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Absorbing Boundary Conditions
for Difference Approximations to the

Multi-Dimensional Wave Equation

By Robert L. Higdon

Abstract. We consider the problem of constructing absorbing boundary conditions for the
multi-dimensional wave equation. Here we work directly with a difference approximation to
the equation, rather than first finding analytical boundary conditions and then discretizing the
analytical conditions. This approach yields some simple and effective discrete conditions.

These discrete conditions are consistent with analytical conditions that are perfectly
absorbing at certain nonzero angles of incidence. This fact leads to a simple and general
canonical form for analytical absorbing boundary conditions. The use of this form has
theoretical and practical advantages.

1. Introduction. Consider the wave equation

(1.1) u„ = uxx + uyy

for x > 0, y ^ R, t > 0. Here u is a function of x, y, and t. The units have been
normalized so that the wave speed is 1. Let ñ denote the spatial domain {(x, y):
x > 0, v g R).

Our goal is to find boundary conditions that cause wave motions from the interior
of ß to pass through the boundary without being reflected. In general, it is not
possible to find practical boundary conditions that do this perfectly (see, e.g., [3],
[7]). Instead, one wishes to find conditions that reduce the amount of reflection as
much as possible.

Boundary conditions of this type are desirable in a number of physical problems
(see, e.g., [1], [4], and references cited therein). In such situations, an open, artificial
boundary has been introduced in order to limit a large or unbounded domain so that
a numerical computation of the solution can be made feasible. One wants the
solution to behave as though the computational boundary were not present. In
particular, outgoing wave motions should pass through the boundary without being
reflected.

Substantial work has been performed on problems of this type. See, e.g., Bayliss
and Türkei [1] and Engquist and Majda [3], [4]. By and large, prior work has
concentrated on finding analytical boundary conditions for differential equations
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438 ROBERT L. HIGDON

rather than discrete boundary conditions for difference approximations. Some
exceptions are the analyses of the one-dimensional wave equation by Halpern [7]
and by Engquist and Majda in Section 5 of [4].

In the present paper we work directly with a difference approximation to (1.1),
rather than first finding analytical boundary conditions and then discretizing the
analytical conditions. This approach yields some simple and effective discrete
conditions.

These conditions turn out to be discretizations of some analytical boundary
conditions that are perfectly absorbing for waves traveling at certain nonzero angles
of incidence. This contrasts with the boundary conditions in [3] and [4], which work
best at normal incidence. We present some numerical tests that indicate the value of
the present approach.

We also describe a process by which the above conditions can be generalized to
arbitrary angles of incidence. This procedure leads to a simple and fairly general
characterization of analytical absorbing boundary conditions. This characterization
includes those in [3], [4] and is related to those in [1].

The outline of the paper is as follows. In Section 2 we make some preliminary
comments about dispersion relations and group velocity. In Section 3 we define
some notation, make a precise formulation of the problem, and make some com-
ments about stability. In Sections 4 and 5 we present the discrete boundary
conditions mentioned above. In Section 6 we present the results of the numerical
computations. In Section 7 we describe the generalization to arbitrary angles of
incidence. In Section 8 we discuss some practical aspects of the generalization. In
Section 9 we describe a factorization of absorbing boundary conditions that yields
the general characterization mentioned above.

2. Dispersion Relations and Group Velocity. Here we state some facts about
dispersion relations and group velocity that will be used in later sections.

When a wave form
(2 1) giox+iuy + itt

is inserted into (1.1), the result is the "dispersion relation"
(2.2) e = o2 + co2.

I (dual to 0

incoming

(a) Space-time domain

outgoing

w (dual to y )

\ o (dual to x )

outgoing    /, — — — — ncoming

(b) Frequency domain

Figure 2.1
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(2.3)

The graph of (2.2) is given in Figure 2.1(b). For general wave motions, one can show
that wave packets of neighboring frequencies travel at the group velocity

da '     3co /
(see, e.g., Whitham [16], Trefethen [13]). In the present case the group velocity
coincides with the phase velocity (-a/¿, -co/£). The gradient (2.3) enables one to
associate various portions of the cone in Figure 2.1(b) with motion into or out of the
spatial domain ß.

Next, consider difference approximations. Introduce a rectangular grid with mesh
spacings Ax, Ay, At in the x, y, t directions, respectively, and let u"m denote the
approximation to u(jAx, mAy, nAt). Throughout this paper we will consider the
standard second-order centered approximation

(2.4)
n + l
j.m -2u"    + uJ.m -J.m «;+i.* - 2«;.m + «;. 1,/n

(At)2 (Ax)2

uj,m+l 2u"    + u"

(Av)2
When (2.1) is inserted into (2.4), the result is

(2.5) sin-¿Ai At_
Ax

2/ .   oAx
sin Èi\ uAy\2

2  /       \Ax! \~~   2   j    ' \Ayj V"   2
This is the dispersion relation for the difference scheme (2.4). The graph of (2.5) is
given in Figure 2.2.

The wave form (2.1) can be written as
(2.6) (e'^x)J(e'"^)mW^')n

for points (jAx, mAy, nAt) on the grid. This means that the quantities oAx, wAy,
£Ar can be confined to the interval [-it, it]. If each of these quantities is small, then
the wave (2.6) is resolved well by the grid, and (2.5) approximates (2.2). However, for
larger frequencies the group velocities and phase velocities differ, and substantial
dispersion occurs. For example, the group velocity is zero if oAx - ±it and « = 0
(see (2.3) and Figure 2.2). An extensive discussion of dispersive effects in finite-
difference schemes is given by Trefethen [12].

incoming

outgoing

outgoing

oAa-

incoming

Figure 2.2
Graph of the dispersion relation for the difference approxima-
tion. (Cross sections for fixed co.)
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440 ROBERT L. HIGDON

The "incoming" and "outgoing" portions of the solution are indicated in Figure
2.2 (cf. (2.3)).

3. General Formulation of the Problem. Here we define some notation and
describe some general properties of the boundary conditions that are desired here.

The wave form (2.6) can be written as
(3.1) KJeioyzn,

where
(3.2) K = e'aAx    and    z = eiiCu.

If oAx = 0, then k = 1 and the wave is constant in x. If oAx = +tt, then k = -1
and the wave is a sawtooth in x. Analogous comments hold for z.

