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Absorbing Boundary Conditions
for the Numerical Simulation of Waves

By Bjorn Engquist* and Andrew Majda**

Abstract.   In practical calculations, it is often essential to introduce artificial boundaries
to limit the area of computation.   Here we develop a systematic method for obtaining
a hierarchy of local boundary conditions at these artificial boundaries.   These boundary
conditions not only guarantee stable difference approximations but also minimize the
(unphysical) artificial reflections which occur at the boundaries.

Introduction.  When calculating solutions to partial differential equations it is
often essential to introduce artificial boundaries to limit the area of computation.
Important areas of application which use artificial boundaries are local weather predic-
tion (see [8] and [9]), geophysical calculations involving acoustic and elastic waves (see
[6] and [7]), and a variety of other problems in fluid dynamics.  One needs boundary
conditions at these artificial boundaries in order to guarantee a unique and well-posed
solution to the differential equation.  In turn, this is a necessary condition to guarantee
stable difference approximation.  Of course, one hopes that these artificial boundaries
and boundary conditions affect the solution in a manner such that it closely approxi-
mates the free space solution which exists in the absence of these boundaries.  In partic-
ular, one would like to minimize the amplitudes of waves reflected from these arti-
ficial boundaries.

In this work we develop perfectly absorbing boundary conditions for general
classes of wave equations by applying the recently developed theory for reflection of
singularities for solutions of differential equations (see [2], [3], [4] ).  Unfortunately,
these boundary conditions necessarily have to be nonlocal in both space and time and
thus are not useful for practical calculations.  Hence, in the main part of the paper, we
derive a hierarchy of highly absorbing local boundary conditions which approximate
the theoretical nonlocal boundary condition.  Of course, it is also very important for
applications that these boundary conditions generate well-posed mixed initial boundary
value problems.  (See [1] for a discussion of well-posedness.)  The general approach is
applied specifically to produce absorbing artificial boundaries for the acoustic wave
equation in Cartesian and polar coordinates and for the linearized shallow water equa-
tions in two space dimensions.

We illustrate our results by the following hierarchy of absorbing boundary condi-
tions at the wall x = 0 for the scalar wave equation,

wtt = wxx+wyy>      t,x>0,
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630 BJÖRN ENGQUIST AND ANDREW MAJDA

(1) wx-wt\x=0 = 0,

(2) wxt-wtt + Hwyy\x=Q = 0,

(3) Wxtt - "ttt ~ V™Xyy + %Wtyy \x = 0 = 0.

Each of these boundary conditions gives a well-posed mixed initial boundary value
problem for the wave equation.  We present an example in Section 1 where another
obvious highly absorbing approximation generates a strongly ill-posed mixed problem.
Thus, local absorbing approximations must be chosen carefully by using the normal
mode analysis for mixed problems (see [1] for definitions) as a guideline.  All of the
above boundary conditions are perfectly absorbing at normal incidence.   For a 45°
angle of incidence, (1), (2), and (3) reflect waves with amplitudes, respectively, 17%,
3%, and .5% of the amplitude of the incident wave.  Close to glancing, all reflection
coefficients tend to unity.  This is inherent in the problem; however, the correspond-
ing reflected waves propagate slowly in the normal direction and hence do not affect
the calculation in the interior.

In Section 1, we develop a theory of highly absorbing boundary conditions for
second order wave equations.   In Section 2, an analogous theory is developed for gen-
eral symmetric hyperbolic systems.  We illustrate this theory in Section 3 by explicitly
calculating absorbing boundary conditions for the linearized shallow water equations;
included in this section are some amusing observations from perturbation theory which
have bearing here.   Finally, in Section 4, mixed initial boundary problems with absorb-
ing boundary conditions for the scalar wave equation and the linearized shallow water
equations are approximated by difference schemes.  The results of numerical experi-
ments displayed here strongly indicate the value of our systematic approach as a prac-
tical tool.

The topic in this paper has been of considerable recent interest in the computa-
tional literature (see [9], [10], [11], [12], and [13]).  In [9] and [11] the analogue
of the first approximation (of Sommerfeld type) is implemented in nonlinear calcula-
tions while in [12] a special approximation is developed then analyzed in one space
dimension.  The wave equation in a half-space is studied in [10] and [13].  The start-
ing point for [10] appears to be the same nonlocal perfectly absorbing condition de-
veloped in (1.6) below.  The methods in [10] treat the nonlocal boundary condition
directly and require storage of from three to six time levels on the boundary while in
[13] solutions of the Neumann and Dirichlet problems are combined.  The methods
described in both of these papers are ingenious but rather special and appear to apply
only to the constant coefficient scalar wave equation in a half-space. (In [13], some
equations of elasticity are also analyzed.)

1.   Highly Absorbing Boundary Conditions for Second Order Wave Equations.
In this section we shall begin with a special example which motivates the manner in
which we construct nonlocal perfectly absorbing boundary conditions together with
suitable highly absorbing local approximations.

1 .A.   The Theoretical Nonlocal Boundary Condition.   We consider solutions of
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ABSORBING BOUNDARY CONDITIONS 631

the wave equation

(1.1) DiV = 9^_9^_9!"    0
dr2     bx2     by2

in the half-space, x > 0. We denote the dual variables to (y, t) by (co, if).  Special
families of solutions to the wave equation representing waves travelling to the left are
given by the plane waves

(1.2) w = ei(s/S2-u2x + i;t+uy)

with |2 - co2 > 0, if > 0.  If (co, |) is held fixed, one first order differential boundary
condition which annihilates w has the form,

M ^-rVF^K=0 = 0.

