ τ for the maximal common
prefix of ω and τ (which is empty if ω0 6= τ0; we set the length of the empty word
to be zero). Furthermore, for ω, τ ∈ Σ`A, let

φω,τ (λ) := Πλ(ω)−Πλ(τ).

We write L1 for the one-dimensional Lebesgue measure.

Proposition 2.1. Suppose that there exist constants C1, C2, C3, C4, α, β, γ > 0 and
k0 ∈ Z+ such that

(2) max
λ∈J
|φω,τ (λ)| ≤ C1`

−α|ω∧τ | for all ω, τ ∈ Σ`A, ω 6= τ ;

(3) sup
v∈R
L1
(
{λ ∈ J : |v+ φω,τ (λ)| ≤ r}

)
≤ C2`

|ω∧τ |βr for all ω, τ ∈ Σ`A, ω 6= τ,

such that |ω ∧ τ | ≥ k0, and

(4) max
u∈An

µ([u]) ≤ C3`
−γn for all n ≥ 1.

Further, let η be a compactly supported Borel probability measure on R satisfying

(5) η(Br(x)) ≤ C4r
dη for all x ∈ R, r > 0.

Then(
dη+

γ

β
> 1 and dη >

β − γ
α

)
=⇒ η∗νλ � L1 with density in L2 for a.e.-λ ∈ J.

Remark 2.2. Condition (3) is the hardest to check in the applications we envision
(in particular the ones given in this paper). It follows from

inf
λ1,λ2∈J, λ1 6=λ2

|φω,τ (λ1)− φω,τ (λ2)|
|λ1 − λ2|

≥ C ′2`−|ω∧τ |β for all ω, τ ∈ Σ`A, ω 6= τ.

An estimate of this kind in turn follows from a suitable lower bound on | ddλφω,τ (λ)|.
Proof of Proposition 2.1. We follow closely the argument of [55, Theorem 2.1]. For
a word u ∈ Ak0 , let νuλ = µ|[u] ◦ Π−1

λ . Then νλ =
∑
|u|=k0 ν

u
λ , so it is enough to

prove that η ∗ νuλ is absolutely continuous for all u ∈ Ak0 and a.e. λ. We fix such a
u of length k0 for the remainder of the proof.
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Consider the lower density of η ∗ νuλ ,

D(η ∗ νuλ , x) = lim inf
r↓0

(2r)−1(η ∗ νuλ)[Br(x)].

As in [43, 9.7], if

Jλ :=

∫
R
D(η ∗ νuλ , x) d(η ∗ νuλ)(x) <∞,

then D(η ∗ νuλ , x) is finite for (η ∗ νuλ)-a.e. x, and η ∗ νuλ is absolutely continuous,
with a Radon-Nikodym derivative in L2. Thus, it is enough to show that

S :=

∫
J

Jλ dλ <∞ .

By Fatou’s Lemma,

S ≤ S1 := lim inf
r↓0

(2r)−1

∫
J

∫
R
(η ∗ νuλ)[Br(x)] d(η ∗ νuλ)(x) dλ.

Using the definition of convolution and making a change of variable, we obtain

(6) S1 = lim inf
r↓0

(2r)−1

∫
J

∫
R

∫
[u]

(η ∗ νuλ)[Br(y + Πλ(ω))] dµ(ω) dη(y) dλ.

Next we have, denoting by 1S the indicator function of a set S,

(η ∗ νuλ)[Br(y + Πλ(ω))] =

∫
R
1Br(y+Πλ(ω))(w) d(η ∗ νuλ)(w)

=

∫
R

∫
[u]

1{(z,τ): z+Πλ(τ)∈Br(y+Πλ(ω))}(z, τ) dµ(τ) dη(z).

Substituting this into (6) and reversing the order of integration yields

(7) S1 = lim inf
r↓0

(2r)−1

∫
R

∫
[u]

∫
R

∫
[u]

L1(Λr(y, z, ω, τ)) dµ(τ) dη(z) dµ(ω) dη(y),

where

Λr(y, z, ω, τ) := {λ ∈ J : |(y + Πλ(ω))− (z + Πλ(τ))| ≤ r}
= {λ ∈ J : |y − z + φω,τ (λ)| ≤ r} .

Note that for ω, τ ∈ [u], we have |ω ∧ τ | ≥ k0. Hence

(8) L1(Λr(y, z, ω, τ)) ≤ C̃2 min{1, `|ω∧τ |βr}
by (3), where C̃2 = max{C2, |J |}. Now we consider the integral in (7), use Fubini,
and split it according to the distance between y and z:∫

R

∫
[u]

∫
R

∫
[u]

L1(Λr(y, z, ω, τ)) dµ(τ) dη(z) dµ(ω) dη(y)(9)

=

∫ ∫
{|y−z|<2r}

∫ ∫
[u]×[u]

+

∫ ∫
{|y−z|≥2r}

∫ ∫
[u]×[u]

=: I1 + I2.

To complete the proof, it is sufficient to show that I1 . r and I2 . r (here and
below the symbol . means inequality up to a multiplicative constant independent
of r). In view of (8),

(10) I1 .
∫ ∫

[u]×[u]

∫ ∫
{|y−z|<2r}

min{1, `|ω∧τ |βr} dη(y) dη(z) dµ(ω) dµ(τ).
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Note that the integrand does not depend on y, z, and we can estimate

(η × η){(y, z) : |y − z| < 2r} ≤
∫
η(B(y, 2r)) dη(y) . rdη ,

by (5). Recalling that |u| = k0 we obtain

(11) I1 . r
dη

∞∑
k=k0

min{1, `kβr} · (µ× µ){(ω, τ) : |ω ∧ τ | = k}.

Observe that (4) implies

(µ× µ){(ω, τ) : |ω ∧ τ | = k} ≤
∑
|v|=k

µ([v])2(12)

≤ C3`
−γk ∑

|v|=k
µ([v])

= C3`
−γk.

Hence

I1 . r
dη

∞∑
k=k0

min{1, `kβr} · `−γk.

Setting kr = log(1/r)
β log ` , we get

I1 . r
dη

∑
k≤kr

r`kβ · `−γk +
∑
k>kr

`−γk

 .
Summing the geometric series and using `−βkr = r, we obtain

(13) I1 . r
dη+ γ

β ,

which is . r by assumption.

It remains to estimate I2, the second integral in (9). If |ω∧τ | = k and C1`
−αk <

|y − z|/2, then by (2), |φω,τ (λ)| < |y − z|/2 for all λ ∈ J , and |y − z + φω,τ (λ)| >
|y−z|/2. When |y−z| ≥ 2r, this implies that the set Λr(y, z, ω, τ) is empty. Denote

κ(y, z) = −
log |y−z|2C1

α log `
.

We obtain, using (8) and (12):

I2 .
∫ ∫

R2

∑
k≤κ(y,z)

r`kβ · `−γk dη(y) dη(z)

. r
∫ ∫

R2

`(β−γ)κ(y,z) dη(y) dη(z)

. r
∫ ∫

R2

|y − z|− β−γα dη(y) dη(z).

But β−γ
α < dη by assumption, so the last integral converges by (5) and the fact

that η is compactly supported. Thus, I2 . r, and the proof of the proposition is
complete. �

In later sections we will need a slightly stronger statement, namely the following:
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Proposition 2.3. Let η be a compactly supported Borel probability measure on
R of exact local dimension dη. Suppose that for any ε > 0, there exists a subset
Ωε ⊂ Σ`A such that µ(Ωε) > 1 − ε and the following holds; there exist constants
C1, C2, C3, α, β, γ > 0 and k0 ∈ Z+ such that

(14) dη +
γ

β
> 1 and dη >

β − γ
α

;

(15) max
λ∈J
|φω,τ (λ)| ≤ C1`

−α|ω∧τ | for all ω, τ ∈ Ωε, ω 6= τ ;

(16) sup
v∈R
L1
(
{λ ∈ J : |v+φω,τ (λ)| ≤ r}

)
≤ C2`

|ω∧τ |βr for all ω, τ ∈ Ωε, ω 6= τ

such that |ω ∧ τ | ≥ k0, and

(17) max
u∈An,[u]∩Ωε 6=∅

µ([u]) ≤ C3`
−γn for all n ≥ 1.