Let K and Z denote the shift operators with respect to x and t, respectively,
defined by

(3-3) Kulm-uJ+Um,        Zulm=u^.
We will consider boundary conditions of the form

(3.4) B(K,Z-')ul^ = 0,
where B is a polynomial in two variables having a nonzero constant term. The
boundary condition (3.4) expresses the boundary value «{j^1 in terms of values at
earlier times and/or in the interior of the spatial domain. The boundary conditions
used later do not involve shifts in the y-direction.

In order to study the reflection properties of (3.4), consider a linear combination

(3-5) «;,„ = cxK{(e^y)mz" + c2K{(e^y)mz".

Here kx = exp(ioxAx) and k2 = exp(/a2Ax) are chosen so as to correspond to
incoming and outgoing group velocity, respectively (see Figure 2.2). (Strictly speak-
ing, one would consider wave packets formed by integrating with respect to w and £.
But the analysis amounts to studying single frequency pairs (co, £).) When (3.5) is
inserted into (3.4), the result is

cxB(kx,z-1)+c2B(k2,z-1) = 0,

or

(3.6) Ci = -D) x[c2 = R(o>,z)c2,
B(kx,z l)

where R(u, z) is the reflection coefficient. The notation (co, z) is used here because
kx and k2 are functions of co and z.

Our goals are the following:
(1) Choose the boundary operator B so that |/?| is as small as possible. The ideal

situation would be to have

B{k2,z-1) = 0

for all possible z and corresponding k2. This means that the outgoing waves would
satisfy the boundary condition exactly, so that the boundary condition could be
regarded as a compatibility condition for outgoing radiation. However, this ideal
cannot be attained exactly in practice.
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BOUNDARY CONDITIONS FOR THE MULTI-DIMENSIONAL WAVE EQUATION 441

(2) Maintain stability. Roughly speaking, we will use the criterion
(3.7) B(k,z-1)*0   whenever |z|> 1, |k|< 1,
and K>e'uyz" is a solution of the interior difference equation. (Here k and z are
complex numbers, and we are extending the definition of k and z given in (3.2).)
This criterion needs to be made more precise.

(a) Suppose that \z\ > I, \k\ < 1, and Kje'uyz" is a solution of the difference
equation. If this mode also satisfies the boundary condition, then one has a solution
to the given problem that grows exponentially in the number of time steps. This
constitutes an obvious instability, and condition (3.7) is therefore essential.

(b) Now let |z| -» 1, and suppose that |k| —> 1 also. (These limits are taken from
the domains \z\ > 1, |k| < 1.) One then has a purely oscillatory mode like those
discussed earlier. It can be shown that a mode obtained by this limiting process must
have a group velocity that points into the spatial domain. Thus k = kx. See, e.g., [8]
or [12]. In this case the criterion (3.7) says that incoming waves must not be allowed
to satisfy the boundary condition by themselves. If this criterion were not satisfied,
then waves could radiate inward from the boundary without any stimulation from
outgoing waves or forcing functions in the boundary condition. This would be a
form of instability.

Case (b) above does not cover the case of evanescent modes for which |z| = 1 and
\n\ < 1. For such modes, the exponential decay in x means that any undesirable
effects would be confined to a neighborhood of the boundary x = 0.

Extensive discussions of the above issues have been given by Trefethen [13].
Criteria like (3.7) have been used to prove stability results for first-order hyper-

bolic systems. See Gustafsson, Kreiss, and Sundström [5] and Michelson [11]. In the
present case, we will regard (3.7) as a useful guideline for constructing and analyzing
boundary conditions.

It is important to note that goals (1) and (2) above are partly contradictory. The
trouble occurs at the zero frequency oAx = £Ai = coA y = 0, i.e., k = z = 1 and
co = 0. This is the point where the two branches of the dispersion relation cross (see
Figure 2.2). The case k = z = 1 thus corresponds both to incoming and outgoing
waves. If the boundary condition annihilates the outgoing mode at k = z = 1 (i.e.,
B(l, 1) = 0), then it also annihilates the incoming mode, and condition (3.7) is
violated. On the other hand, if (3.7) is satisfied for k = z = 1, then at that point the
reflection coefficient satisfies |R| = 1. Thus, there is total reflection at the zero
frequency and substantial reflection for low frequencies.

The label "generalized eigenvalue" is sometimes associated with situations where a
boundary condition allows incoming waves for \z\ = 1, as in the present case (see,
e.g., [8] or [13]). Trefethen [13] has shown that mild instabilities can be present in
such situations. These take the form of waves radiating spontaneously into the
spatial domain from the boundary. In Section 6 we present some numerical tests
with low-frequency data which suggest that these effects can be substantial when the
order of the zero in B(kx, z"1) exceeds two. However, for methods of order two or
less, these effects are outweighed by the advantages of small reflection coefficients.
Another test suggests that there is less of a problem with high-frequency data. The
generalized eigenvalues thus do not prevent one from finding effective absorbing
boundary conditions, and we seek 5(1,1) = 0.
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4. An Averaging Method. We now develop the first class of absorbing boundary
conditions to be discussed in this paper. These conditions are defined by

(4.1)
7 + Z-M// + K p

"0,m U-

Here p can be any positive integer, and K and Z are the shift operators defined in
(3.3). These boundary conditions have one-dimensional stencils but have strong
multi-dimensional effects. The first-order version (p = 1) simplifies to

[I - \(K + Z-i + Z-lK)]u"0:ml = 0

or

«Ô.» =*(«".« +<„ + «?. J,
which suggests that the condition is approximately compatible with outgoing waves.

Here we derive and analyze (4.1) by working directly with properties of the
difference scheme (2.4). The analysis will be based on the form given in (4.1) rather
than any simplified forms.

A motivation for this form is given by the following. We seek a boundary
condition,

A(K,Z-l)uC = 0,
that satisfies constraints (1) and (2) mentioned in Section 3. (The notation A(k, z"1)
is used here to avoid conflict with the general discussion given in Section 3.) We also
seek A(k, z"1) = 1 whenever k = -1 or z = -1. This would mean that the operator
A(K,Z~l) is the identity operator for "parasitic" modes that are sawtooth in x
and/or t. This requirement is introduced in order to have an operator that can be
applied to certain other hyperbolic problems where parasitic waves can be an issue.
Roughly speaking, we will guarantee that the parasitic modes cannot accidentally
satisfy the homogeneous boundary conditions and thereby generate instabilities.