Thus, for all waves as in (1.2) with (if, co) held fixed, the boundary condition in (1.3)
produces no reflections. On the other hand, more general wave packets travelling to the
left can be represented by

(L4> w(x, y, t) = ff ¿(VF^+if+v^jpg, w)¿(0; i, u)did03.

Here " denotes Fourier transform in the (y, t) variables, w(0, if, co) is a special ampli-
tude function with support for large (if, co) in the cone if2 > co2, and p(if, co) is a
smooth function homogeneous of degree zero for I if I + I co I large with support in £2 >
co2 for (if, of) large and identically one on a neighborhood of the support of iv(0, if, co).
We note that by Fourier's inversion formula, w(0, y, t) is given by the inverse Fourier
transform of the amplitude function, w(0, %, co).  By superposition of the calculations
for (1.3), the boundary condition which exactly annihilates singular wave packets travel-
ling to the left of the form in (1.4) is given by

(1.5) ayv_ CCentt+u,y)^2-ÜJ2p^0t £, u)dSdu\x=0 = 0.
dx    J •>

Now, we express the mapping

jje«ït+ojy)iy/p -oj2pw(0, if, co)ciifcfco

using the symbolic notation of pseudo-differential operators (see the article by Niren-
berg in [3] ).  Suppose b(y, t, co, if) is a formal asymptotic sum of terms with descend-
ing degrees of homogeneity in (if, co) for (if, co) large.  Then a pseudo-differential opera-
tor is defined through the Fourier transform by the recipe,

b(y' U h è)w = ífei{wy + it)b& <>íw' '"*)*«> "Wide*.

Thus, the perfectly absorbing boundary condition in (1.5) can be written in the form
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632 BJÖRN ENGQUIST AND ANDREW MAJDA

Now, in general, it is not possible to design boundary conditions so that no reflections
occur; nevertheless, it is possible to construct boundary conditions so that for an arbi-
trary highly singular wave packet (provided it contains no glancing directions) only low
amplitude smooth reflections occur.  (Of course, p can be adjusted to exactly annihi-
late the wave packets from (1.4).)  In fact, by applying the construction of Lax and
Nirenberg from [3] and the algebraic criterion for perfect reflection developed by
Majda and Osher in [2], one verifies that necessarily the only boundary conditions
with these properties are multiples of the boundary condition in (1.6) with p adjusted
according to the largest angle of incidence of rays containing the singularities of co.

l.B. A Hierarchy of Highly Absorbing Local Boundary Conditions.   Unfortu-
nately, the perfectly absorbing boundary condition developed above in (1.6) is neces-
sarily nonlocal in both space and time.   This boundary condition is impractical from a
computational point of view since to advance one time level at a single point requires
information from all previous times over the entire boundary.  Thus, we shall develop
highly absorbing local approximations to the perfectly absorbing boundary condition
in (1.6).  Necessarily, we want to build boundary conditions satisfying the following
two additional criteria:

(1)    These boundary conditions are local.
{'■•'J (2)    The boundary conditions lead to a well-posed mixed

boundary value problem for the wave equation.

We necessarily need (2) to be satisfied; otherwise, it would be impossible to construct
stable difference approximations to the associated boundary value problem while, as
remarked above, (1) is essential for reasonable control of the operation count.

We take the symbol of the boundary condition from (1.6) given by

(1.8) d/dx - i$y/l - co2/if2

and approximate it at normal incidence (co = 0).    Using the approximation
VI - co2/if2 = 1 + 0(co2/if2) and recalling that /£ corresponds to b/bt, we obtain

1 st approximation :

(1.9)

Using the next approximation (the first Taylor or Padé) to the square root,
Vl - w2/if2 = 1 - ^co2/if2 + t?(co4/if4) in (1.8) and multiplying by /£, we obtain a
symbol

■j- 3   _i_ i-2       1     2
*Yx + t   ~2">

and this yields the boundary condition,
2nd approximation :

(M0) fe- 4-+i- 4Wo=o.\bxbt    dt2      2 by2)     x~°

b      b 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSORBING BOUNDARY CONDITIONS 633

Remark.   The 1st approximation is a familiar one which works exactly for a
single space dimension and could easily be derived from physical considerations.  Nu-
merical experiments (see Section 4 of this paper) indicate that the 2nd approximation
provides a significant improvement over the first (see the discussion below for the theo-
retical reasons); the authors do not know of any derivation of this approximation from
"ad hoc" physical reasoning.

When if = 1, co has the interpretation of co = sin 6 where 9 is the angle of inci-
dence. Thus, if a wave of the form a(if, u>)e1^^ _CJ x+l0jy+>$t siIXXies ^e boundary
at the angle 6, the first approximation produces a reflected wave

¿,e-'\/£2-cj2x+í w y+i% t

with amplitude b given by

,        /cos 6-1b = a .cos 6 + 1
while the second approximation produces an even weaker reflected wave

be-i-Ji2-i¿¿x+iwy+H¡t
with amplitude

(cos 6 - 1b=-a cos 6 + 1

We note that these conclusions are valid at both low and high frequencies (the numer-
ical experiments in Section 4 confirm this).

