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Introduction

Let A2 be the automorphism of the 2-torus, T2 = R2/Z2, given by

(
2 1
1 1

)
.

Let A3 be the automorphism of the 3-torus T3 = R3/Z3 given by

(
A2 0
0 1

)
.

Let Diff2
µ(T3) be the set of C2 diffeomorphisms of T3 that preserve Lebesgue-

Haar measure µ.
In [SW1], M. Shub and A. Wilkinson prove the following theorem.

Theorem: Arbitrarily close to A3 there is a C1-open set U ⊂ Diff2
µ(T3) such

that for each g ∈ U ,

1. g is ergodic.

2. There is an equivariant fibration π : T3 → T2 such that πg = A2π
The fibers of π are the leaves of a foliation Wc

g of T3 by C2 circles. In
particular, the set of periodic leaves is dense in T3.

3. There exists λc > 0 such that, for µ-almost every w ∈ T3, if v ∈ TwT3

is tangent to the leaf of Wc
g containing w, then

lim
n→∞

1

n
log ‖Twgnv‖ = λc.

4. Consequently, there exists a set S ⊆ T3 of full µ-measure that meets
every leaf of Wc

g in a set of leaf-measure 0. The foliation Wc
g is not

absolutely continuous.
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Additionally, it is shown that the diffeomorphisms in U are nonuniformly
hyperbolic and Bernoullian. In this note, we prove:

Theorem I: Let g satisfy conclusions 1.–3. of the previous theorem. Then
there exist S ⊆ T3 of full µ-measure and k ∈ N such that S meets every leaf
of Wc

g in exactly k points. The foliation Wc
g is absolutely singular.

Remark: Theorem I was also proved several years ago by Anatole Katok,
as a first step in an attempt to show that examples such as those later
constructed in [SW1] cannot exist (since the full argument turned out not
to be valid, this work remains unpublished). We are indebted to Katok for
useful conversations, and for pointing out the argument that shows that the
number k in Theorem I might necessarily be greater than 1. We also thank
Michael Shub for useful conversations.

In Katok’s example of an absolutely singular foliation in [Mi], the leaves
of the foliation meet the set of full measure in one point. In the [SW1]
examples, the set S may necessarily meet leaves of Wc

g in more than one
point, as the following argument of Katok’s shows.

It follows from Theorem II in [SW2] that for k ∈ Z+ and for small a, b > 0,
the map g = ja,k ◦ hb satisfies the hypotheses of Theorem I, where

hb(x, y, z) = (2x+ y, x+ y, x+ y + z + b sin 2πy), and

ja,k(x, y, z) = (x, y, z) + a cos(2πkz) · (1 +
√

5, 2, 0).

For k ∈ N, let ρk be the vertical translation that sends (x, y, z) to (x, y, z+
1
k
). Note that hb ◦ ρk = ρk ◦ hb and ja,k ◦ ρk = ρk ◦ ja,k. Thus g ◦ ρk = ρk ◦ g.

The fibration π : T3 → T2 was obtained in [SW1] by using the persistence
of normally hyperbolic submanifolds under perturbations. In the present case
the symmetries ρk preserve the fibers of the trivial fibration P : T3 → T2

from which one starts, and also the maps g. Therefore the fibers of π : T3 →
T2 (i.e., the leaves of center foliation Wc

g) are invariant under the action of
the finite group < ρk >.

Let S be the (full measure) set of points in T3 for which the center
direction is a positive Lyapunov direction (i.e. for which conclusion 3 holds).
Since ρk(Wc

g) = Wc
g , it follows that ρkS = S. If p ∈ S ∩ Wc(p), then

ρk(p) ∈ ρk(S)∩ ρk(Wc(p)) = S ∩Wc(p); that is, S ∩Wc(p) contains at least
k points.
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Thus Theorem I is “sharp” in the sense that we cannot say more about
the value of k in general. We see no reason why k = 1 should hold even for
a residual set in U .

Theorem I has an interesting interpretation. Recall that a G-extension
of a dynamical system f : X → X is a map fϕ : X × G → X × G, where
G is a compact group, of the form (x, y) 7→ (g(x), ϕ(x)y). If f preserves
ν, and ϕ : X → G is measurable, then fϕ preserves the product of ν with
Lebesgue-Haar measure on G. A Z/kZ-extension is also called a k-point
extension.