The desired values of A(k, z'1) are suggested by the labelling of various points in
Figure 4.1(b). The other quadrants can be labelled similarly. The axes correspond to
cross sections of the dispersion relation for fixed co. The center of the picture
corresponds to k = z = 1, since k = exp(ioAx) and z = exp(/£Ai)- The edges
correspond to « = -1 and/or z = -1.

First consider

_x, _ (I + z'l\(l + k'
(4.2) P(k,z-')

Various values of P(k, z"1) are suggested by Figure 4.1(a). If we then let

(4.3) A(k,z~1) = 1- P(k,z~1),

we get the desired values indicated in Figure 4.1(b). The corresponding difference
operator A(K, Z"1) yields (4.1) for p = I. The higher-order method in (4.1) is
obtained by using the operator A(K, Z~l)p.

It may appear that one could use z in place of z"1 and/or k"1 in place of k.
However, the goal here is to produce practical boundary conditions. Relative to any
given boundary point, we need to have shifts backward in time and forward in
space, so that the boundary condition uses values of the solution that already have
been computed.
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P = 0

P= 1

I_

(a) Values of P(k,

¿Ai
P = 0

P = Q

A = 1

A =0

oS:

£Ar
A = 1

71 oAx

(b) Values of /((k.z-1)

FIGURE 4.1

PROPOSITION 4.1. The method (4.1) satisfies the stability criterion (3.7),

A(k,z-x)p*0   for\z\>l, |k|< 1,
vv/íA f/ie exception that A(l, 1) = 0.

Froo/. The z-factor in P(k, z"1) in (4.2) satisfies

1+z-1 < 1

for |z| > 1, except when z = 1. (Consider vectors in the complex plane extending
from -1 to z"1.) A similar argument holds for the «-factor. Thus \P(k, z_1)| < 1 for
|z| > 1, |k| < 1 except when z = k = I. A comparison with (4.3) completes the
proof.   D

The exceptional case A(l, 1) = 0 means that there is a generalized eigenvalue
corresponding to the zero frequency (see Section 3).

Next consider the reflection coefficients for (4.1). According to (3.6) and
(4.1)-(4.3), these are given by

-\\p
(4.4) *,(«,*) =

A(k2,z-1)

A(kx,z-^Y
^-(-Rl(u,z))'

Proposition 4.2. If \z\ = |k,| = |k2| = 1 and z # 1, then the reflection coefficient
for the casep = 1 satisfies \Rx(u, z)\ < 1, except when kx = k2 = I or kx = k2 = -1.

This proposition applies to all oscillatory waves admitted by the interior dif-
ference scheme, not just those that are resolved well by the grid.

The exceptional case is of little consequence, since the x-component of the group
velocity is zero for such modes (see Figure 2.2, and note that the hypothesis z ^ 1
implies co =*= 0). These modes do not propagate into the interior.

For all other cases, the proposition and (4.4) imply Rp(u,z) -» 0 as p -» oo.
However, the generalized eigenvalue corresponding to z = k = 1 places a limit on
the value of p that can be used in practice (see Section 6).

Proof of Proposition 4.2. The factors in the product P(k, z"1) in (4.2) have the
geometric representations given in Figure 4.2 (consider z"1 - (-1), etc.). We will use
these to compare P(kx, z"1) (incoming) and P(k2, z'1) (outgoing) and then use (4.3)
to compare A(kx, z"1) and A(tc2, z"1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



444 ROBERT L. HIGDON

»,-i

2-plane Kt (incoming) k2 (outgoing)

Representation of (1 + z~')/2 Representation of (1 + k,)/2

Figure 4.2

Representation of (1 + k2)/2

Here, z = exp(/£A/) and Ky = exp(iOjAx). Figure 2.2 implies that ¿A/ and oAx
have opposite signs for incoming modes and the same sign for outgoing modes.
Thus, argz"1 and arg«, have the same sign, and argz"1 and argK2 have opposite
signs (see Figure 4.2). Furthermore, the symmetry of the dispersion relation (2.5)
implies argK2 = -argKj. It follows that the products

H***'1)
1 + z- 1  + Kx P{k2,z-1) =

1 + z -1 1  + K,
2 )\ 2 /' '^2'~ ' \ 2 j\ 2

have the same moduli. However, in the second case, there is partial cancellation of
arguments whenever kx =£ k2, but not in the first. Thus, P(k2, z'1) is closer to 1 than
is P(kx, z"1), whenever kx ¥= k2. A comparison with (4.3) yields the desired conclu-
sion.   D

The next proposition applies only to those oscillatory waves that are resolved well
by the grid.

Proposition 4.3. The reflection coefficient Rp(u, z) for (4.1) satisfies

Here,  X = At/Ax,  and 0 is the angle of incidence measured relative to normal
incidence.

The Courant-Friedrichs-Lewy condition for the interior difference scheme (2.4)
requires X < 2~1/2 when Ax = Ay. If X has the maximum permissible value, then
the angle of best absorption is 45 degrees.

Proof of Proposition A3. The reflection coefficient is

*p(co,z)
1  -l(l+z-l)i(l + K2)

i - |(i + z-lMi + O
(See (4.3), (4.4).) Apply Taylor expansions to z = exp(/'|Ai) and k, = exp(iOjAx) to
get

(4.6) *-(«.*)-
o2 - A¿ + O(ÇAt).
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w (dual to y)

o (dual to x)

Figure 4.3

Cross section of Figure 2.1(b) for fixed £ > 0.

The dispersion relation (2.5) and the formula (2.3) for group velocity imply that,
to leading order, a2/£ * cosö and ox/£ » -cosö. Thus (4.6) implies (4.5).

An alternate approach to the last step is to observe that (2.5) implies £2 ~ a2 + co2
for waves that are resolved well by the grid. Thus, for leading-order effects, we may
think in terms of the dispersion relation for the differential equation and its graph in
Figure 2.1(b). Figure 4.3 shows a cross section of Figure 2.1(b) for fixed £ > 0. A
comparison of (2.3) with the cross section yields the conclusions given above. The
case £ < 0 is treated in a similar manner.   D

Proposition 4.3 implies that the reflection is essentially zero when cos 6 = X and
||Ar| is small. This can be described in the following way. If

(4.7) arg
1 +z-

arg
1 + K,

then P(k2, z"1) is real (see Figure 4.2). If, in addition, z and k2 are close to 1, then
P(tt2,z~l) is much closer to 1 than is P(kx, z"1), and the reflection is essentially
zero. But (4.7) is equivalent to argz"1 = argK2, or £Ai = a2Ax. Thus, in this case,
coso = X.

