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Abstract

The secoiridoids 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde

(3,4-DHPEA-EDA) account for approximately 55 % of the phenolic content of olive oil and may be partly responsible for its reported

human health benefits. We have investigated the absorption and metabolism of these secoiridoids in the upper gastrointestinal tract.

Both 3,4-DHPEA-EDA and 3,4-DHPEA-EA were relatively stable under gastric conditions, only undergoing limited hydrolysis. Both secoir-

idoids were transferred across a human cellular model of the small intestine (Caco-2 cells). However, no glucuronide conjugation was

observed for either secoiridoid during transfer, although some hydroxytyrosol and homovanillic alcohol were formed. As Caco-2 cells

are known to express only limited metabolic activity, we also investigated the absorption and metabolism of secoiridoids in isolated, per-

fused segments of the jejunum and ileum. Here, both secoiridoids underwent extensive metabolism, most notably a two-electron reduction

and glucuronidation during the transfer across both the ileum and jejunum. Unlike Caco-2 cells, the intact small-intestinal segments contain

NADPH-dependent aldo-keto reductases, which reduce the aldehyde carbonyl group of 3,4-DHPEA-EA and one of the two aldeydic car-

bonyl groups present on 3,4-DHPEA-EDA. These reduced forms are then glucuronidated and represent the major in vivo small-intestinal

metabolites of the secoiridoids. In agreement with the cell studies, perfusion of the jejunum and ileum also yielded hydroxytyrosol and

homovanillic alcohol and their respective glucuronides. We suggest that the reduced and glucuronidated forms represent novel physiologi-

cal metabolites of the secoiridoids that should be pursued in vivo and investigated for their biological activity.

Key words: 3,4-Dihydroxyphenylethanol-elenolic acid dialdehyde: 3,4-Dihydroxyphenylethanol-elenolic acid: Olive oil:

Metabolism

Adherence to the so-called Mediterranean diet(1) is believed to

provide protection against an array of common chronic patho-

logical conditions, including CHD, cancer and neurodegenera-

tive disorders(2–4). These effects may be mediated by many

individual components of the diet, including polyphenolic

phytochemicals present in various fruits and vegetables, red

wine and olive oil(4–6). With regard to olive oil, these polyphe-

nols include phenyl alcohols, such as hydroxytyrosol (HT),

tyrosol and secoiridoids, and phenyl alcohols conjugated to

elenolic acid. In particular, olive oil is a rich source of oleuro-

pein aglycone, 3,4-dihydroxyphenylethanol-elenolic acid

(3,4-DHPEA-EA, HT linked to elenolic acid) and a related

compound 3,4-dihydroxyphenylethanol-elenolic acid dialde-

hyde (3,4-DHPEA-EDA, HT linked to the dialdehydic form

of elenolic acid)(7) (Fig. 1). These compounds account for

up to 55 % of the total phenolic fraction(8–10), with 3,4-

DHPEA-EDA and 3,4-DHPEA-EA achieving a relatively high

concentration depending on growing conditions, cultivar

and storage conditions(9,10). These secoiridoid aglycones,

together with other phenolic components and tocopherols,

are believed to be partly responsible for the observed health

benefits of extra virgin olive oil consumption(5,6).

*Corresponding author: Dr J. P. E. Spencer, email j.p.e.spencer@rdg.ac.uk

Abbreviations: 3,4-DHPEA-EA, 3,4-dihydroxyphenylethanol-elenolic acid; 3,4-DHPEA-EAH2, methyl 4-(2-(3,4-dihydroxyphenethoxy)-2-oxoethyl)-3-

(hydroxymethyl)-2-methyl-3,4-dihydro-2H-pyran-5-carboxylate; 3,4-DHPEA-EDA, 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde; 3,4-DHPEA-EDAH2,

2-(3,4-dihydroxyphenyl)ethyl (4E)-4-formyl-3-(2-hydroxyethyl)hex-4-enoate; AP, apical; BA, basolateral; ECACC, European Collection of Cell Culture; HT,

hydroxytyrosol; HVA, homovanillyl alcohol; LC, liquid chromatography; RT, retention time.
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In vitro studies have indicated that 3,4-DHPEA-EDA and

