Absorption lines and ion abundances in the QSO PKS 0528-250

Donald C. Morton, Chen Jian-sheng ${ }^{\star}$, Alan E. Wright \dagger and Bruce A. Peterson
Anglo-Australian Observatory, Box 296, Epping, NSW 2121, Australia
David L. Jauncey csiro Division of Radiophysics, Box 76, Epping, NSW 2121, Australia

Received 1980 March 17; in original form 1980 January 2

Summary. Spectra of the QSO PKS 0528-250 ($z_{\mathrm{e}}=2.765$) have been obtained with the AAT at $2 \AA$ resolution from 3100 to $7180 \AA$. Absorption line systems have been identified at $z_{\mathrm{A} 1}=2.81322, z_{\mathrm{A} 2}=2.81100, z_{\mathrm{B}}=$ 2.53758 and $z_{\mathrm{C}}=2.14077$. The ionization ranges from $\mathrm{H}_{\mathrm{I}}, \mathrm{A} 1$ II and Fe II to Nv or O vi in system A , from HI and possibly Si ir to C iv in B and from HI , A 1 ir and Si ir to C iv in C . In system A the Si iv and higher stages are concentrated in A2. Broad L α profiles in A and C correspond to 2×10^{21} and 5×10^{20} atom cm^{-2} respectively. Column densities also have been estimated for several heavier elements at each redshift. In system A depletions by factors of 8 to 160 relative to solar abundances appear to be present in $\mathrm{S}_{\text {ir }}$, O_{I} and N_{I} as well as the typical factor 10 for $\mathrm{Si}_{\mathrm{II}}$ and $\mathrm{Fe}_{\text {II }}$ similar to interstellar clouds in the plane of our galaxy.

Longward of the $\mathrm{L} \alpha$ absorption in system A there are 44 lines of which only 27 have proposed identifications, whereas at the shorter wavelengths there are 112 lines of which 43 have plausible identifications due to one or more ions other than hydrogen. Thus caution is needed with the common assumption that most absorptions shortward of $L \alpha$ emission in QSOs are due to $\mathrm{L} \alpha$.

1 Preamble

A 19th magnitude stellar object was noted within the $\pm 7 \mathrm{arcsec}$ positional uncertainty of the Parkes radio source 0528 - 250 by Bolton, Shimmins \& Wall (1975). The images on the red and blue Palomar survey plates were of similar brightness. Coincidence to better than 3 arcsec was established with the NRAO interferometer by Condon, Hicks \& Jauncey (1977). Two low resolution AAT spectra described by Wright et al. (1977) and Jauncey et

[^0]al. (1978, hereinafter JWPC) had a strong absorption line system at $z_{\mathrm{a}}=2.812$ and several possible emission peaks, but no recognizable redshift system. Later observations at Lick by Smith, Jura \& Margon (1979, hereinafter SJM) showed weak, but distinct peaks identifiable with Siiv $\lambda 1397+$ Oiv $_{\text {IV }} \lambda 1402$, Civ $\lambda 1549$ and $\mathrm{C}_{\text {IIII }} \boldsymbol{\lambda} 1909$ giving the redshift $z_{\mathrm{e}}=$ 2.765 ± 0.01. This is less than the main absorption redshift by 0.047 ! No $L \alpha$ emission was found. A re-examination of the AAT spectra showed the C iv lines on both published plots and SiIv and $\mathrm{C}_{\text {III }}$] in one along with other maxima. The emission redshift is definitely established, though the line strengths may be variable. PKS $0528-250$ must be classed as an unusual QSO rather than a BL Lac object.

The prominent absorption line system made this object a candidate for an AAT programme of higher resolution ($\sim 2 \AA$ FWHM) observations of radio QSOs. A previous paper in this series by Wright et al. (1979) describes the QSO PKS $1157+014$ at $z_{\mathrm{e}}=1.978$ which also has no $\mathrm{L} \alpha$ emission.

The optical coordinates of PKS 0528 - 250 from the Palomar Sky Survey are $05^{\mathrm{h}} 28^{\mathrm{m}}$ $05^{\mathrm{s}} .19 \pm 0^{\mathrm{s}} .07,-25^{\circ} 05^{\prime} 45^{\prime \prime} \pm 0^{\prime \prime} .9$ (1950.0) and a finding chart has been provided by Condon et al. (1977). As noted by JWPC the light varies from about 17.5 to 19.5 mag. and the radio spectrum peaks between 1 and 3 GHz in the observer's frame with a steep decline towards lower frequencies. The identification of this type of QSO depends on discovery in a high frequency radio survey and an accurate radio position rather than an ultraviolet excess or strong emission lines detectable in a Schmidt objective prism survey.

2 Observations and data reduction

The spectra discussed here were obtained with the image-photon counting system and RGO spectrograph on the Anglo-Australian 3.9-m telescope. Data were collected on eight different nights: 1976 December 21, 1977 February 14, 15, 16, November 11, 12, December 16 and 1978 February 12. We used gratings of 1200 lines mm^{-1} in first order with dispersions of $33 \mathrm{Amm}^{-1}$ and effective blazes near 4600 and $6900 \AA$. The contribution of the sky was determined by placing the QSO in alternate apertures 20 arcsec apart and 2 or 3 arcsec diameter projecting to 1.6 and $2.4 \AA$ respectively.

The data were reduced in the usual way except that no attempt was made to correct for the spectrograph and detector sensitivity variations with wavelength and position on the photocathode. It was found that using the flat field data produced more noise than it removed, probably due to registration problems.

After the wavelength scales were determined, the exposures in each band of about $1000 \AA$ were summed and then these sums were combined to one continuous plot which is reproduced in Fig. 1. Correction factors were applied to each section indicated by the vertical dashed lines to produce a smooth continuum. Thus the ordinate does not represent observed counts and the continuum energy distribution is not reliable over large wavelength ranges. The data cannot be trusted for the measurement of emission-line profiles.

The resulting instrumental profile is about $2 \AA$ FWHM. The corrections for the Earth's orbital motion were inadvertently omitted before summing. However, in each region the addition of the spectra is dominated to 87 per cent or more by contributions obtained at the same earth velocity. Thus we have reduced all observed wavelengths in Table 1 to a standard requiring a correction of $-19.0 \mathrm{~km} \mathrm{~s}^{-1}$ which has been applied as the factor ($1-19 / c$) to all the derived redshifts $(1+z)$ to obtain the heliocentric values in the abstract.

