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ABSOLUTELY CONTINUOUS INVARIANT MEASURES

THAT ARE MAXIMAL

BY

W. BYERS1 AND A. BOYARSKY 2

Abstract. Let A be a certain irreducible 0-1 matrix and let t denote the family of

piecewise linear Markov maps on [0,1] which are consistent with A. The main result

of this paper characterizes those maps in t whose (unique) absolutely continuous

invariant measure is maximal, and proves that for "most" of the maps that are

consistent with A, the absolutely continuous invariant measure is not maximal.

1. Introduction. In recent years there has been a great deal written on dynamical

systems defined by maps t of an interval into itself [1]. This stems from the

realization that the simplest nonlinearities of such maps can introduce extreme

dynamical complexity [2, 3]. A conventional way of dealing mathematically with

such "chaotic" dynamics is through the introduction of an invariant measure ix for t.

When u is ergodic, the Birkhoff Ergodic Theorem allows the computation of the

frequency with which an orbit (iterates of a fixed starting point) hit a given set. For

example,

1    N
lim   TT L XA(r"(x)) = n(A)

n-*«> N n = 1

for almost every x g [0,1], with respect to p. However, there are usually many such

ergodic measures available for a given transformation. For example, every measure

supported on a finite periodic orbit is ergodic. But clearly such invariant measures

cannot shed any new information about the dynamics of t. We are therefore led to

the question: Which invariant measures of t yield significant information about the

dynamics of t?

There are two measures which appear prominently in the literature: measures

absolutely continuous with respect to Lebesgue measure [4-8] and measures which

maximize the measure theoretic entropy (maximal measures) [9-12]. In this paper we

investigate the relationship between these two types of measures for a special class of

Markov maps.
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304 W. BYERS AND A. BOYARSKY

In §2 we translate the well-known results of Parry [23] to maps on an interval.

This yields the following unsurprising result (Theorem 2): If A is an irreducible 0-1

matrix with spectral radius A, then the piecewise linear Markov map, t, consistent

with A that has constant slope A maximizes the measure theoretic entropy and the

maximum is equal to log A.

In Theorem 3 of §4, we consider a certain irreducible 0-1 matrix A and the family

^"of piecewise hnear Markov maps, consistent with A, and we characterize those

maps in 9" for which the (unique) absolutely continuous invariant measure is

maximal. There are two main consequences of Theorem 3: (i) for certain irreducible

0-1 matrices A, the topological entropy can be achieved by families of maps with

nonconstant slope, and (ii) in some cases, the attainment of the topological entropy

by the absolutely continuous invariant measures implies the constant slope condi-

tion, which is the converse of Theorem 2.

Our results are consistent with those obtained by Misiurewicz for Markov maps

with strictly negative Schwarzian derivative (a case which is distinct from those we

consider), from which it appears that the "absolutely continuous measure in general

is not the measure with maximal entropy" [6]. In fact, from the remarks following

Theorem 3, we can produce examples of n-k parameter families of maps, k =

1,2,...,n — 1, where the maps whose absolutely continuous invariant measure is

maximal is in a lower dimensional subspace. For all other transformations in the

original family the absolutely continuous invariant measure and the maximal mea-

sure are different.

2. Piecewise linear Markov maps. Let / = [0,1] and let 0 = a0 < a, < ••• < an

= 1 be a partition of / denoted by 0>. A map t: / -# / is called Markov if t |, for

/' = 1,2,...,«, is a homeomorphism onto some interval (a,<,), ak(i)), where I¡, =

(ai_x,ai). If r\j is linear for each ;', then r is referred to as a piecewise linear

Markov map. Let ^ denote such maps.

Let Lx be the space of integrable functions on [0,1]. Let t: / -> / be nonsingular.