3,4-DHPEA-EA may protect erythrocytes(11,12) and mono-

nuclear cells(13) against oxidative injury. Furthermore, they

are known to reduce the viability of human breast carcinoma

cells(14) and induce apoptosis in mammary epithelial cells

overexpressing human epidermal growth factor receptor-

2(15) via the modulation of human epidermal growth factor

receptor-2 auto-phosphorylation(16). However, the biological

properties of 3,4-DHPEA-EDA and 3,4-DHPEA-EA in vivo

will depend on the extent to which they are absorbed and

metabolised in the gastrointestinal tract. Absorption studies

with olive oil, or phenolic extracts derived from olive oil,

have indicated that HT is absorbed(17–22), while other pheno-

lic components undergo metabolism in the small and large

intestine to yield homovanillic acid and homovanillyl alcohol

(HVA)(23–25). For example, oleuropein (3,4-DHPEA-EA gluco-

side) is not absorbed in the small intestine, but undergoes

rapid degradation in the large intestine to yield HT(23).

However, unlike oleuropein, it is thought that its correspond-

ing aglycone (3,4-DHPEA-EA) may be absorbed in the small

intestine due to its higher partition coefficient (log p)

value(26,27). As such, the aim of the present study was to inves-

tigate the absorption and metabolism of the secoiridoids

3,4-DPEA-EA and 3,4-DHPEA-EDA in the small intestine.

We focus on their decomposition in the stomach and their

absorption and metabolism in two small-intestinal models in

order to acquire knowledge relating to their fate in the gastro-

intestinal tract and the generation of metabolites that may

exert potential bioactivity in vivo.

Experimental methods

Materials

The aglycone 3,4-DHPEA-EA was obtained from oleuropein

via enzymatic cleavage using b-glycosidase (Fluka, Buchs,

Switzerland)(28), while 3,4-DHPEA-EDA was extracted from

olive leaves, as described previously(29). 3,4-DHPEA-EA that

was isolated following b-glycosidase treatment was found to

consist of a mixture of approximately 3·7:6·3 of its cis- and

trans-isomers. The purity of both compounds was assessed

by liquid chromatography (LC)–MS and 1H NMR and was

determined to be more than 95 % pure. HT was purchased

from Cayman Chemical Company (Ann Arbor, MI, USA).

HVA and b-glucuronidase (type L-II from limpets) were pur-

chased from Sigma (Poole, Dorset, UK). The Caco-2 cell line

was obtained from the European Collection of Cell Cultures

(ECACC) (Salisbury, Wiltshire, UK). Cell culture media and

supplements were obtained from PAA Laboratories (Yeovil,

Somerset, UK). HPLC-grade solvents were obtained from

Fisher (Hampton, NH, USA), and HPLC columns were

obtained from Waters (Watford, Herts, UK). All other reagents

used were obtained from Sigma.

Low pH conditions

3,4-DHPEA-EDA or 3,4-DHPEA-EA (1 mM) was incubated in

simulated gastric pH conditions (water and HCl; pH 2) at

378C for 1 and 4 h. As the aqueous system had no inherent

buffering capacity, we monitored pH throughout incubations

in order to assess whether compound hydrolysis influences

pH. However, there was no significant change in pH during

any of the incubations. Following incubation, samples were

analysed by HPLC-diode-array detection (see later).

Transport experiments using human Caco-2 cells

Caco-2 cells (passage 25–40) were grown in T-75 culture

flasks and passaged with a trypsin–versene solution. Cells

were cultured in Dulbecco’s modified Eagle’s medium sup-

plemented with fetal bovine serum (20 %, v/v), non-essential

amino acids (1 %, v/v), L-glutamine (2 mM), penicillin (100

units/ml) and streptomycin (100mg/ml) at 378C in 5 % CO2.