A continuum level was estimated as shown in Fig. 1. The central wavelength $\lambda_{\text {obs }}$ listed in Table 1 represents the line bisecting the area of each absorption line, and the equivalent width W_{λ} is this area expressed as the width of a totally absorbing rectangle. Thus W_{λ} / λ is

Figure 1. The spectrum of the QSO PKS $0528-250$. Various exposures in bands of about $1000 \AA$ have been summed after multiplication by factors to make the continuum moderately flat. Consequently the relative fluxes are unreliable over bands exceeding a few hundred Ångströms. The vertical dashed lines indicate where the pieces have been joined. Air wavelengths are plotted on the abscissa. The numbers label the lines in Table 1.
independent of redshift. For comparison with laboratory wavelengths $\lambda_{\text {lab }}$, all observed wavelengths have been converted to vacuum values using Edlèn's $(1953,1966)$ formula. The laboratory wavelengths and oscillator strengths of various ions are from the updated compilation by Morton (1978) or the list of N_{I} lines by Lugger et al. (1978).

Table 1. Absorption lines in PKS 0528-250.

No.	$\begin{gathered} \operatorname{air} \\ \lambda \text { obs } \end{gathered}$	$\begin{gathered} \mathrm{vac} \\ \lambda_{\text {obs }} \\ \hline \end{gathered}$	w_{λ}	Redshift System	Ion	$\begin{gathered} \mathrm{vac} \\ \lambda \quad \mathrm{abb} \\ \hline \end{gathered}$	f	$\begin{gathered} \Delta \lambda \\ \text { Obs-Ca1c } \\ \hline \end{gathered}$	Notes
124	3909.23	3910.34	16.79	$\left(\begin{array}{ll}\text { A } & \\ & \\ & \end{array}\right.$	$\begin{aligned} & \text { H IB } \\ & \text { N V } \end{aligned}$	$\begin{aligned} & 1025.72 \\ & 1242.80 \end{aligned}$	$\begin{aligned} & 0.07910 \\ & 0.0757 \end{aligned}$	$\begin{aligned} & -0.06 \\ & +6.74 \end{aligned}$	possible long λ unidentified component
125	3932.01	3933.13	3.71	A_{2}	0 VI	1031.93	0.130	+0. 20	
126	3950.63	3951.74	8.02	$\left(\begin{array}{ll}\text { A } & \\ A & \\ A & \\ & \\ & A_{2}\end{array}\right.$	C II C II* 0 VI	$\begin{aligned} & 1036.34 \\ & 1037.02 \\ & 1037.62 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.125 \\ & 0.0648 \end{aligned}$	$\begin{aligned} & +0.85 \\ & -2.85 \\ & -2.88 \end{aligned}$	
127	3959.85	3960.97	7.76	$\left(\begin{array}{ll} \mathrm{A} & \\ & \mathrm{C} \end{array}\right.$	O I Si II	$\begin{aligned} & 1039.23 \\ & 1260.42 \end{aligned}$	$\begin{aligned} & 0.00919 \\ & 0.959 \end{aligned}$	$\begin{aligned} & -0.94 \\ & +2.03 \end{aligned}$	
128	3985.27	3986.40	4.35	unident.					
$129 a$	$\begin{aligned} & 3994.08: \\ & 3998.75: \\ & 3997.22 \end{aligned}$	$\begin{aligned} & 3995.21: \\ & 3999.88: \\ & 3998.35 \end{aligned}$	$\begin{aligned} & 0.9: \\ & 1.8: \\ & 2.68 \end{aligned}$	$\begin{gathered} \mathrm{A}_{2} \\ \text { unident. } \end{gathered}$	Ar I	1048.22	0.230	+0.19	
130	4018.86	4019.99	1.61	A_{2}	Fe II?	1055.27	0.010	-1.90	
131	4029.05	4030.19	0.39	unident.					
132ab	4050.49	4051.64	7.14	(A	S IV	1062.67	0.0377	+0.37	
132 c	4057.67	4058.81	1.59	$\begin{gathered} \text { B } \\ \text { unident. } \end{gathered}$	Fe II	1144.95	0.15	+1.03	
133	4063.31	4064.46	2.34	A_{2}	Ar I	1066.66	0.0594	-0.84	A_{1} much weaker
134	4068.99	4070.14	1.56	unident.					may be double
135	4077.35	4078.50	2.25	B	P II	1152.81	0.236	+0.09	
136	4083.80	4084.95	1.58	unident.					
137	4089.69	4090.84	2.55	C	0 I	1302.17	0.0486	+0.76	
138	4095.38	4096.53	2.34	C	Si II	1304.37	0.147	-0.46	strong rel to $\lambda 1190$
139	4099.33	4100.48	1.49	unident.					
140	4104.79	4105.94	2.11	unident.					
141	4112.89	4114.05	1.68	unident.					
142	4122.00	4123.16	1.92	unident.					
143	4132.21	4133.37	8.67	$\left(\begin{array}{l}\text { A } \\ \text { A } \\ \text { A }\end{array}\right.$		1083.99 1084.58 1085.54 1085.70	$\begin{aligned} & 0.101 \\ & 0.101 \\ & 0.0161 \\ & 0.0845 \end{aligned}$	$\begin{aligned} & +0.82 \\ & -1.43 \\ & -5.09 \\ & -5.70 \end{aligned}$	
144	4142.62	4143.78	1.66						
145	4149.86	4151.03	1.09						
146	4156.04	4157.21	1.70	unident.					
147	4164.01	4165.19	1.54						
148	4169.27	4170.44	1.27						
149	4179.30	4180.48	3.05	A	Fe II	1096.89	0.037	-1.25	
150	4183.38	4184.56	0.85	unident.					
151	4190.63	4191.81	3.16	C	C II	1334.53	0.118	+0.09	C II* absent