Proposition 4.4.  The method (4.1) is consistent with the analytical boundary
condition

A     _3_
at     ox,

Proof. For example, (4.1) can be written as
At_lI-Z-l\     ÍJ+Z-'
Ax{

(4.8) « = 0.

K
Ax *0.m 0.

At     }     \      2
Let Ax -» 0 with the ratio X = At/Ax fixed.   D

The coefficient of a/ot in (4.8) is the cosine of the angle of best absorption. This
suggests a generalization that will be discussed in Sections 7, 8, and 9.

We conclude by outlining another feature of the operator A(K,Z~l) defined in
(4.3). Simple modifications of this operator could be composed with boundary
conditions in other hyperbolic problems in order to suppress undesirable parasitic
waves. For example, to suppress a parasite corresponding to k = -1, z = 1, use the
operator defined by

1 - 1 + 1 -
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(5.2)

This function is zero for k = -1, z = 1. However, the function is equal to 1 for
k = 1 and for k = z = -1, so that the operator is turned off away from the mode in
question. Similar variations can be used for parasitic modes at k = 1 and z = -1 or
k = z = -1.

5. Space-Time Extrapolation. In this section we consider the "space-time extrapo-
lation" boundary conditions
(5.1) (/-Z-^'iC'-O.
Here, p is a positive integer. Some examples are the following:

p = l:    u"0^ = ulm,

p = 2:    iC1 - Km - «S.«-
The stencils are diagonal patterns in the (x, r)-plane.

Some properties of difference operators and polynomial interpolation imply that
these boundary conditions are true polynomial extrapolations. For example, when
p = 2, the boundary condition has the effect of fitting a linear function to the values
u"m and u2~J and extrapolating to the boundary. The case p = 2 can thus be
regarded as a "linear" space-time extrapolation, but we will refer to it as "second
order" in order to be consistent with other terminology used in this paper.

Space-time extrapolation has been shown to be a stable outflow boundary
condition for certain common difference approximations to first-order hyperbolic
systems. See, e.g., Gustafsson, Kreiss, and Sundström [5], Beam, Warming, and Yee
[2], and Gustafsson and Öliger [6]. Here we consider its application to the wave
equation.

First, consider stability. Let Sp(K, Z'1) denote the operator (/ - Z~lK)p used in
(5.1).

Proposition 5.1. Space-time extrapolation of order p satisfies the stability criterion
(3.7), with the exception that Sp(l, 1) = 0.

Proof. First suppose \z\ > 1 and |k| < 1. Then \z'xk\ < 1, and 1 - z'1k # 0.
Next, consider the limit |z| -» 1. If in this limit |k| < 1, then |z_1k| < 1 as before.

Otherwise, we have |k| = 1 in the limit. According to remarks made after (3.7), this
limiting k must be kx (incoming) instead of k2 (outgoing). Thus we need to show
1 - z'1kx + 0, or £Ai =£ axAx. But for incoming modes, £Ai and oAx have opposite
signs except when |A? = aAx = coAy = 0 (see Figures 2.2 and 5.1). Also see Figures
4.2 and 5.2.   D

Next, consider the reflection coefficients for the boundary conditions (5.1). These
are given by

(i-z-\y

Proposition 5.2. Suppose \z\ = |k,| = |k2| = 1 andz ^ 1. Then

|*fW)|<i,
except when kx = k2 = 1 or kx = k2 = -l.

As in Proposition 4.2, the exceptional case is of little significance. For all other
cases, RpT(u, z) -» 0 as p -» oo.

<»>      ^-fc^E-GH)'
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incoming (o = 0[)

outgoing

t^""^ outgoing (o = a2)

aàx = arg/c

incoming

Figure 5.1 Figure 5.2

Proof of Proposition 5.2. Figure 5.1 shows a cross section of the dispersion relation
for fixed co. A typical positioning of z, kx, k2 on the unit circle is indicated in Figure
5.2. It is clear that \z - k2\ <\z — kx\ except when kx and k2 coincide, i.e., when
k, = k2 = 1 or kx = k2 = -1. A comparison with (5.3) gives the desired conclusion.
D

The next proposition applies to waves that are resolved well by the grid. The proof
is similar to that of Proposition 4.3 (but simpler) and is omitted.

Proposition 5.3. The reflection coefficient for space-time extrapolation of order p
satisfies

X- cosO\p*r(«,*)-X + coso
where 0 is the angle of incidence and X = At/Ax.

+ O(èAt),

The reflection is essentially zero when cos 6 = X. This can be described as follows.
The reflection coefficient (5.3) is exactly zero if z = k2; when \z\ = |k2| = 1, this
means £Ar = a2Ax, or a2/£ = At/Ax = X. This includes certain waves whose
frequencies are quite high (see Figure 5.1). For waves that are resolved well by the
grid, a2/£ = cos0.

An alternate approach is to consider surfaces of constant phase (in x, y, t) for
outgoing plane waves. The points on the stencil of (5.1) he on the same surface when
the angle of incidence is +cos_1X. In this case, (5.1) is satisfied exactly, and there is
perfect absorption.

Proposition 5.4. Space-time extrapolation of order p is consistent with the analyti-
cal boundary condition

Proof. For example, use the " forward Euler" operator
K- I

At
or the " box scheme" operator

I -Zrl\H + K
At

Ax

I + Z -i K- I
Ax □
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6. Numerical Computations. In this section we present the results of some
numerical computations involving the boundary conditions that were discussed in
the preceding two sections. We obtain solutions of the wave equation on the
half-space x > 0 corresponding to various choices of initial data and boundary
conditions. The results are then compared with the solutions that would be obtained
if the boundary x = 0 were not present.

The half-space solutions are obtained by computations on the spatial domain,

ßi = {{x,y):0 < x < 2, -2 < y < 2).

The solutions are analyzed only on the smaller domain,

ß2= {(x,y)-0 < x < 1,-1.5 <y < 1.5}

(see Figure 6.1). The initial data used here have compact support in ß2. The
boundaries of Qx are chosen so that reflections from the top, bottom, and right
boundaries of Qx are not able to reach fi2 during the time interval on which
solutions are computed. The solutions on 22 thus coincide with true "half-space"
solutions.