Then, η ∗ νλ � L1 for a.e.-λ ∈ J .

Proof. By Egorov’s Theorem, we can find for any ε > 0, a Borel set Sε ⊂ R such
that η(Sε) > 1− ε and ηε := 1

η(Sε)
· η|Sε satisfies

ηε(Br(x)) ≤ C(ε)rdη−ε for all x ∈ R, r > 0,

so that ηε satisfies (5), with dη replaced by dη − ε. The verbatim repetition of the
proof of Proposition 2.1 shows that if µε is the restriction of the measure µ to the
set Ωε and νλ,ε = Πλ(µε), then ηε ∗ νλ,ε � L1 for a.e.-λ ∈ J , for ε > 0 sufficiently
small. Now Proposition 2.3 follows from the following simple lemma, which we
state without proof. �

Lemma 2.4. Let η, ν be compactly supported probability measures on R. Suppose
that for any ε > 0, there are subsets Ωη,ε,Ων,ε ⊂ R such that η(Ωη,ε) > 1 − ε,
ν(Ων,ε) > 1− ε, and η|Ωη,ε ∗ ν|Ων,ε is absolutely continuous with respect to Lebesgue
measure. Then η ∗ ν is absolutely continuous with respect to Lebesgue measure.

3. Convolutions of Hyperbolic Measures

We start with the following standing assumptions for this section. Suppose J ⊂ R
is a compact interval, and fλ : M2 →M2, λ ∈ J , is a smooth family of smooth sur-
face diffeomorphisms. Specifically, we require fλ(p) to be C2-smooth with respect
to both λ and p, with a finite C2-norm. Also, we assume that fλ : M2 → M2,
λ ∈ J , has a locally maximal transitive totally disconnected hyperbolic set Λλ that
depends continuously on the parameter.

Let γλ : R→M2 be a family of smooth curves, smoothly depending on the pa-
rameter, and Lλ = γλ(R). Suppose that the stable manifolds of Λλ are transversal
to Lλ.

Lemma 3.1. There is a Markov partition of Λλ and a continuous family of pro-
jections πλ : Λλ → Lλ along stable manifolds of Λλ such that for any two distinct
elements of the Markov partition, their images under πλ are disjoint.

Proof. Let us fix some Markov partition Λλ = M1tM2t . . .tM` together with the
corresponding rectangles Ri ⊃ Mi, i = 1, . . . , `, whose boundaries are formed by
pieces of stable and unstable manifolds of Λλ. Then for any m ∈ N, the partition
Λλ = f−mλ (M1) t f−mλ (M2) t . . . t f−mλ (M`) is also a Markov partition. Since
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σA : Σ`A → Σ`A, µ is an ergodic measure,

Hλ

fλ : Λλ → Λλ, µλ = Hλ(µ)

πλ

Lλ

γλ

νλ = γ−1
λ ◦ πλ(µλ)

hλ

C, ν = hλ(νλ)

hµ(σA) > 0

Figure 1. The relevant spaces, maps, and measures in Section 3.

Λλ is a transitive hyperbolic set, any stable manifold is dense in Λλ, and hence
the number of components of the intersection of the preimages f−mλ (Ri) with Lλ
tends to infinity as m→∞. Take m ∈ N large enough to guarantee that f−mλ (Ri)
intersects Lλ at least ` times for each i = 1, . . . , `. Then one can choose the family
of projections πλ along stable manifolds inside of {Ri} in such a way that all the
images πλ(Mi), i = 1, . . . , `, are pairwise disjoint. �

Suppose σA : Σ`A → Σ`A is a topological Markov chain, which for every λ ∈ J
is conjugated to fλ : Λλ → Λλ via the conjugacy Hλ : Σ`A → Λλ. That is, the
following diagram commutes for all λ ∈ J :

Σ`A
σA //

Hλ

��

Σ`A

Hλ

��
Λλ

fλ

// Λλ

Let µ be an ergodic probability measure for σA : Σ`A → Σ`A such that hµ(σA) > 0.
Set µλ = Hλ(µ), then µλ is an ergodic invariant measure for fλ : Λλ → Λλ.

Let πλ : Λλ → Lλ be a continuous family of continuous projections along the
stable manifolds of Λλ provided by Lemma 3.1. Set νλ = γ−1

λ ◦πλ(µλ) = γ−1
λ ◦πλ ◦

Hλ(µ). Compare Figure 1.

In this setting the following theorem holds.

Theorem 3.2. Suppose that the unstable Lyapunov exponent Lyapu(µλ) of fλ with
respect to the measure µλ is a non-constant analytic function of λ. Then for any
compactly supported exact-dimensional measure η on R with

dimH η + dimH νλ > 1
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for all λ ∈ J , the convolution η∗νλ is absolutely continuous with respect to Lebesgue
measure for almost every λ ∈ J .

Remark 3.3. In the next section we will apply this statement to the Trace Map
with the measures µλ being measures of maximal entropy associated with the Trace
Map, and the measure µ is going to be the measure of maximal entropy for the
corresponding symbolic dynamical system.

Remark 3.4. The same statement holds if instead of projections of the measure
µ, we consider projections of the restrictions of the measures µ to an element of a
Markov partition for Σ`A.

Remark 3.5. The assumption on the analyticity of the Lyapunov exponents is sat-
isfied, in particular, in the case of an analytic family of polynomial diffeomorphisms
of a surface; see Proposition 4.3 below. Notice that this is the case for the family
of Trace Maps that we will consider to get the result on the absolute continuity of
the density of states measures of the square Fibonacci Hamiltonian.

Remark 3.6. For the application of Theorem 3.2 to the square Fibonacci Hamil-
tonian presented in the next section, we only need this theorem for the case where Lλ
is a line and the map γλ is affine. Making this stronger assumption would simplify
some steps of the proof somewhat. We state and prove Theorem 3.2 in the more
general case at hand because it will be applicable to other separable models, aris-
ing for example from products of the continuum Fibonacci operator [19] or extended
CMV matrices with Fibonacci Verblunsky coefficients [22], where the so-called curve
of initial conditions (the Lλ in the setting of the present section) is not a line.

First of all, let us notice that since Lyapu(µλ) is non-constant and analytic in
λ, the derivative d

dλLyap
u(µλ) can have at most a finite number of zeros in J , and

therefore J can be represented as J = J1 ∪ J2 ∪ · · · ∪ JN , where intJi ∩ int Jj = ∅
if i 6= j, and d

dλLyap
u(µλ) does not vanish in int Ji, i = 1, . . . , N. Also, for any

i = 1, . . . , N , we can represent int Ji =
⋃∞
l=1 Ji,l, Ji,1 ⊂ Ji,2 ⊂ · · · , where Ji,l is a

compact interval such that
∣∣ d
dλLyap

u(µλ)
∣∣ ≥ δl > 0 for all λ ∈ Ji,l and some δl > 0.

Therefore Theorem 3.2 follows from the following statement.

