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Abstract 

The reabsorption of curvature radiation, i.e. radiation from relativistic electrons moving along curved 

magnetic field lines, is discussed. The optical depth for the ray path is calculated by use of the 

Einstein coefficients. It is shown that the optical depth becomes negative (maser effect) if transitions 

between Landau levels are absent. However, maser action is ineffective if the energy density of the 

relativistic particles is less than that of the magnetic field. For pulsar radio emission the magnetic 

energy density is assumed to exceed the particle energy density, so the observed emission cannot be 

coherent curvature radiation. 

1. Introduction 

Curvature radiation from relativistic particles plays an important role in the theory 

of pulsars. Ruderman and Sutherland (1975) believe it to be responsible for the 

production of hard y rays which decay into electron-positron pairs and populate the 

neutron star magnetosphere with charged particles. Goldreich et al. (1972) invoked 

curvature radiation to explain pulsar radio emission: they made use of the fact that 

the curvature of the magnetic field lines is sufficiently small (RB ~ rB, where rB is the 

gyroradius) that the characteristic frequency of curvature radiation is much less than 

the synchrotron frequency of a given relativistic particle. This enabled them to 

propose a common explanation for the optical and radio emission from the Crab 

pulsar by means of synchrotron and curvature radiation from electrons near the light 

cylinder. 

However, the extremely high brightness temperatures for pulsars (up to 1031 K) 

raise doubts concerning the relevance of any incoherent mechanism for the radio 

emission. This raises the question of what kind of coherent mechanism could enhance 

the curvature radiation to the observed level. Antenna mechanisms are unlikely, since 

these require the creation of electron bunches (with dimensions less than a wavelength) 

which must survive and emit coherently for a sufficiently long time. Consequently, 

it seems desirable to search for conditions under which a maser version of curvature 

radiation could be realized. 

A maser corresponds to negative absorption, that is, amplification of radiation 

along the ray path. Blandford (1975) attempted to find such amplification for curvature 

radiation but his result remains uncertain. This problem has also been discussed 

recently by Melrose (1977), who concludes that amplification of curvature radiation 

is impossible. His conclusion, however, is not entirely convincing because his initial 

formulae for the amplification coefficient are rather intuitive. Therefore we feel that 

it may be in order to reconsider this problem. 
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2. Narrow-beam Pattern Approximation 

The geometry of our problem is as follows (see Fig. 1). Relativistic particles 

('electrons'*) move along the field lines of an inhomogeneous magnetic field B, with 

a radius of curvature RB of the field lines. The nonrelativistic gyrofrequency is 

WB = eB/mo c and the momentum distribution function is f(p). It is known that 

the motion of charged particles along curved field lines is accompanied by a drift 

in the z direction (the z axis is perpendicular to the page in Fig. 1). The drift velocity 

Vz is determined by the condition that the Lorentz force be equal to the centrifugal 

force: 

lec- 1vxBI = IffC-2V~/RB' (1) 

where Iff is the particle energy and vt/> is the tangential velocity. According to this 

condition the momentum component pz of the particle along z is given by 

pz = p~/mo WB RB . 

A B 

o 

Fig. 1. Assumed field line geometry. Note that the magnetic field lines lie in the plane of 

the figure. The ray itself is at an angle () to this plane and the line AB is the projection of 

the ray onto the plane. The z direction is perpendicular to the plane. 

(2) 

Our task is to calculate and analyse the expressions for the optical depth L j along 

the ray for a mode j: 

fl! 

Lj = Pj dt. 
lz 

(3) 

Here Pj is the absorption coefficient for curvature radiation and dl is an element of 

the ray path. By appealing to the Einstein coefficients the absorption coefficient is 

found to be (see e.g. Zheleznyakov 1977) 

Pj = {(2n)3 c2/nJw2} L A':,,(Nn-Nm) , (4) 
(m)<->(n) 

where nj is the refractive index of the weakly anisotropic medium, A':" is the prob­

ability of spontaneous radiation (for curvature radiation in our case), Nm and Nn 

are the occupation numbers of the quantum states before and after the electron emits 

a photon, and the summation is over all possible transitions involving a radiation 

frequency w. 

* To be specific, we shall examine particles with charge +e and rest mass mo. 