2

1.5

boundary conditions

imposed here

-1.5

-2

Ü,

Figure 6.1

For each choice of initial data we also perform a computation on the larger
domain {(x, y): -1 < x < 2, -2 < y < 2}. The restriction of this solution to ß2
then gives the "free-space" solution corresponding to zero reflection. This will be
used to compute reflected errors.

In the first set of tests we compare the following second-order methods. Each of
these gives a smaller reflection than its first-order counterpart.

(a) Second-order averaging. This is the method (4.1) for p = 2, and it can be
written as

(6.1) M + l
«O.m = %[(6K- K2) + Z'\6 + AK- 2K2)- Z2(I + 2K + K2)] «J+1.

Here K and Z are the shift operators defined in (3.3). Proposition 4.4 implies that
(6.1) is consistent with

(6.2) 3?     ox u = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOUNDARY CONDITIONS FOR THE MULTI-DIMENSIONAL WAVE EQUATION 449

(b) Second-order space-time extrapolation. Here we have

(6-3) <+« = 2<m - u£
(see (5.1), (5.2)). This method is consistent with (6.2) (see Proposition 5.4).

(c) The second-order condition of Engquist and Majda. Here we have

(6.4) uxt - u„ + \uyy = 0

(see [3]). We use the discretization

(6.5) D¿D*+ulm - \D\D'_(ulm + <J + \DlDl{u^ + u"x^) = 0
given in [3]. Here D0, D+, and D _ are the usual centered-, forward-, and backward-
difference operators. Superscripts denote the variables in which the differences are
taken.

(d) 7714? boundary condition (7.4) for p = 2.

<6-6» [l-h)'-°-
In Proposition 7.2 this boundary condition is shown to be equivalent to (6.4). Here
we approximate 3/3r - 3/3x by

(6.7) 7-Z"     " + Z-M/*
At [      2      )\   Ax

This operator is squared to give an approximation to (6.6). The formula (6.7) is an
analogue of the discretization used in Proposition 4.4. The boundary condition (6.6),
(6.7) is included here mainly because its third-order analogue will be used in Tests 4
and 5.

For later reference, we note the angles of incidence for which the above boundary
conditions do their best absorption. The analytical condition of Engquist and Majda
((c) and (d)) is perfectly absorbing at normal incidence. This can be determined from
their analysis in [3] and [4] or from Propositions 7.1 and 7.2 in the present paper.
The averaging and space-time extrapolation methods are consistent with analytical
conditions that are perfectly absorbing at angle cos"1 X, where X is the mesh ratio
(see (6.2) and Section 7). In the present tests, X = .625 and cos"1 X = 51.32 degrees.

The computations were performed on a uniform grid for which Ax = Ay = 1/25.
In each test of each boundary condition we compare the L2-norm of the reflected
error in Q2 (at various times) to the L2-norm of the initial data. These ratios are
expressed as percentages in the tables appearing below.

In Test 1 we use the initial conditions

,     N (a)    u(x,y,0)=[e-3Or2>    r<A5>
(6.8) W       V \0, r> .45,

(b)    u,(x,y,0) = 0,

where r2 = (x - .5)2 + y2. The Fourier transform of the Gaussian is a Gaussian
centered about the zero frequency. The wave motion thus consists of Fourier modes
associated with all possible directions of propagation (see Figure 2.1(b)), so a wide
range of angles of incidence is present.
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The results of the computations are given in Table 6.1. At the earlier times, the
Engquist-Majda condition (c) gives a smaller reflected error than do the averaging
and space-time extrapolation methods. However, at later times, the averaging
method gives a smaller reflected error. For the larger times, the space-time extrapola-
tion is almost as good as condition (c).

The above behavior makes intuitive sense. The Engquist-Majda condition works
better than the others for waves travelling near normal incidence. These waves reach
the boundary earlier than other waves, and their reflections propagate back into the
interior most rapidly. Therefore, for short times, the normally incident waves should
matter most, and for such times boundary condition (c) should work better than
conditions (a) and (b). However, as t increases, the larger angles of incidence begin
to matter. For these, the boundary conditions (a) and (b) should be more effective.
The effects on the accumulated errors are evident in Table 6.1. Analogous compari-
sons can be made with boundary condition (d).

The space-time extrapolation method gives the largest reflected error in this
particular test. However, this boundary condition may be of practical value because
of its simplicity; compare (6.3) with (6.1) and (6.5).

The next two tests illustrate the behavior of the various boundary conditions at
specific angles of incidence. In Test 2 we use initial conditions that produce a wave
travelling at normal incidence. This is accomplished by multiplying (6.8)(a) by the
wave form

(6.9) cos[y'(aAx) + w(coAy) + n(£At)],

where, in this case, oAx = 0.8, coAy = 0, and |Ar > 0. The dispersion relation (2.5)
admits two values of £Af for each pair (oAjc,coAy), and here we use the positive
value of HAt. The Fourier transform of the initial data is a Gaussian centered about
the frequencies associated with (6.9). The corresponding group velocity is normal to
the boundary and points out of the spatial domain (see Figure 2.2). The values of the
wave packet at times / = 0 and t = At are used as initial values for the difference
equation.

The results of the computations are given in Table 6.2. The boundary conditions
(c) and (d) perform better than the others, as expected.

Test 3 involves a wave packet travelling at approximately 45 degrees incidence.
Here we multiply a Gaussian centered at (.5, -.5) by a cosine wave for which
ctAx = 0.8, coAy = -0.8, and ¿Ai > 0. This produces a wave packet that travels
toward (0,0) (see Figure 2.2). In this case, boundary conditions (a) and (b) are more
effective than the others; see Table 6.3.

Tests 2 and 3 suggest that if one has a priori information about the directions
from which the waves are approaching the boundary, then one should adjust the
boundary condition to the appropriate angle of incidence. This issue will be
discussed in Sections 7 and 8.

We conclude with two tests that illustrate the effects of the generalized eigenvalue
corresponding to the zero frequency. Here we use the third-order analogues of
boundary conditions (a), (b), and (d). The last of these is discretized by forming the
third power of (6.7). We do not use the third-order analogue of (6.4) given in [3].
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This boundary condition is equivalent to (7.4) for p = 3. However, it includes a term
uyyl, which appears to require an implicit difference approximation. The third-order
methods (a), (b) have smaller reflection coefficients than their second-order counter-
parts. A similar statement holds for the analytical condition in (d) (see Proposition
7.1).