Theorem 3.7. Suppose that J is a compact interval so that
∣∣ d
dλLyap

u(µλ)
∣∣ ≥ δ > 0

for some δ > 0 and all λ ∈ J . Then for any compactly supported exact-dimensional
measure η on R with

dimH η + dimH νλ > 1

for all λ ∈ J , the convolution η∗νλ is absolutely continuous with respect to Lebesgue
measure for almost every λ ∈ J .

We will need the following statement:

Proposition 3.8. Suppose that J is a compact interval so that
∣∣ d
dλLyap

u(µλ)
∣∣ ≥

δ > 0 for some δ > 0 and all λ ∈ J . Then, for every ε > 0, there exist N0 ∈ Z+

and a set Ω ⊂ Σ`A such that µ(Ω) > 1 − ε
2 and for any λ ∈ J , x ∈ Hλ(Ω), and

N ≥ N0, we have

(18)
∣∣∣ d
dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(x))‖
)∣∣∣ > δ

2
> 0.
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Proof. We assume, without loss of generality, that d
dλLyap

u(µλ) ≥ δ > 0 for some
δ > 0 and all λ ∈ J . (The other case may be handled similarly.)

Let us first show that for a fixed λ′ ∈ J and given ε′ > 0, one can find a subset
Ω′ ⊂ Σ`A and N ′ ∈ Z+ such that µ(Ω′) > 1 − ε′ and for any x ∈ Hλ′(Ω

′) and
N ≥ N ′, we have

d

dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(x))‖
)∣∣∣
λ=λ′

>
3

4
δ > 0.

Indeed, due to the Bounded Convergence Theorem and the Birkhoff Ergodic The-
orem, we have

0 < δ

<
d

dλ
Lyapu(µλ)

∣∣∣
λ=λ′

=
d

dλ

(∫
log ‖Dfλ(Hλ(ω))‖ dµ(ω)

)∣∣∣
λ=λ′

=

∫
d

dλ

(
log ‖Dfλ(Hλ(ω))‖

)∣∣∣
λ=λ′

dµ(ω)

= lim
N→∞

d

dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(Hλ(ω)))‖
)∣∣∣
λ=λ′

for a.e. ω.

By Egorov’s Theorem, there exists Ω′ ⊂ Σ`A with µ(Ω′) > 1− ε′ and such that the
convergence is uniform in ω ∈ Ω′. Hence, there exists N ′ ∈ Z+ such that for any
N ≥ N ′ and ω ∈ Ω′, we have

d

dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(Hλ(ω)))‖
)∣∣∣
λ=λ′

>
3

4
δ > 0.

Now let us show that one can actually treat all λ ∈ J at the same time. Consider
the family of functions

ξω(λ) =
d

dλ
log ‖Dfλ(Hλ(ω))‖, ω ∈ Σ`A, λ ∈ J.

Let us treat these functions as functions of λ with parameter ω ∈ Σ`A. Then
{ξω(λ)}ω∈Σ`A

is an equicontinuous family of functions, and there exists t > 0 such

that if |λ1−λ2| ≤ t, then |ξω(λ1)− ξω(λ2)| < δ
100 for any ω ∈ Σ`A. Consider a finite

t-net {y1, . . . , yM} in J , containing M = M(J, t) points. For each point yj , we can
find a set Ωj ⊂ Σ`A, µ(Ωj) > 1− ε

2M , and nj ∈ Z+ such that for every N ≥ nj and
every ω ∈ Ωj , we have

1

N

N∑
i=1

ξσi(ω)(yj) =
d

dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(Hλ(ω)))‖
)∣∣∣
λ=yj

>
3

4
δ > 0.

Take Ω =
⋂M
s=1 Ωs. We have

µ(Ω) > 1−M ε

2M
= 1− ε

2
,
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and for every λ0 ∈ J , there exists yj with |yj − λ0| ≤ t. So for every ω ∈ Ω ⊂ Ωj
and every N > N0 = max{n1, . . . , nM}, we have

d

dλ

( 1

N

N∑
i=1

log ‖Dfλ(f iλ(Hλ(ω)))‖
)∣∣∣
λ=λ0

=
1

N

N∑
i=1

ξσi(ω)(λ0)

≥ 1

N

N∑
i=1

ξσi(ω)(yj)−
∣∣∣∣∣ 1

N

N∑
i=1

ξσi(ω)(yj)−
1

N

N∑
i=1

ξσi(ω)(λ0)

∣∣∣∣∣
≥ 3

4
δ − δ

100

>
δ

2
> 0,

concluding the proof. �

Notice that the images of all the projections γ−1
λ ◦ πλ(Λλ) are homeomorphic to

the same Cantor set C, and the family of homeomorphisms hλ : γ−1
λ ◦ πλ(Λλ)→ C

can be chosen continuous with respect to λ. Then the measure hλ(νλ) supported
on C does not actually depend on λ. Indeed, the composition hλ ◦ γ−1

λ ◦ πλ ◦Hλ :

Σ`A → C is a map from a totally disconnected set to a totally disconnected set, and
depends on λ in a continuous way, so must be in fact independent of the parameter.
Let us denote the measure hλ(νλ) by ν. Compare Figure 1.

Proposition 3.9. Suppose that J is a compact interval so that
∣∣ d
dλLyap

u(µλ)
∣∣ ≥

δ > 0 for some δ > 0 and all λ ∈ J . Then, for every ε > 0, there exist N∗ ∈ Z+ and
a set C∗ ⊂ C such that ν(C∗) > 1− ε

2 , and such that for λ ∈ J , x ∈ γλ ◦ h−1
λ (C∗),

and N ≥ N∗, we have

(19) lim
n→+∞

1

n
log ‖Dfnλ (x)|Lλ‖ = Lyapu(µλ),

and

(20)
∣∣∣ d
dλ

( 1

N
log ‖DfNλ (x)|Lλ‖

)∣∣∣ > δ

4
> 0.

Proof. We again consider the case d
dλLyap

u(µλ) ≥ δ > 0 for some δ > 0 and all
λ ∈ J , with the other case being completely analogous.

Notice that in the statement of Proposition 3.8, we can assume without loss of
generality that the set Ω = Ω(ε) is compact. Since that set Ω is independent of
λ ∈ J , the set hλ(γ−1

λ (πλ(Hλ(Ω)))) ⊂ C is also independent of λ, and if we set

C∗ = hλ(γ−1
λ (πλ(H−1

λ (Ω)))), then ν(C∗) ≥ µλ(Hλ(Ω)) > 1− ε
2 .

Take any x ∈ γλ ◦ h−1
λ (C∗) = πλ(Hλ(Ω)). Then there exists y ∈ Λλ such that

y ∈ Hλ(Ω) and x ∈ W s(y). Moreover, the length of the arc of the stable manifold
between x and y = y(x) will be uniformly bounded with respect to both x ∈ C∗
and λ ∈ J . Since y ∈ Hλ(Ω), we have

d

dλ

( 1

N
log ‖DfNλ (y)|Euy ‖

)
>
δ

2
> 0

for any N > N0, where Euy is an unstable subspace in the hyperbolic splitting
TyM = Euy ⊕ Esy.
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Since the angle between directions Eufnλ (y) and Tfnλ (Lλ) tends to zero as n→ +∞,

we have that

(21)
∣∣∣ log

∥∥Dfλ(fNλ (y))|Eu
fN
λ

(y)

∥∥− log
∥∥Dfλ(fNλ (x))|T

fN
λ

(Lλ)

∥∥∣∣∣→ 0 as n→∞,

and (19) follows.
Now take N1 ∈ Z+ such that for every N > N1, we have∣∣∣ d

dλ
log
∥∥Dfλ(fNλ (y))|Eu

fN
λ

(y)

∥∥− d

dλ
log
∥∥Dfλ(fNλ (x))|T

fN
λ

(Lλ)

∥∥∣∣∣ < δ

100
,

where TfNλ (Lλ) is a tangent line to the curve fNλ (Lλ) at the point fNλ (x). Once

again, N1 can be chosen uniformly with respect to both x ∈ C∗ and λ ∈ J .
Inequality (20) in Proposition 3.9 is implied now by the following elementary

lemma.