We also claim that the 1st and 2nd approximation also satisfy the criterion in
(2) above.  Standard energy estimates prove that the 1st approximation is a maximal
dissipative boundary condition and, therefore, is trivially well posed.  The verification
that the 2nd approximation is well posed is more subtle. We recall the general alge-
braic normal mode analysis for checking well-posedness (see the paper of Kreiss, [1])
specialized for the wave equation:

(1.11)  A mixed initial boundary value problem, B, for the variable coefficient
wave equation is well posed if there are no solutions to the frozen coefficient half-

space problems of the form

w(s, co) = e-V*2 + w2*+ttí+í«y

with Res > 0 and satisfying,

Dw(s, co) = 0,       Bw(s, co)\x=0 = 0;

furthermore, for Isl2 + Icol2 = 1 and Res > 0, Bw(s, co) should satisfy I Bw(s, co)l
> c0 > 0.

Applying the criterion in (1.11) to the 2nd approximation, this approximation
yields a well-posed problem unless

(1.12) -sy/s2 + co2 = (s2 + ^co2)    for some s with Res > 0.

Squaring the identity in (1.12) we obtain that necessarily co = 0 but when co = 0 the
above identity yields 2s:2 = 0, thus the problem is well posed.

It is natural to try higher order approximations to \/l _ w2 /if2 for even better
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634 BJÖRN ENGQUIST AND ANDREW MAJDA

absorption.  The 2nd approximation involves approximating y/l - co2/if2 = 1 -
íáco^if2; this approximation coincides with both the first Taylor and first Padé ap-
proximations to \/l + x at x = 0. Now, we investigate highly absorbing boundary
conditions derived from the second Padé and Taylor approximations, respectively;
these both reflect waves with amplitudes diminished by I (cos 6 - l)/(cos 6 + l)l3
where 0 is the angle of incidence.

We claim that the highly absorbing boundary condition derived from the 2nd
Padé approximation is well posed.  To derive this boundary condition we use the
second rational approximation

and use a similar analysis as in the above to arrive at the third order boundary condi-
tion

3rd approximation:

(1.13) (Jt_i_9!__Ü,3_9 -^H.-o^0-btby2)    x~°¿t2bx    4 fofyi    ar3     4 My

To check the well-posedness of this boundary value problem following (1.11) we need
only show that there are no roots with Res > 0 for

M>^WrW+s3+fSco2=0.

If we set s/co = z, we obtain

(z2 + %yj\ + z2 = -(z3 + 3áz)

and squaring both sides and subtracting, we obtain 1/16 = 0 thus there are no non-
trivial solutions in (1.14) and the 3rd approximation is well posed.

We also claim that in contrast to the above situation, the absorbing boundary
condition corresponding to the second Taylor approximation is strongly ill posed.
Thus, this local approximation is useless for numerical purposes.  To derive this bound-
ary condition we use

\/l +x = 1 + he - lx2 + 0(x3)
2        o

so that by following the above procedure we obtain the fourth order boundary condi-
tion,

4th approximation:

(1.15) ^_3!__il + I_Ü_ + iilN|w|        =0
[bxbt*    bt*     2byW+8dy4)w]*=o     °-

To check the well-posedness of the above boundary condition, we must check that
there are no roots with Res > 0 to

(1.16) -i#n^-s4+iWV+fjco4=0.
2 o
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ABSORBING BOUNDARY CONDITIONS 635

Dividing by co4 and setting z = s/co, we obtain

(1.17) -zvTTz2 - z4 + \z2 + ± = 0.L o

Consider z with z real and z > 0.  At z = 0, the above expression has the value 1/8,
while as z tends to °°, the expression in (1.17) tends to -°°. Thus a nontrivial positive
real root exists and these boundary conditions are strongly ill posed.

Remark #1.  These two examples indicate that one must be careful in choosing
the appropriate local approximation to the nonlocal boundary condition in order to
guarantee stability.

Remark #2. In the situation where the initial data or inhomogeneous forcing
functions have support up to the boundary, one must be very careful in applying the
above boundary conditions so that no additional discontinuities are introduced.  (This
difficulty exists for any mixed problem.)  We illustrate this difficulty in the following
example:

If we consider the free space solution of

wtt-wxx=°>      w\t=0 = 0,      wt\t=0 = l,

then w = t.   On the other hand, if we straightforwardly compute using homogeneous
absorbing boundary conditions,

wtt - wxx -0    for x > 0,

ñt-Wxlx=o = 0'      wlf=o = 0>      wrlf=0 = l,

we get a solution with discontinuity in the first derivative given by

w = )6.(x + t),      t> x,
= t, t<x.

To control this difficulty we must make our initial and boundary data compatible
and solve an inhomogeneous absorbing boundary value problem

wtt - wxx =0,      x > 0, t > 0,

Wt ~ ^x]x = 0 = £(*)    for * > 0»

wlf=0=0,      wflf=0 = l,

where g(t) is a forcing function with g(0) = lim^o-n bw/bt - bw/bx = 1 (the limits
in the last equation are calculated using the Cauchy data).  No additional singular
waves are produced as long as g(0) satisfies the above condition and with g(t) = 1, we
recover w = t = w.   (General compatibility conditions for hyperbolic mixed problems
are discussed in [5].)