We say that/ G L, is an invariant density under t if

/ f(x) dx = f        f(x) dx
JA Jr-\A)

for all Lebesgue measurable sets A, where t'x(A) = {x G 7: r(x) G A}. It is well

known [4] that the density / is invariant under t if and only if it is a fixed point of

the Frobenius-Perron operator Py. Lx -» Lx defined by

*/(*)-£/,  /(*)*■
aX •'t-'IO.x]

If t g <g, then it induces annXn matrix M = Mr defined as follows:

mji - VIT/I>

where rj = dr/dx\, and of, = 1 if I, c t(Ij) and 0 otherwise. Thus, all nonzero

entries of each row of M are contiguous (no zero entries between nonzero entries)

and equal, and the common value is 1/\tJ\- For a general partition á2, M is not
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ABSOLUTELY CONTINUOUS INVARIANT MEASURES 305

necessarily stochastic nor irreducible. In [14] it is shown that M = Pr when PT is

restricted to step functions on í?. Thus, if m = (trx,... ,irn) is such a step function,

then mM = PTir. From this we see that if M has a nonnegative left eigenvector

associated with the eigenvalue 1, then tr, viewed as a function on /, is an invariant

density under t.

Lemma 1 [15]. Let te?. Then M = MT has 1 as its spectral radius. If M is also

irreducible, then the algebraic and geometric multiplicities of the eigenvalue 1 are also

1.

Hence M always has fixed points, that is, if t g <ë, then there exists a step

function it which is a density invariant under t. In fact more is true.

Lemma 2 [16]. Let re^ with respect to the partition 3P, and assume |t/| > 1,

j = 1,...,«. Then every density f invariant under t is a step function on &.

In the sequal we shall need the following results:

Definition 1. Let si denote the set of n X n 0-1 matrices, where the nonzero

entries of each row are contiguous (i.e. there are no zeros between ones).

Lemma 3. Let A g sí and let D be a diagonal matrix with positive entries. If A is

irreducible and B = DA has spectral radius equal to 1, then there exists a map t g ^

such that MT = DA.

Proof. B is irreducible since A is. By the Perron-Frobenius Theorem [17] B has a

right eigenvector ü = (ux,...,un) associated with the eigenvalue 1, where w, > 0,

i = 1,... ,n. Furthermore, we can normalize ü so that T."=xu¡ = 1.

Partition [0,1] into subintervals {/,}"_! such that the length of /, is uk. Then

define t£ ^by setting

n

Áh)' U [Ij:*kJ + Q}.
7 = 1

Since the nonzero entries of A are contiguous we can take t to be continuous on each

interval Ik, k = 1,2,...,n. Now, the slope of t|7 is given by 'L"=xakjUj/uk. But

Bu = ü means that

n n n

uk= E bkJUj = ¿Z dkakyuj = dk £ akjup
j-l 7-1 7 = 1

whereD = diag{d,,.. .,dn). Thus

dk = uk/ £ akjuj = reciprocal of slope of kth segment.

7=1

Therefore, MT = DA.   D

Lemma 4. Lei /l g sí be irreducible and let it have maximal real eigenvalue X. Then

there exists a diagonal matrix with constant nonzero entries on the diagonal such that

DA is similar to a stochastic matrix.
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306 W. BYERS AND A. BOYARSKY

Proof. Since A is irreducible there is a positive right eigenvector z associated with

A. By Theorem 9.5.2 of [20], we know that A = XZPZ1, where F is a stochastic

matrix and Z = diag{z,, z2,.. .,z„). LetZ» = diag{l/A, 1/A,.. .,1/A}. Then

DA = XDZPZ1 = ZPZ1.        D

Corollary 1. A g s/be irreducible and have spectral radius X. Then there exists a

piecewise linear map t: [0,1] -» [0,1] having constant slope X such that MT = A/X.

Let t g '¡g'with respect to the partition ¿P = {/,}"=1 and let it induce the matrix

M = MT = (m,j), 1 < / < n, 1 < j < n. Define the transition matrix T = (t,¡) by

\(l,nr-\lj))     \(lj)
t,J   "    Hi,)    "   M/,)w°'

where A is Lebesgue measure and ttj denotes the proportion of the interval I¡ which is

mapped into L. Notice that F has the same distribution of nonzero entries as M. It is

also (row) stochastic.

Definition 2. The measure theoretic entropy of r with respect to the measure ¡x

invariant under t is given by the expression [18, p. 91]:

n       n

H(t,ii) = -¿Z   £jM,yÏOg'o>
y-l,=1

where u, = ix(I¡), i = 1,... ,n.

For the basic definition of topological entropy, H(r), we refer the reader to [13,

19]. Its relation to measure entropy is through:

Lemma 5 [19, Theorem 8.6]. Let t: / -> / be a continuous map. Then H(t) =

sup { H( t, ix ) : ß is a probability measure invariant under r}.

