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Abstract 

If soy isoflavones are to be effective in preventing or treating a range of diseases, they 

must be bioavailable, and thus understanding factors which may alter their bioavailability 

needs to be elucidated. However to date there is little information on whether the 

pharmacokinetic profile following ingestion of a defined dose is influenced by the food 

matrix in which the isoflavone is given or by the processing method used. Three different 

foods (cookie, chocolate bar and juice) were prepared and their contents on isoflavones 

was determined. We compared the urinary and serum concentrations of daidzein, 

genistein and equol following the consumption of three different foods each of which 

contained 50 mg of isoflavones.  

After the technological processing of the different test foods differences in aglycone 

levels were observed. The plasma levels of the isoflavone precursor daidzein were not 

altered by food matrix. Urinary daidzein recovery was similar for all three foods ingested 

with total urinary output 33-34% of ingested dose. Peak genistein concentrations were 

attained in serum earlier following consumption of a liquid matrix than a solid matrix 

although there was a lower total urinary recovery of genistein following ingestion of juice 

than that of the other two foods.  
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INTRODUCTION  

Although dietary isoflavones, which are present in soybeans, have gained significant 

attention in relation to their risk:benefit profile for human health [1], there are still no 

clear guidelines on safe and efficacious doses. What is critical to the biological efficacy 

and safety of these compounds is a thorough understanding of their bioavailability from 

different soya foods.  

Following ingestion, the isoflavone glucosides are hydrolysed by intestinal -

glucosidases to produce aglycones in the small intestine [2, 3] which are then either 

absorbed intact or further metabolised by intestinal microflora in the large intestine into 

other metabolites like equol and O-desmethylangolensin (ODMA) [4, 5].  In soyabeans, 

isoflavones are present in different chemical forms; aglycones, -glucosides, malonyl- 

and acetyl-glucosides. However, although in soya foods the predominant form is the 

glucosides, food processing techniques can alter the ratio of glucosides present and 

fermentation processes can result in increases in the levels of aglycones present in 

commercially available soya products. The major isoflavones in soyabeans are daidzin 

and genisitin as glycosides and their corresponding aglycone forms, daidzein and 

genistein [6].   

Several recent studies have investigated the potential relationship between isoflavones in 

the glucoside and aglycone form from both pure compounds and soy foods to assess their 

effects on absorption, distribution, metabolism and excretion in animal and human 

studies [7, 8, 9]. However, some data reported that isoflavone aglycones (present in 

fermented soya products) were absorbed more efficiently than isoflavone glycosides [10] 

while other data suggests that the resulting bioavailability of daidzein and gensitein was 
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greater when the soy isoflavones were ingested as glucosides rather than aglycones [11] 

and in one study no different in the apparent bioavailability following consumption of 

aglycone or glucoside tablets [12]. The distinct disparity in these results may be 

explained by factors such as age, gender or the type of soy food or isoflavone preparation 

fed.  However what is ultimately important is to understand if the levels attained in urine 

and serum are similar following consumption of a known dose of isoflavones but present 

in different food matrices. 

Therefore in the current study, we have examined the effect of food matrix on the 

apparent bioavailability of isoflavones from soy foods. A group of postmenopausal 

women were studied on three separate occasions and were randomly assigned to consume 

three different food matrices which each containing 50 mg of soy isoflavones. 

 

METHODS AND MATERIAL 

Chemicals 

All chemicals used were of analytical grade. Special reagents were daidzein, daidzin, 6”-

O-acetyldaidzin, genistein, genistin, 6”-O-acetylgenistin, glycitein, glycitin and 6”-O-

acetylglycitin (LC laboratories, Woburn, USA), pancreatine from porcine pancreas, bile 

extract from pork, pepsine from porcine stomach and trypsine from bovine pancreas 

(Sigma) . 

