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By using an analytic solution of the Teukolsky equation in the Kerr-de Sitter and Kerr-
Newman-de Sitter geometries, an analytic expression of the absorption rate formulae for
these black holes is calculated.

§1. Introduction

In a series of papers, 1), 2) we have developed a method to obtain an analytic
solution of the Teukolsky equation 3) in Kerr geometries, the perturbation equa-
tion of massless particles in Kerr geometries. This method is applied to evaluate
the gravitational wave from a binary of neutron stars. 4) Recently, we extended this
method to Kerr-de Sitter and Kerr-Newman-de Sitter geometries and showed that
an analytic solution can be similarly obtained. 5) It has been shown that the analytic
solution obtained in Ref. 5) can be analytically continued to cover the entire physical
region. 6) It should be noted that in Kerr-Newman-de Sitter geometries, electromag-
netic and gravitational perturbations couple to each other, and thus these particles
are excluded.

In this paper, we evaluate the absorption rate of the Kerr-de Sitter and the
Kerr-Newman-de Sitter black holes by using the analytic solution. We construct the
conserved current by evaluating the Wronskian, and we obtain an expression of the
absorption rate. From this, we show explicitly that super-radiance occurs for the
boson case similarly to the Kerr geometry case. 2)

The paper is organized as follows. In §2 we summarize the construction of ana-
lytic solutions in order to define parameters involved in them. In §3 we choose the
solution which satisfies the incoming boundary conditions at the outer horizon of the
black hole and examine the asymptotic behavior at the de Sitter horizon. Then, we
derive analytic expressions of the incident, the reflection and the transmission am-
plitudes. In §4 we derive the conserved current, from which we derive the absorption
rate. A summary is given in §5.
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724 H. Suzuki, E. Takasugi and H. Umetsu

§2. The analytic solution

In the Boyer-Lindquist coordinates, the Kerr-Newman-de Sitter metric has the
form

ds2 = −ρ2

(
dr2

∆r
+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
[adt− (r2 + a2)dϕ]2

+
∆r

(1 + α)2ρ2
(dt− a sin2 θdϕ)2, (2.1)

where α = Λa2/3, ρ2 = ρ̄ρ̄∗, ρ̄ = r + ia cos θ and

∆r = (r2 + a2)
(
1− α

a2
r2
)
− 2Mr +Q2

= − α

a2
(r − r+)(r − r−)(r − r′+)(r − r′−) ,

∆θ = 1 + α cos2 θ . (2.2)

Here Λ is the cosmological constant, M is the mass of the black hole, aM is its
angular momentum, and Q is its charge.

Next, we deal with the Teukolsky equation. We assume that the time and the
azimuthal angle dependence of the field are described by e−i(ωt−mφ). Then, the radial
part of the equation with spin s and charge e is given by
 ∆−s

r

d

dr
∆s+1

r

d

dr
+

1
∆r

[
(1 + α)2

(
K − eQr

1 + α

)2

− is(1 + α)
(
K − eQr

1 + α

)
d∆r

dr

]

+ 4is(1 + α)ωr − 2α
a2

(s+ 1)(2s+ 1)r2 + s(1− α)− 2iseQ− λs


Rs = 0, (2.3)

with K = ω(r2+a2)−am. This equation has five regular singularities, at r±, r′± and
∞, which are assigned such that r± → M ±√M2 − a2 −Q2 ≡ r0± and r′± → ± a√

α

in the limit α → 0 (Λ → 0). In Ref. 5), it is shown that

λs = λ−s. (2.4)

Next, we define the variables x and z as

x = 1− z =
(r− − r′−)
(r− − r+)

(r − r+)
(r − r′−)

. (2.5)

This transformation maps the outer horizon r+, the inner horizon r−, the de Sitter
horizon r′+, and ∞ to 0, 1, xr, and x∞, respectively:

xr = 1− zr =
(r− − r′−)
(r− − r+)

(r′+ − r+)
(r′+ − r′−)

,

x∞ = 1− z∞ =
(r− − r′−)
(r− − r+)