Definition 3. A measure ju such tht H(r, u) = H(t) is referred to as a maximal

measure.

Let A g s/he irreducible and have spectral radius A > 1. By Corollary 1 there

exists a map t g "g7 with constant slope A > 1. Let t be any map in <€ such that

MT = DA for some diagonal matrix D, whose nonzero entries are greater than 1 in

absolute value. We then say t is consistent with A.

Let

XA={(xk)ï_0:aXkXk+i = l,k = 0,l,...},

where xk G {l,...,n} for A: = 0,1,..., and XA is the symbol space consisting of all

sequences (xk)f=0 of symbols whose neighbouring pairs are allowed by the matrix

A. Let T: XA -» XA be the shift map. (For more details on symbolic dynamics see

[19, Chapter 5].)

Proposition 1. Let A g sí be irreducible and have spectral radius A > 1. Let ref

be an expanding map induced by A; for example t is such that MT = A/X. Then there

exists a continuous map \p: XA -» / such that r ° \p = 4> ° T, where \p is a homeomor-

phism from XA onto I — C, and C is a countable set.
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Proof. Let the Markov partition of / be given by Ix < I2 < • • • < /„• Then \fi is

defined by the formula

00

*a*x-o)- riT-(/j.
M-0

This intersection is nonempty because t is Markov and it consists of a single point

because t is expanding. It is not difficult to check that ^ is a conjugacy, i.e.

t o dj = dj o T, and that \p is a homeomorphism onto I — C, where C is the set if

inverse images of the end points of the intervals IX,...,I„ (cf. Nitecki [21]).

We shall be using the following result of Parry's [22] as summarized in [23]:

Theorem l.If(XA,T)is regionally transitive, then there exists a unique normalized

Borel invariant measure, ju, of maximal entropy. Moreover, there also exists a

normalized measure p equivalent to ß such that p(TC) = ßp(C) for any cylinder set C

where log/? = H(T).

Definition 4. (XA, T) is regionally transitive if for every pair C, D of nonempty

cylinder sets there exists an integer n such that C C\ T~"D + 0. This is implied by

the condition [22] that

00

C# 0 => (J TnC* XA.

n = 0

In our case, t is a Markov map induced by the 0-1 matrix A, which is irreducible.

Thus for every pair (/', j) there exists an n such that a," ¥= 0, i.e. r"(I¡) ¡2 L.

Therefore, U^0t„(/,) = [0,1]. If C = Ia<j n r~\lai) n ---n r~k(Iak) * 0, then

there exists an interval J G Ia such that r'(J) £ Ia , t = 0,... ,k - 1, and Tk(J) =

Iat, i.e., J Q C and U?_0t"k(J) 2 U^Qr"(Iai) = [0,1]. Thus,
OO

IJt"(c) = [o,i].
»7 = 0

Therefore, the associated symbolic system (XA, T) is regionally transitive. Thus we

obtain from Theorem 1 :

Proposition 2. If the symbolic system (XA,T) is obtained from the map r- g 'g(as

in Proposition 1), then it admits a unique maximal measure (the Parry measure).

Theorem 2. Let r g 'ëbe expanding and of constant slope (i.e. the absolute value of

the slope is constant). Suppose that the 0-1 matrix A which it induces is irreducible.

Then there exists a unique Borel probability measure u, invariant under r, which

maximizes entropy and it is equivalent to Lebesgue measure.

Proof. We have already commented that the associated system (XA,T) has a

unique maximal measure; call it v. Define /x on [0,1] by setting n(B) = p(\p1(B)),

where \p is the map defined in Proposition 1. Thus u is an invariant probability

measure for t which maximizes entropy.

According to Theorem 1 there exists a normalized measure p equivalent to v such

thatp(TC) = ßp(c) for any cylinder set C. Defining m(B) = p(\p~1(B)), we have a
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308 W. BYERS AND A. BOYARSKY

measure equivalent to ¡x on [0,1] such that

m(r(D)) = p(rlr(D)) = p(Tr'(D)) = ßp(^l(D)) = ßm(D).

