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CdSe is used as a prototype to show the implications of valence-band degeneracy for the optical properties of
strongly quantum-confined nanocrystals. Absorption spectra and photoluminescence spectra obtained under
intermediate and strong pulsed excitation show the presence of new structures. The energy levels for the elec-
tron and the hole are calculated with the spherical confinement, the nonparabolicity of the conduction band,
and the valence band degeneracy taken into account. The oscillator strengths of the dipole-allowed transitions
are also calculated. This model is found to be in good agreement with the experimental observations, which
originate mainly from the quantization of the energy spectrum of holes with due account given to valence-band
degeneracy.

1. INTRODUCTION

In the past few years there has been a growing interest in
confined electronic systems: quantum wells, quantum
dots, and, more recently, quantum wires. Quantum
dots 5 are roughly spherical semiconductor nanocrystals
in suspension in various dielectric media, such as alkali
halides, liquids, polymer films, and glass. When the
mean particle radius a is larger than -3 times the exciton
Bohr radius axc, one is in the weak-confinement regime:
the confinement kinetic energy is smaller than the
Coulomb interaction energy between the electron and the
hole, so that the Wannier exciton still exists and is con-
fined as a whole. When the electron confinement energy
and the Coulomb interaction energy are of the same order
of magnitude, one has the intermediate-confinement situ-
ation. Finally, when a is a few times smaller than aexc,

one has the strong-confinement situation, in which both
carriers are independently confined.

In the case of CuBr and CdS for which aexc is 1.8 and
2.8 nm, respectively, the crystal sizes often correspond to
the intermediate-confinement situation. In these cases
analytic calculation of the eigenenergies and (envelope) ei-
genfunctions is not possible. The large difference be-
tween the electron and the hole effective masses, however,
permits adiabatic separation of their movement2 : the
electron wave function is size quantized, whereas the hole
moves in the Coulomb potential caused by the electron
and is pushed toward the center of the nanocrystal. A

different approach to this problem was developed, in
which the results obtained in the strong-confinement
regime provide the starting point for the process of diago-
nalization of the Hamiltonian by either perturbation or
variation calculations.3 7 Image charges resulting from
the difference between dielectric constants of the
nanocrystal and the embedding medium were also taken
into account in both formalisms.3'6

However, most of the analysis reported up to now suffers
from an oversimplifying hypothesis: Only one valence
band is considered. In the strong-confinement regime, for
example, the confinement kinetic energy is then h2 aen 2 /
(2ma2 ), where ae,, is the nth zero of the spherical Bessel
function of order e and m is the effective mass of the elec-
tron or of the hole. At this point only transitions that
conserve n and e are allowed, with an oscillator strength
proportional to (2f + 1). Inclusion of the Coulomb inter-
action, for example, does not strongly modify these selec-
tion rules. The single-valence-band hypothesis overlooks
the fact that the valence band originates from p atomic
orbitals and is therefore sixfold degenerate when spin is
taken into account. The Hamiltonian for this system in
the bulk was written by Luttinger and Kohn,8 who intro-
duced the three parameters, 1, 72, and 3, plus the spin-
orbit coupling A. This Hamiltonian leads to three
valence bands in the bulk with a small warping propor-
tional to (2 - 3). Neglecting this anisotropy and setting

= Y2 = Y3, one obtains a split-off band, a heavy-hole
band, and a light-hole band, with the corresponding effec-
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cence spectroscopy at medium and high excitation inten-
sity. These spectra reveal the presence of previously
unobserved structures. Then we present, in Section 3,
results of a complete calculation of the energy levels for
CdSe quantum dots, taking into account the spherical con-
finement, the valence band degeneracy, the nonparabolic-
ity of the conduction band, and the Coulomb interaction
between the electron and the hole as well as calculations
of the oscillator strengths of the allowed transitions. The
experimental results reported in Section 2 are then dis-
cussed in Section 4 in the light of these theoretical predic-
tions and are seen to provide experimental support for the
predictions: The observed structures originate from the
quantization of the energy spectrum of holes.
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Fig. 1. Absorption spectra (solid curves) and luminescence spec-
tra obtained under weak or intermediate (dashed curves) and
strong (short-and-long-dashed curves) excitation at A = 355 nm
for the samples containing CdSe particles with the largest mean
radii, 250 A (top) and 80 A (bottom). The luminescence intensity
is given in arbitrary units.

tive masses being m = mo/y,, mh = mO/(Y - 2y), and
ml = mo/(y + 2y), where mO is the free electron mass.

