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1. Introduction 

Let V: R s ~ [0, ~ ]  be a measurable function. There are various ways to define the 
Schr6dinger semigroup {Sv(t):t > 0}, with absorbing potential V, on L~(RN). One 
can consider the appropriate quadratic form on L2(R N) (whose domain may not be 
dense) in the case p = 2, and then interpolate for other values of p (see [36], etc.). 
Alternatively, one can use the Feynman-Kac formula to define Sv (see [26]). Both 
these methods are applicable without constraints on the size of V, provided that 
one does not require Sv to be a Co-semigroup on LP(Rn). In fact, Sv is always 
a semigroup of operators, Sv is strongly continuous for t > 0, and there is a subset 
Zv of R N such that Sv defines a Co-semigroup on LP(Zv) and vanishes on 
LV(RU\Zv). Various authors (see [38, 45], and the references cited therein) have 
considered criteria on V which ensure that �89 - V is a densely-defined operator 
whose closure generates Sv, or, more generally, that Sv is a Co-semigrou p on 
LP(RN). Removing such constraints permits Dirichlet semigroups (the semigroups 
on L~(f2) generated by (half) the Laplacian on an open subset f2 of R N with 
Dirichlet boundary conditions) to be brought within the ambit of Schr6dinger 
semigroups. Indeed, if f2 is of class C 1, and V = ~ on RN\ f2, V = 0 on f2, then Sv is 
the Dirichlet semigroup. 

A method commonly used to analyse Schr6dinger semigroups is to approxi- 
mate V by an increasing sequence of bounded functions and then to take a limit of 
the corresponding semigroups. Voigt [45, 46] has carried out this procedure in the 
abstract setting of positive semigroups on LP(X). In this paper, we perform the 
construction for arbitrary V > 0. Apart from the increased generality, this provides 
information about Dirichlet semigroups, even in the case when f2 is not smooth 
provided that a second limiting procedure, in the opposite direction, is carried out. 
This method can also be applied to arbitrary absorbing potentials for Markov 
processes (as in [15]) and strongly elliptic operators on R N (as in [14]). In 
particular, we study holomorphy of the semigroups, obtaining an abstract theorem 
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(Theorem 6.1), which can be applied to diffusion semigroups. Kato [22] showed 
that the Schr6dinger semigroup Sv is holomorphic on LI(R N) whenever Ve 
L~oc(RN)+; we extend this to absorption-diffusion semigroups with arbitrary 
non-negative potentials. 

Let A be a strongly elliptic operator of second order (with some smoothness of 
coefficients) with Dirichlet boundary conditions on an open subset f2 of R N. It is 
easy to establish that the associated semigroup on LP(f2) is holomorphic, for 
1 < p < oo ; the original method (see [29, Sect. 7.3]) depends on some estimates 
due to Agmon and involves some restrictions on I2, but, for arbitrary f2, one may 
use quadratic forms for p = 2 and the Stein interpolation theorem for 1 < p < oo. 
However, the situation is more delicate for the semigroups on Lt(f2) and Co(Q). 
For f2 sufficiently smooth, Stewart [39] showed that the semigroup on Co(Q) is 
holomorphic (he extended this to other boundary conditions in [40]). Using 
duality arguments, Amann [4] deduced the corresponding result on LI(f2) for 
f2 smooth and bounded (the proof given in [29] is incomplete). Our method 
extends the result for L 1 (f2) to arbitrary open sets f2, but it is confined to Dirichlet 
boundary conditions. This is analogous to a result of Lumer and Paquet [24] who 
showed that if the Laplacian generates a semigroup on C0(Q), then the semigroup 
is holomorphic. 