Now suppose D = I¡ for some i. Then r(I¡) = U.fl,,/,, and so

ßm(Ii) = m(r(Il))= £aum(lj),       i = l,...,n,

7 = 1

i.e. the vector (m(I¡),... ,m(In)) is a positive right eigenvector for A with eigenvalue

ß. Now if A is irreducible there is a unique eigenvalue ß with nonnegative

eigenvector. The corresponding eigenspace is one dimensional (see proof to Theorem

9.2.1 in [20]) and therefore the numbers (m(Ix),... ,m(In)) are uniquely determined

and are in fact the lengths of the intervals Iv... ,I„. Since the lengths also satisfy the

equation length(T(/f,)) = /31ength(/f,), where ß is the (constant) slope, it then follows

that m(-) is in fact Lebesgue measure for all sets of the form Ia  n r~1(Ia) n • • « H

Remarks. 1. Since A is irreducible, MT is also irreducible. Hence, in view of

Lemma 1, each t consistent with A admits a unique absolutely continuous measure

t). Thus, the measure ¡x of Theorem 2 is equal to tj, and the density of ¡x is the

solution of uM2 = u2.

2. Although Theorem 2 appears to be a known result, we were unable to find this

formulation in the literature.

3. Two examples.

Example 1. Consider the n X n matrix A defined by axl = 1, aii+x = 1, i =

1,2,...,« — 1, anX = 1 and a¡j = 0 elsewhere. Let 0 < ax < ■ ■ ■ < an_x = 1 be a

partition of / and let r: I -> / be the piecewise linear Markov map consistent with A.

The matrix M = Mr induced by t is given by:

ax/a2 (I

\

(°2  -  «l)/("3  -  "2)

0

(«,,-

0

0

an-l)/(l   -  a„-l)

0

\' «l/a2

0 0

0 0

(1 -«,_!>/«, 0

The unique normalized left eigenvector t; associated with the eigenvalue 1 and M can

easily be found and from it the probabilities of the n intervals, given by

a-,
V- Pi> Pi> ,Pi

n(a2 - ax) + ax '

where p2 = (a2 - ax)/(n(a2 - ax) + ax). With the aid of the transition matrix for t

it is easy to show that

H(r,ix)
n(a2 - ax) + ax\a2

aMog^ + ^ -1 log = H(ai^i)-

H(ax, a2) is a homogeneous function. Let z = ax/a2. Then define

1
H(z)

n(l - z) +
(zlogz +(1 -z)log(l -z))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSOLUTELY CONTINUOUS INVARIANT MEASURES 309

Setting (d/dz)H(z) = 0, we derive the equation

(1) z" + z-1=0,

which has a unique positive root a between 0 and 1 for all values of n. It follows that

ß = 1/a > 1 is a root of

(2) A"-A""1 - 1 =0

which is the characteristic equation of A. Now it is well known [19] that the

topological entropy of t (consistent with A) is given by log p, where p is the spectral

radius of A. Thus p is the positive real eigenvalue of A, i.e., p = 1/a. Since we know

by Theorem 2 that the entropy of the absolutely continuous invariant measure for t

(with constant slope) is the topological entropy, we obtain: given any partition

0 < ax < a2 < ■ ■ ■ < an_x < 1 such that a2/ax = a, then the (unique) absolutely

continuous measure invariant under t is maximal.

Thus we have shown that for this (n — 1) parameter family of maps there exists

an (n — 2) dimensional subfamily such that for each of its members the (unique)

absolutely continuous invariant measure is maximal. For all other transformations in

the original family the absolute continuous invariant measure and the maximal

measure are different.

Example 2. Let 0 = a0 < ax < ■ ■ ■ < a„ = 1 be any partition of /. Define the

piecewise linear, continuous Markov map t: / -> / by

(3) t(/,) = /, + 1,        l«i>«>,

(4) r(J„) = /.

Straightforward computations show that the (unique) absolutely continuous measure

invariant under t has (normalized) density given by it = (ttx, tt2,... ,trn), where

Thus, the measure of the ith subinterval, /,, is given by u¡ = a,/E,"_ia,. To compute

the measure-theoretic entropy for t, we need to know only the last row in the

transition matrix, since each of the other rows will have only a single entry equal to

1. Clearly

A[r-'(/,)n/„]
'"•'" A(/J a'     a,-v

Hence the measure-theoretic entropy of t for the given partition, denoted by

H(t, a), is given by

"1

#(t, a) = - E "cr(a. - ai-x)ln(ai - at_x)

= inn{(«,-«,-i)'a'"a'-i,/s").
Í-1
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310 W. BYERS AND A. BOYARSKY

where S„ = £"_iö,. On differentiating H(r, a) with respect to ax, a2,...,an and

setting each term equal to 0, we derive the unique solution

/5x a\ =  a3 - a2  = =  a„-l - a„-2  =  an- a„-l

a2-ax      a2-ax an_2 - an_x an

i.e., T has constant slope. Clearly t is unique.