For quantum dots with a spherical confining geometry,
this valence-band degeneracy was taken into account in
the weak-confinement case for CuCl.9 Quantum confine-
ment was used to determine the previously unknown band
parameters y7 and . In the strong-confinement case,
more recently Efros and Rodinal° correctly obtained the
eigenenergies of the first hole levels in the case A = 0
(close to the CdS situation) and in the case A = (also a
situation approximately like that for CdSe) in the limit
ml << mh, results that were later" extended to the case of
a finite A (the real CdS value) and various values of ml and
mh. Valence-band degeneracy was also taken into ac-
count by Xia.12 The main point is that the true quantum
number is the total angular momentum F. Since the hole
wave functions are now linear combinations of wave func-
tions obtained for a single valence band, the selection
rules are not so simple as stated above.

CdSe, for which axc = 5.6 nm, is a good candidate for
testing the effects of this valence-band degeneracy in the
strong-confinement case. We therefore grew CdSe
nanocrystals in a glass matrix with various radii, with
some of the nanocrystals being smaller than axc, and stud-
ied their optical properties. First we report, in Section 2,
experimental results obtained for these CdSe-doped
glasses by using absorption spectroscopy and lumines-

2. EXPERIMENTS AND RESULTS

A. Absorption Spectra
Samples of CdSe-doped glass were grown by using a
zinc-free silicate melt. They were heat treated in the
conventional way with a 2-h heat treatment at various
temperatures. In the present study five samples are
used, for which the mean particle radii a, as determined
by small-angle x-ray scattering are 250, 80, 38, 26, and
21 A. Their absorption spectra were measured at liquid-
nitrogen temperature. The results are shown in Figs. 1
and 2.

The absorption spectrum for the 250-A sample is the
same as for bulk CdSe, with three absorption edges at
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Fig. 2. Absorption spectra (solid curves) and luminescence spec-
tra obtained under weak or intermediate (dashed curves) and
strong (short-and-long-dashed curve) excitation at A = 355 nm
for the samples containing quantum-confined CdSe particles
with mean radii of 38 A (top), 26 A (middle), and 21 A (bottom).
In the last case the luminescence was weak and the signal-to-
noise ratio was low.
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-1.84, 1.86, and 2.26 eV, corresponding to the top of the
heavy-hole, the light-hole, and the spin-orbit split-off
bands, respectively. The absorption spectrum of the 80-A
sample also does not show the structures that are typical
of quantum confinement, but, although the split-off band
is still clearly visible, the light-hole and the heavy-hole
bands seem to have merged into a single edge. For the
other three samples, as can be seen in Fig. 2, the quantum
size effect clearly shows up, but the first band shows a
substructure and, especially for the 38-A sample, the ab-
sorption spectrum shows many more structures than pre-
viously observed. For this 38-A sample the first band
shows two peaks that are approximately equally intense at
-2.06 and 2.13 eV For the 26-A sample the first peak
dominates at -2.25 eV, while the second one shows up as a
shoulder at -2.38 eV Finally, for the 21-A sample only
the first peak is visible at -2.55 eV, with the second one
being hidden by other features.

B. Luminescence Spectra
Luminescence spectra were also obtained at liquid-
nitrogen temperature with pulsed excitation. The laser
pulse derived from a Q-switched and mode-locked Nd:YAG
laser after frequency doubling (A = 532 nm) or frequency
tripling (A = 355 nm) had a duration of -25 ps. Lumi-
nescence spectra were obtained by using a Jobin-Yvon
HRP spectrometer with a 60-cm focal length and a 150-
groove/mm grating equipped with a gated optical multi-
channel analyzer. The 5-ns gate allowed us to record
only the fast component of the luminescence and to reject
the slow component, especially the broad feature that was
due to deep traps. For all five samples excitation at
A = 355 nm was used; when possible, excitation at
A = 532 nm was also used but did not lead to different
results.