Absorption of Curvature Radiation 51 

In the semiclassical approximation one has 

f!jJ w.Q = hwA~, Nm =f(Pm), Nn = f(Pn) , (5) 

where f!jJ W.Q is the power radiated by a single particle (in an unspecified mode) per 

unit frequency wand per unit solid angle Q, and Pm and Pn are the particle momenta 

before and after emitting the photon with energy hw and momentum hk. We then 

obtain 

(2n)3 c2 f 
'j = nJhw3 f!jJwQ{j(Pn)-j(Pm)} d3pdl. (6) 

Let us find the expression for 'j in the ultrarelativistic limit <ff /mo c2 -+ 00 when 

the width of the curvature radiation pattern may be assumed negligibly small (in other 

words, all the radiation is concentrated along the particle velocity direction*). In this 

limit we have 

f!jJ W.Q = P w(RB,p)?j(n-nk) , (7a) 

with 

Pm = Pn+ hk (p II k). (7b) 

In equation (7a) the delta function is defined by 

f c5(n-nk) dQ = f c5(n-nk) dQk = 1, (8) 

where nand n k are unit vectors along P and k, and dQ and dQk are elements of solid 

angle in P space and k space respectively. 

Now consider a small variation of the distribution function f(p) over the range 

I1p = hk. The relations (7) imply 

f(Pn)-f(Pm) = f(Pn)-f(Pn+ hk) 

~ -(df/dp).hk = -(df/dp).nkhwc-1nj • (9) 

Consequently, 

'j = _ (2n)32c fPw c5(n-nk) ddif .nkp2 dQdpdl. 
njw P 

(10) 

Integration over solid angle using the delta function then yields 

(2n)3c f k df k k 2 k 
'j = - --2- Pw(RB,p )-k· n (p) dp dl. 

nj w dp 
(11) 

The classical distribution function f(p) of drifting particles is assumed to be of the 

form 

f(p) =f(p"p""pz) = c5(Pr)c5(pz -p~/mowBRB)F(p",), (12) 

* This assumption is valid if the radiation beamwidth AB is much less than the angle If! ~ Pz/P4>' 

From the formula (2) we obtain the condition (p/mo c)' ~ WB RB/C (for B <{ 1 and the beamwidth 

AB ~ mo c2 /,c). 
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with the normalization 

I f(p) d3 p = I F(p",) dp", = N, (13) 

where N is a constant independent of the coordinates (r, ¢, z). 

Pk /I 

II I 
~ Ip~ 

/// I I 
p? I P~~ X// _I_~ 

~ /~cj> _-- I I 

~~-11e Ilp~ 
I. 

pO 

'" 
Fig. 2. Coordinate system used and relevant angles. 

We now assume that the angles (J and ¢ shown in Fig. 2 are small, i.e. 

(J ~ 1, ¢~1. (14) 

(The condition (J ~ 1 implies pz ~ P", or, equivalently, p",lmo c ~ wBRBlc. The 

requirement ¢ ~ 1 is fulfilled for A¢ '" A(J ~ 1; in this case the integration limits 

along the ray in the definition (3) may always be chosen to give ¢ ~ lover the range 

which makes the important contribution to the optical depth 'l: j .) With the conditions 

(14), we set 

Pk _ pk 
- "', 

Q~ = 1, 

k k A,. 
Pr =P",'fJ' 

Q~ ¢, 

Then the product gk d/ldpk has the forms 

k k (J 
pz =P", ' 

Q~=(J. 

g. dfldp ~ (a/lap",) + (af/aPr)¢ + (a/lapz)(J 

dl = RBd¢, (15a) 

(I5b) 

(16a) 

= ¢ (j'(p", ¢) (j(p", (J -bp~)F(p",) + ((J-2bp",) (j(p", ¢) (j'(p", (J -bp~) F(p",) 

+ (j(p", ¢) (j(p", (J -bp~) dFldp",. (16b) 

(Here and below for simplicity of writing we omit the superscript k on p\ the vector 

with magnitude p directed along k, and on the unit vector gk.) In deriving the last 

equality (16b), we have assumed the form (12) for /(p), taken the relations (15) into 

account and introduced the notation 

b = (mowB RB)-l. 
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Substituting equation (16b) into (11) and integrating over the delta functions 0 and 

their derivatives 0', we obtain finally 

T
j 

= (2n)32c mowBR~F(~",) d(p~Pw) I . 
njw P", dp", p",=9mOWBRB 

(17) 

