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ABSORBING BOUNDARY CONDITIONS FOR 2D TILTED TRANSVERSE

ISOTROPIC ELASTIC MEDIA ∗

Hélène Barucq1, Lionel Boillot1, Henri Calandra2 and Julien Diaz1

Abstract. This work deals with the construction of a low-order absorbing boundary condition (ABC)
for 2D elliptic TTI media, preserving the system stability. The construction is based on comparing
and then connecting the slowness curves for isotropic and elliptic TTI waves. Numerical experiments
illustrate the performance of the new ABC. They are performed by integrating the ABC in a DG
formulation of Elastodynamics. When applied in a TTI medium, the new ABC performs well with the
same level of accuracy than the standard isotropic ABC set in an isotropic medium. The condition
demonstrates also a good robustness when applied for large times of simulation.

Résumé. Ce travail porte sur la construction d’une condition aux limites absorbante (CLA) pour les
milieux TTI elliptiques, préservant la stabilité du système. La mise en oeuvre repose sur la comparaison
puis la mise en relation des courbes de lenteurs pour les ondes isotropes et TTI elliptiques. Des
expériences numériques illustrent la performance de ces nouvelles CLA. Elles sont réalisées en intégrant

la CLA dans une formulation de type Galerkin discontinue pour l’Élastodynamique. Pour un milieu
TTI, la nouvelle CLA est efficace avec le même niveau de précision que la CLA isotrope standard pour
un milieu isotrope. On observe aussi que la condition est robuste en temps long.

Introduction

The numerical simulation of wave propagation in the Earth is very useful for understanding geophysical
phenomena such as earthquakes. It is also a noninvasive and efficient tool to explore limited regions of the
subsurface. For instance, numerical waves are used by geophysicists to detect possible stocks of hydrocarbons
in regions of the subsurface that are tricky to reach. In this case, it is necessary to couple the wave equations
with absorbing boundary conditions (ABC). Another approach is to modify the wave equations within a layer
surrounding the computational domain. It is the so-called PML (Perfectly Matched Layer) technique. The use
of ABCs has been suggested long ago [9, 10] while the PMLs have emerged later [5, 6]. In the case of isotropic
media, PMLs have clearly demonstrated their supremacy on the ABCs. They are easy to implement and do not
generate spurious waves. To achieve the same level of accuracy with ABCs, higher order boundary conditions
must be considered and difficulties of construction and implementation occur. Moreover, computational costs
are significantly increased compared to those generated by PMLs. However, PMLs suffer from stability problems
for different classes of anisotropic media [3], especially in TTI (Titled Transverse Isotropic) environments that
are of great interest for oil exploration.
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Our work falls into the problem of imaging the subsurface. It is an inverse problem which is difficult to solve
because it is nonlinear and ill-posed. Even if recent progresses have been achieved, other approaches are used
for industrial purposes where fast and robust algorithms are needed. They do not consist in solving exactly
the inverse problem and they generally give approximate solutions which are enough accurate for practitioners.
Among them, the Reverse Time Migration (RTM) technique is widely used for seismic imaging. It provides
images of the subsurface that are made from time correlations of reflected fields which are generated by artificial
acoustic sources propagating inside the region to be explored. From numerical experiments that have been
performed by using different numerical methods, it has been observed that this technique is robust to the noise
which comes from reflections generated by the boundaries of the computational domain. This is why, in that
particular context, it is still interesting to develop ABCs whose main property is stability. Indeed, if spurious
reflections prompted by ABCs can be considered as noise, spurious modes created by PMLs heavily pollute
seismograms and the images provided by RTM are unusable.

The purpose of this work is to propose an ABC for TTI media that is easily integrated inside a discontinuous
finite element formulation. The Discontinuous Galerkin (DG) method we use has been proposed in [7] for the
equations of Elastodynamics formulated as a first order. The construction of the new ABC is mainly based
on an algebraic computation which focuses on the slowness curves of the elliptic TTI elastic wave equation.
Despite the use of an elliptic framework, the numerical experiments are performed in the general TTI case.

1. Anisotropic elastodynamics

Let Ω be an open bounded domain of R2. Let x = (x, z) ∈ Ω be the space variable and t ∈ [0, T ] be the time.
The elastodynamic system reads as:

{
ρ(x)∂tv(x, t) = ∇.σ(x, t),

∂tσ(x, t) = C(x) : ǫ(v(x, t)),
(1)

where v := (vx, vz) denotes the velocity wave field and σ := (σxx, σxz, σzz) is the stress tensor. The parameter

ρ > 0 stands for the density, C is the stiffness tensor and ǫ(v) = 1
2 (
−→∇v + (

−→∇v)T ) represents the strain tensor.