. (2.6)
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Absorption Rate of the Kerr-de Sitter Black Hole 725

Now, we give the solution of the Teukolsky equation which satisfies the incoming
boundary condition on the outer horizon. Before doing so, we define parameters to
specify the solution:

σ+ = 2a2 − s+ 1, σ− = −2a1 − 2a3 + 1,
γ = −2a1 − s+ 1, δ = 2a2 + s+ 1, ε = −2a3 − s+ 1 ,

ωH ≡ γ + δ − 1 = σ+ + σ− − ε = −2a1 + 2a2 + 1 . (2.7)

Here

a1 = i
a2(1 + α)

α

(
ω(r2

+ + a2)− am− eQr+

1+α

)
(r′+ − r+)(r′− − r+)(r− − r+)

,

a2 = i
a2(1 + α)

α

(
ω(r2− + a2)− am− eQr−

1+α

)
(r′+ − r−)(r′− − r−)(r+ − r−)

,

a3 = i
a2(1 + α)

α

(
ω(r′+

2 + a2)− am− eQr′+
1+α

)
(r− − r′+)(r′− − r′+)(r+ − r′+)

,

a4 = i
a2(1 + α)

α

(
ω(r′2− + a2)− am− eQr′−

1+α

)
(r− − r′−)(r′+ − r′−)(r+ − r′−)

, (2.8)

and the relation a1 + a2 + a3 + a4 = 0 is satisfied.
With these parameters, the solution can be expressed as

Rν
in;s = ÃsR

ν
in;{0,1};s

= Ãs

[
Kν(s)Rν

{zr,∞};s(z) +K−ν−1(s)R−ν−1
{zr,∞};s(z)

]
, (2.9)

where

Rν
in;{0,1};s = (−x)−s−a1(1− x)a2

(
x− xr

1− xr

)−s−a3
(
x− x∞
1− x∞

)2s+1

×
∞∑

n=−∞
aν

n(s)F
(
−n− ν +

ωH

2
− 1

2
, n+ ν +

ωH

2
+

1
2
; γ;x

)
,

Rν
{zr,∞};s(z) = za2(z − 1)−s−a1

(
1− z

zr

)−s−a3
(
1− z

z∞

)2s+1

×
∞∑

n=−∞
aν

n(s)
Γ (n+ ν + σ+ + ωH

2 + 2
3)Γ (n+ ν − σ− + ωH

2 + 2
3)

Γ (2a2 + 2a3 + 1)Γ (2n+ 2ν + 2)

(
z

zr

)n+ν+a1−a2

× F

(
n+ ν + σ+ − ωH

2
+

1
2
, n+ ν + σ− − ωH

2
+

1
2
; 2n+ 2ν + 2;

z

zr

)
, (2.10)

and the proportionality constant Kν is determined by comparing the coefficients of
zr+ν−ωH

2
+ 1

2 as
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726 H. Suzuki, E. Takasugi and H. Umetsu

Kν =

z
r+ν−ωH

2
+ 1

2
r Γ (γ)Γ (σ+ − ε+ 1)

Γ (r + ν − ωH−3
2 )Γ (r + ν + δ − ωH−1

2 )Γ (r + ν + σ+ − ωH−1
2 )Γ (r + ν + σ− − ωH−1

2 )[ ∞∑
n=r

aν
n

(−)n−rΓ (n+ ν − ωH−3
2 )Γ (n+ ν + δ − ωH−1

2 )Γ (r + n+ 2ν + 1)
Γ (n+ ν + ωH+1

2 )Γ (n+ ν + γ − ωH−1
2 )(n− r)!

]
[

r∑
n=−∞

aν
nΓ (n+ ν − σ+ + ωH+3

2 )Γ (n+ ν − σ− + ωH+3
2 )

Γ (n+ ν + σ+ − ωH−1
2 )Γ (n+ ν + σ− − ωH−1

2 )Γ (r + n+ 2ν + 2)(r − n)!