Sample preparation  

455 mg of an isoflavone rich extract with a total isoflavone content of 11 wt % (SoyLife 

Extra®, Acatris B.V., Giessen, The Netherlands) was incorporated into three different 

food products; fruit juice (Döhler),  chocolate bars (VSI) and cookies (A&F). The criteria 
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used for test food selection were: liquid-solid matrix effect, thechnological suitability as 

isoflavones carriers and consumers preferences within the group of study. Apple juice, 

orange juice or mandarin juice served as starting beverage compound together with sugar, 

citric cid, aroma and less than 0.1 % CO2. After addition of SoyLife Extra® the beverage 

was diluted with water to ready-to-drink strength produced the fruit juice. The resulting 

beverage was filled in bottles and pasteurized (10 min 80C). Chocolate bars were made 

by mixing SoyLife Extra® and the syrup components at maximum 55 °C. It was casted in 

a flat mold, cooled, sliced into pieces and coated with chocolate. The cookies were made 

by mixing SoyLife Extra® with margarine, self-rising flour, wholemeal flour, sugar and 

spices and the baked for 15 min at 150C. Juice, cookies and bars contained respectively 

(g per serving): protein, 0, 2 and 18; fat, 0, 8, and 6; carbohydrates, 40, 20 and 22. 

Placebo foods were prepared in the same way as the isoflavone enriched foods.  

Isoflavone content and composition of the products 

A representative sample (2 mL or 2 g) was taken from all of these three products (n=3 

samples of each food) and the isoflavone content was determined by extraction and 

HPLC. Samples were extracted by stirring with 20 mL 50 % acetonitrile/50 % MilliQ 

water for 2 hours at room temperature. The obtained solution was filtrated (Spartan 30 

0.45 µm RC filter units) and if necessary diluted with extraction medium. The sample 

was injected on a Waters 2690 separations module with a column oven and a Waters 960 

PDA detector attached to it. Separation was achieved using a Symmetry C18 column 

(250 x 4.6 mm, 5 µm). The chromatographic conditions were as follows: flow 1.5 

mL/min; volume of injection 10 µL; column temperature 40 °C; and solvents, A, 10mM 

ammonium formate in MilliQ water (pH 2.8 with formic acid) and B, gradient grade 
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acetonitrile. The gradient consisted of: 15% of B isocratic for 5 min, 15-29% of B for 31 

min and 29-35% of B in 4 min. Detection was carried out in a diode array detector. PDA 

data between 225 and 300 nm were collected and a signal of 260 nm was extracted for 

integration. Peaks were identified on the basis of their retention time and UV spectrum 

against previously recorded standards. Daidzein, daidzin, 6”-O-acetyldaidzin, genistein, 

genistin, 6”-O-acetylgenistin, glycitein, glycitin and 6”-O-acetylglycitin were quantified 

and the results expressed as total isoflavone content and percentage of aglycones, 

glycosides and acetyl isoflavones.  

In vitro digestion of the isoflavone enhanced foods 

For the digestion 2 g food were suspended in 20 mL MilliQ water. 8 mL stomach fluid 

(pH 2.5) was added and the mixture kept at 37°C in a shaking water-bath for 1 h. 

Immediately after, 10mL intestine juice, 0.4 ml trypsin solution and 0.4 ml buffer 

solution were added and the pH was adjusted to 6.5 using 1 M NaHCO3. The mixture was 

kept at 37 °C in a shaking water bath for another 2h. After the digestion was finished a 

1:1 dilution was made by adding 100% acetonitrile and the resulting solution injected in 

the HPLC for analysis. 

The stomach fluid contained 0.07 mg pepsin per ml stomach electrolyte. Stomach 

electrolyte solution contained 53 mM NaCl, 1 mM CaCl2, 14.8 mM KCl and 5.7 mM 

Na2CO3 and was adjusted to pH 2.5 using 2M HCl. The intestine juice was made in two 

consecutive steps. First 25 g intestine electrolyte was mixed with 7 g pancreatine and 73 

gr MilliQ water. This solution was mixed for 10 minutes and subsequently centrifuged 

for 20 minutes at 4 °C and 9800 g. In the second step0.475 g bile was added to 25 mL 
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supernatant. The intestine electrolyte contained 21 mM NaCl, 2 mM KCl and 0.5 mM 

CaCl2.  