For all transcellular transport studies, Caco-2 cells were
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Fig. 1. Structures and amounts of olive oil secoiridoids under study obtained after the incubation of compounds at 378C, pH 2. (A) , 3,4-Dihydroxyphenylethanol-

elenolic acid dialdehyde (3,4-DHPEA-EDA); , hydroxytyrosol. (B) , 3,4-Dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA); , hydroxytyrosol. Values are

means of at least four separate experiments, with standard errors represented by vertical bars. a,b,c Mean values with unlike letters were significantly different (P,0·05).
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seeded in 12 mm internal diameter transwell inserts (polycar-

bonate membrane, 0·4mm pore size; Corning Costar Corpor-

ation, Cambridge, MA, USA) in twelve-well plates at a

density of 5 £ 104 cells/ml. The basolateral (BA, serosal) and

apical (AP, mucosal) compartments contained 1·5 and 0·5 ml

of the culture medium, respectively. The culture medium

was replaced three times a week for 21 d. Before transport

experiments, the media in both chambers were replaced

with HEPES-buffered medium (pH 7·4; 5 mM-HEPES,

154 mM-NaCl, 4·6 mM-KCl, 33 mM-glucose, 5 mM-NaHCO3 and

1·2 mM-Na2HPO4). Only inserts with a transepithelial electrical

resistance value of .300V/cm2 were used for transport

experiments. 3,4-DHPEA-EA or 3,4-DHPEA-EDA (50, 100

and 200mM) was added in the AP side of transwells and incu-

bated for 2 h. Following incubation, the medium from both

compartments was harvested, snap-frozen and was analysed

by HPLC. Control experiments to monitor the oxidation and

hydrolysis of both compounds in medium alone (i.e. in the

absence of cells) were performed. In control experiments,

DHPEA-EA and 3,4-DHPEA-EDA were observed to undergo

only a very small level of spontaneous degradation to yield

HT (2 h, 378C; data not shown).

Transport and metabolism experiments in the perfused rat
intestinal model

Transport and metabolism experiments were conducted using

the in vitro intestinal preparation of Fisher & Gardner(30,31),

in which the lumen of the isolated intestine is perfused with

a segmental flow (perfusion of buffer interspersed with

the gas mixture) of bicarbonate buffer (pH 7·4) equilibrated

with 95 % O2:5 % CO2 and containing 28 mM-glucose. The

bicarbonate buffer consisted of 25 mM-HCO3
2, 143 mM-Naþ,

133·7 mM-Cl2, 5·9 mM-Kþ, 1·2 mM-HPO4
2, 2 mM-Ca2þ and

1·2 mM-Mg2þ. Male Sprague–Dawley rats (230–260 g) were

anaesthetised with sodium pentobarbital (90 mg/kg, intra-

peritoneally), and sections of the jejunum (20–30 cm long,

beginning 10 cm from the ligament of Treitz) or ileum

(20–30 cm long, ending 5 cm from the ileo-caecal junction)

were cannulated, and the lumen was segmentally perfused.

The intestinal sections were then removed from the animal

by stripping them from the mesentery, and suspended in a

chamber containing liquid paraffin (378C). Segmental flow

was maintained throughout this procedure. Before transport

experiments, the segments were perfused for 40 min in

order to flush blood from the vasculature and to allow fluid

absorption to reach a steady state. Thereafter, an aliquot of

the methanol stock solution of 3,4-DHPEA-EA or 3,4-

DHPEA-EDA was added to the carbonate buffer (final concen-

tration 100mM, methanol content 0·1 %) and perfused through

the intestinal segment, in a single-pass fashion, for up to

80 min. Appropriate vehicle controls, lacking polyphenols,

were also conducted. During perfusion, absorbed fluid

dropped through the paraffin to the base of the chamber

and was collected at timed intervals of 20 min. All samples

(pre-perfusion, post-perfusion and timed serosal fluids) were

snap-frozen and stored at 2208C until analysis. Serosal fluid

samples were analysed by HPLC and LC–MS both pre- and

post-b-glucuronidase treatment to establish the presence of

glucuronide conjugates. Aliquots of serosal fluid samples

(100ml) were added to 50ml of phosphate buffer (final con-

centration 0·1 M; pH 4·5) with or without the glucuronidase

enzyme (2000 units/ml), and samples were incubated for

120 min at 378C. The 0·1 M-phosphate buffer effectively inhibits

all sulphatase activity that the enzyme possesses. After incu-

bation, samples were centrifuged at 13 200 rpm for 10 min,

and aliquots of the supernatant were used for HPLC and

LC–MS analysis.