The paper is organised broadly in decreasing order of generality. In Sect. 2, we 
consider pseudo-resolvents R(2) and convergence of 2R(2) as 2 --* oo; subsequently, 
we shall consider only pseudo-resolvents associated with degenerate semigroups, 
which are introduced in Sect. 3. From Sect. 4 onwards, we specialise to the case of 
degenerate semigroups on LP(X) arising from perturbing a positive Co-semigroup 
T by a non-negative potential V (absorption semigroups). In Sect. 5, we specialise 
further to the case when V takes only the values 0 and ~ (barred semigroups). In 
Sect. 6, we establish the results on holomorphic absorption semigroups on LI(X), 
and in Sect. 7, we reconcile our theory with quadratic forms on Lz(x). Finally, in 
Sect. 8, we extend the results of [5, 6, 9] on asymptotic stability to semigroups 
generated by elliptic operators with Dirichlet boundary conditions and absorbing 
potentials. The discussion of Schr6dinger semigroups (respectively, Dirichlet 
sernigroups), and their generalisations to diffusion semigroups, is found in Sects. 4, 
6, 7, and 8 (resp., Sects. 5, 6, 7, and 8), as special cases of the general theory. The 
reader who is interested only in these cases may therefore omit some of the earlier 
sections. 

We mention here some conventions of terminology and notation which we 
shall adopt. The space of all bounded linear operators on a Banach space E will be 
denoted by M(E), and will be considered to have the strong operator topology 
unless otherwise stated. Thus T, ~ T means that II T , f -  Tf II ~ 0 for each f in E. 
Integrals of ~(E)-valued functions will be strongly convergent Bochner integrals. 
For a (densely-defined) operator A on E, R(2, A) will denote the resolvent of 
A:R(2, A)=  ( 2 1 -  A)-~(2ep(A)). When E is a Banach lattice, we shall regard 
~(E)  as being ordered by the cone of positive operators; T, T T will mean that 
T,f < T,+ l f  (n > 1 , feE+)  and II T,f  - Tf l[ ~ 0 (feE). When (X,/~) is a measure 
space, and Y is a measurable subset of X, we shall identify LP(Y) with 
{f~LP(X):f(x) = 0 for almost all x e X \  Y}. If V:X ~ [0, ~ ]  is a measurable 
function, we shall also use the symbol V for the multiplication operator 
D(V)~LP(X), where D(V)= {feLP(X):VfsLP(X)}. We shall denote the con- 
stant function with value 1 by 1, and the indicator function of Yby l r .  Thus, l r  will 
also denote the natural projection of LP(X) onto LP(Y). 
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2 Pseudo-resolvents 

A pseudo-resolvent on a Banach space E is a family (R(2))z~v (where U is as subset 
of C) of bounded linear operators on X, satisfying the resolvent equation: 

R(2) -- R(#) = (it - ).)R(2)R(t0 (2, t te U).  (2.1) 

Let 

K = { f e E : R ( 2 ) f =  0}, 

D = R(2)E = { R ( 2 ) f : f e E } .  

It is easy to verify from (2.1) that K and D are independent of 2. Moreover, R(2) is 
the resolvent of a densely-defined operator on E if and only if K = {0} and D is 
dense in X [29, p. 36]. 

We shall consider pseudo-resolvents (R(2))a>~ defined for 2 > co for some real 
co, and satisfying the condition: sup~>o~ el 2R(2)I1 < ~ .  A simple example is ob- 
tained by taking R(2)=  2-1P, where P is any bounded projection on E. The 
methods of the following proposition are rather standard [23, p. 84], [47, 
Sect. VII1.4], so we omit the proof. 

Proposition 2.1 Let (R().))~>~ be a pseudo-resolvent on E. 
(1) I f  sup~>,oll2R(2)]l < oo, then Kc~D = {0}. 
(2) Suppose that, for each f in E, {2R(2)f:2 > co} is relatively weakly compact. 

Then 
(a) P := limz~_oo 2R(2) exists (in the strong operator topology); 
(b) E = K @ D, and P is the  projection of E onto b with kernel K; 
(c) R(2)ID is a resolvent on D with range D. 

Corollary 2.2. Let (R(2))a>,o be a pseudo-resolvent on a reflexive Banach space such 
that sup~>,~ ]r 2R(2)]1 < oo. Then the conclusions of  Proposition 2.1(2) hold. 

Corollary 2.3. Let E be a Banach lattice with order-continuous norm, A be a closed 
operator on E such that ((9, oo) c p(A) and 2R(2, A) ~ I as 2 ~ oo, and (R(2))z>o, 
be a pseudo-resolvent on E such that 0 < R(2) < R(2, A) for all 2 > co. Then the 
conclusions of Proposition 2.1(2) hold. Moreover, P is a band projection. 