The energy fluence of the laser pulse at the sample
could be varied up to 7 mj/cm2 . The luminescence
spectrum depends on this fluence, as is shown also in
Figs. 1 and 2. For each sample two luminescence spectra
are shown, one obtained under intermediate-f luence exci-
tation (typically 1 mj/cm2 ), the other one under high-
fluence excitation (typically 5 mj/cm2). Since the
absorbance of the 0.5-mm thick samples was weak, typi-
cally 0.3 at the top of the first absorption band, lumines-
cence spectra were not corrected for reabsorption.

For the largest particles, 250 and 80 A, intermediate-
energy excitation leads to band-edge luminescence at
-1.83 and 1.85 eV, respectively. Increasing the excitation
energy fluence leads to a blue shift and a broadening of
the luminescence peak as shown in Fig. 1, a feature that is
typical of band filling. As can be seen in Fig. 2, for the
quantum-confined sizes 38, 26, and 21 A, hot lumines-
cence is also observed but is qualitatively different. New
peaks appear instead of the previous shift and broaden-
ing. At low and intermediate excitation energies one
peak is observed near the absorption edge at 2.00, 2.16,
and 2.38 eV, but we observe that the Stokes shift between
this peak and the first absorption peak increases when the
particle size decreases, as was previously observed.'3 At
higher excitation energies a new hot luminescence peak
appears; its spectral position coincides wih that of the sec-
ond absorption peak discussed above. For the 38-A
sample under high excitation, as can be seen from Fig. 2, a

second hot peak also appears at -2.32 eV, also correspond-
ing to one of the absorption features.

It should be emphasized that care was exercised to avoid
photodarkening of the samples and that the excitation flu-
ence dependence of the luminescence reported here is
fully reversible. These new substructures in the absorp-
tion spectrum and hot luminescence peaks, characteristic
of state filling, cannot be explained by the conventional
formalism that assumes a single valence band. In
Section 3 a model that takes valence-band degeneracy into
account in the strong-confinement case is developed.

3. THEORY

The absorption spectra of nanocrystals are determined by
the energy spectrum of electron-hole pairs. In nanocrys-
tals with radii a smaller than the bulk exciton Bohr radius
aexc, these spectra are described by the transitions be-
tween quantum size levels (QSL's) of holes and electrons.
Coulomb electron-hole interaction only shifts to the red
the energies of these transitions.

The energy spectrum of these transitions was calcu-
lated in the simple parabolic approximation.2 However,
for real semiconductor nanocrystals this approximation
does not work. First, the shift of the electron QSL's from
the bottom of the conduction band is so large that non-
parabolicity of the conduction band and leakage of the
electron wave function into the barrier could lead to devi-
ations from the energy levels that are given by simple
parabolic band theory. Second, the valence band of semi-
conductors with cubic and hexagonal lattice structures
has a rather complicated many-band structure. As a re-
sult, the wave functions of electrons and holes have the
following form:

1/2 3/2

Pe,h= > fc,(r)uc,, + > f3/2,,a(r)u312 ,g.

1/2+ E f,,(r)u,,,1
A=-112

where u ,,, u3/2,, and u,,1, are the Bloch functions of the
conduction band and the fourfold degenerate and spin-
orbit split-off valence bands and fc,, f3/2,,, and f, are their
corresponding envelope functions.

A. Electron Energy Spectrum
The spectrum of electron QSL's with the nonparabolicity
of the conduction band and the finite depth of the quan-
tum well taken into account, was analytically obtained in
the many-band approximation for a semiconductor with a
vanishing spin-orbit coupling A.'4 For A • 0, similar
considerations give the following determination for the
QSL's:

E + (EgS/2) + (2A/3) a
E + (Eg3 /2 ) + A - ln[Je(Ksr)|ra

E + Eg/2 ar ln[Ke'(Kgr)]1r=a E + (E /2) + A/

(2)

where Egs and Egg are the energy gaps of the semiconduc-
tor and the glass, E is the energy of the state measured
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from the middle of the gap Eg, je(z) is the spherical Bessel
function of order e, and Ke' is connected to the modified
Bessel function Ke+,12 by the relations

Ke'(z) = (/2z)"12Ke+11 2 (z),

2 = 1 r(7 g/)2 E2] E + (Eg/2) + A
Kg v1 2E + (Egg/2 ) + (2A/3)'

K,2 = 1r [E2-(Eg3/2)2] E + (EgS/2) + A
h21v 1 2 ~ E + (EgS/2) + (2A/3)(3)

where V = (SIiPZ)/mo is the Kane matrix element. De-
tailed consideration shows that the electron QSL's with
f > 1 are split by the spin-orbit interaction.