HPLC analysis

Characterisation and quantification of phenolic components

and metabolites in serosal samples and cell medium samples

were carried out using a Hewlett-Packard 1100 series liquid

chromatography system (Hewlett-Packard, Palo Alto, CA,

USA) equipped with a diode array detector (HP ChemStation

Software system). Samples were analysed by reverse-phase

HPLC using a Nova-Pak C18 column (4·6 £ 250 mm2) with

4mm particle size. The temperature of the column was main-

tained at 308C. The mobile phases consisted of a mixture of

aqueous methanol (5 %) in 0·1 % 5M-HCl (A) and a mixture

of aqueous acetonitrile (50 %) in 0·1 % 5M-HCl (B) and were

pumped through the column at 0·7 ml/min. The following gra-

dient system was used (min/% B): 0/5, 5/5, 40/50, 55/100,

59·9/100, 60/5, with 10 min post-run for both compound and

metabolite detections. The eluent was monitored by photo-

diode array detection at 280 nm, and spectra of products

were obtained over the 200–600 nm range. Calibration

curves of the compounds (0·1–100mM) were constructed

using authentic standards (HT, HVA, 3,4-DHPEA-EA and

3,4-DHPEA-EDA), and in each case, they were found to be

linear with correlation coefficients higher than 0·992. Quantifi-

cation of glucuronides (i.e. following b-glucuronidase

treatment) and reduced derivatives of 3,4-DHPEA-EA and

3,4-DHPEA-EDA was achieved using 3,4-DHPEA-EA and

3,4-DHPEA as standards.

Liquid chromatography–mass spectrometry analysis

Metabolite characterisation was achieved using LC–MS/MS uti-

lising electrospray ionisation. This consisted of an Agilent 1200

HPLC system equipped with a binary pump, degasser, auto-

sampler, thermostat, column heater, photodiode array detector

and an Agilent 1100 Series LC/MSD mass trap spectrometer.

Separation of samples was achieved using a Zorbax SB C18

column (2·1 £ 100 mm2; 1·8mm; Agilent, Santa Clara, CA,

USA), and HPLC conditions were as follows: injection

volume, 1ml; column temperature, 258C; binary mobile

system: (A) 0·1 % of aqueous formic acid and (B) 0·1 % of

formic acid in acetonitrile; flow rate, 0·2 ml/min. A series of

linear gradients was used for separation (min/%B): 0/10,

3/10, 15/40, 40/70, 50/70 and 65/10. MS was performed in

the negative ion mode (scan range, m/z 100–800 Da; source

temperature, 3508C). All solvents used were of LC–MS grade.

Metabolism of olive oil secoiridoids 1609
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Statistical analysis

Statistical analyses were performed using SPSS 18 statistical

software (SPSS, Inc., Chicago, IL, USA). Results are reported

as means with their standard errors of at least three separated

experiments. Data were analysed by one-way ANOVA fol-

lowed by the Tukey–Duncan a post hoc test, and differences

were considered significant at P,0·05. The Pearson corre-

lation coefficient (R) was used to indicate the strength of a

linear relationship. A P value lower than 0·05 was considered

as evidence that the null hypothesis is false, and the attributes

were statistically significantly correlated.

Results and discussion

Incubation at low pH

Incubation of 3,4-DHPEA-EDA and 3,4-DHPEA-EA at pH 2·0

led to the partial hydrolysis of both compounds and a corre-

sponding time-dependent increase in HT (Fig. 1). After 4 h

incubation, about 67 % of 3,4-DHPEA-EDA and 78 % of 3,4-

DHPEA-EA (Fig. 1(A) and (B)) remained. The present results

show that although some hydrolysis takes place releasing

free HT from both 3,4-DHPEA-EDA and 3,4-DHPEA-EA, a

large amount of both DHPEA-EDA and 3,4-DHPEA-EA (67

and 78 %, respectively, after 4 h) remains intact despite pro-

longed exposure to postprandial gastric conditions. This is

in agreement with previous studies, which suggest that both

compounds are also relatively stable at pH environments

akin to those in the small intestine with more than 90 % of

3,4-DHPEA-EDA and more than 65 % of 3,4-DHPEA-EA

remaining intact after a 48 h incubation at pH 7·4 (378C)(32).

