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1. Introduction 

In  his remarkable paper [8] Grothendieek defined a one absolutely summing operator 

between two Banach spaces, to be an operator which maps every unconditionally con- 

vergent series to an absolutely convergent series (see definition below). I t  is well known 

tha t  a one absolutely summing operator factors through an L~(/~)-spaee and for every 

p (1 ~<p < ~ )  also through a certain subspace of L~(ju). I t  was asked in [8] problem 2, p. 72 

whether every one absolutely summing operator can be factored through an Ll(/~)-space, 

and other equivalent formulations of the problem were presented. We establish here the 

negative answer to this question and related results as well. 

The literature on one absolutely summing maps, and more generally p-absolutely 

summing maps introduced by  Pietsch [22], is very extensive and varied. Some results of 

Grothendieck are by  now classical, such as the facts tha t  every operator from an 

Ll(/~)-space to a Hilbert  space is one absolutely summing, and every operator from 

Loo(#) to LI(#) is 2-absolutely summing [8], [18]. However, we shall generally make use 

here only of the definitions and basic results on these spaces. The class of p-absolutely 

summing operators forms only a single example in the classes of Banach ideals of 

operators. Equally important ,  and related by  duality, are the Banach ideals of p-integral 

operators, and Lp-faetorizable operators which we mention later in this section. 

Our approach to the problem mentioned is to consider various inclusion maps 

In: En-~F n ( n = l ,  2 . . . .  ) between certain sequences of finite-dimensional Banach spaces 

and carefully evaluate the ratios 71(In)/gl(In) between their Ll-faetorizable norms and 
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one absolutely summing norms, and to show that for the suitable examples chosen in 

section 2, the ratios increase to infinity with the dimensions of the spaces involved. 

This, among other things, provides the counter example in section 4 which states that  

the inclusion map, whose domain is the Banach space of operators from l~ to 11, and 

whose range is the space of Hilbert-Schmidt operators on 12, is one absolutely summing 

and cannot be factored through any Ll-Space. 

The unbounded sequence of norm ratios has bearing on another problem considered 

in section 3. I t  is shown that  71(In)/,~l(In) is less than or equal to the unconditional basis 

constant ~(En) of the domain space En, and thus we obtain the first example of a 

sequence En (n = 1, 2 .... ) of finite-dimensional Banach spaces whose unconditional basis 

constants tend to infinity. This answers the well known question which may be found in 

[6], [19], [11] or [12], and provides a method for computing the unconditional basis 

constant of a given finite-dimensional space. In fact a stronger implication is that  the 

local unconditional constants introduced in section 3, :~(E~), tend to infinity. The local 

unconditional constant of a given Banach space E, in one formulation, measures how 

well the identity operator of every finite-dimensional subspace of E may be represented 

as some unconditionally convergent sum (in the norm of operators) of rank one 

operators whose ranges lie in the entire space E. 

The infinite-dimensional version of these results says that many of the common 

spaces of linear operators considered in section 3, do not have local unconditional 

structure and are therefore not isomorphic to complemented subspaces of spaces with 

unconditional bases; moreover it implies also that  these spaces cannot have sufficiently 

many Boolean algebras of projections, in the terminology of Lindenstrauss and Zippin [19], 

thus answering the question raised in their paper as to whether there exist such spaces. 

We pass to some specific examples. The space %(H) (1 ~ p  ~ ~ )  is the Banach space 

of compact operators T defined on a Hilbert space H and equipped with the norm 

%(T)=[trace(T*TF/2] ~/p for p < ~ ,  and c~(T)=HTII. A systematic study of the % 

spaces may be found in McCarthy [20] where, among other things, it is shown that  for 

1 <p<c~% is uniformly convex, and the classical result %(H)'=cq(H), 1/p+1/q=1. 

Additional recent results on  %-spaces are included in [15] and [25]. We prove in section 

5 that for p 4 2  and infinite-dimensional H, %(H) does not have local unconditional struc- 

ture, and therefore does not have an unconditional basis. This result answers Problem 

2 [15] of Kwapien and Pelczynski, who have shown that  c~(H), Cl(H ) and in general 

the spaces of all compact operators from lp to lq (for p >~q) are not isomorphic to sub- 

spaces of spaces with unconditional bases. We do not know whether for 1 < p  < ~ , p  ~=2, %(H) 

is isomorphic to a subspace of a space with an unconditional basis. We show that  for 
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finite-dimensional spaces H and any fixed value p(1 ~<p ~ oo), both ~u(c~(H)) and ~(%(H)) 

are asymptotically equivalent to (dim H) I1/p-1/~1, and complement the above mentioned 

results of [15] by proving that if p > 1 and q < o% the space of compact operators from 

l~ to lq does not have local unconditional structure, hence is not isomorphic to a com- 

plemented subspace of a space with an unconditional basis, but for 1 < p  <q < oo it is still 

unknown whether these spaces embed isomorphically in spaces with unconditional bases. 

The results on % are closely related to a general result proved in section 5 which 

essentially says that  the Banaeh ideals of operators on 12, except those ideals which are 

"close" to being Hilbert spaces themselves, lack local unconditional structures. We 

conjecture this to be true for all Banach ideals of operators on 12, which are not isomorphic to 

Hilbert spaces. The rest of the section is concerned with obtaining estimates on the 

projection constants of c~(H), for finite-dimensional H, and their distances from the 

subspaee of L r The results confirm a conjecture of [20]. 

Let us now introduce some definitions. All Banaeh spaces E are over the same 

scalar field, either real or complex, with E '  the dual space of E. In  the proofs only real 

spaces are considered, as similar arguments are possible in the complex case. The space of 

all continuous linear operators from E into F is written L(E, F). 

By a Banach ideal o/operators [A, a], [23], we mean a method which associates with 

each pair (E, F) of Banach spaces an algebraic subspace A(E, F) of L(E, F) together with 

a norm ~ on A(E, F) in such a way that the following requirements are fulfilled: 

(a) A(E, F) contains all the finite rank operators from E into F, and a(x'| 

]lx'[] IlY[] (here x'| is the rank-one operator defined by x'| x'>y; 

(b) if u6L(X, E), v6A(E, F) and wilL(F, Y), then wvu6A(X, Y) and c~(wvu)<~ 

[]w]lo~(v)]]uH; and lastly 

(c) A(E, F) is complete under ~. 

Given a Banach ideal of operators [A, ~] ~ is referred to as a Banach ideal norm, 

and ~(u) is the a-norm of u. I t  is convenient to consider a as defined for all elements of 

L(E, F) and we write ~(u)<ooiffu6A(E, F). The a-norm of the identity operator on 

E is written a(E). For u a finite rank operator on E with representation u=Z~<nx~| 
t 

the trace of u is tr  (u)=~<n(x~, xt>. 

The following ideals are used throughout this paper. 