Let λ be an invariant probability measure for a k-point extension of f :
X → X, and {λx} the family of conditional measures associated with the
partition {{x} × G}. We remark that if λ is ergodic, then each atom of λx
must have the same weight 1/k (up to a set of λ-measure 0).

Now take g ∈ U . Choose a coherent orientation on the leaves of {π−1(x)}x∈T 2 .
Take h : T3 → T2×T to be any continuous change of coordinates such that
h restricted to π−1(x) is smooth and orientation preserving to {x} ×T. We
may then write F = h ◦ g ◦ h−1 : T2 ×T→ T2 ×T in the form

F (x, p) = (A2x, ϕx(p))

where ϕx : T → T is smooth and orientation preserving. If P : T2 × T →
T2 is the projection on the first factor of the product, we have P ◦ h =
π. Therefore, writing λ = h∗µ, we have P ∗λ = π∗µ. Let {λx} be the
disintegration of the measure λ along the fibers {x} × T. By a further
measurable change of coordinates, smooth along each {x} × T fiber, we
may assume that λ-almost everywhere, the atoms of λx are at l/k, for l =
0, . . . , k − 1. But then ϕx permutes the atoms cyclically, and we obtain the
following corollary.

Corollary: For every g ∈ U there exists k ∈ N such that (T3, µ, g) is
isomorphic to an (ergodic) k-point extension of (T2, π∗µ,A2).

M. Shub has observed that if g = ja,k ◦ hb, then π∗µ is actually Lebesgue
measure on T2.
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1 Proof of Theorem I

The proof of Theorem I follows from a more general result about fibered
diffeomorphisms. Before stating this result, we describe the underlying setup
and assumptions.

Let (X, ν) be a probability space, and let f : X → X be invertible
and ergodic with respect to ν. Let M be a closed Riemannian manifold
and ϕ : X → Diff1+α(M) a measurable map. Consider the skew-product
transformation F : X ×M → X ×M given by

F (x, p) = (f(x), ϕx(p)).

Assume further that there is an F -invariant ergodic probability measure µ
on X ×M such that π∗µ = ν, where π : X ×M → X is the projection onto
the first factor.

For x ∈ X, let ϕ(0)
x be the identity map on M and for k ∈ Z, define ϕ(k)

x

by
ϕ(k+1)
x = ϕfk(x) ◦ ϕ(k)

x .

Since the tangent bundle to M is measurably trivial, the derivative map of ϕ
along the M direction gives a cocycle Dϕ : X ×M × Z→ GL(n,R), where
n = dim(M):

(x, p, k) 7→ Dpϕ
(k)
x .

Assume that log+ ‖Dϕ‖α ∈ L1(X ×M,µ), where ‖ · ‖α is the α-Hölder
norm. Let λ1 < λ2 · · · < λl be the Lyapunov exponents of this cocycle; they
exist for µ-a.e. (x, p) by Oseledec’s Theorem and are constant by ergodicity.
We call these the fiberwise exponents of F . Under the assumptions just
described, we have the following result.

Theorem II: Suppose that λl < 0. Then there exists a set S ⊆ X ×M and
an integer k ≥ 1 such that

• µ(S) = 1

• For every (x, p) ∈ S, we have #(S ∩ {x} ×M) = k.

This has the immediate corollary:
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Corollary: Let f ∈ Diff1+α(M). If µ is an ergodic measure with all of its
exponents negative, then it is concentrated on the orbit of a periodic sink.

The corollary has a simple proof using regular neighborhoods. Our proof
is a fibered version. Theorem I is also a corollary of Theorem II. For this, the
argument is actually applied to the inverse of g, which has negative fiberwise
exponents, rather than to g itself, whose fiberwise exponents are positive.
As we described in the previous remarks, there is a measurable change of
coordinates, smooth along the leaves of Wc

g in which g−1 is expressed as a
skew product of T2 ×T.

Remark: Without the assumption that f is invertible, Theorem II is false.
An example is described by Y. Kifer [Ki], which we recall here. Let f : T→ T
be a C1+α diffeomorphism with exactly two fixed points, one attracting and
one repelling. Consider the following random diffeomophism of T: with
probability p ∈ (0, 1), apply f , and with probability 1−p, rotate by an angle
chosen randomly from the interval [−ε, ε].