No.	$\begin{gathered} \operatorname{air} \\ \lambda \text { obs } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{vac} \\ \lambda \text { obs } \\ \hline \end{gathered}$	${ }^{W} \lambda$	Redshift System	Ion	$\begin{gathered} \mathrm{vac} \\ \lambda \quad 1 \mathrm{ab} \\ \hline \end{gathered}$	f	$\begin{gathered} \Delta \lambda \\ \text { Obs-Calc } \end{gathered}$	Notes
152	4206.20	4207.39	1.10						
153	4217.38	4218.57	3.40						
154	4222.58	4223.76	1.12						
155	4229.82	4231.01	0.51	unident.					
156	4232.84	4234.03	0.49						
157	4238.26	4239.45	0.75						
158	4253.25	4254.44	4.58						
159	4267.77	4268.97	1.27	B	Si III	1206.51	1.66	+0.58	
$160 \mathrm{a}$	$\begin{aligned} & 4273.53 \\ & 4276.87 \end{aligned}$	$\begin{aligned} & 4274.73 \\ & 4278.07 \end{aligned}$	$3:$	$\int \mathrm{A}_{2}$	Fe II Fe III	1121.99 1122.53	0.020 0.056	-1.44	
sum	4275.30	4276.50	4.95						
161	4288.53	4289.74	2.58	unident.					
162	4299.15	4300.35	5.32	B	H I α	1215.67	0.4162	-0.45	
163	4304.27	4305.48	2.64	unident.					
164	4317.25	4318.46	2.15:	A_{2}	Fe II	1133.68	0.0063	-2.27	
165	4323.48	4324.70	7.14	A	N I	$\begin{aligned} & 1134.16 \\ & 1134.42 \\ & 1134.98 \end{aligned}$	$\begin{aligned} & 0.0134 \\ & 0.0268 \\ & 0.0402 \end{aligned}$	$+0.89$ -0.11 -2.24	
166	4333.99	4335.21	3.19)						
167	4342.84	4344.06	1.62	unident.					
168	4347.21	4348.43	2.77						
169	4350.80	4352.03	2.44						
170	4356.34	4357.57	2.33	A	Fe II	$\left(\begin{array}{l} 1143.24 \\ 1142.38 \end{array}\right.$	$\begin{aligned} & 0.015 \\ & 0.0069 \end{aligned}$	-0.82	
171	4363.27	4364.49	4.90	A	Fe II	1144.95	0.15	-0.46	
172	4372.16	4373.39	3.99	unident.					
173	4376.96	4378.19	4.45	C	Si IV	1393.75	0.528	+0.46	
174	4386.55	4387.78	0.40	unident.					
$\begin{array}{r} 175 a \\ b \end{array}$	$\begin{aligned} & 4392.33 \\ & 4395.64 \end{aligned}$	$\begin{aligned} & 4393.57 \\ & 4396.88 \end{aligned}$		$\begin{gathered} \mathrm{A}_{2} \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{array}{ll} \mathrm{P} & I I \\ \mathrm{P} & \mathrm{II} \end{array}$	1152.81	0.236	$\begin{aligned} & -0.06 \\ & +0.68 \end{aligned}$	weaker
sum	4395.17	4396.41	3.14						
176	4405.34	4406.57	3.60	C	Si IV	1402.77	0.262	+0.51	
177	4413.99	4415.23	1.08	unident.					
178	4422.52	4423.75	3.34	B	S II	1250.59	0.00535	-0.59	
179 180	4426.73 4431.03	4427.97 4432.27	$\left.\begin{array}{l} 1.99 \\ 1.52 \end{array}\right)$	unident.					
181	4436.13	4437.37	2.46	B	S II	1253.81	0.0107	+1.64	
182 183	4447.04 4450.41	4448.28 4451.65	$\begin{aligned} & 1.19 \\ & 1.76 \end{aligned}$	unident.					
184	4456.18	4457.43	3.71	$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { S II } \\ & \text { Si II } \\ & \text { Fe II } \end{aligned}$	$\begin{aligned} & 1259.52 \\ & 1260.42 \\ & 1260.54 \end{aligned}$	$\begin{aligned} & 0.0159 \\ & 0.959 \\ & 0.020 \end{aligned}$	$\begin{aligned} & +1.50 \\ & -1.68 \\ & -2.11 \end{aligned}$	

No.	$\begin{gathered} \text { air } \\ \lambda_{\text {obs }} \end{gathered}$	$\begin{gathered} \mathrm{vac} \\ \lambda_{\mathrm{obs}} \end{gathered}$	W_{λ}	Redshift System	Ion	$\begin{gathered} \mathrm{vac} \\ \lambda \mathrm{lab} \end{gathered}$	f	$\Delta \lambda$	Notes

$\left.\begin{array}{llll}185 & 4464.17 & 4465.42 & 4.84 \\ 186 & 4468 & 4470.17 & 1.36 \\ 187 & 4474.60 & 4475.85 & 1.27\end{array}\right)$ unident.

$\left.\begin{array}{llll}200 & 4585.96 & 4587.24 & 2.66 \\ 201 & 4590.94 & 4592.23 & 6.07\end{array}\right)$ unident.

202	4596.50	4597.78	$4.35)$	A_{2}	Si III	1206.51	1.66	-0.52	broad line, two
				A_{1}				-3.20	minima with
203	4601.73	4603.02	5.82	unident.				+2.04	A_{1} between
204	4633.06	4634.36	70.50	A	H I α	1215.67	0.4162	-0.20	

$205 \quad 4708.69 \quad 4710.00 \quad 0.70$ unident.

| 206 | 4720.00 | 4721.32 | 0.94 | $\mathrm{~A}_{2}$ | $\mathrm{~N} V$ | 1238.81 | 0.152 | -0.08 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

207a	4736.37	4736.4		$A_{2} .12$
b	4742.35	4742.4		$\mathrm{~A}_{2}$
unident.				

208	4766.29	4767.62	1.00	A		S II	1250.59	0.00535	-0.07							
209	4778.02	4779.35	2.14	A		S II	1253.81	0.0107	-0.61							
210	4794.17	4795.52	2.08		C Si II?	1526.71	0.0764	+0.17								
211	4803.08	4804.42	9.24								A		S II	1259.52	0.0159	+2.69
:---	:---	:---	:---	:---	:---											
A	Si II	1260.42	0.959	-0.74												
A		Fe II	1260.54	0.020	+0.20											

$\left.\begin{array}{lllllllll}212 & 4861.01 & 4862.36 & 2.42 & \text { C C IV } & 1548.19 & 0.194 & -0.46 \\ 213 & 4868.61 & 4869.97 & 1.77 & \text { C C IV } & 1550.76 & 0.0970 & -0.92 \\ 214 & 4893.94 & 4895.31 & 1.20 \\ 215 & 4902.75 & 4904.12 & 1.18 \\ 216 & 4910.16 & 4911.53 & 1.55\end{array}\right)$ unident.