Analysis of Eq. (2) shows that it reduces to the simple
well-known expression 2

that determines the energy Ee,k = E - Eg/ 2 of electron
QSL's:

Eek

2 + +g A)] a,k2[1 +2f + E't + 1 81i2
3 Ee, + Eg Ee,k + 1J) 2m0 a2

(8)

The size dependence of these QSL's energies is presented
in Fig. 3.

B. Hole Energy Spectrum
We consider the hole QSL's in the framework of the six-
band model, neglecting the electron component f, in wave
function (1). The effective Hamiltonian of this model has
the following form in the spherical approximation:

M 0 i/iL
0 M -i VQ

P-Q -L -iV3L*
-L* P + Q -i VM*

i VM
iM/iL

P - A

-iv<m
iV-37/-L

-iV17L*

0

(4) where

when Kga >> 1. This result means that the electron com-
ponent of the envelope function f, vanishes at the surface
of the nanocrystal for deep enough quantum wells, as hap-
pens with the electron wave function in the one-band
parabolic model.

A contribution of higher bands is necessarily included
in the electron effective mass in such wide-gap semicon-
ductors as CdSe. In this case the Schr6dinger equation
for the electron component of wave function f, has the fol-
lowing form [see, for comparison, Eq. (6) of Ref. 14]:

11+ 2f + 2 [ 2 + P f(r)
3 E + E/2 E + (Eg/2) + 2mO

= (E -Eg Mr) (5)

where the energetic band parameter E = 2V 2mO, 2f is the
contribution of higher bands to the electron effective
mass'5 and p = - iiV is the momentum operator. The ef-
fective electron mass me at the bottom of the conduction
band (E = Eg/ 2 ) satisfies the well-known relationship"s

1 = 1 +2f + + 1 A
M, mO 3 E E + / (6)

The solutions of Eq. (5) are the same as in the simple para-
bolic band approximation:

fc(r) = Aek Yem(0, )je(aekr/a) (7)

where Yem(0, k) are the spherical harmonics, Aek is the nor-
malization constant, and boundary condition (4) deter-
mines the value of the numbers ae,k, which are the zeros
of the spherical Bessel functions (the four smallest ones
are a0,l = 1; al, 4.49, 2 ,1 5.76, and aO,2 = 2).
Substituting Eq. (7) into Eq. (5), we obtain the equation

P = (y/2)j52, Q = y(I$±2 - 2 2)/2

L = -iV3ypp3,

M = V3_q_2/2 pL2 = px2 + py2 p = px j if

Px" =-1 ,
ax

j3^ . a
ay

P = - a-.
az

In a spherical potential the hole states are characterized
by the total angular momentum F = L + J + S, where
L is the orbital angular momentum operator for the enve-
lope wave function, J, J, and J are the 3 X 3 orbital
momentum spin matrices, with j = 1 (for the atomic or-
bitals), and S is the spin 1/2 operator. The states with a
given value of the total momentum F are degenerate with
respect to the momentum projection M. The parity op-
erator I also commutes with the Hamiltonian, Eq. (9). As
a result the wave functions of the even states !FM+ contain
the spherical functions Yem with orbital momentum
e = F - 3/2, = F + 1/2 and for odd states TFM- have
e = F - 1/2, f = F + 3/2 (Refs. 11 and 16):

PFM±(rh) = V2F+ 1 (_1)e-3 2 +MRe±(rh)
C-F+1/2, F-3/2
-eF+3/2, F-1/2

3 e3/2F

X ( 1( 3 - M Ye-(rhlrh)l3M2,

+ (_)F_(112)-(112)+MR ±(rh)

1/2 (F+ 1/2
X m

A-1 M
I M)YF1/2 (rh/rh)Usj

(10)

H =1
mO

L
P - Q

0

P + Q
L*

M*

0

- iV-lL*
iv<m*

je(Ksa) = 0

iV'37/L

iN/2Q

I (9)