Let X = ({0, 1} × T)N. To generate a sequence of diffeomorphisms
f0, f1, . . . according to the above rule, we first define ϕ : X → Diff1+α(T) by

ϕ(ω) =
{
f if ω(0) = (0, θ),
Rθ if ω(0) = (1, θ),

where Rθ is rotation through angle θ. Next, we let νε be the product of
p, 1−p-measure on {0, 1} with the measure on T that is uniformly distributed
on [−ε, ε]. Then corresponding to νN

ε -almost every element ω ∈ X is the
sequence {fk = ϕ(σk(ω))}∞k=0, where σ : X → X is the one-sided shift
σ(ω)(n) = ω(n+ 1).

Put another way, the random diffeomorphism is generated by the (nonin-
vertible) skew product τ : X×T→ X×T, where τ(ω, x) = (σ(ω), ϕ(ω)(x)).
An ergodic νε-stationary measure for this random diffeomorphism is a mea-
sure µε on T such that µε × νN

ε is τ -invariant and ergodic. Such measures
always exist ([Ki], Lemma I.2.2), but, for this example, there is an ergodic
stationary measure with additional special properties.

Specifically, for every ε > 0, there exists an ergodic νε-stationary measure
µε on T such that, as ε → 0, µε → δx0 , in the weak topology, where δx0 is
Dirac measure concentrated on the sink x0 for f . From this, it follows that,
as ε→ 0, the fiberwise Lyapunov exponent for µε approaches log |f ′(x0)| < 0,
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which is the Lyapunov exponent of δx0 . Thus, for ε sufficiently small, the
fiberwise exponent for τ with respect to µε is negative. Nonetheless, it is
easy to see that µε for ε > 0 cannot be uniformly distributed on k atoms;
if µε were atomic, then τ -invariance of µε × νN

ε would imply that, for every
x ∈ T,

µε({x}) = pµε({f−1(x)}) + (1− p)
∫ ε

−ε
µε({Rθ(x)})dθ

= pµε({f−1(x)}),

which is impossible if µε has finitely many atoms. In fact, µε can be shown
to be absolutely continuous with respect to Lebesgue measure (see [Ki], p.
173ff and the references cited therein). Hence invertibility is essential, and
we indicate in the proof of Theorem II where it is used.

Proof of Theorem II: We first establish the existence of fiberwise “stable
manifolds” for the skew product F . A general theory of stable manifolds for
random dynamical systems is worked out in ([Ki], Theorem V.1.6; see also
[BL]); since we are assuming that all of the fiberwise exponents for F are
negative, we are faced with the simpler task of constructing fiberwise regular
neighborhoods for F (see the Appendix by Katok and Mendoza in [KH]).
We outline a proof, following closely [KH].

Theorem 1.1 (Existence of Regular Neighborhoods) There exists a set Λ0 ⊆
X ×M of full measure such that for ε > 0:

• There exists a measurable function r : Λ0 → (0, 1] and a collection
of embeddings Ψ(x,p) : B(0, q(x, p)) → M such that Ψ(x,p)(0) = p and
exp(−ε) < r(F (x, p))/r(x, p) < exp(ε).

• If ϕ(x,p) = Ψ−1
F (x,p) ◦ ϕx ◦ Ψ(x,p) : B(0, r(x, p)) → Rn, then D0ϕ(x,p)

satisfies

exp(λ1 − ε) ≤ ‖D0ϕ
−1
(x,p)‖

−1, ‖D0ϕ(x,p)‖ ≤ exp(λl + ε).

• The C1 distance dC1(ϕ(x,p), D0ϕ(x,p)) < ε in B(0, r(x, p)).

• There exist a constant K > 0 and a measurable function A : Λ0 → R
such that for y, z ∈ B(0, r(x, p)),

K−1d(Ψ(x,p)(y),Ψ(x,p)(z)) ≤ ‖y − z‖ ≤ A(x)d(Ψ(x,p)(y),Ψ(x,p)(z)),
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with exp(−ε) < A(F (x, p))/A(x, p) < exp(ε).

Proof: See the proof of Theorem S.3.1 in [KH]. 2

Decompose µ into a system of fiberwise measures dµ(x, p) = dµx(p)dν(x).
Invariance of µ with respect to F implies that, for ν-a.e. x ∈ X,

ϕx∗µx = µf(x).