No.	$\begin{gathered} \text { air } \\ \lambda \text { obs } \end{gathered}$	$\begin{gathered} \mathrm{vac} \\ \lambda_{\mathrm{obs}} \\ \hline \end{gathered}$	W_{λ}	Redshift System	Ion	$\begin{gathered} \mathrm{vac} \\ \lambda \quad \mathrm{lab} \\ \hline \end{gathered}$	f	$\begin{gathered} \Delta \lambda \\ \text { Obs-Ca1c } \end{gathered}$	Notes
219a	4960.74	4962.12	5.2	A_{2}	0 I	1302.17	0.0486	-0.76	
b	4964.88	4966.26	2.65	A_{1}				+0.49	
sum	4962.15	4963.53	7.85	B	Si IV	1402.77	0.2262	+0.81	
220a	4968.74	4970.12		A_{2}	Si II	1304.37	0.147	-1.15	
b	4973.23	4974.61		A_{1}				+0.45	
sum	4971.19	4972.57	6.72	A				-0.14	
221	4986.29	4987.68	0.85						
222	4992.07	4993.46	0.95						
223	5019.78	5021.18	1.22	unident.					
224	5039.13	5040.53	0.80						
225	5043.81	5045.22	1.10						
226	5050.74	5052.14	1.36	C	Fe II	1608.46	0.22	+0.01	
227	5086.43	5087.84	8.73	(A	C II	1334.53	0.118	+0.14	
				A_{2}	C II*	1335.70	0.118	-2.83	
228	5092.70	5094.12	1.19	A_{1}	C II*	1335.70	0.118	+0.48	
229	5246.36	5247.82	1.91	C	A1 II	1670.79	1.88	-0.08	
230	5309.85	5311.32	3.12	A_{2}	Si IV	1393.75	0.528	-0.59	
231	5314.47	5315.95	1.00	unident.					
232	5344.92	5346.41	2.65	A_{2}	Si IV	1402.77	0.262	+0.12	
233	5475.85	5477.37	0.78	B	C IV	1548.19	0.194	+0.18	
234	5485.36	5486.89	0.41	B	C IV	1550.76	0.0970	+0.61	
235	5684.26	5685.83		unident.					
236	5736.26	5737.85	2.27)					
237a	5817.10	5818.71	4.50	A_{2}	Si II	1526.71	0.0764	+0.05	
b	5821.00	5822.61	3.00	A_{1}				+0.56	
237c	5848.04	5849.66	1.27	A_{1}	Si II*?	1533.43	0.0760	+1.99	Si II* $\lambda 1264.7$ absent
238	5898.95	5900.58	5.61	A_{2}	C IV	1548.19	0.194	+0.06	
239	5907.69	5909.33	3.37	$\left(\begin{array}{ll}\mathrm{A}_{2} \\ \\ & \mathrm{~B}\end{array}\right.$	C IV A1 II	$\begin{aligned} & 1550.76 \\ & 1670.79 \end{aligned}$	$\begin{aligned} & 0.0970 \\ & 1.88 \end{aligned}$	$\begin{aligned} & -0.99 \\ & -1.59 \end{aligned}$	
240	6117.47	6119.16	1.29	unident.					
241	6128.17	6129.86	3.5:		Fe II	1608.46	0.22	-0.37	
	6131.36	6133.06	2.1:	A_{1}				-0.74	
sum	6129.00	6130.70	5.56	A					
242	6188.42	6190.14	2.57	unident.					
243	6258.96	6260.69	1.21	unident.					
244	6312.73	6314.47	1.15	A_{2}	C I	1656.93	0.136	-0.49	
$\begin{array}{r} 245 a \\ b \end{array}$	$\begin{aligned} & 6366.75 \\ & 6370.41 \end{aligned}$	$\begin{aligned} & 6368.51 \\ & 6372.17 \end{aligned}$		$\int A_{1}{ }^{A_{2}}$	A1 II	1670.79	1.88	$\begin{aligned} & +0.73 \\ & +0.68 \end{aligned}$	
sum	6368.08	6369.83	8.00	A				+0.19	
246	6868.09	6869.98	1.82	unident.					atmospheric O_{2} B band
247	6876.73	6878.63	0.88						
248	6891.62	6893.52	1.69	A	Si II?	1808.01	0.00371	0.75	
249	7070.40	7072.35	3.62	A_{1}	A1 III	1854.72	0.539	-0.55	
250	7101.64	7103.60	4.43	A_{1}	A1 III	1862.79	0.268	-0.07	too strong

Table 1 lists the lines we believe to be real considering the noise in each region of the spectrum. Our equivalent widths, on the whole, tend to be smaller than those of SJM, presumably because their lower resolution (7 or $5 \AA$) resulted in more blended lines.

3 Redshift systems

Like many QSOs the number of absorption lines is much larger on the short wavelength side of the expected position for $\mathrm{L} \alpha$ emission at $4577 \AA$. Absorption redshifts in 0528-250 were searched for systematically using the scheme described by Wingert (1975). The search list was the same but the range was $z=0$ to 4.0 and the interval was $\Delta z=0.0005$. The permitted wavelength errors were $\pm 2.0 \AA$ for the two broad lines at 3818 and $4633 \AA$ and $\pm 1.0 \AA$ for all the rest. A redshift was considered possible if five or more lines were identified, of which at least two had $W_{\lambda} \geqslant 1.3$ and at least two more had $W_{\lambda} \geqslant 1.0$. This latter value exceeds the detection limit of about $0.8 \AA$ except where the extreme overlapping may require a line to have a larger equivalent width to be seen. $L \alpha$ had to be present with $W_{\lambda} \geqslant 1.3$ if accessible between 3521 and $7175 \AA$ and if $W_{\lambda}(\mathrm{L} \alpha) \geqslant 7.4, \mathrm{~L} \beta$ also had to be present if accessible. Then, of course, we applied the basic physical constraints that line strengths of an ion had to increase with oscillator strength. We also considered the possibility that the hydrogen would be almost fully ionized and relaxed the criterion that $L \alpha$ and $L \beta$ had to be present if accessible.