For 1 ~<p~< oo the ideal [Ip, ip] of p-integral operators [21] is defined as follows: 

u 6 Ir(E, F) iff there is a probability measure ~u and operators v eL(E, Loo(/~)), w 6L(Lv(#), F") 

such that  iu = wq~v where i is the natural embedding of F into F" and ~ is the inclusion 



30 Y. GORDON AND D. R. L E W I S  

of Leo(#) into LT(#). The p-integral norm of u is /p(u)--inf ][v]] ]]w]], where the infimum 

is taken over all possible factorizations. 

For 1 < p  < ~ the ideal [II T, ~T] of p-absolutely summing operators [22] is defined as 

follows: uEIIT(E , F) iff there is a constant ~ > 0  with 

for all finite sets (x~)~_<nc E. The p-absolutely summing norm ztT(u ) is the smallest such 

constant 4. 

The ideal [PT, 7T] of Lv-/actorizable operators [7], [16]: uEFT(E, F) iff there is a meas. 

ure # and operators v EL(E, LT(p)), w EL(LT(p), F") such tha t  iu =w v, where i is again the 

canonical embedding of F into F". The 7T.norm of u is • (u )=  inf ][vii [[w[[, with the in- 

f imum taken over all possible factorizations. 

The adjoint ideal, [A*, r162 of [A, ~] is defined in the following manner  [7], [23]: 

u E A*(E, F) if and only if there is a constant 2 >0  such that  for any finite-dimensional 

spaces X and Y, and any veL(X, E), wEL(F, Y)andrEA(Y,  X), [tr (twuv) I <2]]v[[ [[w H ~(t). 

The ~*-norm of u is the smallest such constant 2. We shall frequently use the elementary 

fact tha t  if E or F has the metric approximation property and uEA*(E, F), then ct*(u)is 

equal to the smallest constant C for which Itrace (Lu)[ <~C~(L) whenever LEL(F, E) 

has finite rank [7], [23]. 

I t  is immediate tha t  [A*, ~*] is also a Banach ideal of operators and it is known 

that  iF=ll [] and * - "  ~T--~T', where 1/p+l/p '=l  with the usual convention about p = l  and 

p = ~ ([23]). The ideal [A, ~] is called per/ect if ~r = ~. The ideals nT, iT and 7T(1 ~ p  < co) 

are all perfect (cf. [7]). In  addition to these general ideals of operators we consider the 

classes %(H1, H~) of operators between Hilbert  spaces H 1 and H~ (cf. [15], [20]). Given 

1 ~<p < oo u E%(H1, H~) if and only if u is compact and (u'u) T/~ e I~(H1, H~) in which case 

cv(u ) = [ t r  (u*u)P/a] 1/T. coo(H1, H~) will denote the space of all compact operators with 

the usual operator norm. Use will be made of the well known fact tha t  c2(H 1, H~)-- 

1]~.(H 1, H2) with equality of norms. 

I t  will be convenient to adopt  the notation of tensor products. An elementary tensor 

u EE | F will be regarded, when convenient, as an operator from E '  to F. The /east 

| of u is defined by  

luIv=sup (l<u, z' |  y'eF', H 'll = Hy'LI =1} 

and is eqnal to HuH where u is regarded as an element of L(E', F). 

The greatest | of u is defined by 
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lul^=inf Ile, l lEll;u= ,,| 

and is equal to sup {(u, v>; veL(F,  E'), Ilvll <1} where the action marks (., .> represent 

the trace of the composition. The completion of E |  under ~ = A or V is written 
A 

v ~ - ~| :For uEL(E,  G), vEL(F, H) and E ~ F.  In particular, L(l~., l~) = Ip | lq, I~(t~., l~) - lv 

~=  V or A, there is always the operator of norm ~< [[u[[ [Iv]] from E Q F into G |  

denoted by u| which maps x |  to u(x)| 

2. The basic inequalities 

The first lemma is an immediate consequence of the definition of the adjoint ideal, 

and was used in [6], [7]. 

LEMMA 2.1. For E and F /inite-dimensional spaces and ~ a Banach ideal norm, 

A (E  , F) '=A*(F ,E)  naturally and isometrically, where <u, v>=trace (uv), uEA(E,  F), 

vEA*(F, E). 

Given a locally compact space M and a positive measure #, it was shown in [8] 

Thdor~me 3, p. 21, and [10] Thdor~me 2, p. 59 that  the natural map of E| to LI(/~, E) 

( = t h e  space of #-integrable vector valued functions) given by e |  )e extends to an 
A 

isometry of E QLI(/~ ) onto Ll(jU , E). I t  follows ([8] Corollaire 2 p. 20, or [10] Proposition 

9 p. 64) that  uEL(E, LI(/~)) is 1-integral if and only if the image of the unit sphere of E by 

u is lattice bounded, and that  ix(u ) = ~ supilxll ,<x ]u(x)(t)l~(dt ). This fact will be used in the 

following theorem. 

11 |  1 into c 2(1~, l~) has ~tl-norm at most 3. THEOREM 2.2. (a) The inclusion map o/ ~ v 

(b) The inclusion map o / 1 ~ l ~  into c2(l~, l ~ ~2 ~ 2 .2) has 7~l-norm at most 3Wn. 

n V - -  n A 

Proo/. (a) Let M be the subset of (11 | l~)' - 1:0 | l~ defined by 

M = { e |  6 = ( •  +1  . . . . .  1 ) } ,  

and let /z  be the probability measure in C(M)' given by 

/~(1) = 2 - 2 ~  1(~ | ~) , /eC(M).  

v 

:For uE l~ | l~ we have by the well known Khinchin's inequality that  

~(I ( u , . ) I ) =  2 - ~  2- ~ ~l  (u(e), 6) l ~> 3 - ~ 2 - ~ 5  Hu(e)H2 �9 
8 e 

Now let K={e;r  +1,  ..., _1)}, and consider the probability measure v on 
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C(K) given by  ~( / )=2-"  Z~/(e), /EC(K), and the operator w from l~ to Ll(v ) given by  

w(x)(e) =(x ,  e). I t  again follows from Khinchin's  inequality that  w is an isomorphic 

embedding with [Iw-Xll <3t,  Now regard u as an operator on 1.~, then by the remark above 

2- -n  ~ HU(~) ll2 = i l ( W U * )  ~ : T ~ I  ( W U * )  ~ 3-~zl(u*) >~ 3-�89 = 3-�89 

so tha t  c2(u) <~3/~(](u , " )l)" 
k 

[i n f~  lrt\r We note again that  M i s a  subset of the unit sphere of ~ x ~v ~lJ, it then follows that  
v 

for any finite subset (u~}j~lcl~ | 

1-1  j --1 ~,(~ j - 1  

= 3 m a x ( ~ + u j ,  e |  + u j  
e , ~ . •  j = l  - -  ~ - -  v ~ 

hence the inclusion map considered in (a) has ,~l-norm ~< 3. 