Table 6.1
Test 1 (Wide range of angles of incidence). Percent reflection
for the following second-order methods: (a) averaging; (b) S-T
extrapolation; (c) Engquist-Majda; (d) (3/3f - d/dx)2u = 0.

Time Boundary condition
(a) (b)            (c) (d)

.50 2.1 2.9 0.16 0.36

.75 2.0 3.2 0.88 0.80
1.00 2.2 3.6 1.9 1.3
1.25 2.5 4.1 3.0 2.3
1.50 2.5 4.2 3.8 3.1
1.75 2.0 4.1 3.8 3.3

Table 6.2
Test 2 (Normal incidence). Same boundary conditions as in
Test 1.

Time Boundary condition
(a) (b) (c) (d)

.50 7.3 4.7 1.8 3.0

.75 8.4 5.9 2.7 4.7
1.00 8.4 5.9 2.9 4.9
1.25 8.4 5.9 2.9 4.9
1.50 7.5 5.0 2.8 4.7
1.75 2.8 1.6 1.8 2.9

Table 6.3
Test 3 (45 degrees incidence). Same boundary conditions as in
Test 1.

Time Boundary condition
(a) (b) (c) (d)

.50 2.7 1.4 3.5 1.5

.75 4.7 2.1 9.5 5.2
1.00 5.3 2.3 13.6 8.7
1.25 5.6 2.5 14.9 10.0
1.50 5.7 2.6 15.4 10.5
1.75 5.5 2.5 15.6 10.7
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Table 6.4
Test A ( Effects of generalized eigenvalue. Same initial data as
in Test 1). Percent reflection for: (a) 3rd order averaging; (b)
3rd order S-T; (d) (3/9/ - 3/3x)3w = 0.

Time Boundary condition
(a) (b) (d)

.50 8.9 8.5             7.5

.75 19.0 18.5 16.6
1.00 32.9 32.2 29.1
1.25 50.5 49.7 44.9
1.50 71.8 70.7 64.0
1.75 96.4 95.1 86.1

Table 6.5
Test 5 ( Effects of generalized eigenvalue. Same initial data as
in Test 2). Same boundary conditions as in Test A.

Time Boundary condition
(a) (b) (d)

.50 2.3 8.3 0.95

.75 2.6 17.8 1.3
1.00 2.6 30.6 1.4
1.25 2.7 46.9 1.7
1.50 2.2 66.3 2.1
1.75 1.6 88.8 2.4

In the first of these tests (Test 4) we use the same initial data as in Test 1. The
Fourier transform of the initial data is essentially a Gaussian centered about the zero
frequency. The results of the computations are given in Table 6.4. Each method
produces a reflected error which is substantially larger than that produced by its
second-order counterpart in Test 1. Additional tests with space-time extrapolation
show that the amount of reflection for this method increases as the order increases.
Similar effects have appeared in some computations involving a simple first-order
hyperbolic system with similar initial data.

In the next test (Test 5) we use the same initial data as in Test 2. In this case the
data consist mostly of higher frequencies. The results are given in Table 6.5.
Boundary conditions (a) and (d) give smaller reflections than their second-order
counterparts in Test 2, but space-time extrapolation shows a behavior like that in
Test 4. An additional test with fourth-order space-time extrapolation yields an even
higher reflection.

As noted in Section 3, the generalized eigenvalue can cause mild instabilities
consisting of waves radiating spontaneously into the interior from the boundary. In
Test 4 the data in the problem are concentrated about the troublesome frequency,
and the instability is triggered in all of the methods. In Test 5 the data are
concentrated away from the troublesome frequency, and an instability is stimulated
only in method (b).
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Complete stability analyses of the discrete conditions (a) and (b) are given in
Sections 4 and 5, respectively. The only flaws in these boundary conditions corre-
spond to the zero frequency. Similar statements hold for the corresponding analyti-
cal conditions and the analytical condition in (d) (see Proposition 7.3).

7. Generalization to Arbitrary Angles of Incidence. The discrete boundary condi-
tions discussed in Sections 4 and 5 are consistent with analytical boundary condi-
tions of the form

* 9        9 Y        n

The mesh ratio X is the cosine of the angle of best absorption. This suggests that one
might use

(7.1) '(„„,£ _¿)„_o

to annihilate waves moving at angle of incidence ±a, and that the higher-order
version

(7.2) (n((coS«4-A))„ = o

might be perfectly absorbing at angles ±ax,...,±a. (Here jot -| < tt/2 for all j.) In
this section we begin to analyze boundary conditions of the form (7.1), (7.2). From
now on, we mainly consider the analytical problem rather than discrete approxima-
tions.

In the present section we discuss reflection coefficients and stability properties of
(7.1) and (7.2), and we describe connections between these boundary conditions and
those of Engquist and Majda [3], [4] and Bayliss and Türkei [1]. In Section 8 we
discuss some practical matters relating to the implementation of (7.1), (7.2). In
Section 9 we describe a useful factorization of various absorbing boundary condi-
tions into the form (7.2).

The boundary conditions (7.1) and (7.2) have the following interpretation. Con-
sider a plane wave of the form

u(x, t) = f(xcosa + y Una + t),

where / is some function. This wave moves out of the spatial region x > 0 at angle
of incidence a. It also satisfies (7.1). The boundary condition (7.1) can thus be
regarded as a compatibility condition for waves of the above form. In particular, the
boundary condition (3/3/ - d/dx)u = 0 is compatible with outgoing waves moving
at normal incidence (see Proposition 7.2). Similarly, a linear combination of plane
waves moving outward at angles ±ax,...,±a would satisfy exactly the higher-order
version (7.2).

Proposition 7.1. The reflection coefficient for (7.2) is
p

(7.3) -n
cos ay — cos (

*_* I cos ay + cos /

where 9 is the angle of incidence.
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Proof. Insert into condition (7.2) a linear combination of an incoming wave
exp(iaxx + /'coy + /'£/) and an outgoing wave exp(/a2x + /'coy + /£/) to get

«--ri
1=1

(cos<*,)/£ - ia2)

(cosa,)/'£ - iax) J

Now use a2/£ = coso, ox/£ = -cosö (see Figure 4.3).   □
The absolute value of each factor in (7.3) is less than 1, except when 6 = tt/2.