]−1

,

(2.11)

which should be independent of r, an integer value.
The coefficients are determined by solving the three-term recurrence relation

αν
na

ν
n+1 + βν

na
ν
n + γν

na
ν
n−1 = 0, (2.12)

where

αν
n =

− (n+ ν − ωH−3
2 )(n+ ν − σ+ + ωH+3

2 )(n+ ν − σ− + ωH+3
2 )(n+ nu+ δ − ωH−1

2 )
2(n+ ν + 1)(2n+ 2ν + 3)

,

βν
n =

(1− ωH)(γ − δ)(σ+ − σ− + ε− 1)(σ+ − σ− − ε+ 1)
32(n+ ν)(n+ ν + 1)

+
(
1
2
− xr

)
(n+ ν)(n+ ν + 1)

+
1
4
[ε(γ − δ) + δ(1− ωH) + 2σ+σ−] +

ω2
H − 1
4

xr + v,

γν
n =

− (n+ ν + σ+ − ωH+1
2 )(n+ ν + σ− − ωH+1

2 )(n+ ν + γ − ωH+1
2 )(n+ ν + ωH−1

2 )
2(n+ ν)(2n+ 2ν − 1)

,

(2.13)

with an appropriate initial condition. Here we set aν
0 = a−ν−1

0 = 1. Then, we find
that a−ν−1

−n = aν
n is satisfied.

The solution is characterized by the characteristic exponent ν (the shifted an-
gular momentum), which is determined so that the coefficients are convergent as
n → ±∞. Since the solution is expressed by the sum of hypergeometric func-
tions, the convergence of the series is examined. From the behavior of coefficients
as n→ ±∞, we find that the solution Rν

in;{0,1};s converges for r < r′+, and Rν
{zr,∞};s

converges for r > r+, where r+ and r′+ (r+ � r′+) are the outer horizon and the de
Sitter horizon, respectively. Therefore, the second expression of Rν

in;s is the analytic
continuation of the first expression. By combining these two expressions, we can
obtain a solution that covers the entire physical region.

We now summarize the properties of this solution. We showed that ν(s) = ν(−s),
which is crucial for solutions with spin s and −s to satisfy the Teukolsky-Starobinsky
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Absorption Rate of the Kerr-de Sitter Black Hole 727

identity. 7), 8) We showed explicitly that our solution satisfies the T-S identity, and
as a consequence we can fix the relative normalization such that

Ãs = C∗
s

[
− a2

α(r+ − r−)(r′+ − r−)(r′− − r−)

]2s

×Γ (−2a1 + s+ 1)
Γ (−2a1 − s+ 1)

∣∣∣∣Γ (ν + a1 + a2 − s+ 1)
Γ (ν + a1 + a2 + s+ 1)

∣∣∣∣
2

, (s > 0) (2.14)

provided Ã−s = 1 (s > 0). Here, Cs is the Starobinsky constant. 9)

§3. Asymptotic behavior

In general, the asymptotic behavior of the solution is found by examining the
Teukolsky equation to be 10)

Rs −→ R(trans)
s ∆−s

r e−ikr∗ , (r → r+)
−→ R(inc)

s ∆−s
r e−ipr∗ +R(ref)

s eipr∗ , (r → r′+) (3.1)

where k and p are defined by

k =
(1 + α)

[
ω(r2

+ + a2)− am− eQr+

1+α

]
r2
+ + a2

,

p =
(1 + α)

[
ω(r′+

2 + a2)− am− eQr′+
1+α

]
r′+

2 + a2
. (3.2)

Here r∗ is defined by dr∗
dr = r2+a2

∆r
and behaves asymptotically as

r∗ −→ −ia1

k
ln(−x), (r → r+)

−→ −ia3

p
ln
(
1− z

zr

)
. (r → r′+) (3.3)

Here, we give the explicit expressions of R(inc)
s , R(ref)

s and R
(trans)
s by using our

analytic solution Rν
in;s.