Lemma 3.10. Suppose that {an}, {bn} are bounded sequences and N0, N1 ∈ Z+

are such that 1
N

∑N−1
n=0 an >

δ
2 > 0 for each N > N0, and |bn − an| < δ

100 for each

n > N1. Then there exists N∗ ∈ Z+ such that 1
N

∑N−1
n=0 bn > δ

4 > 0 for every
N > N∗.

Indeed, just apply the previous lemma with an = d
dλ log ‖Dfλ(fnλ (y))|Eu

fn
λ

(y)
‖ and

bn = d
dλ log ‖Dfλ(fnλ (x))|Tfn

λ
(Lλ)
‖. �

Lemma 3.11. Suppose we are given a smooth family of sequences of C2-

diffeomorphisms k
(t)
λ : R → R, λ ∈ J , t ∈ Z+, k

(t)
λ (0) = 0,

∂k
(t)
λ

∂x (0) = l(t)(λ).

Suppose also that a sequence of smooth positive functions a(t) : J → R, bounded
away from zero, is given with uniformly bounded C2 norms. Assume that the fol-
lowing properties hold:

1. For all large enough N ∈ Z+, we have

(22)
1

N

N∑
t=1

1

l(t)
dl(t)

dλ
=

d

dλ

( 1

N

N∑
t=1

log l(t)
)
< −δ < 0.

2. For any neighborhood V (0) of zero, there exists n0 ∈ Z+ such that for every
λ ∈ J and every large enough n ∈ Z+, we have

(23) k
(n−n0)
λ ◦ k(n−n0+1)

λ ◦ . . . ◦ k(n)
λ (a(n)(λ)) ∈ V (0).

3. There exists t0 ∈ Z+ such that

(24) 0 < inf
t≥t0,λ

l(t)(λ) ≤ sup
t≥t0,λ

l(t)(λ) < 1.

Then for all large enough n ∈ Z+, the function

λ 7→ k
(1)
λ ◦ k

(2)
λ ◦ · · · ◦ k

(n−1)
λ ◦ k(n)

λ (a(n)(λ))

is monotone on J , with the derivative d
dλ

(
k

(1)
λ ◦ k

(2)
λ ◦ · · · ◦ k

(n)
λ (a(n)(λ))

)
< 0

bounded away from zero. More precisely, there are constants C > 0, δ′ > 0 (that do
not depend on n) such that

d

dλ

(
k

(1)
λ ◦ k

(2)
λ ◦ · · · ◦ k

(n)
λ (a(n)(λ))

)
<
( n∏
s=1

l(s)
)

(C − δ′n).
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Proof. From the definition of the multipliers l(t) we have

(25)
∂k

(t)
λ

∂x
(x) = l(t) +O(x).

Also, we have

(26)
∂k

(t)
λ

∂λ
(x) =

dl(t)

dλ
x+O(x2).

Introduce the notation

Kn
m(λ) = k

(m)
λ ◦ · · · ◦ k(n−2)

λ ◦ k(n−1)
λ ◦ k(n)

λ (a
(n)
λ ).

In particular, we set Kn
n (λ) = k

(n)
λ (a

(n)
λ ) and Kn

n+1(λ) = a
(n)
λ .

Lemma 3.12. There is a constant C ′ > 0 such that if m,n ∈ Z+ and m ≤ n + 1
then

1

C ′

( n∏
j=m

l(j)
)
≤ Kn

m(λ) ≤ C ′
( n∏
j=m

l(j)
)
.

Moreover, for any ε > 0, there is n0 ∈ Z+ such that for all n > n0, there is An > 0
such that for all I ∈ Z+ with I ≤ n− n0 + 1 < n, we have∣∣∣ Kn

I+1(λ)∏n
j=I+1 l

(j)
−An

∣∣∣ < ε

and ∣∣∣∏I−1
s=1

∂k
(s)
λ

∂x (Kn
s+1(λ))∏I−1

s=1 l
(s)

− 1
∣∣∣ < ε.

The sequence {An} is uniformly bounded from above and away from zero.

Proof. We have

Kn
m(λ) = k

(m)
λ (Kn

m+1(λ))

= l(m)Kn
m+1(λ) +O

(
(Kn

m+1(λ))2
)

=
(
l(m) +O(Kn

m+1(λ))
)
Kn
m+1(λ)

= . . .

=
[ n∏
j=m

(
l(j) +O(Kn

j+1(λ))
)]
a

(n)
λ

=
( n∏
j=m

l(j)
)[ n∏

j=m

(
1 +

O(Kn
j+1(λ))

l(j)

)]
a(λ).

Since the sequence {Kn
j+1(λ)}j≤n is bounded in absolute value by a geometric

progression, the product
∏n
j=m

(
1 +

O(Kn
j+1(λ))

l(j)

)
is uniformly bounded from above

and from below. This implies the first estimate in Lemma 3.12.
If n0 ∈ Z+ is sufficiently large, and I ≤ n− n0 + 1 < n then we have

Kn
I+1(λ)∏n

j=I+1 l
(j)

=

n∏
j=I+1

(
1 +

O(Kn
j+1(λ))

l(j)

)
a

(n)
λ ,



ABSOLUTELY CONTINUOUS CONVOLUTIONS OF SINGULAR MEASURES 15

and if we set

An =

n∏
j=n−n0+2

(
1 +

O(Kn
j+1(λ))

l(j)

)
a

(n)
λ ,

then ∣∣∣∣∣ Kn
I+1(λ)∏n

j=I+1 l
(j)
−An

∣∣∣∣∣ = An ·

∣∣∣∣∣∣
n−n0+1∏
j=I+1

(
1 +

O(Kn
j+1(λ))

l(j)

)
− 1

∣∣∣∣∣∣
Since {Kn

j+1(λ)}n−n0+1
j=I+1 is bounded in absolute value by a geometric progression,

the choice of n0 can guarantee that its terms are sufficiently small and hence∣∣∣ n−n0+1∏
j=I+1

(
1 +

O(Kn
j+1(λ))

l(j)

)
− 1
∣∣∣ < ε.

This proves the second estimate in Lemma 3.12.

Finally,
∂k

(s)
λ

∂x (Kn
s+1(λ)) = l(s) +O(Kn

s+1(λ)), so∏I−1
s=1

∂k
(s)
λ

∂x (Kn
s+1(λ))∏I−1

s=1 l
(s)

=

I−1∏
s=1

(
1 +

O(Kn
j+1(λ))

l(j)

)
,

and since {Kn
s+1(λ)}I−1

s=1 is bounded in absolute value by a geometric progression
with sufficiently small (due to the choice of n0) terms,

∣∣∣∏I−1
s=1

∂k
(s)
λ

∂x (Kn
s+1(λ))∏I−1

s=1 l
(s)

− 1
∣∣∣ < ε,

concluding the proof. �

Now let us consider d
dλ

(
k

(1)
λ ◦ k

(2)
λ ◦ · · · ◦ k

(n)
λ (a(n)(λ))

)
= d

dλK
n
1 (λ). We have

d

dλ
Kn

1 (λ) =

n∑
i=1

[ i−1∏
s=1

∂k
(s)
λ

∂x
(Kn

s+1(λ))
]∂k(i)

λ

dλ
(Kn

i+1(λ)) +
[ n∏
s=1

∂k
(s)
λ

∂x
(Kn

s+1(λ))
]∂a(n)(λ)

∂λ

=

n∑
i=1

[ i−1∏
s=1

(
l(s) +O(Kn

s+1(λ))
)](∂l(i)

∂λ
Kn
i+1(λ) +O

(
(Kn

i+1(λ))2
))

+
[ n∏
s=1

l(s)
][ n∏

s=1

(
1 +O

( n∏
j=s+1

l(j)
))]∂a(n)(λ)

∂λ
.