As usual,
−→∇ is the gradient and ∇. denotes the divergence operator.

To produce realistic images of the subsurface from the propagation of waves, it has been demonstrated for
instance in [8, 20] that anisotropy must be taken into account. In this work, we consider transversely isotropic
(TI) media, which can be divided into two groups defined as VTI for vertical TI and TTI for tilted TI. Each
medium can be described from the representation of wavefront sets as depicted at Fig. 1.

θ

VTI TTIIso

Figure 1. Wavefronts for isotropic (left), VTI (center) and TTI (right) media

Obviously, the stiffness tensor C reads differently in each case:

• Isotropic media are characterized either by the Lamé coefficients λ and µ, or by the P-waves and S-waves
velocities Vp and Vs with density ρ. Obviously, both characterizations lead to the same entries for C.

• VTI media are defined likewise by Vp, Vs and ρ, and in addition their characterization involves Thom-
sen [18] VTI parameters ε and δ. The stencil of C is then the same than in the isotropic case

• TTI media are described from VTI ones by applying a rotation of angle θ. It is worth noting that C is
dense while it admits null entries in the two previous cases.
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2. TI formulation

The general stiffness tensor containing the elasticity is fourth-rank. It can be rewritten in a matricial formu-
lation with the Voigt notation. In 2D, matrix indices {1, 3, 5} refer respectively to tensor indices {xx, zz, xz}
and the matrix of the stiffness tensor reads as:

C =



C11 C13 C15

C13 C33 C35

C15 C35 C55


 (2)

In the isotropic and the VTI cases, this tensor becomes sparse with C15 = C35 = 0, otherwise it is dense.

In the isotropic case, the entries can be defined similarly from the Lamé coefficients λ and µ as follows:

C11 = λ+ 2µ, C33 = λ+ 2µ, C55 = µ, C13 = λ

or from the velocities Vp and Vs, and the density ρ

C11 = ρV 2
p , C33 = ρV 2

p , C55 = ρV 2
s , C13 = ρ(V 2

p − 2V 2
s )

In the VTI case, the coefficients involve now Thomsen’s coefficients [18] ε and δ:

C11 = ρV 2
p (1 + 2ε), C33 = ρV 2

p , C55 = ρV 2
s ,

C13 = ρ
(√

(V 2
p − V 2

s )
2 + 2δV 2

p (V
2
p − V 2

s )− V 2
s

)

The TTI formulation is more tricky to introduce. The tensor C is dense (but still symmetrical). It results
from the θ-rotation of the VTI formulation, that is:

CTTI

ijkl
=

∑

p

∑

q

∑

r

∑

s

RpiRqjRrkRslC
V TI

pqrs
, with R =

(
cos θ − sin θ
sin θ cos θ

)

Elastodynamics is then governed by wave equations which can be rewritten as the following first order system:





ρ∂tvx = ∂xσxx + ∂zσxz

ρ∂tvz = ∂xσxz + ∂zσzz

∂tσxx = C11∂xvx + C13∂zvz + C15∂xvz + C15∂zvx

∂tσzz = C13∂xvx + C33∂zvz + C35∂xvz + C35∂zvx

∂tσxz = C15∂xvx + C35∂zvz + C55∂xvz + C55∂zvx

(3)

3. Absorbing Boundary Condition (ABC)

A rigorous methodology for the construction of ABCs is based on the diagonalization of the system (1).
This approach has been proposed by Enquist and Majda [9] for strongly hyperbolic systems. It provides a very
elegant process for the derivation of ABCs on arbitrarily shaped boundaries [1]. Nevertheless, in practice, it
can quickly become uneasy to use because of coupling terms that are difficult to handle in the first stage of the
diagonalization. The coupling indeed results in eigenvalues which are difficult to exploit for the construction of
efficient ABCs. For instance, the VTI eigenvalues have the general form [12]:

λP/S =

√
αk2 − βρw2 ±

√
γk4 − ηρk2w2 + ξρ2w4
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where k denotes the frequency related to the time variable by a Fourier transform, and α, β, γ, η, ξ are parame-
ters depending on the tensor coefficients.