The momentum P", = emo wBRB is that for those drifting electrons which move at 

an angle e to the plane of the magnetic field lines. It is natural that in the narrow­

beam approximation it is these particles which determine the optical depth for 

radiation along a ray inclined to the given plane by an angle e. 
According to equation (17) the optical depth T j is negative (i.e. amplification takes 

place) under the condition 

d(p~Pw)/dp", < O. (18) 

The expression for the specific power P o,(P",) of the curvature radiation may be 

obtained from the similar expression for the synchrotron radiation by the replacement 

W B ~ p",/mo RB (see e.g. Zheleznyakov 1977). This means that, in a weakly anisotropic 

rarefied plasma with refractive index close to unity (l-n; ~ wl!w2 ~ 1), the product 

p~P w is given by (for electrons with pz ~ p",) 

p2p w ~ _1_ e2w(mo C)2{1 + (1- n~) (J!L)2} 
'" 2)3 n c J mo c 

{f ro l-K~ (w)} 
x K S/3(X) dx + 1 K~ K2/3 - , 

wlwe + j we 
(19) 

where 

3c ( P", )3{ ( 2) ( P", )2}-3/2 
We = - -- 1+ I-nj --

2RB moc moc 
(20) 

and K j is the polarization coefficient for the extraordinary (j = 1) and the ordinary 

(j = 2) modes. It is not difficult to see that equation (19) implies d(p~ P w)/dp", > O. 

Thus the condition (18) cannot be satisfied and amplification of curvature radiation 

is impossible in the approximation considered. 

3. General Expression for Optical Depth in Finite Radiation Pattern Approximation 

Let us consider a specific configuration of the magnetic field, assuming it to be 

created by a linear current I flowing along the z axis. The vector potential A of such 

a field is given by 

A = -zoalnr, (21) 

where ZO is the unit vector along the z axis, a is a constant proportional to the current 

I, and r is the distance between the z axis and the given point. The magnetic field 

lines in the case (21) are circular with centres on the z axis. An electron moves in a 

circular orbit of radius RB along the field line in the plane z = const. and drifts in 

the direction zoo The components of the electron momentum along the field line 

(p",) and along the current (pz) are related to each other as before through equation 

(2). The above trajectory of the particle will be called 'the drift orbit'. In the semi-
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classical approximation the electron motion is quantized according to the Bohr­

Sommerfeld law 

t P", d~ = 2nnli; 

we have d~ = RB def> and consequently 

p",RB = nli, (22) 

where n is a positive integer. 

Let an electron make a transition from one drift orbit m to another orbit nand 

radiate a photon with energy liw and momentum lik at an angle rx to the z axis. In 

this case the conservation laws for energy and for the z component of momentum 

are 

Iff m -Iff n == (m~ e4 + P;m e2 + P~m e2 )± - (m~ e4 + P;n e2 + P~n e2}t = liw, (23a) 

(p+ ee-1 A)zm-(p+ee-1 A)zn = Iiwe-1nj cos rx. (23b) 

Here one must bear in mind that the generalized momentum of an electron in a 

magnetic field isp+ee-1A. From equation (21) we have 

Azm-Azn = -BI1RB· (24) 

In the semiclassical limit Ii --+ 0 we obtain from equations (23) 

liw = e2(p",l1p", +mo wBPzI1RB)/Iff(1 -f3znj cos rx) , (25) 

with f3z = vz/e. (For simplicity, the index m is omitted on Pz, P"" R B , f3z and Iff.) 

From equation (22) it follows that, for an electron transition from the quantum 

state m to the state n, the values I1p", == P",m-P",n and I1RB == RBm-RBn are related by 

RBl1p", +p",I1RB = sli (s := m-n). (26) 

Using the relations (2) and (26), we obtain from equation (25) a set of frequencies 

for curvature radiation in a magnetic field with circular field lines: 

w = sQ/(I - f3z nj cos rx), Q = v",/RB • (27) 

Then from equations (2) and (23) it follows that 

I1pz = 2p",l1p",/mO wBRB, pz l1pz +p",l1p", = lffe- 2Iiw. 