Since for I ≤ n− n0, we have∣∣∣∣∣ Kn
I+1(λ)∏n

j=I+1 l
(j)
−An

∣∣∣∣∣ < ε

and ∣∣∣∣∣
I−1∏
s=1

(
1 +

O(Kn
s+1(λ))

l(s)

)
− 1

∣∣∣∣∣ < ε,
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we can estimate∣∣∣( n∏
s=1

l(s)
) Kn

I+1(λ)∏n
j=I+1 l

(j)

1

l(I)

( I−1∏
s=1

(
1 +O

( n∏
j=s+1

l(s)
)))(∂l(I)

∂λ
+O(Kn

I+1(λ))
)

−
( n∏
s=1

l(s)
)
An

1

l(I)

(∂l(I)
∂λ

+O(Kn
I+1(λ))

)∣∣∣
≤
( n∏
s=1

l(s)
) 1

l(I)

∣∣∣∂l(I)
∂λ

+O(Kn
I+1(λ))

∣∣∣(An + 2)ε

≤ C ′′ε
( n∏
s=1

l(s)
)
.

Therefore we have

d

dλ
Kn

1 (λ) =

n−n0∑
i=1

[ i−1∏
s=1

(
l(s) +O(Kn

s+1(λ))
)](∂l(i)

∂λ
Kn
i+1(λ) +O

(
(Kn

i+1(λ))2
))

+

n∑
i=n−n0+1

[ i−1∏
s=1

(
l(s) +O(Kn

s+1(λ))
)](∂l(i)

∂λ
Kn
i+1(λ) +O

(
(Kn

i+1(λ))2
))

+
[ n∏
s=1

l(s)
][ n∏

s=1

(
1 +O

( n∏
j=s+1

l(j)
))]∂a(n)(λ)

∂λ

= S1 + S2 + S3.

We have S2 = O
(∏n

s=1 l
(s)
)

, S3 = O
(∏n

s=1 l
(s)
)

, and

S1 =

n−n0∑
i=1

[ i−1∏
s=1

(
l(s) +O(Kn

s+1(λ))
)](∂l(i)

∂λ
Kn
i+1(λ) +O

(
(Kn

i+1(λ))2
))

≤
n−n0∑
i=1

( n∏
s=1

l(s)
)
An

1

l(i)

(∂l(i)
∂λ

+O(Kn
i+1(λ))

)
+ (n− n0)C ′′ε

n∏
s=1

l(s).

Since the sum
∑n−n0

i=1 An
Kn
i+1(λ)

l(i)
is bounded, we have

S1 ≤
( n∏
s=1

l(s)
)[
An

n−n0∑
i=1

1

l(i)
∂l(i)

∂λ
+ C ′′′ + (n− n0)C ′′ε

]
.

Taking into account (22), we get

d

dλ
Kn

1 (λ) = S1 + S2 + S3

≤
( n∏
s=1

l(s)
)[
− δnAn + C̃ + nC ′′ε

]
<
( n∏
s=1

l(s)
)

(C − δ′n)

for some uniform C > 0, δ′ ∈ (0, 1). �
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Proof of Theorem 3.7. Now let us show how Theorem 3.7 follows from Lemma 3.11,
Proposition 3.9, and Proposition 2.3. Without loss of generality we assume that
d
dλLyap

u(µλ) ≥ δ > 0 for all λ ∈ J . Due to Proposition 3.9, there are C∗ ⊂ C,

ν(C∗) > 1 − ε
2 , and N0 ∈ Z+ such that for any x ∈ γλ ◦ h−1

λ (C∗), the inequality

(20) holds. Fix any p ∈ γλ ◦ h−1
λ (C∗) and consider any point q ∈ πλ(Λλ) ⊂ Lλ

sufficiently close to p. Denote by p(λ) and q(λ) the smooth continuations of p
and q as λ varies. Take n ∈ Z+, n > N0, such that the distance between fnλ (p)
and fnλ (q) is of order one. Let us introduce coordinates on each curve Lλ, fλ(Lλ),
f2
λ(Lλ), f3

λ(Lλ), . . ., fnλ (Lλ), using the natural parametrization and taking p ∈ Lλ,
fλ(p) ∈ fλ(Lλ), f2

λ(p) ∈ f2
λ(Lλ), . . . to be the origin. In these coordinates, set

k
(i)
λ : R1 → R1, k

(i)
λ (x) = f−1

λ (x) : f iλ(Lλ) → f i−1
λ (Lλ). Set a(n)(λ) to be the

distance between fnλ (p) and fnλ (q), measured along fnλ (Lλ). The family of maps

{k(i)
λ }i=1,...,n satisfies the conditions of Lemma 3.11. Indeed, (22) is given by (20),

(23) follows immediately from the properties of invariant manifolds, and (24) can be
provided by (21) and by using Lyapunov metric in a neighborhood of Λλ if needed.
Therefore

d

dλ
dist(p, q) ≤

( n∏
s=1

l(s)
)

(C − δ′n) < 0.

Let us denote p̄ = γ−1
λ (p) and q̄ = γ−1

λ (q). Then for some other constants C ′ > 0
and δ′′ > 0 we also have

d

dλ
dist(p̄, q̄) ≤

( n∏
s=1

l(s)
)

(C ′ − δ′′n) < 0.

Indeed, notice that due to Lemma 3.12 we have

(27) dist(p̄, q̄) = O
( n∏
s=1

l(s)
)
,

and if we denote Kλ(x) = d
dx

(
γ−1
λ (x)

)
, then

d

dλ
dist(p̄, q̄) =

d

dλ

[ ∫ q

p

d

dx

(
γ−1
λ (x)

)
dx
]

=
( d
dλ
q(λ)

)
·Kλ(q)−

( d
dλ
p(λ)

)
·Kλ(p) +

∫ q

p

d

dλ
Kλ(x) dx

= (q′(λ)− p′(λ))Kλ(q) + p′(λ)(Kλ(q)−Kλ(p)) +

∫ q

p

K ′λ(x) dx

=
d

dλ
dist(p, q) ·Kλ(q) +O(dist(p, q))

= (C − δ′n) ·O
( n∏
s=1

l(s)
)

+O
( n∏
s=1

l(s)
)

≤ (C ′ − δ′′n)
( n∏
s=1

l(s)
)

< 0

for sufficiently large n ∈ Z+.
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Suppose now that the measure η is exact-dimensional and denote dη = dimH η.
By assumption we have dη + dimH νλ > 1 for every λ ∈ J . Choose δ > 0 so that

(28) dη + dimH νλ > 1 + δ

throughout the compact interval J . Recall (see, e.g., [44]) that

(29) dimH νλ =
hµλ(fλ)

Lyapu(µλ)
.

Without loss of generality we may choose α, β, γ > 0 such that

α <
1

log `
Lyapu(µλ) < β,(30)

γ <
1

log `
hµλ(fλ),(31)

β − γ
α

< 1,(32)

β

α
< 1 +

δ

2
,(33)

hµλ(fλ)

Lyapu(µλ)
− γ

α
<
δ

2
(34)

for all λ ∈ J (otherwise partition J further into finitely many compact intervals so
that the above choices may be made on each of these partition intervals separately,
and then work on each of the intervals individually).