Recruitment and screening of subjects 

Subjects 

The single oral bolus dose food studies were conducted on postmenopausal women 

recruited from the staff and adult population from within and around the University of 

Reading, United Kingdom (UK) and The Royal Veterinary and Agricultural University, 

Frederiksberg, Denmark (DK). 12 postmenopausal women were enrolled to participate in 

these studies, 6 in DK and 6 in UK All individuals were healthy, had normal liver and 

kidney function accessed by serum aspartate amine transpherase (ASAT), alanine amino 

transpherase (ALAT) and creatinine, reported no use of medications (including antibiotic 

use within the preceding 3 months), no HRT users, did not consume soy-rich foods on a 

regular basis and reported no menstrual bleeds for at least two years prior to the 

commencement of the study. The study design and protocol were approved by the 

University of Reading and the Municipal Ethical Committee of Copenhagen and 

Frederiksber and informed consent was obtained from each subject following a detailed 

explanation of the study procedure.  

 

Design of study 

Subjects were asked to refrain from eating foods containing soy products for at least one 

month prior to the start of the study and for the duration of the study. Following an 

overnight fast, each individual arrived at the Reading and Frederiksberg research centres 

(n= 6 per study site) and following a standardised breakfast, were randomly assigned 
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(using a multiple cross-over design) to receive one of the three isoflavone-rich foods on 

three separate occasions. Each oral dosing was separated by a minimum of one week. All 

subjects received the three different food items; cookies, chocolate bar, and juice (with an 

average content of  53.0  3.9 mg isoflavones in which aglycones represented 2.0% and 

the ratio ratio of daidzein and its glucosides over genistein and its glucosides was 5.0  

0.1) together with the standardised breakfast at each visit.  

A baseline 10 ml blood sample was collected prior to soy food ingestion. After the 

ingestion of the isoflavone-rich food over a period of 20 minutes (under supervision to 

ensure complete intake), further blood samples were obtained at 4, 6, 8, 12, 24,  48hrs 

after dosing. Blood was obtained by venepuncture .2x 5 ml Blood samples were 

centrifuged at 1600 g for 10 min at 4C and aliquots of serum (2x0.5 ml) stored at –20C 

until further analysis.  

24 hr urine collections were made over the 48 hour study period. 4 x 25 ml aliquots from 

each 24 hr collection were stored at –20ºC until further analysis 

 

Serum  and urinary isoflavone analysis  

Daidzein, Genistein and Equol concentrations were determined in serum and urine by 

Time-Resolved Fluoroimmunoassay (TR-FIA). Samples were analysed for daidzein 

using a previously published TR-FIA [13]. Based on this established format, similar TR-

FIA assays for genistein and equol, using monoclonal antibodies prepared by the 

Unilever Colworth monoclonal group, were developed. Commercial assays were not 

available at the time. 
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25mL urine was pre-incubated in an anti-mouse plate (Perkin Elmer Product Code 

(PEPC) AAAND-00033) with 100mL Europium labeled daidzein, genistein or equol 

tracer, diluted in DELFIA assay buffer (PEPC 13803185). For the quantitative analysis of 

daidzein and equol the urine was pre-treated with 400U/mL of B-Glucuronidase (Sigma 

G7396) by incorporation of the enzyme in the tracer diluent. 100mL monoclonal 

antibody, diluted in assay buffer, was then added and the plate incubated for a further 

hour (Daidzein: Clone 4E4 Fortune Kohen, Weizmann Institute1100ng/ml. Genistein: in-

house clone 6547.3, 65 ng/ml and equol in-house clone 6588.1, 20ng/ml). Plates were 

then washed six times with DELFIA wash buffer (PEPC 1244-114) and 200mL 

enhancement solution (PEPC 1244-105) added. Following shaking for a further 5 minutes 

quantitative data was then attained by reading on an AutoDelfia in the case of automated 

analysis or on a Victor2 Multilabel Counter for assays performed manually. 