0 P-A
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where rh is the hole position in a nanocrystal, and

(a b c\

d ef,
are 3j Wigner symbols. The radial functions Re+(r) and
R, ' (r) in the spherical nanocrystals can be generally rep-
resented as the sum of three spherical Bessel functions
je(ktr) (t = 1, h, s)."1 The arguments correspond to three
dependences of the modulus of the wave vectors kl, kh, and
ks on the energy eigenvalue E (three branches in the dis-
persion law for the valence band):

h2 (y - 2 y)(y + 4y) (2E(y, + y) - A(vY + 2v)

± {[2E(yj + y) - A(yj + 2)]2
-4E(E - A)Q(y - 2y)(y, + 4)} 1/2),

kh2 2mOE
h2(iy - 2y)

The requirement that the radial functions vanish at the
nanocrystal's surface, which corresponds to an infinitely
high potential barrier at the semiconductor-glass inter-
face, leads to the dispersion equations for the QSL's. The
equation for the odd states takes the form"

(2F - 1)2E-(l/k9
2 - 1/k -1

2)jF, 2 (kla)jF+3/2(kha)jF,,2,(ksa)

+ 3(2F + 3 (y + 2y)kl - 2e

X jF+312(ksa)jF-112 (kla)jF-112(kha)

(vl + 2i)k 2 - 2EjF+32(ka)jF-112(ksa)jF-112(kha)l = 0,

(12)

where F = 1/2,3/2, ... , and we introduce the parameters
e = moE/l2 and 8 = mOA/12. For the even states we find
that

(2F + 3)2e +(/k9
2 - l/k2)jF+1/2 (kla)YjFr/2 (kha)jF+l,2 (ka)

+ yk 2 - 2,e+
- 3(2F - 1)[(y + 2y)k-

X jF+1/2(ksa)jF-3/2(kla)jF+112(kha)

(y + 2y)kl1-2,E+. ( a ~ ( k ~ k 1

_2' JF+112la)JF-3/2sa)jF+1,2ha) = 0J

(13)

where F = 3/2, 5/2,.... If F = 1/2, the dispersion equa-
tion takes the form

jj(ka)jj(ka) = 0. (14)

For e < , when k 2 < 0, the spherical Bessel functions
should be considered to be functions of complex argument.

Below, for all these states we use the following nota-
tion: for nQF, F is the total momentum of state,
Q(S, P, D, F .. .) is the minimum orbital momentum e in-
cluded in the hole wave function (the other one is e + 2),
and n is the corresponding number of the level of given
symmetry. For example, the ground state of the hole (the
even state with F = 3/2) includes the orbital momenta

1.0

e = 0 and e = 2 and is denoted IS3,2. However, for even
states with F = 1/2 we must introduce a special notation
nP~l2' for QSL's of light holes and nP 1 2 S

0 for QSL's of holes
in the spin-orbit split off band.

The energy dependence of the lowest hole QSL's on
the radius of CdSe microcrystals is shown in Fig. 3. All
these levels go to the top of the valence band when the
nanocrystal size increases. There is only one excep-
tion: the levels of nP~l2'° states go to the top of the spin-
orbit split-off band.

C. Absorption Spectra
As is mentioned above, the structures of absorption spec-
tra are determined by the transitions between QSL's of
electrons and holes. The probability of dipole-allowed
transitions in semiconductor nanocrystals is determined
by the square of the overlap integral between the electron
and the hole wave functions 2"0 "':

K = I t^,e~m~r~tn, 7; MP~r~dr2
K = J Pk,e,m(r)1Pn,Fi,mPi(r)d r (15)

where Tk em are the electron wave functions' and n,F mP
are the hole wave functions determined by Eq. (10). Us-
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Fig. 3. Electron and hole energy spectra as calculated in Subsec-
tion 3.A, plotted versus the inverse-mean-square radius. The
electron energy, which increases upward, is referred to the bot-
tom of the conduction band; the hole energy, increasing down-
ward is referred to the top of the valence band. Only those levels
involved in transitions with a significant oscillator strength are
shown. The P states of the hole are shown as dashed curves.
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Fig. 4. Comparison between theory and experiment. The ab-
sorption spectra shown in Fig. 2 are reproduced with the second-
derivative spectra. The calculated positions of the transitions
are shown as vertical bars whose height indicates the relative
strength (the first or 1S3 12 -1Se transition is given the same arbi-
trary height for all three samples). Only the transitions with a
significant oscillator strength are shown. The inset shows the
assignment of these transitions.