Combining these relations we obtain 

I1pz = 2vz Iiw/(e 2 + v;), I1p", = v",liw/(e2 +v;). (28) 

The optical depth, j along the path in this approximation has, as before, the form 

(6). Now, however, the change in the momentum p due to emission of a photon differs 

from that given by equation (7b), and instead we have 

f(Pm)-f(Pn) ~ (of/op",)l1p", + (of/opz)l1pz , (29) 
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where Ap", and Apz are determined by the expressions (28), The distribution function 

f(p) still has the form (12). The quantity F(p",) is assumed to be different from zero 

only for values of P", ~ mo C (ultrarelativistic electrons) and /3; <% 1 (slow enough drift 

along the z axis). Integration of equation (6) over dpz, dPr and dl ~ RBdcpthen gives 

!. = (2n)4cRB fF(P"') d(p~PwD) dp 

J nJ w 2 p~ dp", "', 
(30) 

where 

J21< 

PwD ""PwD(RB,w,p""ljJ(p",),IX) = (2n)-1 0 f?JwDdcp, (31) 

with ljJ ~ Pz/p", being the angle between p and the plane of the magnetic field. After 

integration by parts the expression (30) becomes 

(2n)4CRBf d (F(P"')) 2 
!j = - 2 2 d- --2- P",PwD dp",. 

njw P", P", 
(32) 

The formulae for the angular distribution of synchrotron radiation from an 

electron moving along a helical orbit are well known. By making the replacement 

W B ~ p",/mo RB in these formulae we obtain the following expression for the power 

in curvature radiation as a function of angle IX: 

nje2YJw2RB{ (gjPi1-nj/3zcOSIX)) .1. }2 
PwD = /" 3 2 2 p",xK2 /iq) + . +hjpz X 2 K 1 / 3(q) , 

n C P", nj SIll IX 

where 

q = tsX3/2 , 

2 

X l-~ 
S2 ' 

gj Tj sin IX +KjCOSIX, 

snj /3", sin IX 

x= 
1 -nj/3zcoslX' 

h j Tj cos IX - K j sin IX , 

2 Yj = (1 +K~)-l J • 

(33) 

(34a) 

(34b) 

(34c) 

Here the index j denotes the extraordinary (j = 1) and ordinary (j = 2) modes and 

s is the harmonic number; it follows from the relation (27) that we have s ~ 1. For 

the relations (34b, c), in a rarefied plasma we have Tj = 0 and, for quasi-linear (QL) 

propagation, Kl = 1 and K2 = -1 while, for quasi-transverse (QT) propagation, 

Kl = 0 and K2 = 00. When differentiating over P", in equation (30) one should bear 

in mind that pz and /3z in (33) depend on P", (see equation 2). 

4. Transition to Narrow-beam Pattern Approximation 

The expression (32) for! j simplifies in the narrow-radiation pattern approximation 

for AIX <% ljJ ~ Pz/p",. By virtue of equation (2) one has ljJ ~ p",/mo W B RB and the 

integration over P", in equation (32) may be replaced by that over ljJ. For AIX <% ljJ 

the function P wD is sharp with a maximum near ljJ = () "" 1n - IX. By evaluating the 

smooth function multiplying P wD in equation (32) at the point p",/mo WB RB = () and 

taking it outside the integral, we obtain 

~ _ (2n)3mocwBRi .i...(F(P"')) 2 I 
! i ~ 2 2 d 2 P", P w • 
. njw P", P", p",=8mOWBRB 

(35) 
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Here it has been taken into account that, in the case of a narrow-beam pattern for 

t/1 ~ I and e ~ I, one has 

2n J P wD dt/1 ~ 2n J P wD de = P w , 

which is just the total power in curvature radiation in a single mode. One can easily 

see that the optical depth 7:j as given by equation (35) differs radically from the result 

(17) obtained in Section 2 for the narrow-beam pattern. Here, from (35), negative 

values of 7:j occur in the directions e = p",/mRBwB whenever the derivative of 

p;;;2 F(p",) is positive. 

To resolve the dilemma as to which of the expressions (17) or (35) is correct for 

the narrow pattern, it is necessary for us to analyse the range of validity of the formula 

(3). This formula is obtained under the assumption that photon emission is accom­

panied by an electron transition from one drift orbit to another. However, the motion 

of an electron in a smoothly inhomogeneous magnetic field involves both drift motion 

and rotation about a field line. In a homogeneous magnetic field this rotation (with 

momentum P.L) is quantized. It corresponds to Landau levels spaced by 

~pi = 2s'mo WB' (36) 

where s' is an integer. In a smoothly inhomogeneous magnetic field these levels are 

quasi-stationary, with the approximate separation between them still defined by 

equation (36). When the photon is emitted, the Landau levels are not excited if the 

change in the drift component squared satisfies ~p; ~ ~pi. According to equations 

(2), (28) and (36) this inequality, which is the condition of validity of the expression 

(3) for the optical depth, takes the form (we have Vz ~ c and IS' ~ P", c) 

t/13 ~ p; /p! ~ c/2wRB• (37) 

It is not difficult to establish the order-of-magnitude relation c/2wRB '" (~e)3, 

where ~e is the beamwidth of the curvature radiation. Indeed in a vacuum, where 

we have W '" Wmax ~ (c/RB)(p",/moc)3, the beamwidth is ~e ~ moc/p", '" (c/RBw}". 