Daidzein analysis was performed on non-extracted serum samples according to the 

method outlined for urinary analysis, whilst for genistein and equol analysis prior sample 

extraction was performed. The extraction method was based on the one described by 

Labmaster (Wang 20003 and Brouwers 20034) for use with blood samples to be assayed 

in their commercial daidzein, genistein and equol TR-FIA kits. Glucuronides and 

sulphates were hydrolysed by adding 200mL 0.1M acetate buffer pH5 containing 

0.2U/mL of B-glucuronidase (Boehringer Mannheim Cat. No. 1585665) and 2U/mL of 

sulphatase (Sigma Prod. Code S9626) to 200mL serum. After mixing, the samples were 

incubated at 370C overnight. Thereafter equol and genistein was extracted with 1.5mL 

diethyl ether. The water phase was frozen in a dry ice – ethanol mixture and the ether 

phase transferred into a glass tube. After thawing the water phase was re-extracted with 
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ether and the ether phases were combined and evaporated to dryness in a +450C water 

bath. 200mL DELFIA assay buffer was then added to each tube and they were vortexed 

to reconstitute the extracted sample prior to DELFIA analysis.  

The genistein assay on extracted serum used an alternative in-house antibody 6606.1 with 

a more appropriate sensitivity and specificity profile for blood analysis (Genistein: in-

house clone 6606.1, 200 ng/ml). Otherwise assay conditions were as described for urine 

analysis. 

Statistical analyses and Pharmacokinetic parameters 

Statistical analysis was performed by using the SPSS software package for Windows 

(version 11.5.1, SPSS, Richmond, CA). Values are reported as means ± SEMs unless 

noted otherwise, and the significance level was set at  = 0.05.  The area under the curve 

(AUC) from 0 to 24 h was calculated by using the trapezoidal rule and serum genistein, 

daidzein and equol measured at 0, 4, 6, 8, 12, 24, and 48 h after a single oral dose 

administered at time 0. Maximum serum concentrations of the three isoflavones from 0 to 

48 h post-dose were defined as cmax. The time to maximum serum concentration (tmax) 

was defined as the time in hours at which cmax was reached. The elimination half-life for 

genistein, daidzein and equol was computed by using the following formula: t1/2 = -

ln(2)/, where  is the slope of the linear regression of the ln of serum genistein, daidzein 

and equol concentrations 8, 12, 24 and 48 h after isoflavones enriched foods. 
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RESULTS 

Isoflavone contents in the foods 

In Figure 1 we show a chromatogram corresponding to one of the analysed foods as an 

example of the profile of isoflavones obtained. Daidzein, daidzin, 6”-O-acetyldaidzin, 

genistein, genistin, 6”-O-acetylgenistin, glycitein, glycitin and 6”-O-acetylglycitin where 

all present in all the analysed samples. 

In the isoflavone enriched food materials less than 4% total aglycones were present 

(including glycitein) (Table 1). About 65 to75 % of the total isoflavone content was 

present as glucoside, the remaining part as acetylglucoside. The D/G ratio was 5.0 ± 0.2 

(95 % CI) for the prepared foods. Isoflavones concentrations were not significantly 

different in the three tested products. 

 In vitro digestion of the isoflavone enhanced foods 

After in vitro digestion the cookies differed significantly from the other two product 

types in % recovery of total isoflavones (see Table 2). No significant difference in % 

recovery was observed between bars and juice. Significant differences where also 

observed in the case of the cookies between the ratio in the original food and after in vitro 

digestion. Proportionally, in this model system, a higher amount of genistein was 

absorbed compared with daidzein. 

In vivo absorption of isoflavones from the isoflavone enhanced foods 

Twelve healthy volunteers (six in UK and six in DK) were recruited and completed the 

three phases of the study. Pre-study screening data are given in Table 3. 