ing only the angular dependence of these wave functions,
one can obtain the selection rules for the interband transi-
tions." The transitions to the lSe and 2 Se electron levels
are possible from the nS3/2 and nS1, 2 hole QSL's because
only wave functions of these hole states involve the spheri-
cal harmonic Y0 . Similar considerations show that tran-
sitions to the lPe electron level are possible from the nP3 /2 ,
nP1 /2 l, nPl/2, and nP5 12 hole states and to the De level
from the nS3 /2, nSl/2, nD7 /2, and nD5/2 states. Transitions
from hole QSL's to electron QSL's with n $ k are also pos-
sible, unlike in the simple parabolic band approximation,2

and their relative intensity is determined by Eq. (15).
Only the transitions nPl/2' => kPe and nP1/2

80 => kPe are
exceptions, because their probabilities at n # k are low
and are not equal to zero only because of the nonparabolic-
ity of the conduction band and the weak leakage of the
electron and the hole wave functions through the barrier.

We can build the absorption spectrum in small
nanocrystals, since we know the selection rules and the
energy of optical transitions iwc between the QSL's of
holes and electrons. The energy is decreased by the
Coulomb electron-hole interaction energy Eeh Correla-
tion of electron and hole motion resulting from the

Coulomb potential also leads to splitting of the degenerate
QSL's. Neglecting these Coulomb corrections, we can
write the energy of transitions as

hio = Eg + Ek + E±(n,F) - Eeh, (16)

where E±(n, F) are the energies of the hole QSL's con-
nected with the roots of Eqs. (12)-(14) by the relationship
E±(n, F) = 2e±(n, F)/mo. Below we assume that Eeh =
1.8e2 /Ka for transitions to the Se level and Eeh = 1.7e2 /Ka
for transitions to the 1Pe and De levels,0 ,7 where K is the
dielectric constant of CdSe.

The positions of the allowed transitions between the
hole and the electron QSL's, calculated in accordance with
Eq. (16), and their relative intensities, are shown in Fig. 4
by the vertical bars for nanocrystals with mean radii a of
21, 26, and 38 A. Relative intensities for some transi-
tions depend strongly on nanocrystal size. That is why
transition 3 in Fig. 4, for instance, should appear only in
the spectrum of nanocrystals with a radius of 21 A. It is
seen that the spectral positions of transitions, as well as
their relative intensities, are in rather good agreement
with the experimental data. The best fit was obtained for
the following set of energy-band parameters: y = 2.1,
y = 0.55, E = 17.5 eV, Eg = 1.84 eV, A = 0.42 eV, and
f = -0.42. For several of these parameters we use the
known values. Regarding the electron energy levels, for
me at the bottom of the conduction band our set
of parameters gives the value me = 011mO, in good
agreement with the value obtained by Hermann and
Weisbuch.'8 However, our combination of E, and f that
gives this value [see Eq. (6)] differs from theirs: E =
18.1 eV, f = -0.71. Our measurements should be more
sensitive to the value of Ep, since the optical transitions go
deeper into the conduction band than in other experi-
ments. We therefore believe that our parameters E, and f
are more accurate.

4. DISCUSSION
The experimental results that we reported in Section 2
can be understood in terms of the theoretical calculations.
The largest two samples, of 250- and 80-A mean radius, do
not show, as expected, strong evidence of quantum con-
finement of the carriers. This is especially true of the
250-A sample, which shows the same absorption spectrum
and the same band-edge luminescence under weak excita-
tion as does bulk CdSe. This is less clearly true of the
80-A sample: in its case, the upper two valence bands
have merged into one absorption edge, and the band-edge
luminescence observed under weak excitation shows a
small blue shift. This shift is due to a small quantum
size effect (the mean radius a is not much larger than
aexc), but the confinement effect is too weak to modify the
joint density of states strongly, so that the blue shift and
the broadening of the luminescence spectra under high-
energy excitation observed for these two samples is due to
band filling. From the absorbed energy in the strong ex-
citation case we conclude that the photogenerated carrier
gas is highly degenerate (the density of excited carriers is
of the order of 1020 cm-') and the electron Fermi energy is
large enough to account for the shift and the broadening
of the luminescence peak that we observe, even assuming
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the carrier recombination time to be reduced by a factor
of 10.