From a practical point of view, it is obvious that the numerical handling of λ is not feasible because of
the composition of two square roots and are uneasy to localize. However, it remains possible to construct a
low-order VTI ABC by using a Taylor expansion of order one. Then, focusing on normal incident waves allows
the elimination of the derivative terms in the other direction, as described in [11,13] for the isotropic case. This
leads, for a boundary with an outward normal ex, to the low-order VTI ABC:

{
σxx = ρVp

√
1 + 2εvx

σxz = ρVsvz
(4)

which is identical to the first-order ABC obtained by a different way in [2].

Setting ε to zero in the VTI ABC (4) is identical to the low-order isotropic ABC (e.g. in [19]):

{
σxx = ρVpvx

σxz = ρVsvz
(5)

These simple ABCs can also be obtained by uncoupling the P-waves and the S-waves in the elastic system (1),
which means fixing Vs or Vp to zero. Thus, the Engquist-Majda methodology can be applied to the resulting
pseudo-acoustic systems, leading to the first equation of (5) for the P-waves while the second relation in (5) is
for the S-waves.

Now, when addressing the case of a TTI medium, the stiffness tensor is dense and Engquist-Majda method-
ology becomes very tricky to apply. It is even not obvious that the corresponding eigenvalues can be computed
explicitly, even for particular TTI media or for uncoupled waves. We have tried to approximate them with the
help of Maple c©1 software. We got results that are actually unusable. This is why we have decided to adopt
another approach which is described in the next section.

4. Elliptic TTI low-order ABC

4.1. Slowness curves

Our approach is based on the slowness curves for TTI media. This idea has been already suggested by
Savadatti and Guddati who published four interesting articles [14–17] about revisited ABC involving arguments
that are usually claimed for PMLs analysis. In particular, they provide a characterization of different types
of anisotropy by involving slowness curves. In the same time, slowness curves have been introduced in [4] to
construct ABCs for anisotropic acoustic equations.

In this work, we propose to follow the same ideas than in [4] to construct a low-order ABC for waves propaga-
tion in TTI media. We restrict our study to the case where ε = δ which corresponds to the so-called elliptic TI
case. Let us remark that low-order VTI ABCs do not depend on the TI-δ parameter, it might be possible that
the simplest TTI ABCs do not involve δ either. Hence, the elliptic case could give rise to an efficient low-order
ABC for more general cases.

For the construction of the ABC, we thus begin by addressing the form of the slowness curves. Fig. 2 depicts
these profiles for an isotropic and an elliptic TTI elastic system. It clearly appears that the S-waves slowness
curves are identical in both cases, forming a circle, whereas the P-waves slowness curve is circular in the isotropic
case and elliptical in the elliptic TTI case.

1http://www.maplesoft.com
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Figure 2. Slowness curves of isotropic (left) and elliptic TTI (right) elasticity

Let us tackle the construction of the ABC by choosing the isotropic case as a reference. That makes sense
since isotropic ABCs are stable and we are mainly interested in stable boundary conditions. We then propose
to find auxiliary fields (v∗, σ∗) which are solutions to an isotropic wave equation and to establish a link with
(v, σ). By this way, we will be able to deduce the boundary condition that is satisfied by (v, σ) when (v∗, σ∗)
satisfies the simplest ABC for isotropic elastic waves.

In, Fig. 2, frequencies k∗x and k∗z are the symbols of the derivatives ∂∗
x and ∂∗

z of an isotropic elastic system.
In the same way, the partial derivatives ∂x and ∂z of an elliptic TTI elastic system are related to kx and kz.
So, we can join ∂∗

x and ∂∗
z with ∂x and ∂z by constructing a map which transforms the slowness curve forms.

4.2. An elliptic TTI ABC

Let us focus on P-waves only, i.e. setting Vs to zero in (1). The construction of the elliptic TTI P-waves
ABC follows a multi-step procedure.

Step 1 consists in elaborating a change of variables which modifies a rotated ellipse into a circle. According
to Fig. 2, we denote by (kx, kz) the slowness variables for the TTI case and (k⋆x, k

⋆
z) corresponds to the isotropic

case. We then seek coefficients {µj}, 1 6 j 6 4, such that:

kx = µ1k
⋆
x + µ2k

⋆
z and kz = µ3k

⋆
x + µ4k

⋆
z (6)

Let us consider the case where the ABC acts on a boundary with an outward normal ex. Then, the change
of coordinates should not impact on the z-derivative and µ3 = 0. In the same way, we could have considered
the case where the ABC is set upon a boundary with an outward normal ez. Then, we would have fixed µ3 = 0.