Proof. Let f e E + .  Then 0 < 2 R ( 2 ) f <  2R(2, A ) f  Moreover, {2R(2, A)f:  2 > co} 
is relatively (norm) compact, so {2R(2)f:2 > co} is relatively weakly compact 
[2, Theorem 13.8]. Hence {2R(2)f:2 > co} is relatively weakly compact for 
all f in E, so the hypothesis of Proposition 2.1(2) is satisfied. Moreover, 
0 < P = l i m ~ 2 R  ( 2 ) < l i m ~ 2 R ( 2 ,  A ) = I ,  so P is a band projection 
[2, Theorem 3.10]. [] 

Remark. Let E = LP(X) for some a-finite measure space (X, tt), 1 <  p < oo. If 
P is any positive bounded projection on E, and R(2) = 2-1P, then D = D = PE. 
Since any closed sublattice F of E is the range of a positive contractive projection 
[35, Chap. III, Theorem 11.4], F is the (closed) range space D of a positive 
pseudo-resolvent. However, it has been shown in [8] that if (R(2))~>~o is a 
positive resolvent on E, then b is a band, so b = LV(Y) for some measurable subset 
Y o f X .  
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3 Degenerate semigroups 

Let E be a Banach space. Fo r  the purposes of this paper, we shall use the term 
semigroup to mean a strongly continuous map T:(0, ~ ) ~ ( E ) ,  such that  
T(s + t) = T(s)T(t). Further ,  we shall say that T is continuous if T(0):= lim, +o T(t) 
exists (in the strong opera tor  topology). 

F o r  any semigroup T, there are constants M and co such that II T(t)]] < M e  ~'t for 
all t > 1. If S o 1 II T(t)I] dt < ~ ,  then we can define R (2) = So e-4, T(t)dt(2  > 09). It is 
rout ine to verify that (R(2)h>~, is a pseudo-resolvent (see [4, Theorem 3.1]). 

N o w  suppose that  T is continuous.  Then T(0) is a bounded projection, and 
T(O)T(t) = T(t)T(O) = T(t) for all t > 0 [19, Theorem 10.5.5]. Thus E = Eo �9 E l ,  
where Eo = (I  - T(O))E, E1 = T(O)E, T]to = 0 and Tit ,  is a Co-semigroup. More-  
over, R(2) = R(2, A 1)T(O), where A 1 is the generator  of Ti t , ,  
sup~>o~+1112R(2)11 < o% and 2R(2) -~  T(0) as 2--* oo. 

The  following proposi t ion and its proof  are analogous to Proposi t ion 2.1 (see 
[34, Lemma 1], [23, Sect. 7.1, Theorem 1.11]). 

Proposition 3.1. Let T be a semigroup on E, and suppose that, for  each f in E, 
{T( t ) f :O < t < 1} is relatively weakly compact. Then T is continuous. 

Corollary 3.2. Let T be a semigroup on a reflexive space such that 
supo<t___51 II T(t)ll < oo. Then T is continuous. 

Corollary 3.3. Let T be a semigroup on a Banach lattice E with order-continuous 
norm, and suppose that there is a Co-semigroup S on E such that 0 < T(t) < S(t) 
(t > 0). Then T is continuous, and T(O) is a band projection. 

Proof  This follows from Proposi t ion 3.1 in the same way as Corol lary 2.3 followed 
from Proposi t ion 2.1. [] 

We have remarked above that any continuous semigroup provides a pseudo- 
resolvent, via the Laplace transform. For  converse results, one should assume the 
Hille-Yosida condition: 

sup{tl(2 - co)"R(2)" II :n > 1, 2 > co} < oo . (3.1) 

It was shown in [4, Theorem 6.2] that  if E has the Radon-Nikodym property,  
(R(2))x>,~ sastisfies (3.1), and R(2) = R(2, A) for some opera tor  A :D(A) ~ E (with 
D(A) not necessarily dense), then there is a semigroup T on E with 

e - O~t sup,> o II T(t)I[ < oo and R(2) = So e-4 '  T(t) dr. However,  T may not be con- 
t inuous [4, Example 6.4]. 