Proo/o/ (b): Let  G be the compact group of orthogonal transformations on l~, and dg 

the unique normalized Haar  measure on G. Consider G as a subset of the unit  sphere of 
A n n , _ _ n  (12 | le) - l e  ~ l~, then concluding as in part  (a) it will suffice to prove the inequality 

c2(u)<~an�89 I(u,g)[dg, fo ra l l  uel~| (1) 

Any given u can be ~witten as u= Z~lAie, | where (e~) and (bi) are orthonormal 

bases and (2t) is some sequence of non-negative reals. Choose beg  so tha t  h(bi)= ei. Then 

c2(hu ) =c2(u), so by  the invarianee of dg it will suffice to prove (1) for a diagonal multi- 

plication operator u(e~)=,~e~ with respect to some fixed orthonormal basis (e~). 

For geG set g~k=(g(e~), ek), let S={xel~; IIzl]~=l) be the unit sphere and dm be the 

(n-1)-dimensional ,  normalized, rotational-invariant measure on S. From [5] we have 

3 
fcg~dg = fs(X, e~ddm{x)-n(n § 2), 

and from the orthogonality of the function g~, also 

f a(u, g} 2 dg = n-~ c~ (u) 2. (2) 

In  addition we need the following inequalities for 1 ~ i, It, s, t ~ n, 

3 
- n ( n + 2 ) ;  if i = k = s = t  

fa if i = k d s = t  g"g~ff~qt~dg ~< n~3+ 2)' 
(3) 

= 0 ; otherwise. 
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The first equality is given above, and the second inequality follows from the first by 

the Cauehy-Sehwarz inequality. The last equality follows by considering the various cases, 

for example, if hEG is such that  h%=e 2 and he1=-e l ,  then by the multiplication in- 

variance of dq 

f g~1922dg=f(ge~,e~S(ge2, e~dg 

=-~a(qe1, he1)8(ge2, he2)dg=-fag~lq22dg 

3 so ,~agng$2dg=O. Now by (3) 

( 
i~n  JG l ~ i < k ~ n  ~ kJG 

3 
< (3 I1~11~ - 2 I1~11~) < 9 n ' ~  (u) ~, (n n § 2) 

and from (2) and Hhlder's inequality 

n-lc~(u)~= fo](u,g)l~](u,g)i'da< (fo(U,q)'dg) ' ( fJ(u,g)ldg ) ' 

so the desired inequality follows, 

Remark. Professor H. P. Rosenthal drew our attention to the fact that  another form 

of inequality (1) appears in [2] Lemma !, and indeed seems to originate even farther 

back. We included its proof for the sake of completeness. 

A 
THEOREM 2.3. (a)The inclusion J~ o/l~ | l~ into c~(l~, I~) satis/ies the inequalities: 

n�89 ~< ~i (Jn) ~< 3n�89 and n/3 <~ ~1 (J~) <~ n. 

(b) The inclution Is o/l~ | l~ into c2 (/~, l~) satis/ies the inequalities: n <~ z~ 1 (Is)<~ 3 n, 
and n~/3 <~ ~1 ( In )  ~'~ nt. 

Proo/. The estimate ~l(Jn)~<3nt is given in Theorem 2.2 (b). Fix eel~, ][e][~=l, and 

set Q(x)=e| Clearly 

n�89 < :7/:1 (12n) = ~'l:l (Q)  < 17~1 (Jn), 

the first inequality is by [4]. 

To estimate 7~l(In) from above consider the factorization of Is given by 

! ~ l ;  ~ - L l ~ l n  "-Lc ,l ~ 1 ~, 1 2~ 2, 2]  

3 -  742901 Acta mathematica 133. Imprim~ le 2 0 c t o b r e  1974 
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where A and B are the formal identities. Then by Theorem 2.2 (a) nx(I,)<31lAll ~<3n. For 

the lower estimate observe tha t  since ~z~ ~<~1, and :z2(E) = V ~  for any  space E [4], we 

h a v e  
n~ n = ~2 (12) < z l  (l~') = :h (In1; 1) <- ~1 (In). 

From [4], or [14], it is known tha t  the projection constant of a space i s a t  most the 

square root of its dimension, so 

"l~'" ~l(C~(l~,l~))=~ ( )<~n 

and thus ~1 ( gn) ~ [[gnll ~l (c2 (12, l~ ) ) <<. n. 

For the lower bound on ~1 (Jn) observe tha t  J~ = IZ 1. 

Since ~,~ = g*, Lemma 2.1 gives tha t  

n ~ = trace (I  n I~ 1) ~< ~r (J~) gl  (la) ~ 3 n~i (Jn)" 

Finally, ~ (In)~< ]]Inl] ~1 (c2 (/~,/~)) ~< n t, 

last inequality as above. For the lower estimate, 

~ l ( I n )  ~ nz~l(Jn) -1 ~ ha/2/3. 

Remarks. We do not know the exact values of the norms estimated in Theorem 2.3, 

although the given values may  be slightly improved. The somewhat better estimate 

~l(Jn) ~<(3n)t may  be obtained from the proof of Theorem 2.2 by using the equality 

f c 2  2 n + l  
g.  = (u - f)  nCn + 2 ) '  i k, 

in equation (3). Similarly the proof of Theorem 4.2 will show 7el(In)<.(g/2)n: In  addi- 

tion, the constant ~/3 appearing in Khinchin's  inequality can be replaced by  V~ [25], 

though the exact value is unknown yet. 

Given a finite-dimensional Banach space E and a compact topological group 

G, a (G, E)-representation is a continuous homomorphism g-~a E of G into the group of 

isometrics of E. Say tha t  TEL(E,  F) is invariant  under the (G, E) and (G, F)-representa- 

tions if E F Tag =ag T for every gEG. The following result was proved in [7]: 

LEMMA 2.4. Let E, F be n-dimensional and TEL(E,  F) be invertible. Suppose that the 

only operators in L(E, F) which are invariant under the (G, E) and (G, F)-representations 

are the scalar multiples o/ T. Then /or every ideal norm o~, a(T)cc*(T -1) =n. 

We then obtain, 
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THEOREM 2.5. Let l <~p,q,r,s<~oo and :r be any ideal norms. Let Jn be the 

natural inclusion o/L((/~, l~), ~) into (L(/~,/n), fl). Then 7(Jn)~*(J; 1) = n 2. 