Volunteers were fed a food containing the 50mg of isoflavones, as either, a cookie, 

chocolate bar or juice. Based on the 50 mg isoflavones, the subjects each consumed: 6.7 
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mg genistein and 33.8 mg daidzein, both predominantly in the glycoside form 

(aglycones< 4.4% in every case) 

Serum levels 

Serum genistein was 0.9 ± 5.39 ng/ml, 0.9± 4.62 ng/ml and 2.0± 11.89 ng/ml prior to 

ingestion of cookies, bars and juice respectively.  Prior to isoflavone administration, 

serum daidzein was 0.1 ± 1.55 ng/ml, 0.2 ± 1.12 ng/ml and 0.1 ± 1.37 ng/ml, while  

baseline serum equol concentrations were 0.6 ± 0.57 ng/ml, 0.5± 0.26 ng/ml and 0.4± 

0.23 ng/ml respectively. Changes in serum total genistein, daidzein and equol 

concentrations during the 48 h after ingestion of the meal varied substantially between 

the individuals. 

After consumption of the test foods containing isoflavones, serum genistein 

concentrations increased to 160.9 ± 74.88 ng/ml, 157.5 ± 61.74 ng/ml and 129.1 ± 86.22 

ng/ml in the cookies, bars and juice respectively (Figure 2a). Peak genistein 

concentrations were reached at time 8 h for cookies and bars and at time 6h following 

consumption of the juice.  

Serum daidzein concentrations increased to a maximum concentration of 116.8 ± 28.67 

ng/ml, 127.2 ± 20.36 ng/ml and 112.1 ± 30.37 ng/ml following ingestion of the cookies, 

bars and juice respectively (Figure 2b). Peak daidzein concentration was attained at time 

8 h for all the tested foods.  

Negligible increases in serum equol concentrations were observed in this study group; 1.2 

± 0.41 ng/ml, 1.1 ± 0.40 ng/ml and 1.2 ± 0.52 ng/ml following ingestion of the cookies, 

bars and juice respectively (Figure 2c). However, peak equol concentrations were 

reached at 12 h for all the tested foods. 
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Forty-eight hours after ingestion of the isoflavone-enriched foods, mean serum genistein 

concentrations had dropped to 8.5 ± 16.49 ng/ml, 3.8 ± 6.51 ng/ml and 2.5 ± 6.93 ng/ml 

in the three study phases. Serum daidzein was 0.7 ± 2.14 ng/ml, 0.4 ± 2.75 ng/ml and 0.8 

± 1.84 ng/ml 48 h after ingestion of cookies, bars and juice respectively. AUC, cmax, tmax 

and t1/2 values were calculated for serum total genistein, daidzein and equol after 

ingestion of the isoflavone enriched cookies, bars and juice (Table 4). 

The 48 h AUCs for genistein, daidzein and equol after ingestion of either cookies, bar or 

juice were not significantly different and averaged 9.28  0.39, 7.49  1.02 and 0.16  

0.01 respectively. Ingestion of cookies, bar or juice resulted in tmax, cmax, and t1/2 values 

that were not significantly different. 

Urinary levels 

50% of the ingested genistein was eliminated in urine in the first 24 hours and a further 

11% on the second study day after consumption of the juice. In the case of cookies and 

bars 56% and 55% were eliminated after 24 hours respectively and a further 12% and 

11% on the second day (Figure 3a).  

For daidzein 31%, 30% and 29% of the dose was excreted in urine in the first 24 hours 

after ingestion of cookies, bars and juice respectively and a further 4% on the second day 

(Figure 3b). 

Approximately half of the excreted equol was determined in urine in the first 24 hours 

and the rest on the second day (Figure 3c). 

DISCUSSION 

Isoflavones may be important in the prevention and or treatment of a range of chronic 

diseases and data from in vitro model systems, animal studies and intervention trials in 
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humans attest to the biological activity of these compounds and their potential importance 

to human health [1]. Although rates of hormone dependent diseases are lower in 

populations who consume relatively high intakes of soy isoflavones,  

if soy isoflavones are to be effective in preventing or treating a range of diseases, they 

must be bioavailable, and thus understanding factors which may alter their bioavailability 

needs to be elucidated.  