Proposition 3.4. Let (R(2))~> o, be a pseudo-resolvent on E satisfyin9 the Hille- Yosida 
condition (3.1), and suppose that either 

(1) E is reflexive, 
o r  

(2) E is a Banach lattice with order-continuous norm, and there is a closed 
operator A on E such that (o9', oo) ~ p(A) for  some co' > co, 0 < R(2) < R(2, A) 
(2 > co'), and 2R(2, A) ~ 1 as 2 --* oo. 
Then there is a continuous semigroup T on E such that supt > 0 e-~,t I] T(t)II < oo and 

R(2) = So e-X'T(t)  at (2 > co). 

Proof  By Corol lary 2.2 or 2.3, 2R(2)--* P as 2--* ~ ,  where P is a bounded 
projection, R(2)P  = R(2), and R(2) l t l  is a resolvent on E~:= PE. By the 
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Hille-Yosida-Phill ips Theorem,  there is a Co-semigroup Ta on E~ such that  
R(i01E, = ~o e-at Tl(t)dt and supt>o e-~'*l I Tl(t)l[ < ~ .  Define T( t ) f=  TI(t)Pf(f~E).  
Then T has the required properties. [] 

4 Absorption semigroups 

F r o m  now on, our  Banach  space E will be Lv(X) for some a-finite measure  space 
(X, /0  and some 1 < p < ~ ,  T = { T(t):t > 0} will be a given positive Co-semi- 
group on Lv(X), A will be  the generator  of  T, and ~o will be the type (growth bound)  
of T: co = limt_. 0o t -  1 log II T(t)11. Occasionally,  we may  write e tA for T(t). 

Let V:X ~ [0, ~ ]  be a measurable  function. O u r  objective is to associate 
a semigroup Tv, known as an absorption semigroup [45, 46], with T and V, in such 
a way that  Tv can loosely be regarded as being "generated" by A -- V. Fo r  V in 
L~(X) ,  there is no prob lem about  this, as A - V is defined as an opera to r  with 
D(A - V) = D(A), and it generates a Co-semigroup Tv on Lv(X), by the theory of 
bounded  perturbat ions.  We shall obtain our  (degenerate) semigroups by approxi-  
mat ing V pointwise by an increasing sequence (V,) in L ~ (X), and taking the limit, 
as n ~ Go, of the Co-semigroups generated by A - V,. Thus our  strategy is similar 
to [45, 46], but the context  differs in that  we consider only non-negat ive potentials  
V, we make  no constraints  on the size of V, and we do not expect our  limiting 
semigroup to be a Co-semigroup on Lv(X). 

L e m m a  4.1. Let (V,), (if'n) be two sequences in L~ such that V, ~ V, V. T V a.e. as 

n ~ ~ .  For 2 > ~o, l i m , ~ R ( 2 ,  A -  V,) and l i m , ~ R ( 2 ,  A -  if',) exist and are 
equal. Moreover, for t > 0, l i m , ~  Tv,(t) and l i m , ~  Te.(t) exist and are equal. 

Proof The Trot te r  p roduc t  formula  Tv~ limr~(T(t/r)e-tV"/r)" shows that  
Tv,(t) > O. Since A - Vn = (A - V.+ 1) + (V,+ 1 - V,), the Trot te r  product  formula  
also shows that  T(t) > Tv,(t) > Tv.+,(t) >= O, and hence R(2, A) > R()~, A - V,,) >__ 

R(2,  A - -  V , + I ) > 0  (2>o5) .  By the mono tone  convergence theorem, 
l i m , ~ R ( 2 ,  A -  V,) and  lim,~o~Tv.(t) exist. Similarly, l i m , ~ R ( ) , ,  A -  V.) and 
l i m , ~  Tr exist. 