In the above two examples, we have displayed two extremely different results. In

the first example, we showed that for certain irreducible 0-1 matrices A, the space of

piecewise linear Markov maps t consistent with A contains an (n — 2) dimensional

subspace of maps whose absolutely continuous invariant measures are maximal.

In the second example, we showed that for certain A the subspace of maps whose

absolutely continuous invariant measures are maximal is zero dimensional, that is, it

consists of one map only, the map with constant slope.

These opposite types of behavior are unified in the following section.

4. The main theorem. Define the class of matricess/0 c s/as follows: A = (au) e

s/0 if (i) A is irreducible and (ii) there are integers p and q, 1 < p < q < n, such that

every row of A either consists of a block of l's, a{j = 1 if and only if/ = p,...,q, or

else the row contains a unique nonzero element; atj = 1. Let this if/ = o(i). [We

assume that there is at least one row of each type.]

Given such a matrix A, let 0 = a0 < ax < ■ ■ • < an_x < an = 1 be a partition of

[0,1] and t a piecewise linear Markov map on [0,1] consistent with this matrix. Let

1i = [«/-i» <*/]»' = 1,■-.,«, and/= [ap_x,aq].

Theorem 3. The (unique) absolutely continuous invariant measure for t is maximal

if and only if r has (constant) slope X on all the intervals I¡ c J, where X is the spectral

radius of A.

Proof. Let S = (1,2,...,«} and let S¡ = {/' g S: j is the smallest integer for

which rJ(I¡) = J), j= l,...,k. The sets {£■} are pairwise disjoint. Moreover, if

some interval Ia never mapped onto J we could find in its orbit under t a cycle with

t' mapping Ih homeomorphically onto itself for some b g 5 and /' G Z+. Since A is

irreducible this cycle would have to include every interval L,j = 1,...,«. Therefore

every subinterval eventually maps onto all of J and U*.!^ = 5.

Let a, = a¡ — a¡_x so that E"=1a, = 1. The absolutely continuous invariant den-

sity for t is given by the left eigenvector (of the eigenvalue 1) of the matrix MT which

is given by

letiajj/a forp^i^q,

m'J     \ «,«,/«o(o    for i < p or i > q,

where a = a   — a    , = X(J). The left eigenvector is the solution of the equations:

n

¿y, TT¡mia = TTa,        a = l,...,n.

( = 1
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Set d = £{ ir¡a¡/a: i g Sx }. Then the above equations become

(E{aiTT¡/aa: o(i) = a) for a < p or a > q,

[a + £{a,7r,/aa: a(/') = a}     forp ^ a ^ q,

where the summation is taken to be zero if there is no value of i for which o(i) = a.

Setting i/=lwe obtain the associated probability vector with components

I £{ a¡ir¡: a(i) = a} for a < p or a > q,

Pa = «A = I aa + E{ a¡v¡: „(i) = a}     forp < a < ?.

Suppose a(/) = a. Then

Í E{ a,-*): a(/) = ; } for i < p or i > q,
ai'ïïi =   \

( a, + E{ a,^: a(/) = i}     forp < i < q.

Thus if p < a < ^

/>« = «a + E{«,:.P < ' < ? and a(i) = a) + £ [a^y. o2(j) = a).

Continuing this process for (at most) /c-steps, we derive the formula

Pa = aa + E {«t'P « »< 4>CT(0 = a} + ••• + E {«,:/' < /< ?,o*(0 = a}

which we write as

k

Pa= E L {«/=/> </<9,a>(i) = a}.
y-0  i

The same formula holds for a < p or a > q (of course here the term aa correspond-

ing to/ = 0 is missing).