l.C. Modifications for Curved Boundaries and Variable Coefficient Wave Equa-
tions. Here we sketch how more sophisticated versions of the above arguments yield
nonlocal perfectly absorbing and highly absorbing local boundary conditions for vari-
able coefficient wave equations. The arguments we give below work for general vari-
able coefficient wave equations.  For the application and simplicity in exposition we
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636 BJÖRN ENGQUIST AND ANDREW MAJDA

consider wave equations of the form

(1.18)    Lw^f^+äXiy)^+b(x,y)^-^y=0

with g(x, y) > c0 > 0 in the half-space x > 0; and we seek perfectly absorbing bound-
ary conditions on the wall, x = 0.  The key for the constant coefficient wave equa-
tion was that it could be factored (within a smooth error) by using pseudo-differential
operators into

o-19) D" ¿ + V|^-

near the relevant rays.  Here = denotes "within a smooth error". The factor b/bx -
p\/b2lbt2 - b2lby2 corresponds to propagation to the left, while b¡bx +
py/b2/bt2 — b2/by2 corresponds to propagation of reflected waves travelling to the
right.  To minimize the amplitude of reflected waves travelling to the right, we chose
the boundary condition in (1.6).  For variable coefficient problems as in (1.18), the
theory of pseudo-differential operators allows us to factorize general wave equations
in the fashion as in (1.19).  From a very special case of Lemma 1 on page 27 of the
lectures by Nirenberg in [3], we conclude that the operator L in (1.18) can be fac-
tored in the form,

r, I 7\      ?\ \\ I   rl I 7\      7\
'- [to + x+ {*•y- by-' âjA* ~ X-V y' *' *

where X_ is a pseudo-differential operator with a symbol which has the formal
asymptotic expansion,

\_(x, y, co, if) as \l(x, y, co, if) + X°(jc, y, co, if) + \~_}(x, y, co, if) ++,

where X{_ is a homogeneous function of degree /.   By using Theorems 1 and 2 of the
work of Majda and Osher in [2], we verify that the perfectly absorbing boundary
condition is given by

(1-20) (â-4'*i'è)k- = °-
The coefficients, XL, are recursively determined by the composition formulas of
pseudo-differential operators as in [3].  One calculates that the first coefficient has
symbol given by

(1 -21) Xl(*, y, if, to) = rVif2-¿K*(j0co2.

The second coefficient is determined recursively from the first to be

(1.22)      x0fx v í co) = - + - _fe"2/3*_ i      Èfo y^S^lby
-K'y    '    }     2     4 tf-tfycytf)     2(?-g(x,y)u2?l2-
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ABSORBING BOUNDARY CONDITIONS 637

To make suitable local approximations, for simplicity we retain the first two terms
X_ = Xi 4- X° in the asymptotic expansion of X_ (retaining more terms clearly im-
proves the method but is too cumbersome to display here).  Thus, we must approxi-
mate the nonlocal boundary condition,

b__     /i2--^ vJL + ï.-l_(àg/àx)(b2/by2)
(1.23)    bx    V3'2 by2     2    4^/^2-g(x,y)b2/by2)

+_&• yPsfiy_\w|     = o
(aW-^.^W)3'2/1   x=0     •

If we expand the symbols at normal incidence suing £2 - g(x, y)cj2 = if2, we obtain
the first local approximation

0.24) (e-A-|)-U=o = 0.
This approximation diminishes the amplitude of reflected waves by 0(lco/if I2).  Using
(1 - co2/if2)'/2 = 1 - }4co2/if2, etc., we obtain the second local approximation given
symbolically by

(1.25) l-.d-i^U-i^y.2,
bx    l*y     2g ? ) + 2    4 bx £

We note that the difference between (1.25) and the symbol of (1.23) is 0(lco/if I3).
Multiplying (1.25) by if2, we obtain the second local approximation,

,. -^     /a3     a3  , i    b3   , b b2 , i bg b2\  ,        n
(L26) [^-b^+2gbW+^+~^^rx=^°-
By freezing coefficients and applying the identical calculations from the 1st and 2nd
approximation in (1.9), (1.10) above in the normal mode analysis from (1.11), we
conclude that the absorbing approximations in (1.24) and (1.26) yield well-posed
problems.

The Special Case of Polar Coordinates.   We merely specialize the above formula
to polar coordinates in two dimensions where we construct highly absorbing boundary
conditions on the circle of radius a.   Here L has the form

£= — + —— + - — - —
br2     r2 b26     r br    ^t2'

where b/br, bjbd correspond to 9/6% 9/ö.y in the above formulas and b = l/r, g =
1/r2.

Using (1.24), the first highly absorbing approximation on r = a for the region
r < a is given by

Using (1.26), the second highly absorbing approximation on r = a is given by
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(1.28) ^ + ^.UL + iÜ + ili2. L,       .0
\9r9r2      9r3     2a29r920     2a dt2     2¿W2)    '=«

Remark.   For r = a with r —► °°, outgoing waves have the form,

/(r-°u+0/1
ri/2    V \r

We observe that the first approximation from (1.27) precisely annihilates
f(r - t)a(6)/rV2 on r = a.  The approximation from (1.28) also compensates for an-
gular dependence,i.e., the wave is not quite a spherical wave.

2.   Highly Absorbing Boundary Conditions for First Order Symmetric Systems.
We consider general variable coefficient first order strictly hyperbolic systems of the
form

(2.1) | = (¿ik J0¿ + A2(x, yyfy + **. ̂  «

in the region x > 0 where Ax, A2 are symmetric m x m matrices (general symmetric
systems in regions with curved boundary, at least locally, can be mapped to a half-
space where they assume the form in (2.1)).  Our objective is to design highly absorb-
ing local boundary conditions for the system in (2.1). We assume that Ax has the
form

(2.2)

where

with X,(x, y) < 0 and

¿i _ (\ + i.

with Xk+/- > 0.  As a consequence of strict hyperbolicity, X, =£ X- for i ¥=j.
2.A.  The Theoretical Nonlocal Perfectly Absorbing Boundary Condition.  We

rewrite the equation in (2.1) as

(23) ^ = A^f + E^ + BUi
bx bt        by

where
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ABSORBING BOUNDARY CONDITIONS 639

with A, < 0 and A2 > 0, E = -AxlA2, B = ~AX1B and we define M{%, co) by

M(if, co) = AH + Eiœ.