First, (k⋆x, k
⋆
z) satisfies the quadratic equation

ρV 2
p k

⋆
x
2 + ρV 2

p k
⋆
z
2 = 1 (7)

Second, (kx, kz) satisfies the generic relation

ξ1k
2
x + ξ2kxkz + ξ3k

2
z = 1 (8)

with κ = 1 + 2ε, and





ξ1 = ρV 2
p (κ

2 cos2 θ + sin2 θ)

ξ2 = 2 cos θ sin θρV 2
p (κ

2 − 1)

ξ3 = ρV 2
p (κ

2 sin2 θ + cos2 θ).

(9)
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By plugging (6) into (8), we then get:

ξ1µ
2
1k

⋆
x
2 + µ1(2ξ1µ2 + ξ2µ4)k

⋆
xk

⋆
z + (ξ1µ

2
2 + ξ2µ2µ4 + ξ3µ

2
4)k

⋆
z
2 = 1 (10)

Then, by identifying the coefficients of the above equation with the coefficients of (7), we obtain:





µ1 =
√
1/(κ2 cos2 θ + sin2 θ)

µ2 = −(κ2 − 1) cos θ sin θ/κ
√
κ2 cos2 θ + sin2 θ

µ4 = 1
κ

√
κ2 cos2 θ + sin2 θ

(11)

Now, we use (7) to deduce: :

∂x = µ1∂
⋆
x + µ2∂

⋆
z and ∂z = µ4∂

⋆
z (12)

Step 2 addresses the corresponding change for the velocity field v. Following step 1, we define (v⋆x, v
⋆
z) as the

coordinates of v = (vx, vz) in the set of isotropic variables. We seek them as follows:

{
vx = α1v

⋆
x + α2v

⋆
z

vz = α3v
⋆
x + α4v

⋆
z

(13)

Then we have to find coefficients {αj}16j64 in such a way that (v⋆x, v
⋆
z) is solution of the isotropic elastic

wave system:

{
1

ρV 2
p

ρ∂2
t v

⋆
x = ∂⋆

x
2v⋆x + ∂⋆

x∂
⋆
zv

⋆
z

1
ρV 2

p

ρ∂2
t v

⋆
z = ∂⋆

z∂
⋆
xv

⋆
x + ∂⋆

z
2v⋆z

(14)

To simplify the computations, it is easier to uncouple v from σ by considering the second-order formulation
of Elastodynamics:





ρ∂2
t vx = C11∂

2
xvx + C12∂x∂zvz + C13(∂

2
xvz + ∂z∂xvx)

+ C13∂x∂zvx + C23∂
2
zvz + C33(∂x∂zvz + ∂2

zvx)

ρ∂2
t vz = C13∂

2
xvx + C23∂x∂zvz + C33(∂

2
xvz + ∂z∂xvx)

+ C12∂x∂zvx + C22∂
2
zvz + C23(∂x∂zvz + ∂2

zvx)

(15)

We can then plug (12) and (13) into (15) and identify the coefficients of the resulting system with the ones
of (14). In this elliptic TTI case, with Vs = 0, the C tensor coefficients are easily computable.

After a series of algebraic handlings, we obtain three equations by identifying respectively the operators ∂⋆
x
2,

∂⋆
z
2 and ∂⋆

x∂
⋆
z . They read as:

1

α1α4 − α2α3

(
α4 −α2

−α3 α1

)
µ2
1

(
a2 ab
ab b2

)(
α1 α2

α3 α4

)
=

(
ρV 2

p 0
0 0

)
(16)

1

α1α4 − α2α3

(
α4 −α2

−α3 α1

)
µ2
1

(
b2 −ab
−ab a2

)(
α1 α2

α3 α4

)
=

(
0 0
0 ρV 2

p

)
(17)

1

α1α4 − α2α3

(
α4 −α2

−α3 α1

)(
c d
d −c

)(
α1 α2

α3 α4

)
=

(
0 ρV 2

p

ρV 2
p 0

)
(18)
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with:




a = ρVp(κ cos
2 θ + sin2 θ)/

√
κ2 cos2 θ + sin2 θ

b = ρVp(κ− 1) cos θ sin θ/
√

κ2 cos2 θ + sin2 θ

c = 2a2.µ2/µ1 + 2ab.µ4/µ1

d = b2.µ4/µ1 + 2ab.µ2/µ1 + C12.µ1µ4

(19)

which simplifies to:





α1 =
a

b
α3

α4 = α1

α2 = −α3

(20)