Corollary 1.2 There exists a set Λ ⊆ X ×M , and real numbers R > 0,
C > 0, and c < 1 such that

(1) µ(Λ) > .5, and, if (x, p) ∈ Λ, then µx(Λx) > .5, where Λx = {p ∈
M | (x, p) ∈ Λ},

(2) If (x, p) ∈ Λ and dM(p, q) ≤ R, then

dM(ϕ(m)
x (p), ϕ(m)

x (q)) ≤ CcmdM(p, q),

for all m ≥ 0.

Proof: This follows in a standard way from the Mean Value Theorem and
Lusin’s Theorem.2

To prove Theorem II, it suffices to show that there is a positive ν-measure
set B ⊆ X, such that for x ∈ B, the measure µx has an atom, as the
following argument shows. For x ∈ X, let d(x) = supp∈M µx(p). Clearly
d is measurable, f -invariant, and positive on B. Ergodicity of f implies
that d(x) = d > 0 is positive and constant for almost all x ∈ X. Let
S = {(x, p) ∈ X × M |µx(p) ≥ d}. Observe that S is F -invariant, has
measure at least d, and hence has measure 1. The conclusions of Theorem II
follow immediately.

Let Λ, R > 0, C > 0, and c < 1 be given by Corollary 1.2, and let
B = π(Λ). Let N be the number of R/10-balls needed to cover M . We now
show that for ν-almost every x ∈ B, the measure µx has at least one atom.

For x ∈ X, let
m(x) = inf

∑
diam (Uj),
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where the infimum is taken over all collections of closed balls U1, . . . , Uk in
M such that k ≤ N and µx(

⋃k
j=1 Uj) ≥ .5. Let m = ess sup x∈Bm(x).

We now show that m = 0. If m > 0, then there exists an integer J such
that

C∆cJN < m/2, (1)

where ∆ is the diameter of M . Let U be a cover of M by N closed balls
of radius R/10. For x ∈ B, let U1(x), . . . , Uk(x)(x) be those balls in U
that meet Λx. Since these balls cover Λx, and µx(Λx) > .5, it follows that

µx(
⋃k(x)
j=1 Uj(x)) ≥ .5. But ϕ(i)

x ∗µx = µf i(x), and so it’s also true that

µf i(x)(
k(x)⋃
j=1

ϕ(i)
x (Uj(x))) ≥ .5, (2)

for all i.
We now use the fact that ϕ(i)

x contracts regular neighborhoods to derive
a contradiction. The balls Uj(x) meet Λx and have diameter less than R/10,
and so by Corollary 1.2, (2), we have

diam (ϕ(i)
x (Uj(x))) ≤ C∆ci. (3)

Let τ : B → N be the first-return time of fJ to B, so that fJτ(x)(x) ∈ B,
and fJi(x) /∈ B, for i ∈ {1, . . . , τ(x) − 1}. Decompose the set B according
to these first return times:

B =
∞⋃
i=1

Bi (mod 0),

where Bi = τ−1(i). Because f is invertible and f−1 preserves measure, we
also have the mod 0 equivalence:

B′ :=
∞⋃
i=1

fJi(Bi) = B (mod 0).

Let y ∈ B′. Then y = fJi(x), where x ∈ Bi ⊆ B, for some i ≥ 1. It
follows from the definition of m(y) and inequalities (2), (3) and (1) that

m(y) ≤
k(x)∑
j=1

diam (ϕ(Ji)
x (Uj(x)))
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≤ Ck(x)∆cJi

≤ CN∆cJ

< m/2.

But then

m = ess sup x∈Bm(x)

= ess sup y∈B′m(y)

< m/2,

contradicting the assumption m > 0.
Thus m = 0, and, for ν-almost every x ∈ B, we have m(x) = 0. If

m(x) = 0, then there is a sequence of closed balls U1(x), U2(x), · · · with
limi→∞ diam (U i(x)) = 0 and µx(U

i(x)) ≥ .5/N , for all i. Take pi ∈ U i(x);
any accumulation point of {pi} is an atom for µx. Since we have shown that
µx has an atom, for ν-a.e. x ∈ B, the proof of Theorem II is complete.2
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