In all cases vacuum wavelengths were used. A question mark following the ion label in Table 1 indicates an uncertain identification due to poor wavelength coincidence, a weak feature, or a blend. When a line is wide, a wavelength error exceeding the usual $\pm 1.0 \AA$ limit has been accepted.

The search turned up three definite systems, and examination of some longer wavelength lines showed that one system has two components. Averaging the goodidentifications in each case gave the following redshifts (a) used for calculating $\Delta \lambda=\lambda_{\text {obs }}-(1+z) \lambda_{\text {lab }}$ in Table 1 and (b) corrected to the heliocentric standard.

	A1	A2	Mean A	B	C
(a)	$z=2.91346$	2.81124	2.81235	2.53780	2.14097
(b)	$z=2.81322$	2.81100	2.81211	2.53758	2.14077
	$\Delta V=+3815$	+3640	+3728	-18654	-53759

Radial velocities ΔV relative to the emission lines at $z_{\mathrm{e}}=2.765$ also are listed. No other redshift systems could be identified with certainty. We also compared plots of the QSO spectrum and the standard lines on a logarithmic scale but found no more systems.
$z_{\mathrm{A}}=2.81211$
This system is responsible for the strong Hi L α line at $4633 \AA$ as well as $\mathrm{L} \beta$ at $3909 \AA$ and probably higher members to $\mathrm{L} \eta$, though some are blended with other species. As already noted by JWPC and SJM, numerous low ionization species typical of interstellar H i clouds are present at z_{A}. Specifically we found Cir, Ni, Oi, A1ir, Siir, Pii, Sil, Ari and Fe ir. Also Ci may be present but $\lambda 1657$ needs confirming and $\lambda \lambda 1560$ and 1329 should be searched for. Higher ions such as $\mathrm{C}_{\text {IIII }}, \mathrm{N}_{\text {II }}, \mathrm{N}_{\text {III }}, \mathrm{Si}_{\text {IIII }}, \mathrm{S}_{\text {IIII }}, \mathrm{S}_{\text {IV }}$ and $\mathrm{Fe}_{\text {III }}$ probably occur but their identifications depend on single lines in the crowded region shortward of $L \alpha$. More certain are the doublets of $\mathrm{Civ}, \mathrm{Nv}, \mathrm{A} 1 \mathrm{III}$ and Siiv. The stronger component of O vi can be identified with a line if we assume that the other Ovi line is blended with Cir at the same redshift.

Figure 2. Expanded plots showing the double components of four strong absorption lines. The four additional vertical bars in the first rectangle indicate weak features also listed in Table 1.
$z_{\mathrm{A} 1}=2.81322, \quad z_{\mathrm{A} 2}=2.81100$
In the A system the line of Fe II $\lambda 1608$ (No. 241) is clearly double, and Oi $\lambda 1302$ (No. 219) as well as Si II $\lambda \lambda 1304,1527$ (Nos 220,237) also seem to have two minima as shown in Fig. 2. We have used these lines to determine the redshifts $z_{\mathrm{A} 1}$ and $z_{\mathrm{A} 2}$ listed above. Most other z_{A} lines are unresolved blends, but the line centres of the higher ions $\mathrm{Civ}, \mathrm{Nv}$ and Si iv are best accounted for by $z_{\mathrm{A} 2}$. The line centres for Lyman γ, ϵ, ζ and η suggest that A2 component may be stronger in HI_{I}, as is the case for $\mathrm{Fe}_{\mathrm{II}} \lambda 1608$ and possibly $\lambda \lambda 1143$, 1122. A2 also may be stronger in Ari, but it is weaker in P ${ }_{\text {II }}$. The components have about equal strength in $\mathrm{OI}_{\text {I }}$ and Si ii. Absorption from the excited fine structure level of $\mathrm{C}_{\text {II }}{ }^{*}$ in the A 1 component could explain a feature on the edge of the $\mathrm{C}_{\text {II }}$ profile. $\mathrm{N}_{\text {II }}{ }^{*}$ and $\mathrm{N}_{\text {II }}{ }^{* *}$ at both redshifts could be present in the wing of the $\mathrm{N}_{\text {II }}$ line. Although Si II* $\lambda 1197$ in A2 fits a line very well, the absence of the strongest line at $\lambda 1265$ rules out this excited level. The two components A1 and A2 are separated by $175 \mathrm{~km} \mathrm{~s}^{-1}$ and the mean A is $3728 \mathrm{~km} \mathrm{~s}^{-1}$ to the red of the emission line system.
$z_{\mathrm{B}}=2.53758$
$\mathrm{L} \alpha$ and $\mathrm{L} \beta$ are relatively insignificant features, the C iv doublet is weak and one component of Siiv is lost in a blend. Nevertheless there are enough identifications in this system to leave very little doubt about its reality. A1 in, $\mathrm{Si}_{\mathrm{II}}, \mathrm{Si}$ iII, $\mathrm{P}_{\text {II }}, \mathrm{SiI}$ and possibly $\mathrm{Fe}_{\mathrm{II}}$ and Siv seem to be present as well as C iv and Si iv.
$z_{\mathrm{C}}=2.14077$
This system has a conspicuous $\mathrm{L} \alpha$ absorption at $3818 \AA$ and a strong Civ pair at 4861 and
 Fe iII.

In the crowded region shortward of $4630 \AA$, some of the line identifications in Table 1 could be chance coincidences. However, in many cases, such as OI in system A, the definite presence of one line implies that other lines of larger or comparable oscillator strength also must occur.

4 Column densities

Many sources of error hinder the reliable determination of column densities from absorption lines like those we have in $0528-250$. The signal is noisy in many regions, the continuum
level is uncertain where numerous lines overlap, identifications can be wrong, blending often distorts a line and sometimes another line can contribute without being suspected. When lines are strong enough to show damping wings, as in the first two Lyman lines in system A, profiles can be fitted with the result that $N(\mathrm{HI})=2.2 \times 10^{21} \mathrm{~cm}^{-2}$ from $L \alpha$ (both wings) and 1.5×10^{21} from $\mathrm{L} \beta$ (red wing). Thus we agree with $3 \pm 1 \times 10^{21} \mathrm{~cm}^{-2}$ obtained by SJM for $L \alpha$ but not with JWPC whose formula is in error by a factor 4.5. In system $\mathrm{C}, \mathrm{L} \alpha$ has an extended red wing which we attribute to blends of other lines. The blue side approximates a damping profile with $N(\mathrm{HI})=(5 \pm 1) \times 10^{20} \mathrm{~cm}^{-2}$.