This exception is of no consequence, since this case corresponds to tangential
incidence. The corresponding modes do not propagate into the interior.

We next relate the general formulation (7.2) to the boundary conditions derived
by Engquist and Majda [3], [4] for the wave equation. Their derivation is quite
different from that implied by the next proposition (cf. Section 9).

Proposition 7.2. The pth-order boundary condition of Engquist and Majda is
equivalent to

™ (è-è)'-»•

i.e., a = 0 for all j.

Proof. When p = 1, Eq. (7.4) is identical to their first-order boundary condition.
When p = 2, (7.4) is

U„ - 2U,, + Uxx = 0.

But (1.1) says uxx = utl - uyv, so the boundary condition can be written in the form

2un - 2»xt - Uyy = °-

This is equivalent to Eq. (2) in [3]. A similar treatment of the case p = 3 yields Eq.
(3) in [3].

For the general case, use the recursion relation

^i"=37V-4^7^-lM

given in Eq. (1.5) in their second paper [4]. Here Bp is the operator used in the
boundary condition of order p. In [4] the spatial domain is defined by x < a =
constant, so the signs of the x-derivatives should be reversed when that paper is
compared with this one. An induction shows

1    / 3      _3_\"
"~ 2P-i\dt + dxj -

The interior equation u„ = uxx + uYV is used during this induction. When the
necessary notational change is made, we get (7.4).   D

The reflection coefficient for (7.4) is
1 - cos 6 '
1 + cos 6 ,

(cf. (7.3)). This has a zero of multiplicity 2p at 6 = 0, whereas the coefficient for
(7.2) has zeros at ±ax,..., ±a . The general form (7.2) thus enables one to spread
out the zeros and thereby broaden the range of angles where the reflection coeffi-
cient is small. The results in Test 1 in Section 6 suggest the value of this approach.
Also see Section 8.
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Proposition 7.2 suggests a connection between the boundary conditions in [3], [4]
and those of Bayliss and Türkei [1]. The latter conditions are designed for computa-
tions on exterior domains and use compositions of operators of the form 3/3/ +
3/3/- + constant//-, where r is a radial distance. The coefficients of l/r are chosen
so that the boundary condition annihilates as many terms as possible in asymptotic
expansions of outgoing solutions. The expansions are valid as r -» oo.

We next discuss stability properties of the boundary conditions (7.1) and (7.2). A
standard energy argument shows that when the first-order condition (7.1) is used,
the energy seminorm

.2     ,       ,2\ ,   .u,\   + \V u\ \ ax ay

is nonincreasing in time. We omit the details.
For the more general case (7.2) we use a stability criterion which is essentially that

used in the " normal mode analysis" developed by Kreiss and others (e.g., [10]) for
studying well-posedness of initial-boundary value problems for first-order hyper-
bolic systems (also see [8]). This criterion is an analogue of the criterion (3.7) used
earlier for difference approximations.

The criterion can be described as follows. Denote a homogeneous boundary
condition involving x, t derivatives by

(7.5) B(o/ox,o/dt)u = 0,
where B is a polynomial in two variables. Here the symbol "B" has a different
meaning than it did in Section 3. Consider solutions of (1.1) that have the form
(7.6) gJx + tuy+Mt^

where y and s are complex numbers, Re s > 0, and Re y ^ 0. (The dual variables
must satisfy s2 = y2 + (iu)2.) The stability criterion is

(7.7) B(y,s)*0   for Reí > 0.
The value of y for Re s = 0 is defined to be the limit of values of y corresponding to
Res > 0.

Consider two cases of (7.7):
(1) Suppose that Re5 > 0, Rey < 0, and (7.6) satisfies the boundary condition

(7.5). The related modes exp[c(yx + /'coy + st)] are also solutions of the initial-
boundary value problem, for any c. (This requires that the various terms in the
boundary condition have the same total degree, as is the case for (7.2).) As c -» oo
these solutions grow exponentially in / at higher and higher rates, but they still
retain finite norm in x. The initial-boundary value problem would then be strongly
ill-posed (see [8] or [10]). The condition (7.7) guarantees that these modes are
excluded.

(2) Next consider the limit Res -» 0, i.e., s -» ;'£. If Rey -» 0 also (i.e., y -» ia),
then the limiting value must be iax (incoming) rather than ia2 (outgoing) (see [8]).
As in Section 3, these modes must be prevented from satisfying the boundary
condition by themselves. Equivalently, condition (7.7) enables one to solve for
incoming modes in terms of outgoing modes, since B(iax, /'£) is the denominator in
the reflection coefficient. (Also see [8].) The condition (7.7) also excludes evanescent
modes for which Re y < 0.

//
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Proposition 7.3. // |a -| < 77/2 for allj, then the boundary conditions (7.2) satisfy
the criterion (7.7), with the exception that B(0,0) = 0.

The exceptional case means that we again have a generalized eigenvalue corre-
sponding to the zero frequency. In the notation used for the discrete problem, this
was the case k = z = 1.

Proof of Proposition 7.3. Let B(d/dx, 3/3/)w = 0 denote the boundary condition
(7.2). Then,

p
(7.8) £(y,í)=n((cosa,.)í-Y).

7=1
Here cosa, > 0 for all /'.j j

If Re s > 0 and Rey < 0, then each of the factors is nonzero.
Next consider the case Res = 0. If Rey < 0, then again each factor is nonzero. If

Rey = 0, then y = iax (incoming), and a typical factor can be written as (cosa7)z'£
- iax. But £ and ax have opposite signs (see Figure 2.1(b)), so each factor in (7.8) is
nonzero except if £ = ax = 0. This gives the desired conclusion.   D

The proof shows that if a boundary condition can be factored into a form like
(7.2), then its stability analysis reduces to an analysis of one-dimensional first-order
operators.

8. Practical Considerations. Here we discuss various matters related to the imple-
mentation of the boundary conditions (7.2) and the choice of suitable angles a¡.
Consider the second-order case

(cOSai%-3^)l(cOSa2)37-3^)M = 0-

One way to implement (8.1) would be to multiply the two operators in (8.1) and
obtain a linear combination of u„, uxl, and uxx. If the boundary condition is used
in this form, it would be necessary to approximate uxx with one-sided differences. It
might be difficult to obtain a stable difference method by this approach, so one
could use the interior equation uxx = uu - u to write the boundary condition in
terms of «„, uxt, and uyv. This would be similar to a process outlined in the proof of
Proposition 7.2.