Proo/. Let  % 1 ~< i ~< n, denote the usual i th uni t  vector  of the n-dimensional vector  

space R n. For  each vector  e=(e l ,  e2, .... e~) e l=+_ l ,  define the linear operator  

g~: Rn-+R n by: g~(e~)=eie~, 1 <.i<~n. For  each permuta t ion  a of {1, 2 .. . . .  n)  define the 

operator  ha: R ~ R  n by: h~(e~)=%(~), 1 <-i <~n. Let  G be the group of operators on R ~ gen- 

erated by  all products  of g~ and h~, W e  claim tha t  the only operators T: R n | 1 7 4  n 

which commute  with all operators of the set {a| a, b E G} are the scalar multiples of the 

ident i ty  I on R~|  R ~. Indeed  if T is a commut ing  operator,  and has the representat ion 

T(elQej) = F~r.s<~nt~se~| then 

T(g~Qgo)(ei| ~ t~zeiOjek| 
k, l<~n 

and (g~| T(e~Qej) = ~ t~l~kOzek| 
k,l<~n 

" t ~i t ~J" f o r  Therefore, e~j  kz = ~k0l kz all choices of vectors e, 0 and indices k, l, i, ?'. This implies 

tha t  t~l = tij(~ik(~jz (where 6ik= 1 if i =k, 0 otherwise). Similarly 

T(h~ | ha) (el | ej) = t~(i)~(j)e~(i) | ca(j) 

and (h~ | ha) T(e~ | ej) = t~je~(~) | e~(~). 

Consequently, tij= t~(~)~(ji for all permutat ions  ~, a and indices i, ?', hence t~= t, where t is 

a constant ,  so T = t I .  The set {a| forms in a n a t u r a l  way  a group of 

isometries for (L(l~, l~), ~) and also for (L(lT, l~), fl), and by  Lemma 2.4 this implies t ha t  

y(J~) y* (J;~) = n 2. 

COROLLARY 2.6. Let In and Jn be as in Theorem 2.3. Then ~ ( J ~ ) ~ ( I n ) = n  2 and 

7 ~ l ( I n ) ~ l ( J n )  = n  2. 

3. Uncondi t iona l  s tructures  

The unconditional basis constant ~(E) of a given Banach space E is the least constant  

having the following property:  There exists a basis {e~)~z for E which I[Z~ze~x~e~[[ <~ 

whenever Y,~x~e~ ~ E has norm one and ~ = -4-_ 1 (i ~ I) ,  with 8~ = 1 for all bu t  finitely m a n y  i. 

I f  no such ~ exist, set ~ (E)  = ~ .  We do no t  exclude the case where the index set I is 

uncountable,  in which case  all vectors Z~x~e~ have x t =  0 for all bu t  countably  m a n y  

indices i. 

More generally define the local unconditional constant of E, ~=(E), to  be the inf imum 

of all scalars ~ having the following property:  Given any  finite-dimensional subspace 

F~_E, there exists a space U and operators a~L(F, U)fl~L(U, E), such t h a t / ~  is the 
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identi ty on F and M IIfll :~(u)<2 .  If no such 2 exist, set x~(E)= ~ .  In  case ~ ( E ) <  cr 

we say that  E has local unconditional structure. Of course, if E is finite-dimensional 

~ ( E )  = ~ ( g ' ) .  

We introduce the following definition of [19]: A set B of commuting projections, that  

is idempotent  bounded linear operators, on a Banach space E is cMled a Boolean algebra of 

projections on E if whenever P, QEB also PQ(=QP), P+Q and I - P  are in B, and 

HBII=sup{IIPI{;PEB}<~. E is said to have su//iciently many Boolean algebras of 

projections if there is a constant ~ with the following property: For every finite-dimensional 

subspace F of E there is a Boolean algebra of projections B on E with IIBII ~<2 and an 

e E E such tha t  F is contained in the closed linear space of {Pe; P E B}. The least such 2 

will be denoted by b(E). When no such 2 exists set b(E)= oo. The relations between the 

three constants introduced are as follows. 

LE~MA 3.1. For any Banaeh space E, ~u(E)<~2b(E)<<.23~(E). 

Proo/. The inequality b(E)<~ ~(E) is obvious. I t  follows from [19] Proposition 1 that  

for any 2 >b(E) and finite-dimensional subspace Fc_E there is a Boolean algebra of 

projections B on E with H B[I ~<2, disjoint (P~}~I in B and e, EP~ E such that  Fc_ span (e,}~. 

Define a new norm ]H" ][[ on span {e,}~ by 

n ~ et 
IllY 2,e, lll = +2 ,  

and denote the space thus obtained by  U. Each e E F can be written as e =1~  21e~, so 

Pte=]qe~ and hence 
i 

IMI = max [ ~ i P ,  e <~ mall,ll, 
:L I 1 

therefore the inclusion map ~ of F into U has norm <22. Of course II1" II1>111 II, so the 

inclusion map/~ of U into E has norm ~< 1; fl:r is the identi ty on F and :~(U) = 1, therefore 

M I1 11 This concludes the proof. 

Remarks. Clearly ~ ( E )  ~< :~(E) and there are spaces with local unconditional structure 

which have no unconditional bases; simple examples are furnished by  C[0, 1] and LI[0, 1]. 

Moreover Enflo and Rosenthal [2] have shown tha t  for every 1 < p <  0% p ~ 2 ,  and a 

finite measure # with dim (L~(/u)) ~>~1~, Lp(/u) can have no unconditional basis. On the other 

hand every L~-space has sufficiently many  Boolean algebras of projections. We do not know 

of an example in which b(E)= oo and : ~ ( E ) <  oo. 

I t  is easily seen that  if E is isomorphic to a complemented subspace of a space with 

an unconditional basis then E has local unconditional structure. This fact is also a 

consequence of the following easily proved lemma. 
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LEMMA 3.2. Let X and E be Banach spaces and i x a scalar, and suppose/or any finite- 

dimensional subspace Y~_X there are operators A EL(Y, E), BEL(E, X) such that BA is 

the identity operator on Y and IIB][ ]JAIl ~<#. Then ~,u(X)<~#~u(E). 

Recall that  the Banach-Mazur distance between isomorphic Banach spaces E and 

F is defined to be d(E, F)=inf  ]]T]] ][T-l[], where the infimum is taken over all iso- 

morphisms T mapping E onto F. I t  follows from Lemma 3.2 that  ~u(F) < ~(E)d (E ,  F). 

LEMMA 3.3. I /  AeII I (E,  M), then y l (A)<~(E)z t l (A) .  

Proo/. Let ~t> ~u(E) and F _  E be any finite-dimensional subspaee. Choose :r fl, U 

as in the definition, # > ~(U) and {u~}~ z to be an unconditional basis for U such that  

]l Z,~z +_ t,u,]] ~</~]] Z,~xt,u,]] for every vector Z,~,t,u, e U and every choice of _+ signs. Then 

Ylt, I IIAZu, ll ~< ;7151(A~) sup <tlU, Ut>l < II~ll=l(AI~llYt, u, ll. 
~x Ilu'll<x ~1 ~x 

Define C: U- ,~ (X)  and D: ~ ( X ) ~ M  by: C(:~,,,t,u,)= (t,llA#u,ll),~,, and D((~,),~,)= 

:~,~,~:,llA#,u, ll-lA~u,, where the last sum is on all indices i for which A ~ u , . 0 .  Clearly 

IIDII ~<1, Ilql ~<:,II#]I~(A)and DC=A~, so DC~=AIP, hence, 

r,(AI F) ~< IIDI1110~11 ~< I1~1111#II.~I(A). 