For most other lines we must depend on equivalent widths, usually with significant errors, and a curve of growth based on the simplifying assumption of a Maxwellian distribution of velocities described by the single parameter $b=2^{1 / 2} \sigma_{\mathrm{x}}$. Even then it is difficult to estimate the effects of saturation unless at least one line is weak enough to be close to the linear region. This may be the case for $\mathrm{C}_{\text {Iv }}$ in B and $\mathrm{S}_{\text {II }}$ in A , where the slope determined by the two observed lines of each ion implies little saturation. In other ions, the observed widths of a line indicate an upper limit such as $b \leqslant 120 \mathrm{~km} \mathrm{~s}^{-2}$ for Nv in A. Even when there are multiple absorbing clouds, representation by a single velocity distribution may be a good approximation for species of similar ionization potential, as sometimes occurs along interstellar sight lines (Morton 1975, 1978).

As shown in Fig. 3 for system A, Si II, S II and OI fit on a curve with $b=150 \mathrm{~km} \mathrm{~s}^{-1}$ where the relatively weak line of $S_{\text {II }} \lambda 1251$ fixes the absolute column density. As some indication of the uncertainties in the derived column densities, we also have considered the curve with $b=120 \mathrm{~km} \mathrm{~s}^{-1}$ which is an acceptable fit for $\mathrm{Si}_{\text {II }}$ and $\mathrm{S}_{\text {II }}$ and slightly better for O_{I}. Since the N_{I} lines are blends of three transitions, they lie on a separate curve above that for Si II, $\mathrm{Sil}_{\text {II }}$ and $\mathrm{O}_{\text {I }}$. It is noteworthy that Fe II, which has nearly the same ionization potential as Si II, lies on a lower curve with $b=80 \mathrm{~km} \mathrm{~s}^{-1}$ in Fig. 2, where only the four reliable lines $\lambda \lambda 1055,1097,1145$ and 1608 are plotted. Perhaps the Fe iI is depleted relative to $\mathrm{Si}_{\mathrm{II}}$ in some clouds. The presence of the dual curves precludes fitting single lines such as A1 II and leaves considerable uncertainty in the whole procedure.

Our best estimates for the ranges of velocity parameters b and column densities N are listed in Table 2. Our results for H i, $\mathrm{Si}_{\text {II }}$ and $\mathrm{S}_{\text {iI }}$ in system A are in reasonable agreement with SJM. However, for A1 III, our spectrum has the equivalent widths reversed, as if there were an unidentified line contributing to $\lambda 1863$, whereas SJM found $W_{\lambda}(1855)=5.1$ and

Figure 3. Curve of growth for lower ion stages in system A. The effect of a simple Maxwellian velocity distribution is shown by a solid line for $b=150 \mathrm{~km} \mathrm{~s}^{-1}$ and a dashed line for $b=80 \mathrm{~km} \mathrm{~s}^{-1}$. The circle in parentheses represents $\lambda 1808$ of Si II which is unreliable due to blending with telluric O_{2}.

Table 2. Column densities towards PKS 0528-250.

System	Ion	$\begin{aligned} & \log N \\ & \left(\mathrm{~cm}^{-2}\right) \end{aligned}$	$\left(\mathrm{km}^{\mathrm{b}} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \log N \\ & \left(\mathrm{~cm}^{-2}\right) \end{aligned}$	$\log \left(\mathrm{N} / \mathrm{N}_{\mathrm{HI}} \mathrm{I}\right)$	$\log \left(\mathrm{N} / \mathrm{N}_{\mathrm{H}}\right)_{\text {¢ }}$	Difference
		SJM*	This Paper				
A	H I	21.5 ± 0.2	damped	21.27 ± 0.08			
	C I		≤ 80	≤ 14.7	≤-6.6		
	0 I		150-120	16.38-16.54	-4.8 ± 0.1	-3.17	-1.6 ± 0.1
	N I		150-120	15.10-15.20	-6.1 ± 0.1	-3.94	-2.2 ± 0.1
	Al III	14.1 ± 0.2			-7.2 ± 0.2	-5.60	-1.6 ± 0.2
	Si II	16.1 ± 0.5	150-120	15.38-15.66	-5.75 ± 0.15	-4.45	-1.3 ± 0.15
	S II	15.6 ± 0.2	150-120	15.55 ± 0.01	-5.7 ± 0.1	-4.79	-0.9 ± 0.1
	Fe II		80-60	15.71-15.90	-5.5 ± 0.2	-4.60	-0.9 ± 0.2
A2	C IV		$\infty-150$	14.55-14.77	(-6.6 ± 0.1)	-3.43	(-3.2さ0.1)
	N V		120-50	14.12-14.25	(-7.05 ± 0.1)	-3.94	(-3.1 ± 0.1)
	Si IV		70-50	14.45-15.31	(-6.4 ± 0.4)	-4.45	(-2.0さ0.4)
B	H I		240	16.4 ± 2.0			
	C IV		$\infty-40$	13.73-13.81	-2.6 ± 2.0	-3.43	$+0.8 \pm 2.0$
	Si IV		$\infty-40$	13.58-13.83	-2.7 ± 2.0	-4.45	$+1.7 \pm 2.0$
C	H I		damped	20.70			
	C IV		80-50	14.57-14.79	-7.0 ± 0.1	-3.43	-3.6 ± 0.1
	Si IV		120-80	14.64-15.08	-5.8 ± 0.2	-4.45	-1.4 ± 0.2

* Smith, Jura, Margon (1979)
$W_{\lambda}(1863)=2.7 \AA$ in a region which they re-observed at $5 \AA$ resolution. Thus we have adopted their result in Table 2. In system B, the upper limit for H I was determined by the absence of damping wings. For the higher ions in Table 2, the doublet ratio fixed the range of b except for N v in A2 where the upper limit was obtained from the observed width and the lower limit from Siiv. Ratios to the Hi density are quoted and comparisons are made with the solar abundances of Withbroe (1971). Parentheses are used for the A2 ions as a reminder that it was necessary to use the total H_{I} for system A . The last column lists the logarithmic depletion of the ion relative to the solar element abundance.