These data suggest that both 3,4-DHPEA-EDA and 3,4-

DHPEA-EA may be relatively stable during transit through

the stomach and the small intestine in vivo. As a consequence,

both compounds are likely to arrive at relatively high

concentration in the small intestine where they may undergo

absorption and metabolism.
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Caco-2 cell model

Initial investigations into the ability of 3,4-DHPEA-EA and 3,4-

DHPEA-EDA to transfer across the small intestine were con-

ducted using the human Caco-2 cell model. Analysis of the

AP and BA medium demonstrated the enterocyte-mediated

transfer of both 3,4-DHPEA-EA and 3,4-DHPEA-EDA over a

2 h period (Fig. 2). After 2 h, the cis- and trans-isomers of

3,4-DHPEA-EA (retention time (RT): 44·6 and 46·1 min) were

detectable on the AP side (Fig. 2(A)), and a single isomer

was detected on the BA side of the cell monolayer

(Fig. 2(B)). Furthermore, its transfer to the BA side was

observed to increase with increasing exposure to the AP

side (Fig. 3(A), I–III). HT (RT: 8·2 min) was also detected on

both the AP and BA sides (Figs. 2 and 3), whereas HVA (RT:

15·8 min) was only detected on the AP side. Similarly,

3,4-DHPEA-EDA appeared to be transferred from the AP

side (Fig. 2(C)) to the BA side (Fig. 2(D)) in a concentration-

dependent manner (Fig. 3(B), I–III), where HT (RT: 8·2 min)

was also found. LC–MS of BA fluids confirmed the identity

of 3,4-DHPEA-EA and 3,4-DHPEA-EDA, indicating that they

appear to be capable of enterocytic transfer. LC–MS of the

AP medium following 3,4-DHPEA-EDA exposure (Fig. 2(C))

indicated the presence of HVA (RT: 15·8; m/z 153) and

another intense peak (RT: 25·8 min), which apparently had a

molecular peak of m/z ¼ 250 (other fragments: m/z ¼ 220

and 198). The peaks at 16·1 and 21·9 min on the BA side

were compounds related to normal enterocyte metabolism,

were present in controls and therefore we did not characterise

them.

These data appear to suggest that both 3,4-DHPEA-EA and

3,4-DHPEA-EDA are transferred across the small intestine.

However, while Caco-2 cell monolayers have been shown to

express a series of metabolic enzymes and efflux transpor-

ters(33,34), they are well known to overexpress some enzymes

and underexpress others. Although the Caco-2 cell model is

generally considered to be a suitable model for intestinal

CYP3A4-mediated first-pass metabolism, this is not the case

for (uridine 50-diphospho-glucuronosyl transferase)-mediated

glucuronidation(35,36), as they do not contain a full comp-

lement of intestinal drug-metabolising enzymes. However,
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they have been extensively used for assessing the small-

intestinal absorption and metabolism of polyphenols(24,37–39),

even though this cell system may not wholly reflect physio-

logical conditions in vivo. For example, several enzymes

involved in lipid and carbohydrate metabolism are overex-

pressed relative to the human intestinal epithelial cells(33),

whereas uridine 50-diphospho-glucuronosyl transferase(40),

catechol-O-methyl transferase, aldolase and retinal dehydro-

genase(33) are underexpressed. As such, the results obtained

from our cell studies may not fully reflect the degree to

which 3,4-DHPEA-EA and 3,4-DHPEA-EDA undergo enterocy-

tic metabolism in vivo. Furthermore, the reduced metabolic

capacity of these cells may result in an incomplete picture of

the actual pattern of 3,4-DHPEA-EA and 3,4-DHPEA-EDA

absorption and metabolism, most notably whether the parent

compounds are transferred intact in the presence of entero-

cytes with a normal metabolic capacity.

Perfused rat intestinal model

To help address this problem, we also carried out transfer

experiments in the isolated, perfused rat intestinal model,

which is known to possess full metabolic capacity for up to

120 min post-isolation(30,31). Using this model, we were able

to determine the comparative absorption of 3,4-DHPEA-EA

and DHPEA-EDA, and the extent to which they are conjugated

and metabolised during transfer across the jejunum and ileum.

HPLC analysis of the serosal fluid (equivalent to the portal

vein blood) following perfusion of the ileum with 3,4-

DHPEA-EA led to the detection of a number of peaks

(Fig. 4), which were characterised by diode array and MS.