It is well established that soy isoflavones are readily absorbed from the gastrointestinal 

tract and reach peak concentrations within a few hours of ingestion [11]. A small number 

of studies have evaluated the levels of soy isoflavones attained in serum or urine but 

many have either focused on a single food [7, 8, 9] or studied specific purified aglycones 

or glycosides [10, 11]. There is little information, however, as to whether the appearance 

and disappearance of isoflavones in urine and serum is influenced by the food matrix in 

which the isoflavones are contained. The aim of this study was to determine the effect of 

food matrix on the levels of isoflavones attained in serum and urine in a group of healthy 

postmenopausal women given an oral dose of three different foods containing a defined 

level of isoflavones (50 mg) on three separate occasions.  

The studies were preformed according to a classic single oral bolus dose pharmacokinetic 

design, using a level of intake which was reflective of habitual intake in Asia and are 

complementary to previously published studies which used stable isotopes of the pure 

compounds or soy foods [9, 14].  These data clearly demonstrate that humans absorb 

isoflavones from a range of different food matrices.  

In previous studies, several investigators have use a liquid matrix, like soymilk [15], 

specific soy beverages [16] or soy-rich preparations suspended in liquids [7, 8]. In the 
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present study, tmax following juice consumption was 7.8  1.8 h and 7.0  0.1 h for 

daidzein and genistein respectively. This is in agreement with other studies employing 

liquid food preparations where the mean tmax occurs between 6 and 9 h for both daidzein 

and genistein [7, 8, 16, 17].  

When we compared the isoflavone concentrations after the technological processing of 

the different test foods we only found differences in aglycone levels. For the cookies, the 

level of aglycones, of both genistein and daidzein, were slightly higher (3.0  1.4) than 

those in the juice or chocolate bars (1.5  2.5 and 1.5  0.7 respectively). However these 

differences did not seem to have any effect on the Cmax obtained after the ingestion of 

the three test foods. 

With regards to the in vitro bioavalability assay, the results showed a very low recovery 

of isoflavones from the cookies. This result could be due to the high complexity of the 

matrix of the cookies, with a high content of sugars and proteins, which may make the 

extraction of isoflavones more difficult. However these results were not reflected in the 

human study and add weight to the difficulties in extrapolating results from in vitro 

experimentation to help understand the human absorption of bioactive compounds from 

food. 

In agreement with previous studies, wide inter-individual variability in the urinary 

recovery of daidzein and genistein was observed [18, 19]. In the current study (n=12), 

recovery of total daidzein and genistein was 38.8% ( 5.3) of total isoflavones ingested 

with daidzein and genistein recoveries ranging from 32-35% and 61-70%. Following soy 

food consumption, it is well established that urinary daidzein concentrations are 

consistently higher than urinary genistein levels [7, 8, 9, 15]. Given the profile of the soy 
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isoflavone extract (41.8 mg daidzein, 8.2 mg genistein) added to our three food matrices, 

it was thus not surprising that daidzein levels in urine were consistently higher than 

urinary genistein levels. However in the present study the percentage of genistein 

eliminated in urine was higher than that of daidzein. This is possibly due to the fact that 

in our study the relative proportions of daidzein:genistein in the food were 5:1 while in 

most of the previous studies the proportion is approximately 1:1.  

The excretion profiles of daidzein and genistein over the 48 hrs following ingestion of the 

soy foods are similar to that which we previously observed [9] with the majority 

appearing in the urine within the first 24 h following the ingestion of the soy food. This 

rapid appearance of these compounds in urine can be explained by the short serum half-

life and fast serum clearance rates of both daidzein and genistein (Table 4). Other 

investigations of the urinary excretion patterns of these compounds following acute 

ingestion have also reported low excretion rates 24 h post ingestion [7, 8, 9].   