At lower frequencies (w ~ wmax) we have ~e '" (C/RBW)t; at high frequencies 

(w ~ wmax) both P wand 7: j are exponentially small and this region is of no interest. 

In the case when the medium exerts a dominant influence upon curvature radiation 

(i.e. when W ~ wLP",/mO c), the beamwidth is ~e '" wdw for w '" (wiRB/c)t, that 

is, ~e '" (C/RBW)t. This approximation for ~e remains valid for w ~ (wiRB/c)t as 

well; for w ~ (wiRB/C)t the absorption again becomes exponentially small. It 

follows that, for curvature radiation and absorption, the Landau levels are not excited 

if the beamwidth ~e is sufficiently great, 

(~e)3 ~ t/13 . (38) 

Only in this case, where transitions between Landau levels can be neglected, is the 

formula (30) for the optical depth 7:j relevant to curvature radiation. 

(From a classical point of view the meaning of the criterion (38) is quite evident. 

Indeed, this inequality implies that the number of electron revolutions around the 

field line is wimo c/p",)At ~ I, where At = (RB/C)~e is the characteristic emission time 
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along the given ray path for an electron moving along the field line with a radius of 

curvature RB • It is clear that in this case one may average the particle motion over 

the fast rotation with frequency OJBmO c/P.p and disregard this rotation altogether when 

studying curvature radiation and absorption.) 

The narrow-pattern approximation corresponds to the opposite inequality to (38), 

namely 11() ~ ifJ. The formula (35) for 7:j obtained in this approximation is incorrect 

because it ignores possible transitions between Landau levels. On the other hand, 

in the momentum conservation law (7b), I1p = hk, which is the basis for the formula 

(17), transitions between Landau levels are automatically taken into account. (When 

the photon is emitted, the electron, according to equation (7b), transits from one 

drift orbit to a state which corresponds to a different drift orbit with a different value 

of the transverse momentum P.p.) 

Thus, in the narrow-pattern approximation, we can conclude that the correct 

expression for 7: j is just the formula (17), according to which 7: j is strictly positive, and 

negative curvature absorption does not occur. 

5. Wide-beam Pattern Approximation 

Let us now investigate curvature absorption for a wide-beam pattern; that is, 

under the condition (38) when transitions between Landau levels do not occur. In 

this case the optical depth is described by the formulae (30) and (33), from which 

it follows tliat 

Here 

4Qt moc f F(p.p) ( ') 
7:j = 3Q~ N(1+K;) dp.p --p;- hK2/3(q) + Ki()-ifJ)h-.:K1/ 3(q) 

x (hK2/iq) +3{(moc/p.p)2+«()-ifJ)ifJ}qK1/ 3(q) 

+Kj h- t [3«()-ifJ){(mo c/Pt/Y + «()-ifJ)ifJ }q K 2/3(q) 

+«()-2ifJ)h Kl/3(q)]) . (39) 

Qt = 4ne2 N/mo , Q c = c/ RB , 

q = (OJ/3QJh3/2, h = (moc/p.p)2+«()-ifJ)2. 

(40a) 

(40b) 

For the ordinary mode (j = 2) in the QT approximation, K j = 00 (linear polarization 

with the electric vector E along the z axis, which is the electron drift direction), and 

in this case 

4Qtmocf F(p.p)· 2 
7:2 = 3Q~ N dp.p--p;-«()-ifJ)Kl/3(q)[3«()-ifJ){(moc/p.p) +«()-ifJ)ifJ}qK2/iq) 

+ «()-2ifJ)h Kl/3(q)]. (41) 

At frequencies OJ ~ Qc(p.p/mo C)3 corresponding to the maximum power of the 

curvature radiation, the beamwidth is 11() ~ mo c/P.p and the condition (38) reduces 

to the inequality l/I ~ mo c/P.p' Then for the directions I () I ;5 mo c/p", in equation 

(41) one may put 

(moc/p.p)2+«()-ifJ)ifJ ~ (moc/p.p)2. (42) 
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From this result we can conclude that the absorption is positive ('2 > 0) for rays 

with (} > 2t/1 and 8 < t/I (the functions K1/iq) and K 2 / 3(q) are positive for all values of 

their arguments). However, for t/I < 8 < 2t/1 the optical depth '2 may be negative. 