From the behavior around x = 1, we find

R(trans)
s = Ãs

[
α(r+ − r−)2(r− − r′−)2(r′+ − r−)

a2(r+ − r′−)

]s ( −xr

1− xr

)−a3
( −x∞
1− x∞

)−2s+1

×
∞∑

n=−∞
aν

n(s). (3.4)

Next, we consider the behavior near the cosmological horizon, i.e. as z → zr. First,
we consider Rν

{zr,∞};s and find

Rν
{zr,∞};s −→ Aν

+;s∆
−s
r e−ipr∗ +Aν

−;se
ipr∗ , (3.5)
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728 H. Suzuki, E. Takasugi and H. Umetsu

where

Aν
+;s =

[
α(r+ − r−)2(r− − r′−)2(r′+ − r−)

a2(r+ − r′−)

]s

zs+a2
r (zr − 1)−a1

(
1− zr

z∞

)−2s+1

× Γ (2a3 + s)
Γ (2a2 + 2a3 + 1)

∞∑
n=−∞

aν
n(s),

Aν
−;s = za2

r (zr − 1)−s−a1

(
1− zr

z∞

)2s+1 Γ (−2a3 − s)
Γ (2a2 + 2a3 + 1)

×
∞∑

n=−∞
aν

n(s)
Γ (n+ ν + a3 − a4 + 1)Γ (n+ ν − a1 − a2 + s+ 1)
Γ (n+ ν − a3 + a4 + 1)Γ (n+ ν + a1 + a2 − s+ 1)

. (3.6)

SinceRν
in;s is expressed by the linear combination ofRν

{zr,∞};s andR
−ν−1
{zr,∞};s, Eq. (2·9),

we also need A−ν−1
+;s and A−ν−1

−;s . These are given by using the explicit forms of Aν
+;s

and Aν−;s as

A−ν−1
+;s = Aν

+;s,

A−ν−1
−;s =

sinπ(ν + a3 − a4) sinπ(ν − a1 − a2 + s)
sinπ(ν − a3 + a4) sinπ(ν + a1 + a2 − s)

Aν
−;s. (3.7)

Now, we obtain the asymptotic amplitudes R(inc)
s and R

(ref)
s as

R(inc)
s = Ãs [Kν(s) +K−ν−1(s)]Aν

+;s,

R(ref)
s = Ãs

[
Kν(s) +

sinπ(ν + a3 − a4) sinπ(ν − a1 − a2 + s)
sinπ(ν − a3 + a4) sinπ(ν + a1 + a2 − s)

K−ν−1(s)
]
Aν

−;s .

(3.8)

Below, we give some useful relations to study the conserved current and absorp-
tion rate:

Aν
+;s

Aν
+;−s

=
[
α

a2
(r′+ − r−)2(r+ − r−)(r′+ − r′−)

]2s Γ (2a3 + s)
Γ (2a3 − s)

∞∑
n=−∞

aν
n(s)

∞∑
n=−∞

aν
n(−s)

,

Aν−;s

Aν−;−s

=

[
(r+ − r−)(r− − r′−)
(r′+ − r+)(r′+ − r′−)

]2s
Γ (−2a3 − s)
Γ (−2a3 + s)

∣∣∣∣Γ (ν + a1 + a2 + s+ 1)
Γ (ν + a1 + a2 − s+ 1)

∣∣∣∣
2

.

(3.9)

These lead to the following relations for the asymptotic amplitudes:

R
(inc)
s

R
(inc)
−s

=
1
Cs

[
α

a2
(r′+ − r+)(r′+ − r−)(r′+ − r′−)

]2s Γ (2a3 + s)
Γ (2a3 − s)

,

R
(ref)
s

R
(ref)
−s

= C∗
s

[
α

a2
(r′+ − r+)(r′+ − r−)(r′+ − r′−)

]−2s Γ (−2a3 − s)
Γ (−2a3 + s)

,
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Absorption Rate of the Kerr-de Sitter Black Hole 729

R
(trans)
s

R
(trans)
−s

=
1
Cs

[
α

a2
(r+ − r−)(r+ − r′+)(r+ − r′−)

]2s Γ (2a1 + s)
Γ (2a1 − s)

. (3.10)

Here we have used Eq. (4·29) in Ref. 6) which is the relation between the sums of
the coefficients with spin weights s and −s.