The spectrum drops to an undetectable flux shortward of $3520 \AA$ (air) whereas the Lyman limit for system A is at $3475 \AA$. Presumably the superposition of Lyman lines near the limit increases the effective cutoff wavelength. For $N_{\mathrm{HI}}=1.8 \times 10^{21} \mathrm{~cm}^{-2}$ the optical depth at the Lyman limit is about 1200.

The strong $\mathrm{L} \alpha$ absorption line in system A prompted a search for redshifted 21 cm absorption with the Parkes $64-\mathrm{m}$ telescope by Bolton et al. (1979). Unfortunately at 372.6 MHz the continuum flux density of PKS $0528-250$ is only about 0.2 Jy so that no line was detected above an equivalent width limit $\left(W_{\nu}\right)$ of about 10 kHz . If we assume a mean spin temperature for the gas of 100 K , then our result implies that the Hi column density is less than about $4 \times 10^{20} \mathrm{~cm}^{-2}$. This value is mildly inconsistent with $N\left(\mathrm{H}_{\mathrm{I}}\right)=(19 \pm 4) \times 10^{20} \mathrm{~cm}^{-2}$ deduced from the $\mathrm{L} \alpha$ and $\mathrm{L} \beta$ lines. If we adopt the latter value our equivalent width limit implies a spin temperature greater than 500 K . Although still compatible with hot, neutral gas in a galaxy such as our own, this spin temperature seems more likely in gas located near the QSO. It should be noted that $0528-250$ is
unique among known QSOs in having two very broad $\mathrm{L} \alpha$ lines. Clearly H_{I} absorption also should be searched for at 452.2 MHz .

5 Discussion

The location and nature of the regions producing the absorption lines in QSOs continue to receive considerable attention in the literature. Weymann et al. (1979) have proposed three types of regions: (i) gas ejected from the QSO; (ii) gas in clouds associated with the QSO; and (iii) gas in intervening clouds not related to the QSO. The ejected material typically has velocities from 0 to $20000 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to the QSO emission lines, whereas the associated clouds may range from -3000 to $+3000 \mathrm{~km} \mathrm{~s}^{-1}$. These clouds could be contained in a cluster of galaxies around the QSO and the intervening clouds could be in galaxies between the Sun and the QSO. The abrupt increase in absorptions around the $\mathrm{L} \alpha$ emission and on the blue side usually is attributed to HI clouds where the heavy elements are either absent or have undetectably small equivalent widths.

In 0528-250 none of the absorption line systems has the wide and often asymmetric profiles usually associated with a QSO wind. Both systems B and C could be formed by ejection, but their narrow symmetric lines leave them indistinguishable from an intervening cloud. Since A1 and A2 exceed the emission-line redshift, they presumably are due to clouds related to the QSO, though the velocities of +3815 and $+3640 \mathrm{~km} \mathrm{~s}^{-1}$ relative to the QSO are rather large for a normal cluster of galaxies. Other examples are PHL 1222 where Williams \& Weymann (1976) found an absorbing cloud with $N\left(\mathrm{H}_{\mathrm{I}}\right)=2 \times 10^{20} \mathrm{~cm}^{-2}$ approaching the emission line region at $3200 \mathrm{~km} \mathrm{~s}^{-1}$ and $1557-199$ where White, Murdoch \& Hunstead (1980) found a relative velocity of $15000 \mathrm{~km} \mathrm{~s}^{-1}$; PKS $0528-250$ is specially interesting because the large H I column density of $2 \times 10^{21} \mathrm{~cm}^{-2}$ implies a galaxy similar to our own with a velocity component of $3700 \mathrm{~km} \mathrm{~s}^{-1}$ towards the QSO.

The broad hydrogen $\mathrm{L} \alpha$ lines with damping wings in both A and C and the low ion states of heavier elements are suggestive of interstellar clouds in the plane of our own Galaxy. At the same time the higher ion states of Civ, Nv and Siiv could be formed in a galactic halo. Thus it is useful to compare our equivalent widths with the IUE data towards HD 38282 in the LMC where Savage \& de Boer (1979) have attributed many features to the halo gas in our Galaxy. Our Civ and Sirv lines are comparable in system B, but 3 to 12 times stronger in A 2 and C , and Nv in A 2 is about 10 times the upper limit for the halo. The strongest halo line plotted by Savage \& de Boer is C iI $\lambda 1334.5$ which is saturated over $160 \mathrm{~km} \mathrm{~s}^{-1}$. According to de Boer, Koornneef \& Savage (1980) other low ions including A1 II and Si II in this star and $\mathrm{OI}_{\text {I }}$ and Si II in HD 38268 also have remarkably wide profiles. The low ionization absorption lines in PKS $0528-250$ have similar widths in systems B and $C_{\text {but }} \mathrm{O}_{\mathrm{I}}$ and $\mathrm{C}_{\text {II }}$ in A are considerably wider. Also the velocity parameter $b=80-$ $150 \mathrm{~km} \mathrm{~s}^{-1}$ for the lower ions of system A is 10 or more times what is usually found on a galactic line of sight.

Although the column densities in Table 2 are not very reliable, it does seem that the abundances of all the ions measured are significantly depleted compared with the Sun. However in interstellar Hi clouds (Morton 1975, 1978) OI and Ni usually are depleted by 1.0 dex or less while $\mathrm{S}_{\text {II }}$ is undepleted in contrast with the significantly lower abundances of these ions in system A. In PHL957, Wingert (1975) found Ni, Oi, Si ir, $\mathrm{S}_{\text {II }}$ and $\mathrm{Fe}_{\text {II }}$ down by 1.0 dex or more, somewhat like $0528-250$. The ratio $\mathrm{Al}_{\mathrm{III}} / \mathrm{H}_{\text {I }}$ in Table 2 is large compared with ζ Oph but actually slightly smaller than found towards ζ Pup. As noted by SJM, the similarity of the depletion of $\mathrm{Si}_{\text {II }}$ and $\mathrm{S}_{\text {II }}$ implies no ordinary grains in the A cloud, consistent with the absence of a redshifted $2200 \AA$ absorption.

The upper limit $\log N\left(\mathrm{C}_{\mathrm{I}}\right) \leqslant 14.7$ in system A quoted in Table 2 is based on the
possible identification of $\lambda 1657$ with line number 244 . Unfortunately the other strong Ci lines are either lost in blends or, in the case of $\lambda \lambda 1560$ and 1329 just below the detection limit. If C_{I} is present with the above column density, the ratio to hydrogen nuclei is -6.6 dex, intermediate between -5.8 and -7.2 found in ζ Oph and ζ Pup respectively (Morton 1975, 1978).