Indeed, within this latter interval, we have h ~ (rno C/p",)2 and q ~ (w/3Qc)(rno c/p",) 3 , 

and therefore 

~ 4Q£ rno C f d F(p ",) (~o c) 2(8 _ '/')K () 
1"2 3Q2 N P", P P 'f' 1/3 q 

c '" '" 

x {3(8-t/l)q K 2 / 3(q) + (8-2t/1)K 1/ 3(q)} . (43) 

Now assume that the distribution function F(p",) has a maximum at the point P: 
and differs from zero only within the interval f...p", ~ p:. Then the integrand in the 

formula (43), except for F(p",), may be evaluated at P", = P: and taken outside the 

integral sign, to yield 

4Q2(rn C)3 '2 ~ 3Q~ ~ (8-t/l*)K 1/ 3(q*) {3(8-t/l*)q* K2(3(q*) + (O-2t/J*)K 1/iq*)} , 
c P", 

(44) 

where the asterisk denotes values of t/I and q taken at P", = P:' The range of the values 

of O/t/l* within which curvature absorption becomes negative is shown in Fig. 3 as 

a function of the parameter q*. 

• -s-
............ 
~ 

2 

0'01 

7' > 0 (Melrose's region) 

7> 0 

0-1 1·0 5-0 

q. 

Fig. 3. Range of parameters for which the optical depth, is negative in the case of ordinary 

mode QT propagation. 

We have not found negative absorption here for QT propagation of the extra­

ordinary mode or for QL propagation of either mode. However, it should be 

emphasized that the present investigation of 'j in the wide-beam approximation is 

based on the formula (39) in which the influence of the medium is ignored (nj = 1). 

In fact, the polarization of the modes does depend on the properties of the medium, 

which may be a system of low energy (but relativistic) electrons or .even a system 

of radiating (and absorbing) particles itself. The characteristics of the polarization 

of modes propagating almost along a magnetic field in such relativistic plasmas need 

further investigation. 

Although we have found above that '2 may be negative in the wide-beam 

approximation, the reversal of the sign of the absorption coefficient alone is not 

sufficient for a maser mechanism to be effective. For this to occur a second criterion 
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1 7:j 1 ~ 1 must also be satisfied and, for curvature absorption, this means that we 

cannot have 

D == 8mffN/B2 ;5 1. (45) 

To see this, rewrite equation (44) as 

7:2 = -tD(mo C/p;)2 cP(8jtfJ*, q*), (46) 

where 

cP(8jtfJ*,q*) = (8jtfJ* -1)K1/2(q*){ -3(8jtfJ* -1)q*Kz/iq*) +(2-8jtfJ*)K1/iq*)}. 

(47) 

Now consider the possible range ofl 7: z 1 from equation (46) for variation in q*: 

(i) For q* ~ 1, in the region where 7:z is negative we have 

cP(8jtfJ*,q*) ~ 2· 5(p;/mo c)Z(3Qc/OJ)t(8jtfJ* -1)(2-8jtfJ*) 

and, after substituting this expression into equation (46), we find that, under the 

condition (45), 17:21 is much less than unity (since curvature radiation occurs at 

OJ ~ QJ. 
(ii) For q* ~ 1, in the negative 7:z region we have 

o < cP(8jtfJ*, q*) ;5 1 

and, since mo c/p; ~ 1, it follows from the formula (46) that under the condition (45) 

we again have 1 7:zl ~ 1. 

(iii) Finally, for q* ~ 1 the function cP(8jtfJ*, q*) and hence the optical depth 7:z are 

exponentially small. 

Thus we arrive at the conclusion that, although a maser mechanism of curvature 

radiation is possible, in order to be effective it requires the energy density of the 

relativistic particles to exceed that of the magnetic field (D ~ 1). In our problem 

we have D ~ 1, since it is only in this case that the motion of the charged particles 

is directed by the magnetic field and that curvature radiation occurs in the form 

usually discussed in pulsar theory. It is not inconceivable that in neutron star magneto­

spheres there are regions with D ~ 1. However, in such regions the character of 

particle motion (and hence the radiation and absorption) will differ fundamentally 

from that considered in the present report. 
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