This inequality implies that r~(Al~)~<ll~ll I1#11 ~(U)~(A)<~(A).  The norm r~ is 

perfect ([7], [16]), so 

yl(A) = sup {~,I(A [ F); F _ E, dim F <  oo} ~< 2~tx(A), 

letting 2 ~  ~=(E) completes the proof. 

Recall the following definition of [24]. A Banaeh space E is termed sufficiently 

Euclidean if there is a constant bs>0 and sequences S, EL(Ig, E), TnEL(E, ~) such that  

TnS n is the identity and [[Sn[[ [IT, ll <bs, n = l ,  2 .. . .  

V A 

THEOREM 3.4. I /  both E and F are sufficiently Euclidean, then E | F and E | F 

their duals, biduals, etc., do not have local unconditional structure. 

Proo/. Choose bs, br and sequences snEL(I~, E), T ,  EL(E,I~), AnEL(I~, F ) and 

Bn EL(F, l~) to meet the requirements of the definition. First consider the least | 

Clearly (T,|174 is the identity on /~| and [[T,| ][S,| <~bsbF. By 

Lemma 3.2 
Y n Y 

~u (l~ | l~ ) <~ bsbr~ u (E | F), 

and by Theorem 2.3 (b) and Lemma 3.3 
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v in hi~9 < ~ ( l ~  | 2 ). 

Thus :~u(E ~ F) = c~. The greatest  |  m a y  be dealt  with in the same manner  using 

the inclusion J~ of Theorem 2.3, and the remaining assertions follow by  considering the 

adjoints,  biadjoints,  etc., of the sequences T~QB~ and Sn|  n. 

Remarks. (1) I t  is proved in [24] tha t  every  I:,-space, l < p < c ~ ,  is sufficiently 

Euclidean, so Theorem 3.4 applies to |  of such spaces. 

(2) The proof of Theorem 3.4 gives!that ~(l~| >~ni/9, for :r = V or A. This solves the 

problem of f inding a sequence of finite dimensional spaces whose uncondit ional  basis 

constants  tend to infinity [6], [11], [12], [19]. 

(3) I t  is well-known tha t  it is possible to embed 1 ~ 2 as a complemented subspace of 

l~ ", 1 < p  < ~ ,  in such a way  tha t  neither the norm of the embedding nor  the norm of the 

projection depend on n. Thus the proof of Theorem 3.4 gives :~u(l~'~Q 12q ~) >~%qn�89 for 1 <p ,  

q < ~ and :r = A or V, where %q is a contsant  independent  of n. Again by  Lemma 3.2 
n n ~  ~u(lq | lq ~%q(1og n) �89 We now wish to find more precise lower bounds  for the parameters.  

For  positive functions / and g defined on the natura l  numers the no ta t ion / (n )  <~ g(n) 

means sup~/(n)/g(n) < cr and/ (n) ,~g(n)  means ](n) <~g(n) and g(n) <~/(n). 

THEOREM 3.5. Let 1 / p + l / p ' = l  and 1/q+l /q '=l .  

I n 1/2 , if 2<~p,q<~ 

A n ] n l / q "  , if l<~q<~2<~p 

Ln a/2-1/p-1/q, if l<p ,q< .2 .  

Proo/. For  the greatest  |  we wish to apply  Lemma 3.3 with R ,  the inclusion 
A 

of l~ | l~ into c~(l~, l~). Consider the factorizat ion of the ident i ty  on c2(l~, l'~) given by  

~l n in ~ . v a a v a , c2 ~ ~, ~ j - ~  l~. | 1,.-T" l~ | l~ - ~  c~ (/2, l~) 

where A and B are the inclusions. Using the ident i ty  ~ =Too and Theorem 2.2 (a) 

n ~ = t r  (BAR~) <. ~, (B)HAH ~,~(n') = 3 n ' ~ §  (Rp.  

To bound ~l(Rn) above, let Cn and D~ be the inclusions of I n~ into 1 ~2 and lqn into I'2 

respectively, and factor R .  as 

A A n n n n_......__..~ n n lp|174 I~ c~(12,12), 

so tha t  by  Theorem 2.3 (a) 
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< IIC ll IID II 3n . 

Combining inequalities with Lemma 3.3 yields 

A 
9-1na/2-1/p-1/q <- IIcnll IIDnl[ ~u(l~ Q l~). 

The estimates now follow by considering cases. For the least |  apply the same proof 

with Rn r,. or use Theorem 2.4 to get xrl(R;r)71(Rn)=n ~ and 71(R~r)~rl(R~) = n ~. 

As in Theorem 3.4 we now have 

C o R 0 LL A R Y 3.6. For 1 <p, q <~ oo neither lr ~ lq nor l~. | lq,, their duals, biduals, etc., 

have local unconditional structure. 

Remark. I t  is proved in [15] that  if 1 / p + l / q ~ l  then l~Qlq is not isomorphic to a 

subspace of a space with an unconditional basis. We do not know if this stronger result is 

true for p, q<oo and 1 / p + l / q < l .  

COROLLARY 3.7. Let l~<r~<2<q~<oo and p<q .  Then I,(lv, lq) and II,,(/q, Ip) have no 

local unconditional structure. 

n V n 
Proo/. By [18] there is a Constant K such that  for any UEll| l~) and p~<2, 

llull 
Applying Lemma 3.2 

the first inequality by Theorem 3.5. The distance from II,,(/~, l~) to II,,(/~, l~) is at most 

n 1/q (consider the norm of the natural inclusion and its inverse), hence by Lemma 3.2 

n1/2-1/q<~ ~u(Hr, (l~, l~)), and again the lemma implies that  Hr, (lq, lp) has no local uncondi- 

tional structure. 

Now, if q > p  >2,  d(l~, l~,'.) ~nl/~-l/p[ll] ,  so the distance of Hr,(/~, l~) from Hr.(l~, l~.) 

is at most, asymptotically, n 11u-1/p. By Lemma 3.2 

nz/~-z/q ~ ~,, (]-Ir. (/;, l~.)) < n z/~-l'p ~,~ (I-It. (/~,/~)), 

so that  II,, (I~,/~) has no local unconditional structure. 

H,,(/$, l~)=I,(/~, l~) (Lemma 2.1, and A dual argument, using the identity of * " 

:rr*=ir), yields the other a..~.~artion. 