§4. The conserved current and the absorption rate

The conserved current 7) is obtained by examining the Wronskian between the
incoming solution Rν

in;s and the outgoing solution Rν
out;s = (∆−sRν

in;−s)
∗ on the outer

horizon. We find[
∆s+1

r

(
Rν

in;s

d

dr
(∆−s

r Rν
in;−s)

∗ − (∆−s
r Rν

in;−s)
∗ d
dr
Rν

in;s

)]
r=r+

=
[
∆s+1

r

(
Rν

in;s

d

dr
(∆−s

r Rν
in;−s)

∗ − (∆−s
r Rν

in;−s)
∗ d
dr
Rν

in;s

)]
r=r′+

.

(4.1)

Then, by substituting the asymptotic behavior (3.1), we find

R(inc)
s

(
R

(inc)
−s

)∗
= R(ref)

s

(
R

(ref)
−s

)∗
−(r+ − r−)(r+ − r′−)(s+ 2a1)
(r′+ − r−)(r′+ − r′−)(s+ 2a3)

R(trans)
s

(
R

(trans)
−s

)∗
. (4.2)

This relation can be rewritten by using the relations (3.10) as∣∣∣R(inc)
s

∣∣∣2 =
1

|Cs|2
[
α

a2
(r′+ − r+)(r′+ − r−)(r′+ − r′−)

]4s ∣∣∣∣Γ (2a3 + s)
Γ (2a3 − s)

∣∣∣∣
2 ∣∣∣R(ref)

s

∣∣∣2
+δs

∣∣∣R(trans)
s

∣∣∣2 , (4.3)

where

δs =

[
−(r+ − r−)(r+ − r′−)
(r′+ − r−)(r′+ − r′−)

]−2s+1
Γ (−2a1 − s+ 1)Γ (−2a3 + s)
Γ (−2a1 + s)Γ (−2a3 − s+ 1)

. (4.4)

For s = 0, 1
2 , 1,

3
2 and 2, δs is explicitly given by

δ0 =
ω(r2

+ + a2)− am− eQr+

1+α

ω(r′+
2 + a2)− am− eQr′+

1+α

,

δ 1
2
= 1,

δ1 =
1
δ0

,

δ 3
2
=

[
−(r′+ − r−)(r′+ − r′−)
(r+ − r−)(r+ − r′−)

]2 1
4 − 4a2

3
1
4 − 4a2

1

,

δ2 =

[
−(r′+ − r−)(r′+ − r′−)
(r+ − r−)(r+ − r′−)

]2
(1− 4a2

3)
(1− 4a2

1)
1
δ0

.
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730 H. Suzuki, E. Takasugi and H. Umetsu

We recall that the above formulae are valid for all massless particles with spin 0,
1/2, 1, 3/2 and 2 in the Kerr-de Sitter geometry, but for the Kerr-Newman-de Sitter
geometry, the photon and the graviton are exceptions.

The relation in Eq. (4·3) is interpreted as the energy conservation. 7) That is,
the energy balances among the incident energy going into the black hole, the energy
reflected by the black hole, and the energy absorbed by the black hole. It is evident
that the δs are positive definite for fermions, because a1 and a3 are purely imaginary.
For bosons, δs can be negative, and super-radiance occurs when

am+
eQr′+
1+α

r′+
2 + a2

< ω <
am+ eQr+

1+α

r+2 + a2
(4.5)

in the Kerr-de Sitter (for massless particles with any spin) 9) and the Kerr-Newman-
de Sitter (excluding the photon and graviton) geometry.