These included HT (RT: 8·4 min; m/z 153), 3-O-methyl-HT

(HVA) (RT: 16·5min; m/z 153), HT glucuronide (RT: 6·8; m/z

329) and HVA glucuronide (RT: 11·5; m/z 343) (Fig. 4(A)).

In addition, there were two peaks at 44·6 and 45·5 min that

had similar, but not identical, spectral and RT characteristics
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to the cis- and trans-isomers of 3,4-DHPEA-EA and a further

four peaks at a RT between 38 and 43 min (Fig. 4(A)). MS anal-

ysis indicated that the four peaks at 38–43 min had a þ 2 mass

(m/z 555; negative ion mode) relative to that of 3,4-DHPEA-

EA glucuronide, indicating that they were glucuronides of

reduced forms of the cis- and trans-isomers of 3,4-DHPEA-

EA (Fig. 5). b-Glucuronidase treatment confirmed that these

were indeed glucuronides (Fig. 4(A)), and MS analysis of the

peaks at 44·6 and 45·5min, which appeared following enzyme

treatment (Fig. 4(B)), was shown to correspond to the reduced

cis- and trans-isomers of 3,4-DHPEA-EA (denoted as methyl 4-

(2-(3,4-dihydroxyphenethoxy)-2-oxoethyl)-3-(hydroxymethyl)-2-

methyl-3,4-dihydro-2H-pyran-5-carboxylate (3,4-DHPEA-EAH2);

molecular ion in negative mode of m/z ¼ 379 for both peaks).

We were unable to confirm the identity of the peaks at 44·6 and

45·5min (Fig. 4(A)) due to the small amounts transferred, although

these are likely to correspond either to 3,4-DHPEA-EA or its

reduced derivatives. Therefore, the quantification of these peaks

was denoted as EA/EAH2 and quantified as 3,4-DHPEA-EA

equivalents.

These results indicate that during transfer across the ileum,

3,4-DHPEA-EA undergoes both a two-electron reduction to

yield 3,4-DHPEA-EAH2 and mono-glucuronidation at two pos-

itions. Two sites of reduction are possible on 3,4-DHPEA-EA,

the alkenic double bond and the carbonyl group (Fig. 1(B)),

which may act as sites for the action of NADPH-dependent,
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aldo-keto reductase(41). Aldo-keto reductase enzymes are

widely distributed in mammals and include human aldose

reductase and human small intestine aldose reductase(42).

These enzymes are capable of catalysing the reduction of a

variety of carbonyl-containing compounds, and are respon-

sible for the reduction of retinal to retinol in the human

small intestine(42), as well as the reduction of various other

molecules, including carbohydrates, aliphatic and aromatic

aldehydes and steroids. We suggest that during transfer

across enterocytes, aldose reductase reduces the carbonyl

group of 3,4-DHPEA-EA, something that was consistent with

the MS fragmentation pattern of 3,4-DHPEA-EAH2 (Fig. 5).

Although we were unable to completely rule out the transfer

of 3,4-DHPEA-EA, it appears that its major bioavailable forms

in vivo are the glucuronides of reduced 3,4-DHPEA-EA

(methyl 4-(2-(3,4-dihydroxyphenyl)-ethoxycarbonylmethyl)-

3-hydroxymethyl-2-methyl-3,4-dihydro-2H-pyran-5-carboxylate).

Presumably, we did not observe these in the cell model due to

the underexpression of these enzymes.