Let us show that if we take Πλ = γ−1
λ ◦ πλ ◦ Hλ, then for all sufficiently large

k0 ∈ Z+, conditions (14)–(17) in Proposition 2.3 hold.
We have

dη > 1 + δ − dimH νλ >
β

α
− γ

α
= max

{β − γ
β

,
β − γ
α

}
throughout J . Here we used (28) in the first step, (29), (33), and (34) in the second
step, and (30) in the third step. This verifies condition (14) in Proposition 2.3.

We have p̄ = Πλ(ω) and q̄ = Πλ(τ), and by (27) we have

φω,τ (λ) = dist(p̄, q̄) = O
( n∏
s=1

l(s)
)
.

By (30) and (19), we have

α <
1

log `
Lyapu(µλ) =

1

log `
lim
n→∞

[
− 1

n

n∑
s=1

log l(s)
]
.

Thus, for all sufficiently large n ∈ Z+, we have nα log ` < − log
(∏n

s=1 l
(s)
)

, and

hence

`−α|ω∧τ | = `−nα >
( n∏
s=1

l(s)
)
> C|φω,τ (λ)|,

so (15) holds.



ABSOLUTELY CONTINUOUS CONVOLUTIONS OF SINGULAR MEASURES 19

Since d
dλ dist(p̄, q̄) ≤

(∏n
s=1 l

(s)
)

(C ′ − δ′′n) and β > 1
log `Lyap

u(µλ) (by (30)),

we also have that

`−nβ = `−|ω∧τ |β < C
( n∏
s=1

l(s)
)
<
∣∣∣ d
dλ

dist(p̄, q̄)
∣∣∣ =

∣∣∣ d
dλ

φω,τ (λ)
∣∣∣,

for n large enough. This verifies condition (16).
Due to the Shannon-McMillan-Breiman Theorem, for every θ > 0 and properly

chosen Ωε ⊂ Σ`A, Ωε ⊂ Ω, where Ω is given by Proposition 3.8, µ(Ωε) > 1 − ε, we

have that µ([u]) ≤ Cθe−n(hµ(σA)−θ) for all words u with [u] ∩Ωε 6= ∅ of sufficiently
large length n. Since 0 < γ < 1

log `hµ(σA) by (31), taking θ small enough, we get

µ([u]) ≤ C`−γn. This implies that condition (17) holds.
Thus, all the assumptions of Proposition 2.3 hold and Theorem 3.7 follows. �

4. The Density of States Measure of the Square Fibonacci
Hamiltonian

The Fibonacci Hamiltonian is given by the following bounded self-adjoint oper-
ator in `2(Z),

(35) [Hλ,ωψ](n) = ψ(n+ 1) + ψ(n− 1) + λχ[1−α,1)(nα+ ω mod 1)ψ(n),

where λ > 0, α =
√

5−1
2 , and ω ∈ T = R/Z. It is well known and easy to see

that the spectrum of Hλ,ω does not depend on ω and hence may be denoted by
Σλ. Indeed, this follows quickly from the minimality of the irrational rotation by α
and strong operator convergence (approximate a given Hλ,ω strongly by a suitable
sequence Hλ,ω̃+nkα and apply, e.g., [60, Theorem VIII.24]; then switch the roles of
ω and ω̃).

Since spectral questions for Schrödinger operators in two (and higher) dimensions
are hard to study, it is natural to consider a model where known one-dimensional
results can be used. In particular, let us consider the Schrödinger operator

(36)

[H
(2)
λ1,λ2,ω1,ω2

ψ](m,n) = ψ(m+ 1, n) + ψ(m− 1, n) + ψ(m,n+ 1) + ψ(m,n− 1)+

+
(
λ1χ[1−α,1)(mα+ ω1 mod 1) + λ2χ[1−α,1)(nα+ ω2 mod 1)

)
ψ(m,n)

in `2(Z2), where λ1, λ2 > 0 and ω1, ω2 ∈ T. Again, the spectrum of H
(2)
λ1,λ2,ω1,ω2

is

independent of ω1, ω2 and may therefore be denoted by Σ
(2)
λ1,λ2

.

The operator H
(2)
λ1,λ2,ω1,ω2

is separable and hence its spectrum and spectral mea-
sure can be expressed in terms of the spectra and spectral measures of Hλ1,ω1

and
Hλ2,ω2

. In particular, we have

Σ
(2)
λ1,λ2

= Σλ1
+ Σλ2

.

Moreover, the density of states measure of the family {H(2)
λ1,λ2,ω1,ω2

}λj∈R,ωj∈T can
be expressed as the convolution of the density of states measures associated with
the families {Hλ1,ω1}ω1∈T and {Hλ2,ω2}ω2∈T, that is,

(37) ν
(2)
λ1,λ2

= νλ1
∗ νλ2

.

See the appendix for these statements and further background.
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The fact about the connection between the density of states measures may
be combined with recent results for the density of states measures of the one-
dimensional models [15, 16] to obtain the following theorem.

Theorem 4.1. Let ν
(2)
λ1,λ2

be the density of states measure for the Square Fibonacci

Hamiltonian (36) with coupling constants λ1, λ2. There is λ∗ > 0 such that for

almost every pair (λ1, λ2) ∈ [0, λ∗) × [0, λ∗), the measure ν
(2)
λ1,λ2

is absolutely con-
tinuous with respect to the Lebesque measure.

Remark 4.2. In fact, it follows from the proof that (with a uniform smallness

condition) for every λ1 ∈ [0, λ∗), the measure ν
(2)
λ1,λ2

is absolutely continuous with

respect to the Lebesque measure for almost every λ2 ∈ [0, λ∗). Also, using the re-
cent results from [18] (where, in particular, it is shown that Theorem 4.7 below
holds for all values of the coupling constant λ > 0), one can obtain a stronger
version of Theorem 4.1. Namely, for almost all pairs (λ1, λ2) in the domain

{(λ1, λ2) | dimH νλ1 + dimH νλ2 > 1}, the measure ν
(2)
λ1,λ2

is absolutely continu-
ous with respect to the Lebesque measure.

Proof of Theorem 4.1. We will use the fact, proven in [16], that the density of
states measure of the Fibonacci Hamiltonian is closely related to the measures of
maximal entropy for restrictions of the Fibonacci trace map to the level surfaces of
the Fricke-Vogt invariant. Let us recall the setting.

There is a fundamental connection between the spectral properties of the Fi-
bonacci Hamiltonian and the dynamics of the trace map

T : R3 → R3, T (x, y, z) = (2xy − z, x, y).

The function (sometimes called the Fricke-Vogt invariant)

(38) G(x, y, z) = x2 + y2 + z2 − 2xyz − 1

is invariant under the action of T , and hence T preserves the family of cubic surfaces

Sλ =
{

(x, y, z) ∈ R3 : x2 + y2 + z2 − 2xyz = 1 +
λ2

4

}
.

It is therefore natural to consider the restriction Tλ of the trace map T to the
invariant surface Sλ. That is, Tλ : Sλ → Sλ, Tλ = T |Sλ . We denote by Λλ the
set of points in Sλ whose full orbits under Tλ are bounded. It is known that Λλ
is equal to the non-wandering set of Tλ; indeed, it follows from [61] that every
unbounded orbit must escape to infinity together with a suitable neighborhood
(either in positive or negative time), hence is wandering, and hyperbolicity of Λλ
implies that every point of Λλ is non-wandering.

It is known that for λ > 0, Λλ is a locally maximal compact transitive hyperbolic
set of Tλ : Sλ → Sλ; see [6, 8, 14]. Let us denote by µλ the measure of maximal
entropy for Tλ.