The theoretical construction to be used here parallels Nirenberg's factorization from
part C of Section 1 and was developed by M. E. Taylor in [4] for general first order
systems.  More precisely, there exists a smooth matrix K(if, co, x, y) invertible for all
(if, co) satisfying I col/1 if I + Icol <c0 for some choice of c0 and defining the symbol
of a pseudo-differential operator so that if

w=v\Tpl'x'y)u'
the equations in (2.3) assume the form

bw     ,   AAhly'X'y) °
(2.4) fjr = [ )w,

where A, ,(9/9r, 9/9.V, x, y) is a k x k pseudo-differential operator of order 1 with
principal symbol, Aj x, evaluated at (0, 1, x, y), given by

and satisfying A,, < 0 for (|, co) with I col/1 if I + Icol < cQ.  Here A21, A22 are
(jn-k) x k, m-k x m~k matrix pseudo-differential operators of order 1, respectively.

Once the differential equation has the form in (2.4) it is easy to write down the
theoretical perfectly absorbing boundary condition at least for all waves striking at
angles sufficiently close to normal incidence.  Recall that A} x has all the negative real
eigenvalues corresponding to light rays flowing inward into x > 0 for positive time (the
doubting reader should consider the case of a single space dimension).  Thus, the theo-
retical absorbing boundary condition annihilates these components for x = 0.  Let
7Tfc(wj, . . . ,wk,wk+x, . . . ,w) = (vv1, . . . , wk); the perfectly absorbing boundary
condition is given by

(2.6) «k"ix=o=1tkVuix=o = (>-

To gain some insight into the nature of this nonlocal condition, we recall Taylor's
construction of V(%, co, x, y) (see Section 1 of [4] ).

VQi, w, x, y) = V0(ï, co, x, y) + F1 V_t(l co, x, y)

+ r2V_2(i;,o),x,y)++,(2-7) A ,-2

where each V, is homogeneous of degree zero and = is the asymptotic sense of
pseudo-differential operators.  One consequence of strict hyperbolicity is that Af(l, 0)
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is a diagonal matrix with distinct entries; therefore, there exists a constant cQ so that
for Icol/lifl + Icol <c0, Af(if, co) also has distinct eigenvalues; and we choose
K(if, co, x, y) to be a smoothly varying matrix, homogeneous of degree zero, so that
M(if, co) becomes block lower triangular, i.e.

(2.8) (lAn       °   W0MV-
\ jA21    ¡A22 /

It is obvious that M{%, co) has distinct eigenvalues, in general, only in a conic neighbor-
hood of normal incidence (co = 0) (since at a value of (if, co) corresponding to glanc-
ing for one of the sound speeds, two real roots coalesce and then become complex);
and the constraint I col/1 if I + Icol <c0 restricts the value of co to the region where
these eigenvalues stay distinct.  We set w0 = V0u, then w0 formally satisfies the equa-
tion in (2.4) up to error terms which at the symbol level are bounded in if. We write
Wj = (1 + Kx)w0 with Kx V0 = if-1 V_x and attempt to write an equation for wx in
the form of (2.4) at least up to terms of order if-1 at the symbol level.  Using the
composition formulas for pseudo-differential operators, we obtain that

O +Kx)V0(M(k,u) + B)V-\\ +KxTl

= Kx F0M(if, co)lV0K0M(if, co)!'-1*! + VQ(B - bxV0)V~l + O(r').

We define C= B - bxV0.  From (2.9) the terms in the upper right-hand corner of
(2.4) which are bounded in if will vanish if we choose Kx to have the form

(2.10)

where K is an k x m - k matrix satisfying

(2.11) Kx XA22-XAIXKX +CX2 =0.

As was proved in Section 1 of [4], a unique choice of Kx satisfying the equations in
(2.11) exists provided that

(2.12) iA22=A2    and    ,AnsA,

have disjoint spectra. The condition in (2.12) is satisfied here because the eigenvalues
of A2 are positive and those of Aj are negative.

2.B. Highly Absorbing Local Approximations. To construct highly absorbing
local approximations, we approximate the matrix V(%, co, x, y) at normal incidence.
Recall the asymptotic representation for V from (2.7). We take each V_(if, co) and
use Taylor's theorem to write

V_ß,ui) = V_J\,^\
(2.13) li+rco\* 1   9*

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSORBING BOUNDARY CONDITIONS 641

Using (2.7) and (2.13) in the theoretical boundary condition in (2.6) and retaining
only terms with an error 0(lco/i[l + 11/ifl), we obtain the first approximation,

1st approximation:

(2.14) nkVou\x=o = 0.

Looking back at (2.3), we see that this is merely the projection on the inflowing
characteristics for positive time for the one-dimensional equation derived from (2.1)
by setting ,42 = 0.   A simple energy estimate shows that this boundary condition is
maximal dissipative and is always well posed for (2.1).  We remark that if the 1-dimen-
sional wave equation was written as a first order system using (ut, ux) as components,
the boundary condition in (2.14) would coincide with the 1st approximation from
Section 1.