Similar observations were made following perfusion of the

ileum with 3,4-DHPEA-EDA (Fig. 6). HT (RT: 8·0 min), HVA

(RT: 15·8 min) and the respective glucuronides of these com-

pounds (RT: 7·6 and 11·8 min) were observed in the serosal

fluid (Fig. 6(A)). In addition, there were two peaks at 30·7

and 32·1 min and a further peak at 34·4 min with a similar,

but not identical, spectral and RT characteristics to 3,4-

DHPEA-EDA. Full scan analysis of the serosal fluid collected

after 3,4-DHPEA-EDA perfusion did not indicate the presence

of the [M 2 H]2 ion corresponding to 3,4-DHPEA-EDA (m/z

319) or to its reduced form (3,4-DHPEA-EDAH2 (2-(3,4-dihy-

droxyphenyl)ethyl (4E)-4-formyl-3-(2-hydroxyethyl)hex-4-

enoate), m/z 321). However, two glucuronides of the reduced

form of 3,4-DHPEA-EDA were detected (RT: 30·7 and

32·1 min, m/z 497 in negative ion mode), which disappeared

following b-glucuronidase treatment (Fig. 6(B)) with a sub-

sequent increase in a peak at 34·4 min corresponding to a

reduced form of 3,4-DHPEA-EDA (m/z 321 in negative ion

mode). Again, the fragmentation of the molecular ion corre-

sponding to 3,4-DHPEA-EDAH2 (m/z 321) indicated that a

reduction of one of the two carbonyl groups present on 3,4-

DHPEA-EDA had occurred during transfer across the ileum

(Fig. 7), along with glucuronidation. We were unable to
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confirm which of the carbonyl functional groups had under-

gone reduction since reduction at either site would yield simi-

lar fragmentation patterns.

Perfusion of the jejunum with both 3,4-DHPEA-EDA and

3,4-DHPEA-EA also resulted in their extensive reduction and

glucuronidation in a similar manner to that seen in the

ileum. However, both 3,4-DHPEA-EDA and 3,4-DHPEA-EA

metabolites were transferred to a greater extent in the jejunum

compared with the ileum (Fig. 8(A)). This difference was

especially apparent for 3,4-DHPEA-EA where the concen-

tration of 3,4-DHPEA-EAH2 glucuronide was four times

higher in the jejunum serosal fluid than in the ileum serosal

fluid. Furthermore, transfer of compounds and appearance

of metabolites reached a maximum at about 60 min (Fig. 8(A)

and (B)), reflecting the initial slow uptake of components into

cells and followed by their enzymatic reduction and glucuro-

nidation. The small reduction in compound/metabolite con-

centration in the jejunum at 90 min is likely to reflect a loss

of viability in the intestinal segment at this late stage. There

were also notable differences in the patterns of metabolism

occurring between the jejunum and ileum, with ileum appear-

ing to display a lower reductase and glucuronidase activity

compared with the jejunum (Fig. 8). This is in agreement

with previous studies indicating that the ileum expresses a
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much lower glucuronidase activity towards transferred flavo-

noids relative to the jejunum(31). Nevertheless, when consider-

ing the small intestine as a whole, glucuronides of 3,4-DHPEA-

EAH2 and 3,4-DHPEA-EDAH2 represent the major small-intes-

tinal metabolites entering the portal blood.

Conclusion

Previous human intervention studies have failed to clearly

identify 3,4-DHPEA-EA in either the plasma or urine following

olive oil ingestion(19–21), while 3,4-DHPEA-EDA has only been

measured in the plasma of one subject (out of five) in a recent

study performed by Suarez et al.(43). The inability to character-

ise and quantify these components may partially relate to a

lack of commercially available secoiridoid standards and a

focus on the detection of HT and tyrosol in biological samples.

However, our data suggest that the inability to detect 3,4-

DHPEA-EDA and 3,4-DHPEA-EA (or their glucuronides) in

biological fluids is more likely to be due to the fact that they

are not absorbed in the parental form, and thus they are not

major bioavailable forms in vivo. Indeed, we show for the

first time that the major small-intestinal metabolites of these

secoiridoids are glucuronide conjugates of 3,4-DHPEA-EDA

and 3,4-DHPEA-EA that have undergone reduction (most

probably enzymatic) during enterocytic transfer. As such, pre-

vious studies are unlikely to have captured the full extent of

absorption and metabolism of these olive oil components, as

they would have failed to take account of these reduced

forms. Therefore, it seems reasonable that previous human

studies aimed at investigating the pharmacokinetics of such

olive oil secoiridoids may have underestimated the full

extent of their absorption. Future studies should take account
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of the novel metabolites identified in the present study, and

those resulting from intestinal micobiota-induced metab-

olism(23), when investigating biological fluids. Furthermore,

such metabolites should be investigated for their cellular and

molecular effects in in vitro models, as such metabolites

may possess biological activities that underpin the benefits

of olive oil consumption in humans.
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