Proposition 4.3. The stable and unstable Lyapunov exponents Lyaps(µλ) and
Lyapu(µλ) are analytic functions of λ > 0.

Remark 4.4. In the case of an analytic family of Anosov diffeomorphisms, the
analytic dependence of a continuation of a point in Λλ on the parameter λ follows
from [39]. A proof of Proposition 4.3 (in fact, of a stronger version that covers fam-
ilies of real analytic diffeomorphisms) that uses properties of dynamical ζ-functions
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was recently presented in [57]. Here we present a shorter proof that uses the fact
that Λλ is the Julia set for the polynomial map Tλ.

Proof of Proposition 4.3. The map Tλ : Λλ → Λλ is conjugated to a topological
Markov chain σA : ΣA → ΣA (see [14] for an explicit description of ΣA), that is,
there is a family of homeomorphisms Πλ : ΣA → Λλ such that Πλ ◦ σA = Tλ ◦ Πλ.
The measure µ = Π−1

λ (µλ) is the measure of maximal entropy for σA : ΣA → ΣA
and hence independent of λ. If we set ϕλ : Λλ → R, ϕλ(x) = − log ‖DTλ|Eu‖, then

(39) Lyapu(µλ) = −
∫

Λλ

ϕλ(x) dµλ(x) = −
∫

ΣA

ϕ̃λ dµ,

where ϕ̃λ = ϕλ ◦Πλ.
Notice that {Πλ(ω)}λ>0 is an analytic curve and forms a central manifold of

the partially hyperbolic set {Λλ}λ>0 ⊂ R3. Indeed, from Theorem 5.1 in [6] we
know that the Julia set of the map Tλ must be contained in the real subspace
and consists exactly of the points with bounded orbits, hence is equal to Λλ. On
the other hand, a hyperbolic Julia set of a polynomial map moves holomorphically
with a parameter, see [36]. Besides, the corresponding central-stable manifold is an
analytic surface, and hence for a fixed ω ⊂ ΣA, the function ϕ̃λ(ω) is analytic in λ.
Together with (39) this implies Proposition 4.3. �

The dynamics of the trace map and the spectrum of the Fibonacci Hamiltonian
are related due to the following result [74]:

Theorem 4.5 (Sütő, 1987). An energy E belongs to Σλ if and only if the positive
semiorbit of the point (E−λ2 , E2 , 1) under iterates of the trace map T is bounded.

Consider the line Lλ = {(E−λ2 , E2 , 1) : E ∈ R} and let

(40) γλ : R→ Lλ, E 7→
(E − λ

2
,
E

2
, 1
)
.

Moreover, the measures of maximal entropy µλ for the trace map are related
to the density of states measures νλ associated with the one-parameter families of
Fibonacci Hamiltonians. Namely, we have [16]:

Theorem 4.6 (DG, 2012). For small values of the coupling constant λ > 0, the
following holds. Consider a normalized restriction of the measure of maximal en-
tropy for the trace map to an element of a Markov partition. The projection of this
measure to Lλ along the stable manifolds of the hyperbolic set Λλ is equal to the
normalized restriction of the measure γλ(νλ) to the image of the projection.

This implies, in particular, the following result [16]:

Theorem 4.7 (DG, 2012). There exists 0 < λ0 ≤ ∞ such that for λ ∈ (0, λ0),
there is dλ ∈ (0, 1) so that the density of states measure νλ is of exact dimension
dλ, that is, for νλ-almost every E ∈ R, we have

lim
ε↓0

log νλ(E − ε, E + ε)

log ε
= dλ.

Moreover, in (0, λ0), dλ is a C∞ function of λ, and

lim
λ↓0

dλ = 1.
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Remark 4.8. In fact, dλ is an analytic function of λ; this follows from Proposi-
tion 4.3 (the analyticity of the Lyapunov exponent Lyapu(µλ)), formula (29), and
the fact that for the measure of maximal entropy, hµλ(T ) = htop(T ). See also [57].

Let us now choose λ∗ ∈ (0, λ0) such that dλ > 1
2 for all λ ∈ [0, λ∗] and fix

λ1 ∈ [0, λ∗]. Then due to Theorem 4.7, the density of states measure νλ1
is exact-

dimensional, with dimension dλ1
> 1

2 . We are now in the setting of Theorem 3.2
with fλ = Tλ. Therefore for almost all λ2 ∈ [0, λ∗], the convolution νλ1

∗ νλ2
is

absolutely continuous. By (37), this completes the proof of Theorem 4.1. �

5. Questions and Open Problems

In this section we state a few questions and open problems that are suggested
by the results of this paper.

(1) We conjecture that dλ is a monotone function of λ; this would show how
the domain {(λ1, λ2) | dλ1 + dλ2 > 1} (where Theorem 4.1 holds for almost
all pairs (λ1, λ2)) look like.

(2) While in Proposition 2.1 we obtain L2 regularity of the density, we cannot
draw this conclusion in Proposition 2.3 due to the way we approximate the
measure in question in the proof. Is it still true that the density is L2 in
the setting of Proposition 2.3?

(3) Related to the previous question, can we strengthen the regularity state-
ment that can be obtained for the density? We expect the work [53] of
Peres and Schlag to be relevant to this question.

(4) The fact that we have to exclude a zero-measure set of pairs of small cou-
pling constants in Theorem 4.1 seems to be an artifact of the proof. Can
one do away with this exclusion of exceptional pairs?

(5) Can one prove a result similar to Theorem 4.1 for the one-parameter family
(of families) obtained when setting λ1 = λ2 =: λ? That is, is it true that
for (almost all) sufficiently small λ > 0, the density of states measure as-

sociated with {H(2)
λ,λ,ω1,ω2

}λ∈R,ωj∈T is absolutely continuous? Heuristically,
this should be true. However, this seems to be very difficult to establish
and is well beyond the scope of our method.

(6) What happens as the coupling constant is increased? Recall that the spec-
trum starts out being an interval at small coupling [15], makes a transition
through a regime that is not understood yet, but which may involve Can-
torval structures (see [46] for definition of a Cantorval), as the coupling
is increased, and becomes a zero-measure Cantor set in the large coupling
regime [13]. This has been studied numerically in [27, 28, 34], and most
recently also in [12]. In particular, there are numerical estimates of thresh-
old values of λ, where transitions are expected to occur. Recall also that
the spectrum is the topological support of the density of states measure,
so that the results just mentioned are relevant to these coupling constant-
dependent measures as well. What about similar threshold values of the
coupling constant as other features of the density of states measure are
concerned, such as the transition from absolute continuity to singularity, or
the transition from one-dimensionality to dimension strictly less than one,
etc.?
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(7) As usual, one can ask how the results obtained for Fibonacci-based models
extend to Sturmian-based models, that is, when the inverse of the golden

ratio,
√

5−1
2 , is replaced by a general irrational α ∈ (0, 1) in (35) and (36).

The one-dimensional case has been investigated to a great extent (see, e.g.,
[3, 20, 21, 30, 38, 41, 42, 45, 59], among many others), thereby opening the
door for a study of separable models in higher dimensions based on these
one-dimensional operators.

Appendix A. Separable Potentials and Operators

Let d ≥ 1 be an integer and assume that for 1 ≤ j ≤ d, we have bounded maps
Vj : Z→ R. Consider the associated Schrödinger operators on `2(Z),

(41) [Hjψ](n) = ψ(n+ 1) + ψ(n− 1) + Vj(n)ψ(n).

Furthermore, we let V : Zd → R be given by

(42) V (n) = V1(n1) + · · ·+ Vd(nd),

where we express an element n of Zd as n = (n1, . . . , nd) with nj ∈ Z.
Finally, we introduce the Schrödinger operator on `2(Zd) with potential V , that

is,

(43) [Hψ](n) =
( d∑
j=1

ψ(n+ ej) + ψ(n− ej)
)

+ V (n)ψ(n).