To construct the second approximation with reflected error O(lco/|l2 + 1/lifl2),
we retain terms from V0 up to order 1 and terms from V_x up to order zero to get
the symbol

%fa(i,o) + |¿K0(i,o) + |K_(i,o)
Multiplying by | we arrive at the second highly absorbing approximation,

2nd approximation:

(2J5) ^K0(l,0) + ^K0(1,0)^+K_1(l,0)j«lx=0 = 0,

where V_x is determined by the lower order term B and the variable nature of the
coefficients according to (2.9). We make the following conjecture:

The 2nd approximation always yields a well-posed boundary value problem for

(2.1).
It is worthwhile mentioning that a highly absorbing approximation intermediate

between the first and second approximations may be useful in situations where the
effect of the lower order term B is rather large. We have with reflected error
0(lco/ifl + 1/t2), the Vh order approximation.

(2-16) "if FoO> °) + r-id. °)) "'*=0 = °-

This approximation is always well posed because its principal symbol is the same as
the one in (2.14).

To complete the pattern, we retain the terms in (2.13) from V. up to order I-j
and then multiply the symbol by £' to obtain the I + 1th highly absorbing approxi-
mation with reflected error 0(lco/£l,+ 1 + l/l£l,+ 1).

I + Ith approximation:

(217)   '\k à.ÏF=**ti "-'°- °wu ■ °-
In view of the instability of the 4th approximation from Section 1 for the wave equa-
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tion, it is doubtful that in general for / > 1 these boundary conditions would yield
well-posed problems.  Perhaps, using other approximations analogous to the Padé ap-
proximation from Section 1 would be useful here.

2.C. Some Perturbation Calculations Applied to Highly Absorbing Approxi-
tions.   In order to use the 2nd approximation from (2.15) in explicit problems, we
need to evaluate bV0(l, 0)/9co; as we shall see below, this reduces to a standard cal-
culation in perturbation theory.  Set co/if = 5 and write

(2,8) «(..f) = (A'    "Vi""    '"
Recall that VQ is chosen to guarantee the relation in (2.8).  We write V0 as V0 =
/ + 6, V0 + 0(h2), then it follows that

(2.19) ^0(1       0)    = y

To calculate , F0 is a standard problem (identical to the one studied in [4] and (2.9),
(2.10), (2.11) above).  Substituting V0 = I + 5, V0 + 0(82) and requiring the upper
right block of V0(AX + bE)V~^1 to vanish to order 0(S2), we obtain the equation

(2.20) XA2-AxX + El2=0,

where we choose j V0 of the form

■-C :)
Following (2.9), (2.10), (2.11), X is uniquely determined by solving the linear equa-
tions in (2.20); thus, 9K0(1, 0)/9co is determined.

We shall now develop a special perturbation lemma under additional hypotheses.
These hypotheses concerning the k x (m - k) matrix, X, from (2.20) are that

(2.21) k>m-k,      X has rank m - k.

In this situation, we prove that by choosing V0 = S + 0(83) through the linear change
of variables S = I + OR with R appropriately chosen, we have

/A.,     0(S3)\
(2.22) S(A+8E)S^ =(    " .

\A21      A22    /
Thus, under these hypotheses, we have the special 2nd approximation,

2nd approximation*:

(2.23) **(j^oO. °) + *¿ + ^-lO. 0)) u\x=0 = 0.

If for simplicity Av A2 have constant coefficients, the special 2nd approximation*
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has the smaller reflected error 0(lco/ifl3 + l/£2) when compared to the 2nd approxi-
mation above.   (This is confirmed numerically.)  We remark that the conditions in
(2.21) are satisfied for the inflow case of the linearized shallow water equations (see
the computations in Section 4 using 2nd approximation*) and often should be valid
for the (hyperbolic) equations of fluid dynamics. We also remark here that the choice
of j V0(l, 0) used in (2.22) is different from the one in (2.19), but V0 is not unique
anyway.

To verify the claim in (2.22) we choose R in the form

(2.24) R = (Y   X^
\0    0

When we compute S(A + 6E)S~1, a tedious calculation establishes that the terms of
order 5, Ô2 appearing in the upper right-hand block of (2.22) and required to vanish
have the form,

(2 25Ï     (or(ler ô)        -AXX + XA2 + El2 =0,
(order 52)      ~EXXX + Y(-AXX + EX2) + Ax YX + XE22 = 0.

If we choose X as in (2.20) above to satisfy the order 5 equation and then substitute
the order 5 equation in the order ô2 equation, we obtain with Z = YX

(2.26) (order S2)      -ZA2 + A,Z ~EXXX + XE22 = 0.

Thus, Z is uniquely determined in exactly the same fashion as X above (since X is
already known).  To recover Y, we must determine Y from the relationship

(2.27) Z = YX,
where Z, X are k x (m - k) matrices and Y is a k x k matrix.  By the hypotheses
in (2.21) the m - k columns of X are independent and since m - k < k, we construct
Y so that it maps the (m - k) columns of X, respectively, onto the m - k columns
of Z (thus satisfying (2.27)) and on the orthogonal complement of the subspace of
Rk spanned by the columns of X, choose Y = 0.

Remark #1.  The special second approximation yields reflected waves with
amplitudes of the same order as the third approximation.  The special second approxi-
mation utilizes only a first order boundary condition and from a numerical point of
view, this approximation is much easier to discretize in a stable fashion than the
second.order boundary condition required by the third approximation.