Choosing α1 = 1, we finally get:

vx = v⋆x − b

a
v⋆z and vz =

b

a
v⋆x + v⋆z (21)

Step 3 deals with σ which has been avoided at step 2 by working directly on v. Following ideas of step 2,
we introduce σ⋆ corresponding to v⋆ and we seek {βj}16j69 such that





σxx = β1σ
⋆
xx + β2σ

⋆
zz + β3σ

⋆
xz

σzz = β4σ
⋆
xx + β5σ

⋆
zz + β6σ

⋆
xz

σxz = β7σ
⋆
xx + β8σ

⋆
zz + β9σ

⋆
xz

(22)

According to the isotropic case, we know that σ⋆
xx = σ⋆

zz = p⋆ and σ⋆
xz = 0. We thus have





σxx = (β1 + β2)p
⋆

σzz = (β4 + β5)p
⋆

σxz = (β7 + β8)p
⋆

(23)

Thus the problem reduces to find three coefficients denoted by {β̃j}16j63 such that

σxx = β̃1p
⋆, σzz = β̃2p

⋆, σxz = β̃3p
⋆ (24)

Next we proceed as in step 2 by identifying the coefficients of the system satisfied by σ⋆. We then get:





β̃1 =
√

κ2 cos2 θ + sin2 θ

β̃2 = (cos2 θ + κ sin2 θ)
√
κ2 cos2 θ + sin2 θ/(κ cos2 θ + sin2 θ)

β̃3 = (κ− 1) cos θ sin θ
√

κ2 cos2 θ + sin2 θ/(κ cos2 θ + sin2 θ)

(25)

Step 4, which ends the multi-step procedure of construction, consists in using the isotropic ABC in (5) and
in applying the change of coordinates described in the relations (21) and (24). For a boundary with an outward
normal ex, the P-waves contribution of the isotropic ABC is p⋆ = −ρVpv

⋆
x. In this case, σ⋆

xx = p⋆. And so the
elliptic TTI P-waves ABC is obtained with the coefficients in (19) and (25):




σxx = −ρVp

κ cos2 θ+sin2 θ√
κ2 cos2 θ+sin2 θ

[
(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz

]

σzx = −ρVp
(κ−1) cos θ sin θ√
κ2 cos2 θ+sin2 θ

[
(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz

] (26)
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We have focused on P-waves and constructed a low-order ABC. We did not address the case of S-waves since
their slowness curve is identical in the elliptic TTI case as in the isotropic case. Hence, our approach does not
impact on the S-waves. Moreover, as previously noticed, the low-order ABC can be viewed as the addition of
P-waves and S-waves contributions. Therefore, for the S-waves, we decided to apply the low-order ABC in (5),
obtained in an isotropic media. Finally, for a boundary with an outward normal ex, the complete low-order
elliptic TTI ABC reads as:




σxx = −ρVp

κ cos2 θ+sin2 θ√
κ2 cos2 θ+sin2 θ

[
(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz

]

σzx = −ρVp
(κ−1) cos θ sin θ√
κ2 cos2 θ+sin2 θ

[
(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz

]
− ρVsvz

(27)

5. Stability of the ABC

We know that ρ > 0 and C is symmetrical and positive, i.e. (C : ξ).ξ > 0 ∀ξ symmetrical. C is thus invertible

and let us denote by C−1 its inverse, which is also positive.

Let us consider a domain Ωx =]−∞, 0[×]−∞,+∞[ and Γx denotes its external boundary. Let us introduce

the functional E(t) =
1

2
(||v||2Ωx,ρ + ||σ||2Ωx,C−1). Then, formally, we have:

d

dt
E(t) =

∫

Ωx

ρ∂tvvdx+

∫

Ωx

∂tσ : (C−1 : σ)dx =

∫

Γx

σxxvx + σxzvzdx (28)

Now, we can replace the first term of (28) by using the first equation of the elastodynamics system (1) and
a generalized Green formula:

∫

Ωx

ρ∂tvvdx =

∫

Ωx

∇.σvdx = −
∫

Ωx

σ :
−→∇vdx+

∫

Γx

(σn)vdx

We can also replace the second term of (28) by using the second equation of the elastodynamics system (1):

∫

Ωx

∂tσ : (C−1 : σ)dx =

∫

Ωx

[C : ǫ(v)] : (C−1 : σ)dx =

∫

Ωx

σ :
−→∇vdx

Finally, using that n is the outward normal to Γx, i.e. (nx = 1;nz = 0), σn = (σxx, σxz), and replacing by
the ABC (27), equation (28) reduces to:

d

dt
E(t) =

∫

Γx

σndx =

∫

Γx

− ρVp√
κ2 cos2 θ + sin2 θ

[(κ cos2 θ + sin2 θ)vx + (κ− 1) cos θ sin θvz]
2 − ρVsv

2
zdx

which is negative. Thus, the energy is decreasing, which ensures the stability of the boundary value problem.