We now give a formula for the absorption rate of the black hole in the Kerr-de
Sitter geometry using our solution:

Γs = 1− 1
|Cs|2

[
α

a2
(r′+ − r+)(r′+ − r−)(r′+ − r′−)

]4s ∣∣∣∣Γ (2a3 + s)
Γ (2a3 − s)

∣∣∣∣
2
∣∣∣∣∣R

(ref)
s

R
(inc)
s

∣∣∣∣∣
2

= δs

∣∣∣∣∣R
(trans)
s

R
(inc)
s

∣∣∣∣∣
2

= δs

∣∣∣∣∣(r+ − r−)(r+ − r′−)
(r′+ − r−)(r′+ − r′−)

∣∣∣∣∣
2s(

r′+ − r′−
r+ − r′−

)2 ∣∣∣∣Γ (2a2 + 2a3 + 1)
Γ (2a3 + s)

∣∣∣∣
2

× |Kν(s) +K−ν−1(s)|−2

=
1

π2z2ν+1
r

sinπ(2a1 + s) sinπ(2a3 + s)Dν
s

∣∣∣∣1− pν
s

π2z2ν+1
r sin2 2πν

Dν
s

∣∣∣∣−2

,

(4.6)

where

pν
s = sinπ(ν + a1 − a2) sinπ(ν − a3 + a4)

× sin π(ν + a1 + a2 + s) sinπ(ν + a1 + a2 − s),
Dν

s = |Γ (ν + a1 − a2 + 1)Γ (ν − a3 + a4 + 1)
× Γ (ν + a1 + a2 + s+ 1)Γ (ν + a1 + a2 − s+ 1)|2 dν

s ,

dν
s =∣∣∣∣∣

0∑
n=−∞

aν
n(s)Γ (n+ ν + a3 − a4 + 1)Γ (n+ ν − a1 − a2 + s+ 1)

Γ (n+ ν − a3 + a4 + 1)Γ (n+ ν + a1 + a2 − s+ 1)Γ (n+ 2ν + 2)(−n)!

∣∣∣∣∣
2

∣∣∣∣∣
∞∑

n=0

aν
n(s)

(−)nΓ (n+ ν + a1 − a2 + 1)Γ (n+ ν + a1 + a2 + s+ 1)Γ (n+ ν + 1)
Γ (n+ ν − a1 + a2 + 1)Γ (n+ ν − a1 − a2 − s+ 1)n!

∣∣∣∣∣
−2

.

(4.7)
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Absorption Rate of the Kerr-de Sitter Black Hole 731

Here we have set r = 0, which was an arbitrary integer, in Kν(s) of (2.11). This
quantity coincides with that in Ref. 2) in the Kerr-limit (Λ −→ 0).

§5. Conclusions and discussion

We derived an analytic expression of the absorption rate. In particular, we found
analytically that super-radiance occurs for bosons when the frequency satisfies the
condition given in Eq. (4·5). In order to examine this property in detail, we must
calculate coefficients by solving the three-term recurrence relations in Eq. (2·12). In
general, we find

lim
n→∞

aν
n+1

aν
n

= lim
n→−∞

aν
n

aν
n+1

= e−ξr , (5.1)

where

eξr = 1− 2xr +
√
(1− 2xr)2 − 1 > 1. ( xr < 0 ) (5.2)

Since xr is negative and very large for very small Λ,

xr =
(r− − r′−)
(r− − r+)

(r′+ − r+)
(r′+ − r′−)

� r′−
2(r+ − r−)

, (5.3)

e−ξr is very small. Thus, for larger n, the convergence of the series of coefficients is
rapid. In practical cases where Λ is very small, we first expand αν

n, β
ν
n and γν

n and
also coefficients in terms of the small quantity α ≡ Λa2/3, and then we expand in
terms of ε ≡ 2Mω. In this way, we can obtain physical quantities as series in powers
of α and ε.

At present, we do not know the physical meaning of the analysis presented here
in comparison with the Kerr geometry case. However, we hope that our analysis may
become important especially when we consider the early universe and also when we
wish to obtain deeper insight regarding the correspondence between quantum gravity
in anti-de Sitter space and conformal field theory defined on the boundary. 11), 12)
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