Remark, We can show that  if 1 <.r'<.p<.2<~q<r, YI,,(/q, lp) has local unconditional 

structure, moreover  t h e  sequence ~(HT.(I~, l~)) n = l ,  2, 3 . . . .  is bounded and II~,(l~, l~) 

embeds isometrically in Lr.(lz) for some firdte measure #. 
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4. Factorizatlons of absolutey s|lmmiltg maps 

We now give an example which answers [8] problem 2 negatively. 

THEOREM 4.1. The natural inclusion o/ll@l 1 into %(1~, 12) is absolutely summing yet 

does not have the liflin9 property, that is does not ]actor through any L~.space. 

Proo/. Write R for the inclusion and let P .  be the projection of 11 onto the span of the 

first n unit vectors. Then P~| is a sequence of norm one projections which converges 

simply to the identity on l 1 ~ 11, and whose range are the natura images of n v 11 | 11. Thus 

by Theorem 2.2(a) ~l(R)<sup.~x(Ro(P.| Consider the faetorization of I .  

given by 
n V ~  

v n A v R [ I ~ |  n l'~ | 12 -~ 11 | 11 ~ % (l~, I~) 

where A is just the identity. By Theorem 2.3 (b) 

3 - In  | 4 I[A]ITI(Rll~ @l~) <~ n~i (R) 
so that  y l (R)= oo. 

Remarks: (1) By taking adjoints it is easily seen that  the injection of ca(ln, ln) into 
V t 

(ll | =I1(/1, l~) has absolutely summing adjoint, yet  does not have the extension 

property. 

(2) Problem 2 of [8] was possibly motivated by the following considerations (see 

[8] problem 5). The identity operator on L =Lx(#) induces a continuous mapping from 1 x ~)L 

into l~ @ L of norm at most V3([8], Thdor~me 5). Thus if u E FI(E, F) then 1 | u gives rise to 
A 

a continuous mapping of 11 (~ E into l~ | F of norm at most 1/37x(u). The converse is false 

since an absolutely summing operator u EIII(E, F) gives rise to a continuous mapping 
v A 

1 |  of l 1 | E into l z | F and we saw that  u need not factor through an Lx-space. Yet it  

is unknown whether the identity operator on E must factor through an Ll-spaee if the 
v h 

identity map l l Q E ~ l ~ |  is continuous (see [8] problem 5, [9] Proposition 9 and 

subsequent discussion, [18] problem 2). 

(3) Using the closed graph theorem and Theorem 2.3 it follows that, for E and /~ 

sufficiently Euclidean, there are absolutely summing maps from E ~ iv (or  E ~ F )  

into Hilbert spaces which do not factor through L~(p)-spaces. 

The right injedive envelope of [A, ~], denoted by [A\, a\], is defined as follows: 

u EA\(E, F) if and only if there is an isometric embedding w of F into a C(K)-space such 

that  wuEA(E,C(K)), and ct\-norm of u is a\(u)----a(ura). The /eft injedive envelop, 

[/A, /a], may be defined by uE/A(E, F) iff u'GA\(F', E'), with ]ot(u)=ot\(u'). 
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L~MMA 4.2. For uEI I I (E ,F ) ,  the inequalities 71(u)<~71\(E)Tel(U) and ~l(U)< 

/rAE)~l(U) ho~t. 

Proo/. In case 71\(E) < ~ ,  let e >0  and find a subspace L=L~(#) and an isomorphism 

s : i - > E  such that  ]lsll Hs-ill ~<( l+e)~l~(E) .  Then g~(us)~<Hsllgl(U) so us has a 

factorization 

L~-~L~(v) ~-~F 

with wv=us and Ilvll Hwll ~7[:1(u8 ). Since L~(v) is injective there is a ~eL(Ll(l~ ), L~(u)) 

with ]]vl[ = Ilvll and ~IL--v. Then w~s-l=u and 

~i(U) ~ ll8--1H ]IVll ]lUll ~ (1 +~)~l\(E)Yg1(2). 

In ease / ~ ( E ) <  c~ let i: E-+E" be the canonical embedding and factor i=vw, 

where Q is a quotient of a C(K)-space, wEL(E, Q) and vEL(Q, E~). Let  ~ be the quotient 

map from C(K) onto Q. Then u"v~ is absolutely summing on a C(K)-space, and so by [21] 

u"v~ is integral and il(u"vv)==l(U"VV)<<. HVlI:7~I(U). But then 

;T{:I(V'U'" ) < il((U"V~)' ) = il(U"V~) < HVlIgl(U), 

and so ~l(i'u")<-Hvll ]]WH~l(U ). Then as above 

~l(u) = ~(u ' )  <~l(U') <gl(i' u" I F'),  

so that  y,(u)~< I[vH IlwlI~l(u). Taking the infimum over all such faetorizations gives the 

inequality. 

THEOREM 4.3. There are spaces E and F, and non.integral operators uGL(E, F) with 

the/ollowing property: i /G  is isomorphic to a subspace o/an Ll-space or to a quotient o /a  

C(K)-space, or i/ G has local unconditional structure, then l | extends to a continuous 
A 

linear map /tom G @ E into G @ F. 

V v 

Proo/. Let E = 11 | 11 and v be the inclusion of l 1 | l 1 into c~(12, 12). Suppose for any 

Banach space F and any wEL(c~(l~,/~), F) with absolutely summing adjoint, that  wv is 

integral. Then from [7] Corollary 2.21 it would follow that  ~(v')-~,x(V ) < 0% that  is, 

v factors through an Ll-space, contradicting Theorem 4.1. Thus u =wv is non-integral for 

some w with w' absolutely summing. 

Now let 2=ra in  (~I\(G), /~ (G) ,  :~u(G)}. For teL(G, F')  u't must be integral; in 

fact it  follows from Lemmas 3.3 and 4.2 that  71(w't)<~)~l(w't), so that  

i~(u't) = i~(t'w~v ~) <rA(w' t ) ' )~ l (V' )  < 3~l(W')H. 
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Thus setting qJ(t)=u't gives a continus linear operator from L(G, F') into II(G, E'). By 

checking elementary tensors it is easy to see that  the diagram 

1 I(G, E')' r ' L(G, F')' 

t t 

G |  ~| , G |  

commutes, where the unmarked arrows are the natural embeddings. But then l |  

cf'lG| E is continuous with the inductive topology on G| E, and the projective topology 

on G| F, and hence has an extension. 

Remarks. (1) The interest in Theorem 4.3 is that  if the conclusion holds for all G 

then u must be integral (essentially the same proof as above shows that  integral operators 

must satisfy the conclusion of the theorem). In fact, taking G= F', U'=(IF,| is an 
V I 

element of (F '  | E) = II(F'  , E'). 