Remark #2.  Of course, the special second approximation can be derived when-
ever it is possible to solve the equation, Z = YX, even though the additional hypothe-
ses from (2.21) are not satisfied.

3.  Highly Absorbing Boundary Conditions for the Linearized Shallow Water Equa-
tions.  We apply the theory developed in Section 2 to the linearized shallow water
equations in the half-space x > 0.  Thus, we consider a system of the form
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together with the physical restrictions, 0 < a2 4- b2 < c2, c > 0.  Here for simplicity
we assume all matrices in (3.1) are constant.  We diagonalize the normal matrix to
x = 0 by the unitary map, U, where

'*'^

u-- 0     1

Vvi° V̂
and set w = U  'w to get from (3.1), a new equation for w of the form

bw
bt

b    -£    0
V2

(3.2)

"7=      b
y/2

0   -T
V2

V2
6

9w

0

_L
V2
0

V2 o    \

0     -

V2

4
V2
0

w.

/

Writing this equation in the form of (2.3), (3.2) becomes

/

bw
bx

1
a - c 0       0     \ /

(3.3)

0

0

-     0
a

a + c

bw
bt

I

a - c
c

as/2

I    0

(a - cW2
Z£
a
c

(a + c>/2

0

c
ay/2

b
(a + brj2 I

bw
by

+

(a~cW2

-h:     °     4os/2 a\j2
-f0 0

{a + cyj2

The boundary conditions we choose depend upon whether we have linearized
about an inflowing state with a < 0 or about an outflowing state with a > 0.

3 .A. 77ie Inflow Case.   Here we assume a < 0 so that the normal matrix to the
boundary has the form
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where Aj, A2 are given by

(3.4) A, =

(AX < 0 0    '

V     0       AjX),

'»     o^a - c

V * ¿     a + c

Following (2.14), we have the first absorbing approximation
1st approximation:

(3-5)
w.

w,
= 0.

x = 0

Following the procedure at the end of Section 2, we choose X to satisfy (2.20) so
that X is given by

0
(3.6) a +c'V2~

Thus, the hypotheses in (2.21) for the special 2nd approximation are satisfied. We
choose Z to satisfy (2.26) so that Z is given by

Z =
(a + cf

4

^((i-V^-V^y2c

Thus, Y with Z = YXis given by

/ V2 , \0 ^r-ia+c)

(3.7)

• V5,
2 c ((1-V2)a-V2c)

/
Thus, R from (2.24) has been computed.

Finally, to calculate the effect to the lower order term corresponding to the
Coriolis force on the special second approximation, we need to compute Kx(l, 0)
from the equation in (2.9)—(2.11).  Thus, Kx(\, 0) is given by

(3.8)
0

*i0>0)=  ((fl+f)/
cV2
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Inserting the values for R in (2.24) obtained from (3.6) and (3.7) and the value of
V_x(l, 0) determined by (3.8), we obtain the special 2nd absorbing approximation,

2nd approximation*:

9vVj     \/2

(3.9)

9w,
+ - r(a + cy-r2bt       4 by x = 0

= 0,

*w7     yfab,        ,- àw2    a + cbw3    (a + c)f
~5T + T~ ~(a ~ V2(a + c))—-■=- -r— 4-        rw2dt       2 cv      v  v by      Ji    by        cs/2      3 x = 0

It is worthwhile mentioning that the 1 & absorbing approximation is given by

(3.10)
9vVj
17 ¡x = 0

= 0, 9vv,
- + ——fw3

x = 03i   '   cV2  •'"'3

3.B. 77te Outflow Case.   Here we assume a > 0, so that

0

0.

0>A, = 1
a 0<A,

1
a + c )

In this case the first absorbing approximation is

(3.11) ^,1^0=0.

Following the computations as in the inflow case, we calculate that

V?"
K,

c\/2
,0

On the other hand, one calculates that Z = (bx, b2) with b2 ¥= 0 so it is impossible
to find a 1 x 1   matrix Y with Z = YX so the special second approximation is not
applicable.  Thus, following (2.15) we have the second absorbing approximation

2nd approximation:

(3.12) 9vv,       a   ^>2
bt      s/2   9y     cy/2

fw2
x = 0

= 0.

4.  Difference Approximations for Absorbing Boundary Conditions—Numerical
Experiments.

A.   77ie Scalar Wave Equation.   Here we discuss the difference approximation
of the scalar wave equation and the highly absorbing boundary conditions from Section
1 and then present the results of numerical experiments which illustrate their effec-
tiveness. We look at the scalar wave equation from (1.1) in the half-space, x > 0, and
approximate the solution w(t, x, y) on the grid {{f, x-, yk)} by the mesh function

w£fc (t" = nAt, xf = i Ax - Ax/2, yk = kAy; n = 0, 1./ = 0, 1, . . . , k =
. . . , -1, 0, 1, . . . ). We use the notation D+, D_, and DQ = Vi(D+ + DJ to denote
the forward, backward, and centered divided differences, respectively.  The equation
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in (1.1) is approximated by the simple explicit formula

(41) (Dt+Dt_-D%Drl-DiDy_)w»k = Q,

n = l,2./= 1,2,...,* = . ..,-1,0, 1... . .