The current study aimed to evaluate the potential impact that food matrix may have on 

urinary isoflavone excretion following the consumption of a single portion of three foods 

containing a known dose of soy isoflavones in the same group of subjects. There was a 

lower total urinary recovery of genistein following ingestion of juice (61%) than that of 

the other two foods (66% and 70% for bars and cookies respectively). Daidzein recovery 

remained similar across the three foods ingested with total urinary output 32-35% of 

ingested intake. These data suggest that the levels of isoflavones attained, particularly 

levels of genistein, may be altered depending on the food matrix consumed, but the 

current data did not reach statistical significance. It should be noted that for the given 

variance in this study for a study power of 80% a minimum of 48 volunters would be 
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necessary in order to get significancy for a 13% difference in isoflavone excretion at a 

P<0.05. 

The metabolites of daidzein and genistein, formed in the intestine may account for some 

of the rest of the urinary isoflavones levels and various other metabolites have been 

identified in biological fluids [20, 21, 22, 23] . In this study we focused on the metabolite 

of daidzein, equol, as a marker of intestinal metabolism. Equol has been the focus of 

much interest because it is more oestrogenic and a more potent antioxidant than daidzein 

[24, 25, 26] suggesting that this isoflavone metabolite may hold the key to understanding 

the mechanism of action and effectiveness of soya in clinical studies examining the 

potential health benefits of soya isoflavones.  It is well established that only 30% of any 

given population group studied can produce equol [19, 27, 28, 29] and an inability to 

produce equol may be related to an absence of appropriate enzymes in the intestinal 

microflora or absence of bacterial species capable of producing equol [20, 30].  Its 

formation is exclusively related to intestinal microflora as germ free rats do not excrete 

equol and the absence of equol from infant blood samples following soy infant formula 

ingestion add weight to the need for an active microflora for its formation [31]. Our 

studies in healthy adults using C13 daidzein and C13 gensitein show conclusively that 

equol is formed from daidzein and not genistein [9]. The question of whether we can 

enhance intestinal conversion of daidzein to equol is one of great interest [17, 20] and 

dietary carbohydrate has been indicated as a factor that may determine equol production 

[1, 19, 20, 29]. Surprisingly in the current study none of the subjects were equol 

producers.  
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This study examined the potential effect of food matrix on the levels of isoflavones 

attained in urine and serum. The levels of the isoflavone precursor, daidzein did not 

appear to be altered by food matrix and in this study none of the volunteers appeared 

capable of converting this precursor to its intestinal metabolite, equol. Peak genistein 

concentrations were attained in serum earlier following consumption of liquid matrix 

than a solid matrix however these differences were not statisticaly significatives. Further 

studies are required to determine the relative importance of food matrix to ensure safe 

and efficacious doses of these compounds can be delivered for potential health benefits. 

The pharmacokinetic data gathered from this study relate well to the limited information 

available from previous work. More specifically, Cmax, tmax, t1/2 and AUC(0-t) were all 

within the range of values obtained from other studies using similar quantities of dietary 

isoflavones [7, 8, 9, 11, 15]. Accurate measurements of bioavailability would ideally 

compare the AUC after both oral and intravenous administration. However in any study 

examining bioavailability, the accuracy is dependent on taking sufficient blood samples 

during the elimination phase and continuing with sampling ideally to at least five half 

lives beyond the time that steady state levels are reached in blood. However only a few 

studies on bioavailability have taken this into consideration [7, 8, 11, 31, 32] while 

several studies have only used a couple of time points to compute the pharmacokinetic 

[10, 33]. These inconsistencies in study design and sampling may well account for any 

discrepancies in the available literature.   
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Figure 1: HPLC chromatograms recorded at 260 nm corresponding to a isoflavone 

enriched cookie. Peak identification: 1, daidzin; 2, glycitin; 3, genistin; 4,  6”-O-

acetyldaidzin; 5, 6”-O-acetylglycitin; 6, daidzein; 7, genistin; 8,  6”-O-acetylgenistin; 9,  

genistein. 

Figure 2: serum appearance / disappearance curves following ingestion of a known dose 

of soy isoflavones present in different foods: a, genistein, b, daidzein and c, equol. 

Figure 3: Urinary isoflavone excretion (a, genistein; b, daidzein; c, equol) following the 

ingestion of a known dose of isoflavones present in different food matrices. 