(2) An operator T is in F$ (E, F) if and only if the map 1 | T from lq ~ E to lq ~ F is 

continuous (lip + 1/q = 1), and then 7* (T) --I[ 1 | T[[, [1], [16], [17]. Thus by setting G = lq 

in Theorem 4.3 it follows that  there is a non-integral operator T which is of type 7* for 

every p, 1 ~<p ~< oo. This solves a problem raised by the second named author at the 

Louisiana State University conference on F~ spaces in 1971. 

(3) The construction in the proof above yields a non-integral operator u of the form 

wv where both v and w' are 1-absolutely summing. The question whether there exists a 

non-integral operator u of this form was observed by Grothendieck [8] (remarks on 

p. 39) to be equivalent to the question whether there exists an absolutely summing 

operator not faetorizable through any Ll-space. 

5. Spaces of operators on l~ 

We begin by considering the classes %(H) =%(H, H) of operators on a Hilbert space H. 

THV.O~EM 5.1. For l <~p <~ oo:~u~ le~lln~ ~nI1/p-1/212H . For 19 ~2 and H an in/inite dimen. 

sional Hilbert space, %(H) has no local unconditional structure. 

Proo/. Theorem 3.5 gives :~u(%(l~)) >~ n�89 p = 1 and p = r Given 1 <~p <~ 2 it/oUows 

easily that %(u) <<.el(u ) <<.nl/q'%(u) so that  by Lemma 3.2 

,~ n ~ llp" n n t ~ ~u(Cl(12))--~ n :~u(%(12)) 

For 2 ~<p ~< ~ we may compare % to e~ and obtain in either case that  
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n jl/v-1121 ~< ~ (% ( l~)) .  

But  the distance from %(l~) to c2(l'~ ) is always at  most n II/p-I/~I so tha t  by  Lemma 3.2 

: ~ u ( % ( / ~ ) )  ~ n11/~-1/21- 

Remark. Theorem 5.1 solves problem 2 of [15] by  showing tha t  %(H) has no 

unconditional basis for p # 2 .  Also observe tha t  the proof gives ~(cv(1.~))Nn I1/p-1/~I. 

The unconditional structures in sequences of spaces of the form A(l~, l~), [A, or] a 

Banach  ideal norm, seem to depend largely on the behaviour of ~(l~) and on the best 

constants relating the ~-norm with the Hilbert-Schmidt. The following two theorems of 

this section are indicative of this fact. 

THEOREM 5.2. Let [A, ~] be a Banach ideal. Then 

~u(A(l~, l~)) >1 (2/axe)max {n-�89 n�89162 

Pro@ We are going to show that  

(2/a~) ~(l~) n-~ < ~u(A(l], l~)). 

Let Rn be the inclusion of A(l~, l~) into c2(l~, l~). We first estimate 7t1(Rn). Let S be the 

unit  sphere of l~, dm the normalized (n-1)-dimensional ,  rotational invariant  measure 

on S and 

K = {x| Hx]]~ = IIyH~ = 1}, 

Then K is a compact subset of A(l~,/~)'--A*(l~, l~). Define v E C(K)'  a probabili ty measure by  

v(/)= f s  fs / (x |  dm(x) dm(y), /E C(K). 

For  every uEA(l~, l~) we have by [5] 

�9 - 7~ q ~ - I  v(l<u, >l) =~sfsKux,y>ldm(y)dm(x)- l t 2 1  JsllUxll~dm(:~). 
Consider the isometric embedding ~0 of l~2 into L 1(S) given by  ~0(x) = gl (1]) <x,. >. Then 

as in Theorem 2.2 (a) 

i ,  = 

and c~(u) = ~ ( u )  = ~(u*)  ~<~(u*) ~< il(q~u* ), 

SO C~(U) <- ~I(/~)~V([ <U, �9 > 1). 

Thus, 7el(R~)~<nl(l~) ~ <.7en/2, the last inequality b y  [5]�9 
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To estimate ~I(R~I ' ) ,  recall tha t  from the proof of Theorem 2.2 (b) 

3n�89 *(l~)fol<u, ~*'ln~-1"\l~ ~1 ~21 dg. r 

Since a*(g)=~*(l~) for each isometry g, 

~ l ( R n  r)  ~ 3n~a*(/~) = 3n3/~a(/~)-i, 

the last equal i ty  is by  Lemma 2.4. By Theorem 2.5, n2=~,l(R,)~l(R;r), so tha t  

~l (R,) >1 l n�89 :r 

Applying Lemma 3.3 gives the inequality 

(2/3 ~) ~(l~) n-  ~ < !~Q (A(l~, l~)). 

Consideration of the operator R -1' gives in the same manner  the analogeous 

inequalities 
7l: l (Rn  1") ~ ten~2 and ~1 (R; r) >/]  n�89 a* (l~) 

and by  Theorem 2.5, n 2 = ~1 (Rn)gl (R; r) = :7/:1 (Rn) ~1 (R~I'), so tha t  applying Lemma 3.3 

again with the equality ~(l~) ~* ~l "~ 21 = n, gives tha t  

A ~ a (2/3~)ni~(1D -1 <~ ~ (  (l~, l~)). 

Remark. I t  of course follows tha t  if in Theorem 5.2 lim sup, (n-ta(l~), ntg(/~)-l) = 

and both E and 2' are sufficiently Euclidean, then A(E, F) has no local unconditional struc- 

ture. This is true in particular for F~(E, F) 1 < p  < oo and F*(E, F). 

THEORV.M 5.3. Let ~ be an ideal norm /or which a]cl/P~g(l~)~b]r 1/~, ]r 2, ..., n. 

Then/or u~A(l~, l~) 
a(ln(en) )-l/~ %(u) <~ o~(u) ~ b(ln(en) ) 1/~" %(u). 

Proo/. For ueA(l~, l]) choose orthonormal bases (e~)~<. and (b~)~<., and a decreasing 

sequence of non-negative scalars 2~ so tha t  u=Y,t<~2~et| Let g be the isometry 

g(b~) =e~ and, for each k - - l ,  2 ..... n, let v~ be the orthogonal projection onto [b~]~<~. For 

each k = l ,  2 ..... n 

Z~<~ 2~ -- t r  (ugv~) ~< ~(u) ~* (gv~) < a(u) o~*(l~). 

But since a*(l~)~(l~)=k, [6] (or Lemma 2.4), 

2 k < k- lEl<k21 < a-~g(u)k -~/~ 
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and hence %(u) = (Ek<,~t~) 1/v ~< a- l~(u)  (F~k,<nk-1) llv 

which gives the first inequality. In  a similar manner cv.(u ) <b(ln(en))l/P'~*(u) and hence 

by  duality, using the relation %(I~)' =%,(1~)[20], the second inequality follows. 