The situation is radically different for the other three
samples, which clearly show the quantum-confinement ef-
fect: blue-shifted and structured absorption spectra.
This effect is clearly visible in the absorption spectra
shown in Fig. 2. Figure 4 shows the second derivative of
these absorption spectra together with the positions and
intensities of the first allowed transitions as calculated in
Section 3. Good agreement is obtained for the positions
of the peaks. We assign the first two absorption peaks to
the 1S3 i2-lSe and 2S 3 i2-1Se transitions. (Xia's calcula-
tion 2 for ZnSe also showed the second excited state to be
2S3i2-1Se with approximately the same relative oscillator
strength as here.) The difference in energy between
these two transitions increases, whereas the relative oscil-
lator strength of the second decreases, when the size is
reduced. The size dependence of the first absorption
band is thus well explained.

The third absorption feature for our 38-A sample may
correspond to the P3 /2l1Pe transition, to the 1P1i2-1Pe
one, or to a combination of the two. The two hot lumines-
cence peaks observed for this 38-A sample seem to corre-
spond to the second and the third absorption peaks. In
the same way, the hot luminescence peaks that we observe
for the 26- and 21-A samples seem to correspond to the
second (the 2S3/2-lSe) absorption peak. In the case of the
21-A sample this second absorption peak is not seen ex-
perimentally, but the calculated position (2.7 eV) is in good
agreement with the luminescence spectrum. For these
two samples (26- and 21-A mean radius) the third absorp-
tion peak may be assigned to the P3 /2-1Pe, the 2S12-lSe,
and the 1P/2-1Pe transitions. Note that the relative posi-
tions of these transitions change with sample size and
that they are unresolved in the experimental spectra.

Somewhat similar CdSe absorption spectra were re-
ported previously 9

-21 but were not properly assigned. We
emphasize that our experimental observations, especially
the substructures of the absorption spectrum and the hot
luminescence peaks, could not be understood without tak-
ing the valence-band degeneracy into account and that the
proper way of taking it into account is the one presented
in Section 3. Our samples show these previously unob-
served rich substructures probably because they have a
narrower size distribution: working at low temperature,
we strongly reduce the intrinsic broadening, and the re-
maining width of the absorption peaks is probably due to
the size distribution of the nanocrystals, which must be
rather small here to permit observation of the substruc-
tures that we see.

A few points, however, remain unexplained. First, the
Stokes shift between the weak excitation luminescence
peak and the first absorption peak, which is observed to
increase when the particle size is reduced, is difficult to
explain by electron-phonon coupling: It would imply too
large a Huang-Rhys S parameter.2 2 In Ref. 23 some of us
interpreted this luminescence peak in terms of intrinsic
surface states. Such surface states cannot be accounted
for by the model used in Section 3. Second, at present we
do not clearly understand why the hot luminescence peaks
in the 38-, 26-, and 21-A samples correspond to the second
and the third absorption peaks and why we do not see any
hot luminescence originating from the first excited level

(the 1S 312-1Se transition), which theoretically has a larger
oscillator strength. This absence could be due to a
shorter lifetime or to faster trapping. Time-resolved lu-
minescence and nonlinear absorption measurements now
under way may give the answer to this question.

5. CONCLUSION

We have shown in this paper how the valence-band degen-
eracy gives rise, in the case of CdSe nanocrystals, to sub-
structures in the absorption and luminescence spectra.
These new features could be observed because we had
better-quality samples. We also showed how to take this
valence-band degeneracy into account theoretically; be-
cause of coupling between the angular momenta of the
atomic wave functions and the envelope wave functions,
the true wave functions are eigenfunctions of the total
angular momentum F The corresponding energy eigen-
values and the oscillator strengths of the allowed transi-
tions have also been calculated, and good agreement
between theory and experiment has been obtained. This
work provides the basis for a better understanding of the
linear and the nonlinear optical properties of such II-VI
nanocrystals.

This valence-band degeneracy completely modifies the
selection rules that were previously thought to prevail, as
was also shown by Xia 2 : It was previously shown how
this modification explains coupling between carriers and
surface phonons24 ; it would also be worth looking at the
implications for nonlinear optical properties.
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