Here, ej denotes the element n of Zd that has nj = 1 and nk = 0 for k 6= j.
Potentials of the form (42) and Schrödinger operators of the form (43) are called

separable. Operators of this or of a similar form have been studied, for example,
in [4, 15, 64].

Let us first state some known results for separable Schrödinger operators.

Proposition A.1. (a) The spectrum of H is given by

σ(H) = σ(H1) + · · ·+ σ(Hd).

(b) Given ψ1, . . . , ψd ∈ `2(Z), denote by µj the spectral measure corresponding to
Hj and ψj. Furthermore, denote by µ the spectral measure corresponding to H and
the element ψ of `2(Zd) given by ψ(n) = ψ1(n1) · · ·ψd(nd). Then,

µ = µ1 ∗ · · · ∗ µd.
Proof. Recall the definition and properties of tensor products of Hilbert spaces
and operators on these spaces; see, for example, [60, Sections II.4 and VIII.10].
It follows from [60, Theorem II.10] that there is a unique unitary map U from
`2(Z)⊗· · ·⊗`2(Z) (d factors) to `2(Zd) so that for ψj ∈ `2(Z), the elementary tensor
ψ1⊗· · ·⊗ψd is mapped to the element ψ of `2(Zd) given by ψ(n) = ψ1(n1) · · ·ψd(nd).
With this unitary map U , we have

U∗HU =

d∑
j=1

Id⊗ · · · ⊗ Id⊗Hj ⊗ Id⊗ · · · ⊗ Id,

with Hj being the j-th factor. Given this representation, part (a) now follows from
[60, Theorem VIII.33] (see also the example on [60, p. 302]). Part (b) follows from
the proof of [60, Theorem VIII.33]. �
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Let us now consider the product of ergodic families of one-dimensional
Schrödinger operators. Suppose (Ωj , µj) are probability spaces, Tj : Ωj → Ωj are
ergodic invertible transformations, and fj : Ωj → R are measurable and bounded,
1 ≤ j ≤ d. For ωj ∈ Ωj and nj ∈ Z, we let Vj,ωj (nj) = fj(T

nj (ωj)), 1 ≤ j ≤ d.

The associated Schrödinger operators in `2(Z) will be denoted by Hj,ωj , 1 ≤ j ≤ d.
Consider the product space Ω = Ω1×· · ·×Ωd, equipped with the product measure
µ = µ1 × · · · × µd, and the separable potential

Vω(n) = V1,ω1
(n1) + · · ·+ Vd,ωd(nd),

where
ω = (ω1, . . . , ωd) ∈ Ω, n = (n1, . . . , nd) ∈ Zd.

The associated Schrödinger operator in `2(Zd) will be denoted by Hω. For the
general theory of ergodic Schrödinger operators, we refer the reader to [7, 9].

Proposition A.2. There exist sets Σj, 1 ≤ j ≤ d, and Σ such that

σ(Hj,ωj ) = Σj

for µj-almost every ωj ∈ Ωj, 1 ≤ j ≤ d, and

σ(Hω) = Σ

for µ-almost every ω ∈ Ω. Moreover, we have

Σ = Σ1 + · · ·+ Σd.

Proof. By assumption, for 1 ≤ j ≤ d, (Ωj , µj , Tj) is ergodic, and hence σ(Hj,ωj ) =
Σj for µj-almost every ωj ∈ Ωj follows from the general theory. Moreover, modulo a
natural identification, the {Tj} are a family of commuting invertible transformations
of Ω that is ergodic with respect to µ, and hence σ(Hω) = Σ for µ-almost every ω ∈
Ω follows from the general theory as well. Given these statements, Σ = Σ1+· · ·+Σd
then follows from Proposition A.1. �

Next we consider the associated density of states measures, namely,∫
R
g(E) dνj(E) =

∫
Ωj

〈δ0, g(Hj,ωj )δ0〉`2(Z) dµj(ωj), 1 ≤ j ≤ d

and ∫
R
g(E) dν(E) =

∫
Ω

〈δ0, g(Hω)δ0〉`2(Zd) dµ(ω)

for bounded measurable functions g. Note that, by the spectral theorem, the den-
sity of states measure is the average of the spectral measure associated with the
operator in question and the vector δ0 with respect to the probability measure in
question. In particular, each of these measures is a compactly supported proba-
bility measure on the real line. The associated distribution function is called the
respective integrated density of states. They have an alternative description in
terms of the thermodynamic limit of the distribution of the eigenvalues of finite-

volume restrictions of the operator. Denote by H
(N)
j,ωj

the restriction of Hj,ωj to the

interval [0, N − 1] with Dirichlet boundary conditions. Denote the corresponding

eigenvalues and eigenvectors by E
(N)
j,ωj ,k

, φ
(N)
j,ωj ,k

, 1 ≤ j ≤ d, ωj ∈ Ωj , 1 ≤ k ≤ N .

Then, for 1 ≤ j ≤ d and µj-almost every ωj ∈ Ωj , we have

(44) lim
N→∞

1

N
#{1 ≤ k ≤ N : E

(N)
j,ωj ,k

≤ E} = νj((−∞, E])
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for every E ∈ R.

Similarly, we denote by H
(N)
ω the restriction of Hω to [0, N − 1]d with Dirichlet

boundary conditions. Denote the corresponding eigenvalues and eigenvectors by

E
(N)
ω,k , φ

(N)
ω,k , ω ∈ Ωj , 1 ≤ k ≤ Nd. Then, for µ-almost every ω ∈ Ω, we have

(45) lim
N→∞

1

Nd
#{1 ≤ k ≤ Nd : E

(N)
ω,k ≤ E} = ν((−∞, E])

for every E ∈ R.

Proposition A.3. We have

supp νj = Σj ,

1 ≤ j ≤ d, and

supp ν = Σ.

Here, supp η denotes the topological support of a probability measure η on R. More-
over, we have

ν = ν1 ∗ · · · ∗ νd.
Proof. The statements about the topological supports follow from the general the-
ory. The statement ν = ν1 ∗ · · · ∗ νd follows from (44) and (45). Indeed, the eigen-

vectors φ
(N)
j,ωj ,k

of H
(N)
j,ωj

form an orthonormal basis of `2([0, N − 1]) for 1 ≤ j ≤ d.

Thus, the associated elementary tensors

(46) φ
(N)
1,ω1,k1

⊗ · · · ⊗ φ(N)
d,ωd,kd

,

where 1 ≤ kj ≤ N , form an orthonormal basis of `2([0, N −1])⊗· · ·⊗ `2([0, N −1]),
which is canonically isomorphic to `2([0, N −1]d) (we use this identification freely).

Moreover, the vector in (46) is an eigenvector of H
(N)
ω , with ω = (ω1, . . . , ωd),

corresponding to the eigenvalue E
(N)
1,ω1,k1

+ · · · + E
(N)
d,ωd,kd

; compare the proof of

Proposition A.1.(b). In particular, by dimension count, these eigenvalues exhaust

the entire set {E(N)
ω,k : 1 ≤ k ≤ Nd}. This shows that for any E1 < E2,

#{1 ≤ k ≤ Nd : E
(N)
ω,k ∈ (E1, E2]}

is equal to

#{1 ≤ k1, . . . , kd ≤ N : E
(N)
1,ω1,k1

+ · · ·+ E
(N)
d,ωd,kd

∈ (E1, E2]}.
This implies ν = ν1 ∗ · · · ∗ νd by (44) and (45). �
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