The values of w°k and wj k are given initially.
We discretize the first approximation from (1.9) by

(4.2) ^«,fc + *3,V) - £>+«,* + <*) = o,

while we use the following difference approximation for the second highly absorbing
boundary condition from (1.10):

(4.3)    D%D\w»0>k - ^D\DUK,ic + K,k) + *l%Kfyfä + wï^) = °-

For the numerical experiments presented below, we have discretized the Dirichlet
and Neumann problems in the obvious fashion using w^V =0 and D*_Wq +k   = 0,
respectively.  It is easy to check that (4.1) coupled to (4.2) or (4.3) gives an explicit
scheme with a local truncation error of second order in all variables. (This is also
obvious for the approximations for the Dirichlet and Neumann boundary conditions
which we have used.)  Tests with initial data containing high frequencies gave numeri-
cal evidence of the stability of these approximations to the mixed initial boundary
value problems.   The boundary conditions can, of course, be coupled to any type of
interior discretization.

In Figure 1 we display the results from a series of experiments for the scalar
wave equation.  The first Figure (la) shows the initial values wjk. Each vertical trace
corresponds to a vector w"fc with n and; fixed; different traces correspond to differ-
ent /'s.  One hundred percent black is w = 1 and 30% black is w = 0 on these traces.
The initial values wj k are chosen using Taylor's theorem so that the circular wave form
expands with time.  For all experiments we have used the discrete Neumann boundary
condition on the upper, lower, and right-hand walls.  We will change our boundary
condition only on the left wall corresponding to x = 0.  In Figure (lb) we have the
plot after 50 time steps using the perfectly reflecting Neumann boundary condition
on x = 0.  Figure (lc) displays the same solution after 100 time steps.  (We used Ax
= Ay = 2.5At, 0 < k < 50, 0 </ < 100.) Figures (Id), (le), and (If) all describe
various solutions of (4.1) after 100 time steps.  The discrete Dirichlet boundary condi-
tion was used on the wall, jc = 0, in Figure (Id); waves are totally reflected.  Figure
(le) represents the solution of (4.1) using the absorbing first approximation from
(4.2); there is a weak reflected wave with amplitude in the L2 norm about 5% of the
incident amplitude.  Figure (If) represents the solution of (4.1) using the second ab-
sorbing approximation from (4.3); the weak negative reflection is not observed here.
In fact, the reflected wave has amplitude in the L2 norm smaller than 1% of the ampli-
tude of the incident wave.
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Figure 1A Figure IB Figure IC

Ilk

Figure ID Figure IE Figure IF

B.  The Shallow Water Equation.   As the last example, we will approximate the
solution to the linearized shallow water equation from (3.1), (3.2) when/= 0. We
have chosen to study the inflow case when a < 0, b > 0, and c > 0.  The first and
second (order) absorbing boundary conditions are then given by (3.5) and (3.9), re-
spectively.  It is outside of the scope of this paper to make a thorough study of pos-
sible difference approximations to that mixed initial boundary value problem. We will
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III
Figure 2A Figure 2B

Figure 2C Figure 2D

Figure 2E Figure 2F
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only report on some test runs performed in order to display the effect of the analyti-
cal absorbing conditions from (3.5) and (3.9).  In the interior the differential equation
was approximated by a standard Lax-Wendroff scheme. When approximating the
boundary condition in (3.9), the Lax-Wendroff procedure, now in one space dimension
and with added numerical dissipation, was used directly along the wall, x = 0.  The
difference equation needs one extra boundary condition.  That was derived by extrapo-
lating the w3-component using (Dx+)^(w3)q ■ = 0.

Figure 2 shows the potential field or height, <p, with boundary of interest to the
left at x = 0 (<p is the third vector component).  At all other boundaries we used the
first order absorbing condition from (3.5).  The calculations were performed with a =
-1, b = 2, c — 12 and 25Ar = Ax = Ay on a 30 x 50 mesh.  The initial i/> is displayed
in Figure (2a) where as in Figure 1, 100% black means the value 1 and 30% stands for
zero.  The first two components, the velocities u and v were taken as zero initially.  In
Figure (2b), <p is given after 30 time steps using the reflecting condition u = v = 0 at
x = 0. Figures (2c) and (2d) show the corresponding picture for the absorbing condi-
tions (3.5) and (3.9), respectively; but note that the scale in these two plots is multi-
plied by a factor of 3.  In Figures (2e) and (2f) the reflected waves from (2c) and (2d)
are displayed, respectively.  They are computed by subtracting the solution of this
mixed initial boundary value problem from the solution of the corresponding pure
initial value problem.  The scale is now changed by a factor of 30-that is, 100% black
stands for the value 1/30.  The improvement in going from the first to the second ab-
sorbing condition is a factor of 3.5 in the Z,2-norm for the reflected wave.  Further-
more, the reflections seen in Figure (2f) using (3.9) are not penetrating as deeply into
the region of computation as the reflections in Figure (2e) using (3.5).  Thus, as ex-
pected the approximation from (3.9) produces weaker reflections.  Below, we display
the L2 -norm of the reflected waves for all dependent variables (after 30 time steps)
for the example discussed above:

Boundary condition at x = 0       II u reflected II 2       II v reflected II2       II i¿> reflected II 2

perfect reflection
u = v = 0

.621 .702 .695

First absorbing approx.
from (3.5)

.103 .067 .053

Second absorbing approx.
from (3.9)

.024 .024 .013

Thus, the first absorbing approximation from (3.5) produces reflected waves for u, v,
and <p with amplitudes 17%, 10%, 7% of the incident waves, while the second absorb-
ing approximation from (3.9) produces reflected waves for u, v, and tp with amplitudes
4%, 3.3%, and 2% of the incident waves, respectively.
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