COROLLARY 5.4. I] ~ is an ideal norm and d(A(l~, l~), l~')/In(n) is not bounded then 

:~u(A(/~, l~)) is not bounded. In  particular, i ] E  and F are su]]iciently Euclidean A(E, F) 

has no local unconditional structure. 

Proo]. We claim tha t  ~(l~) + n�89 if not, Theorem 5.3 with p =2  gives a contradic- 

I n tion. But  since zr + n�89 Theorem 5.2 yields the result. The last s tatement follows by  

Lemma 3.2. 

Remarks. Under the assumptions of Corollary 5.4 it follows from Lemma 4.2 tha t  

~1~(  ( 3, l~)) cr Hence A(E, F) is neither isomorphic to a subspace of L 1, nor to a 

quotient of L~. 

We conjecture tha t  the assertion of Corollary 5.4 is true also in the case when 

d(A(l~, l~), l~') n - ~ '  cr 

Given a Banach space E, s(E) will denote the least number 2 for which there is a 

multiplicative group of isomorphisms on E, G, all of norms at  most 2, which has the 

property tha t  an operator on E which commutes with each element of G must  be a scalar 

multiple of the identity. E is said to have enough symmetries if s(E)=1 (cf. [4]). 

L E M M A 5.5. ForE, F finite-dimensional spaces and ~ an ideal norm, s(A (E, F)) <~ s(E) s(F). 

Proo]. Regard A(E, F) as E'| F, algebraically. Let G and H be groups of isometrics on 

E '  and F, respectively, such tha t  only the scalar multiples of the identi ty commute with 

each group, and with llgll <2, Ilhll <~, for all gEG and hEg.  Let M be the group of all 

isomorphisms on E ' |  of form 9| 9EG and hEH. Then each element of M has 

norms<X#. Let  T be an operator on E ' |  which commutes with each element of M. 

For yEF, y'EF', define S on E '  by  <x, S(x')>=<T(x'| x| Then for gEG 

<x, g-lSg(x')> = <To (g| 1) (x' | (g-l |  1)' (x| 

= <T(x' | (g| 1)' (9-1 | 1)' (x| 

= <z ,  S ( z ' ) > ,  

so tha t  S =2(y, y')1E, for some scalar 2(y, y'), and hence the equality 

<T(x' | x| =X(y, y')<x, x'> 

always holds. Chose xoEE and z '0eE'  with <x 0, x0>=l ,  and define R on F by <Ry, y'> = 
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r t (T(xo| xo| ). Repeating the same argument gives that  R=tlF for some scalar t, 

so that  
( T(x' | x| = t(x, x') (y, y') = (t(x' | x| 

always holds. This gives T as t times the identity, so the lemma is established. 

THEOREM 5.6. Let E and F be finite.dimensional spaces with enough symmetries. Then 

V 

(a) ~1 (E | F)  = ~1 (E) ~1 (F). 

A 

(c) ~1 (E @ F) = 71 (E) r l  (F). 

(d) 7oo(%(1~)) ~n, l <~p<~ oo. 

(e) 71\ (%(I~)) , /7~(%(I~))  ~ n I1~p-'21, 1 ~<p ~< oo. 

Proo/. Let K1, and K2 be the closed unit balls of E' and F' ,  respectively, with/~ 6 C(K1)' 

and ve c(g2)' probability measures such that  Hxll ~<g,(E)#(l(x, .)]),  xeE, and IlYll ~< 

,~x(F)v(l(y, .)]), yeF. Let ueE~F=L(E',F) and choose y'oeF', Ily~H=l, so that  

Huh = Hu'(y~)ll. If #| xg2) '  is the product of/~ and v then 

' Ilu( ')[I >_. 

> / ~ l ( F ) - ~ f  u' (y~) ) [ t~( dx') 
J K  2 

7~1(F)-17~1 (E) -1 Ilu'(yo)ll, 

v 

so Ilull < 7el(E) 7el(F) (/~ | v) (Ku,. >l). Thus gl(E |  ~< ~I(E) 7~1(F ). 

Now let ls=uv and ly=st be arbitrary factorizations through C(K) and C(M), 

respectively. Since (u| is the identity on E ~) F and C(K) ~ C(M) =C(K x M), 

7~o(E Q F) <-IIull IIsll IIvll ]]tll, so that  7oo(E Q F) <~7oo(E)7oo(F ). Let Z be one of the spaces 

E, F or E ~ F. Since Z has enough symmetries 7~(Z)~I(Z) =dim Z, so (a) and (b) follow by 

combining inequalities. For (c) 71(E ~ F) =71((E' ~ f')') =7oo(E' ~ F'). 

To show (e) consider the factorization of J ,  given by 

. . l  n . ~  . l  n ,  , (1) 

with A, B the identities. By Theorem 2.3 and Lemma 4.2, 
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n/3 <~ r l ( J n B A )  <~ ]]A [] g l ( J , B )  ~\(cp (l~)) <~ [[A][ [[BI[ zr~(Jn) ~21\(C p (l~)) 

<~ 3 nl/2+11~'~1\( % (l~)). 

F a c t o r i n g  the  opera to r  I n of Theorem 2.3 in  a s imilar  m a n n e r  gives n 1/~-1/~ ~1\ (%( /~) ) ,  

so the  lower es t imate  holds.  B u t  c~(l~) is i sometr ic  to  a subspace  of LI[0, 1] so t h a t  

~l\(cp(l~)) ~ d(%, c2) ~ n [1/v-1/21. The second p a r t  of (e) follows f rom /~oo(%(1~)) = 

~1\(%(I~)') and  %.(1~) = %(I~)'. 

To prove  (d) f i rs t  suppose t h a t  l~<p~<2. I n  the  sequence (1) let  R = J n B .  Then  

i~(g~B) <~ yrl(gnB ) ~oo(% (I~)) ~ ga(J~BA ) []A-l[[ ~o~(%(1~)) <<. 3n  112 [[A-I[[ ~oo(cp(l~)) 

b y  Theorem 2.3. B u t  also n~<<.[[R-i]]il(R ) so t h a t  n~<3nl/~[]A-1[[ I I R - ~ I I ~ ( % ) B u t  

][A-Ill ~<n~/" and  I[R-i[[ <<.n 1/~-~/~ since 1 ~<p ~<2, and  thus  n/3 <<-~oo(c~(l~)). B u t  the  projec-  

t ion  cons tan t  is a lways  a t  most  the  square  roo t  of the  d imension.  F o r  2 ~<p ~< 0% a s imi lar  

a rgumen t  m a y  be appl ied  wi th  I n . 

Remark. The es t ima te  given in  (e) pa r t i a l l y  verifies a conjec ture  of [20] b y  showing 

t h a t  the  bes t  d i s tance  from % to a subspace of L~ behaves  like n [1/;-~/2[ for 1 ~< p ~<2. This  

is the  case since b y  [13], L~ is i sometr ic  to  a subspace  of L1. 
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