Among the higher ions, it is unusual in our Galaxy to find Nv as strong relative to Civ as occurs in system A2. Also in A2, B and C , the abundance of Silv is equal to or greater than Civ, unlike what Savage \& de Boer (1979) found for our halo in the direction of the LMC.

Thus systems A and C have the wide $\mathrm{L} \alpha$ lines expected for an intervening galaxy but C iv and Siry seem rather stronger and system A also has unusually strong O_{I} and CiI . In contrast system B has a relatively narrow $\mathrm{L} \alpha$ line and no detectable Ni or Oi, but reasonable CIV and SiIV. Perhaps the line-of-sight at B passes through the halo but not the disc of a galaxy. Further comparisons will be useful when more data are obtained on the UV absorptions in our halo.

The pattern of identified lines in PKS $0528-250$ is worth noting in view of the usual assumption for high redshift QSOs that most of the lines on the short wavelength side of the $\mathrm{L} \alpha$ emission are due to $\mathrm{L} \alpha$ absorption. The $\mathrm{L} \alpha$ emission should occur at $3.765 \times 1215.67=$ $4577 \AA$, but we have adopted a separation at $4700 \AA$, where Fig. 1 shows a significant change in the line density. Each entry in Table 1 with a separate wavelength and equivalent width was counted as a line except when the splitting was due to the two components of system A. In two cases, one on each side of $4700 \AA$, where a single identified line was suspected of having an unidentified component the line was counted as identified. At the same time, the two questionable identifications of SiII^{*}, also on each side of $4700 \AA$ were rejected. Thus shortward of $4700 \AA$ there are 112 lines in Table 1 of which three are definitely $L \alpha$ absorption, 43 have plausible identifications due to one or more heavier elements, one is $L \eta$ and six are blends of higher Lyman lines with heavier species. Longward of $4700 \AA$ but excluding the telluric B band there are 44 lines of which 27 have plausible identifications. Thus 38 per cent of the lines shortward of $4700 \AA$ and 61 per cent of the longer wavelength lines are identified with transitions other than $\mathrm{L} \alpha$ or higher Lyman lines.

If we make the plausible assumption that the unidentified lines longward of $4700 \AA$ are not $\mathrm{L} \alpha$ absorption and, further, that the same fraction of non- $\mathrm{L} \alpha$, non-identified lines occurs shortward of $4700 \AA$, then only a small fraction (~ 20 per cent) of all the shortward lines can be due to Hi Lyman absorption. We are aware that the equivalent widths shortward of $4700 \AA$, excluding the two strong $L \alpha$ lines, are on the average a factor 2 larger than longward of this wavelength. However, the ratio of mean equivalent widths for the identified to unidentified lines is approximately the same (~ 2.7) either side of the $4700 \AA$ boundary. Nevertheless there remains a concern that some of the lines longward of the boundary may not be real because many of them are relatively weak. Additional observations would be worthwhile to confirm these lines.

The exact percentages could change with different criteria for counting lines and the reliability of their identifications. Certainly further observations of $0528-250$ longward of $4700 \AA$ would be useful to establish firmly the fraction of unidentified lines stronger than a particular equivalent width limit. Even so, one important conclusion is clear from this QSO. In any statistical study of QSO absorption lines it can be dangerous to neglect the contributions of heavy elements shortward of the $L \alpha$ emission. Also it is a risk to assume that all identified lines on the blue side of the $\mathrm{L} \alpha$ emission are $\mathrm{L} \alpha$ absorption when there are unidentified lines on the red side.

Acknowledgments

We wish to thank John Bolton for helpful comments on the line identifications and Peter Krug for assistance in the reduction of the spectra. Chen Jian-sheng gratefully acknowledges the hospitality of the Anglo-Australian Observatory.

References

Bolton, J. G., Shimmins, A. J. \& Wall, J. V., 1975. Aust. J. Phys. Astrophys. Suppl., No. 34, 11.
Bolton, J. G., Jauncey, D. L., Murray, J. D., Peterson, B. A., Savage, A. \& Wright, A. E., 1979. Private communication.
Condon, J. J., Hicks, P. D. \& Jauncey, D. L., 1977. Astr. J., 82, 692.
de Boer, K. S., Koornneef, J., Savage, B. D., 1980. Astrophys. J., 236, 769.
Edlèn, B., 1953. J. Opt. Soc. Am., 43, 339.
Edlèn, B., 1966. Metrologia, 2, 71.
Jauncey, D. L., Wright, A. E., Peterson, B. A. \& Condon, J. J., 1978. Astrophys. J., 221, L109.
Lugger, P. M., York, D. G., Blanchard, T. \& Morton, D. C., 1978. Astrophys. J., 224, 1059.
Morton, D. C., 1975. Astrophys. J., 197, 85.
Morton, D. C., 1978. Astrophys. J., 222, 863.
Savage, B. C. \& de Boer, K. S., 1979. Astrophys. J., 230, L77.
Smith, H. E., Jura, M. \& Margon, B., 1979. Astrophys. J., 228, 369.
Weymann, R. J., Williams, R. E., Peterson, B. M. \& Turnshek, D. A., 1979. Astrophys. J., 234, 33.
Williams, R. E. \& Weymann, R. J., 1976. Astrophys. J., 207, L143.
Wingert, D. W., 1975. Astrophys. J., 198, 267.
Withbroe, G. D., 1971. The Menzel Symposium NBS Special Publ., 383, ed. Gebbie, K. B., U.S. Government Printing Office, Washington.
Wright, A. E., Jauncey, D. L., Peterson, B. A. \& Condon, J. J., 1977. Astrophys. J., 211, L115.
Wright, A. E., Morton, D. C., Peterson, B. A. \& Jauncey, D. L., 1979. Mon. Not. R. astr. Soc., 189, 611.
White, G. L., Murdoch, H. S. \& Hunstead, R. W., 1980. Mon. Not. R. astr. Soc., 192, 545.

[^0]: * Visiting astronomer from Peking Observatory, China.
 \dagger Present address: Australian National Radio Astronomical Observatory, Box 276, Parkes, NSW 2870, Australia.