Using this formula we can compute

n n       k

(6) c = £ pa = E   E E {«,: /> < i < 1, aJ(i) = a}
a = l a=l 7 = 0    i

« A

= 11 [Jaa-P < a < ?,a g S,-}
a=l7=1

since if a e S., /) < a < g, then 7a maps homeomorphically onto exactly/ intervals

under powers of t before it maps onto J. Then the (normalized) invariant density of

the absolutely continuous invariant measure for t is given by (l/c)(px,... ,pn) and

the entropy of this measure is [19]:

P
H(r) = H(ax,...,an) = -£y/>l7 log/>,.,.,

i-J

where pjJ is the probability of going from the z'th to the /th interval. Thus

Pjjlog p,j = 0 for / <£ Si (sinceptj either equals 0 or 1). For i e Sx we have

a/a forp </ < q,

0        for/ < p or/ > ?.
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Thus,

v 1 G 5j        '  \l=p

Now

E Pt■ = E {aj: P < / < ? and ^/ eventually maps onto/}    (using (l))

Therefore

(7) F(a1,...,aJ = -^E-log^ = --(la/log-)-
v/ vi ■' c a a c \ a I

i=p \i=p I

Now,

Í0    for a < p or a > q,
a -, I g       \

r2 .—    '    ~ a      c \ " a       —   ac     ¡=p \ i=p        I

forp < a < q, a g S,.

Thus using Lagrange multipliers on H(r) - A(Ea, - 1) yields the equations:

I.      .      a„       ^  £
(8) /E«/log-f = c 1 + log-f- E -7      for/><*<?,a eS,.

a a       .      a
i=p \ i=p

Thus if a, b S 5>y-, p ^ a, b ^ q, and we can conclude that log(aa/a) = log(afc/a)

and so

(9) «„ = «„•

If a G Sj, b g Sy+1,y = l,...,k - 1, and againp ^ a, b ^ q, then subtracting the

equations of form (8) for these two cases gives us

q

(10) £ a,log(a,/a) = clog(a0/aa).
•=p

Thus the quotients ajah are constant for a g Sj, b g Sj+X,j = l,...,k — 1. These

quotients are, of course, the slopes of t over the intervals / for i g Sj,j — l,...,k - 1,

p <j ^ q. Thus the maps corresponding to the critical points have constant slope

over these intervals. It remains to show that this constant is equal to a/aa, the slope

of t over intervals Ia with a g S,.

Let /3, equal the common value of aa for a G S„ p < a < q. We must show that

a/ß, = ßx/ß2. Now we have shown that ß2/ßx = ß/ß2 = ■■■ = ßk/ßk_x and

therefore /?, = ßl~l/ß['2, i = l,...,k. From (10) we have

(11) E«,log(a,/«) = c(log(;82/JS1))
i-p
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which can be rewritten as

k k

E n,ßllog(ß,/a) = E inßMißi/ßi),
i=l ;=1

where n- equals the number of intervals Ia with p < a < q, a g S¡. Thus £/i,-/?,- = «,

and

£.*^£).-£***(£)

or

A- A: k

£ (»»,&-(/ - 2)niß,)logßx = E (Mi-0 - lR/?,)log/32 + £ «,-A-loga.
/=i i=i í=i

This yields

2   £ n,ß\ log^ =     £ «,/?,   logft +    £ «'&   loga.

Thus

2a log ßx = a log ß2 + a log a

otßl = ß2a,*/ßi = ßi/ß2.
We have shown that at the critical points the map t must have constant slope over

the intervals Ia, where p < a < q. On the other intervals the slope is arbitrary. Select

these intervals so that the entire map has slope which is constant in absolute value,

equal to A, say. Since A is irreducible we have shown in Corollary 1 that this is

always possible and that A is the spectral radius of A. Thus the entropy of the

absolutely continuous invariant measure for t is maximal precisely when t has slope

± X over the intervals Ia with p < a < q.

Remarks. 1. If p = 1 and q = n, then the absolutely continuous invariant measure

is maximal if and only if t has constant slope A, that is, for maps of nonconstant

slope the absolutely continuous invariant measure does not have maximal entropy.

2. If p > 1 or q < n, there is a (p — 1) + (n — q) parameter family of maps

(almost all of which have nonconstant slope), for which the absolutely continuous

invariant measure has maximal entropy.

3. If k « q — (p — 1) is the number of entries in the block of l's in A, then n — k

is the dimension of the space of piecewise linear Markov maps whose absolutely

continuous invariant measure is maximal.

4. The examples of §3 are special cases of Theorem 3.
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