6. Numerical illustration

Let us consider an homogeneous 2D square domain and an elastic initial condition: v(x, 0) = v0(x) with

v0(x) =
−→∇ × e−π2||x||2 +

−→∇e−π2||x||2

and σ(x, 0) = 0. Then, P-waves and a S-waves can be generated. In an isotropic medium (see Fig. 3), the
magnitude of the velocity field depicts two circles, and it is observed at different times of simulation: 1 s at
Fig. 3(a), 1.5 s at Fig. 3(b). After 6 s of simulation (see Fig. 3(c)), only spurious reflections which are caused
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by the ABCs, are noticeable. In a TTI medium (see Fig. 4), the magnitude of the velocity field describes a
quasi-ellipsoid for the P-wave and a quasi-square for the S-wave, see Fig 4. This is due to the (non-elliptic)
TTI parameter choice. After 6 s of simulation, Fig. 4(c), only the spurious reflections caused by the ABCs are
noticeable. The comparison with the isotropic case depicts the same kind of reflections, with the same intensity.

Let us underline that in this TTI case, the use of PMLs leads to an exponential growing of the numerical solu-
tion, until the simulation stops (within one second). A rigorous analysis of this phenomena can be found in [3].

(a) Iso 1 s. (b) Iso 1.5 s. (c) Iso 6 s.

Figure 3. Velocity magnitude at different time of the simulation

(a) TTI 1 s. (b) TTI 1.5 s. (c) TTI 6 s.

Figure 4. Velocity magnitude at different time of the simulation

Now, let us compare the elliptic TTI ABC and the isotropic ABC efficiencies in the same general TTI elastic
media (i.e. non-elliptic), see Fig. 5. The L2-energy is measured at each time step. The initial condition is a
P-wave in Fig. 5(a), a S-wave in Fig. 5(b) and an elastic source in Fig. 5(c), so as to focus on the P-wave and
S-wave ABC reflections. In the three cases, the use of the anisotropic ABC clearly shows better results, in the
sense that the pollution involved by the reflections is lower (about twice lower).

Conclusion

We have proposed a new ABC for 2D elliptic TTI elastic waves which outperforms the standard isotropic
ABC in such media. Moreover, results show that the ABC also performs well in general TTI elastic media (i.e.
non-elliptic). Besides, it generates some spurious reflections which can be considered as noise in a RTM/seismic-
imaging context. It is worth noting that these ABCs stay stable in anisotropic media, offering an alternative to
PMLs. In the following, we work on an extension of our construction process to general TTI media.
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Figure 5. L2-energy with different initial condition
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linéaires, PhD thesis, Paris VI, 1980.

[12] Podgornova, O., Transparent Boundary Conditions for elastic anisotropic (VTI) media: axially symmetric case, Commun.
Comput. Phys., 11(2):541-554, 2012.

[13] Reynolds, A. C., Boundary conditions for the numerical solution of wave equations problem, Geophy., 43(6):1099-1110, 1978.
[14] Savadatti, S. and Guddati, M.N., Absorbing boundary conditions for scalar waves in anisotropic media. Part 1: Time

harmonic modeling, J. Comput. Phys., 229(19):6696-6714, 2010.
[15] Savadatti, S. and Guddati, M.N., Absorbing boundary conditions for scalar waves in anisotropic media. Part 2: Time-

dependent modeling, J. Comput. Phys., 229(18):6644-6662, 2010.
[16] Savadatti, S. and Guddati, M.N., Accurate absorbing boundary conditions for anisotropic elastic media. Part 1: Elliptic

anisotropy, J. Comput. Phys., 231(2):7584-7607, 2012.
[17] Savadatti, S. and Guddati, M.N., Accurate absorbing boundary conditions for anisotropic elastic media. Part 2: Untitled

non-elliptic anisotropy, J. Comput. Phys., 231(2):7608-7625, 2012.
[18] Thomsen, L., Weak elastic anisotropy, Geophysics, 51(10):1954-1966, 1986.
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