An alternate approach is to approximate each factor in (8.1) with a one-dimen-
sional, first-order difference operator. Then use the composition of these operators
to approximate (8.1). This was done for boundary condition (d) in Section 6. Such
an approach would have the following advantages:

(1) The stencil of the boundary condition would be one-dimensional, even for a
higher-order boundary condition. This means that it would not be necessary to
adopt any special boundary procedures near a corner (unlike in the case of a
boundary condition that involves tangential derivatives). In fact, if the interior
scheme (2.4) were used with a one-dimensional boundary condition, then the corner
points would never be involved in the computation.

(2) The analysis of stability would be simplified. In general, stability analyses can
be quite complicated, but in the present case, the analysis would reduce to a study of
first-order factors having one-dimensional stencils. The situation would resemble
that in the proof of Proposition 7.3. This approach will be used in [9] to give a
general stability analysis of approximations of (7.2).
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Next, consider the choice of the angles ax, a2 appearing in (8.1). In general, the
optimal ax, a2 would depend on the problem being considered. For example,
suppose that a computation is performed on a rectangular domain and that the
initial data have compact support in the domain. The closer the support is to any
given boundary segment, then the broader the range of possible angles of incidence,
and the broader the range from which the optimal ax, a2 are to be chosen. In any
given situation, it may be necessary to determine these angles experimentally.

The boundary condition can also be adjusted to take advantage of a priori
information about the solution. For example, if the wave motion arises from a
localized source, then the angle of incidence at each boundary point is fairly
well-defined, and at each point, a, and a2 can be chosen accordingly.

9. A Factorization Theorem. In this section we describe a factorization process that
provides a fairly general characterization of absorbing boundary conditions.

We first outline a procedure that has been used by other authors to derive such
conditions. Figure 2.1(b) and the dispersion relation (2.2) imply that outgoing waves
are characterized by

(9.1) a2(co,£) = £(l-co2/£2)1/2.

(The negative square root would describe incoming waves.) If r(co/£) is a rational
approximation to the square root in (9.1), then
(9.2) a2(co,£)«Hco/£).
Now, clear denominators in (9.2) and move everything to one side. The resulting
polynomial is the symbol of a differential operator that approximately annihilates
outgoing waves and thus yields an absorbing boundary condition. The form (9.2)
implies that all terms in the operator have the same total degree.

This procedure was introduced by Engquist and Majda ([3], [4]), who used Padé
approximations. Wagatha [15] later used least-squares approximations. Trefethen
and Halpern [14] have made a general study of rational approximations, with
applications to absorbing boundary conditions and to one-way wave equations.

The square root in (9.1) is an even function. If r(co/£) is also even, and if the
numerator and denominator do not have any factors in common, then all powers of
co must have even order. This means that all of the y-derivatives in the boundary
condition have even order, and the interior equation (1.1), u„ = uxx + uvv, can be
used to eliminate these derivatives. From now on we will assume that this is the case.
(However, the theory in [14] includes the possibility of nonsymmetric approxima-
tions, and in applications to one-way wave equations it is not possible to use (1.1) to
perform the last step.)

Under the above assumption, the boundary condition has the form

(9.3) P(o/ox,o/ot)u = 0,
where P is a real polynomial in which the terms have the same total degree. The
homogeneity means that P can be factored into the form

(9.4) n e,.(a/a*,a/8/),j
where each Qj is either linear or real irreducible quadratic. Our aim is to char-
acterize the factors (?..
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The factorization of the Engquist-Majda conditions is given in Proposition 7.2.
The second-order condition of Wagatha [15] is

2ltr 15tt
"64"«« - uxt - -J4»„ = 0,

which factors into the form (7.2), with ax = 22.14 and a2 = 64.42 degrees.

Proposition 9.1. The boundary condition (9.3), (9.4) either
(1) factors into the form (7.2), or
(2) violates the stability criterion (7.7), or
(3) is not optimal, in the sense that it is possible to modify the coefficients in at least

one of the Qy so as to reduce the magnitude of the reflection coefficient.

The factored form (7.2) does a great deal to simplify stability analyses (see
Proposition 7.3) and numerical implementation (see Section 8).

Proof of Proposition 9.1. The stability criterion (7.7) is equivalent to Qj(y, s) # 0
for all j, and the reflection coefficient is

y Qj(iox,io
(cf. Proposition 7.1). We can thus analyze the factors individually. A factor Q must
have the form

(I) b 3/3/ - d/dx, where b is real, or
(II) irreducible real quadratic.
First consider case (I).
If 0 < b < 1, then Q has the form of a factor in (7.2), with cosa = b.
If -1 < 6 < 0, then Q allows incoming waves at angle cos"1 b. This is a form of

instability.
The case b < -1 corresponds to exponential instability; use 5 = |co|/(62 - 1)1/2

and y = sb.
If b > 1 there is no instability. However, the corresponding contribution to the

reflection coefficient is
b-(o2/t)

Q    b-(oxA)-
Here a2/£ = -ax/i ^ 0. See Figure 9.1, and compare with Figure 2.1(b). A small
decrease in b yields a decrease in \RQ\, whenever ax # a2. Thus, Q can be modified

b- (o/í)

Figure 9.1
Case (I) forb > 1.
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to give less reflection, and it cannot be part of an optimal boundary condition. The
case b = 0 is also not optimal.

In case (II) the quadratic polynomial Q(o/£, 1) is never zero. Without loss of
generality, assume that it is positive. If the vertex of the parabola is centered or to
the left of the origin, then \Q(o2/£, l)/Q(ax/i,l)\ > 1. Otherwise, this ratio is less
than 1. However, it can be reduced further by bringing the parabola closer to the
horizontal axis. Since this case cannot be optimal, we will not bother to analyze
stability.   D

The factorization can be described in terms of points where the rational approxi-
mation r in (9.2) equals the square root in (9.1). At any such point, a2(co, £) =
£/-(co/£). This means that the outgoing mode exp[/a2(co, £)x + 'coy + /'£/] satisfies
exactly the boundary condition derived from (9.2), and perfect absorption occurs.
But this case also gives a root of P(o/£, 1), which yields a factor of P(a/ax, a/at).
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