For  any fixed m, II V, A l?m IL < It l?m I[ for all n, and V, /x l?m T 17m pointwise a.e. 
and hence as opera tors  on LP(X) as n ~ ~ .  Fo r  large 2, 

R(2, A - (V, /x Vm)) = R(~, A) ~ ( -  (V. /x 17re)R(2 , A)) ' --* R(),, A - ITm) 
r = 0  

as n - - * ~ ,  and  Tv.^r162 by the T r o t t e r - K a t o  Theorem.  But 

R(,~, A - V,) =< R(2, A - (V, /x 17m)), Tv.(t) < Tv. ^ ~7(t), so 

lira R(2, A - V,) --< R(2, A - 17m), lim Tv,(t) < Tr 
n---~ oo n --* ct3 

Lett ing m ~ 0o and then interchanging V. and 17., the result follows. [] 

N o w  define 

Tv(t) = lim Try(t) (t > 0) ,  
n ~  oo 

R ( ) , , A -  V ) =  lim R(2, A - -  V.) ( 2 > ~ o ) ,  
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where (V,) is any increasing sequence in L~(X)+ such that V, ]" V. Lemma 4.1 
shows that these definitions are independent of the choice of sequence (V,), and it is 
easily checked that 0 < Tv(t) <= T(t) and Tv(s + t) = Tv(s)Tv(t) (s, t > 0). Since 
Tv is strongly measurable, it is strongly continuous for t > 0 [19, Theorem 10.2.3], 
so Tv is a semigroup in our terminology. By Corollary 3.3, Tv is a continuous 
semigroup and Tv(O) is a band projection, so there is a measurable subset Xv of 
X such that Tv(O) = lxv. Writing X~- = X \ X v ,  TvlLp~X;) = O, TvILp(xv)  is a Co- 
semigroup on LV(Xv), and R(2, A - V ) f =  R(2, A v ) l x v f  where Av is the gener- 
ator of this Co-semigroup. We could alternatively use Corollary 2.3 and the results 
of [11] to derive these properties of Tv. The generator Av is the graph limit of 
(A - V,) in the following sense [11]: 

D(Av) = { f ~  LP(Xv)" there exist (f,) in D(A), g in LP(Xv) 

such that 11 f ,  - f  Xlp --* O, I1Af~ - V,f, - g lip ~ O} , 

A v f  = 9. 

It follows from the construction that if V = lPa.e., then Tv = Tr and if V < l?(a.e.), 
then Tv > Tr The monotone convergence theorem shows that 

R(2, A -  V)=  lim R(2, A -  V,)= lira ~ e-~tTv~ 
n- -Coo  ?l ~ ao 0 

= ~ e-XtTv(t)dt (2 > co). 
0 

The Dominated Convergence Theorem shows that 

lim R(2, A - V,) = ~ e-~tTv(t)dt = R(2, Av)lxv (4.1) 
n-*oO 0 

whenever Re 2 > co. 
The reader should be warned that R(2, A - V) is not necessarily the resolvent 

of an operator A - V. Moreover, the set Xv  is determined only up to null sets. 
Thus an inequality of the form Tv(O) < l r  (where Y is a measurable subset of X) 
means that X v \  Y is null, or equivalently, LV(Xv) ~_ LP(Y). 

Proposition 4.2. Let V, : X ~ [0, oo] be measurable functions such that V, T v a.e. 
as n ~ oo. Then Tv.(t) ~ Tv(t) (t > O) and R(2, A - V,) ~ R(2, A - V)(2 > co) as 
n --4, oo.  

Proof Let f~LP(X)+. Since (Tv.(t)f) is a decreasing sequence in LP(X)+, it 
converges in norm to its pointwise infimum, and 

lim Tv.(t)f = inf inf Tv. ^ k l ( t ) f  = inf inf Tv, ^ kl( t ) f  = inf Tv ^ k~(t)f = Tv(t)f  , 
n ~  oo n k k n k 

where Lemma 4.1 is used for the third equality. The other equality is similar. D 

I f F  is a subspace of LP(X), the disjoint complement F • o f F  is Lv(Y) where Yis 
the largest (up to null sets) measurable subset of X such that each f in F vanishes 
a.e. in Y. Similarly, F I-L, the band generated by F, is Lv(Y) where Y is the smallest 
measurable subset such that each f in F vanishes a.e. in yc. The following simple 
result extends [45, Proposition 2.9]. 
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Proposition 4.3. For any f in D(A)r~D(V), f =  Tv (O) f eD(Av)c  LP(Xv) and 
A v f =  Tv(O)Af-- Vf  Hence (D(A) ~ D(V)) •177 ~_ LP(Xv) = Tv(O)LP(X). I f  
(D(A) c~ D(V)) • = {0}, then Tv is a Co-semigroup on LP(X). 

Proof Let 2 > co, g = (21 - (A - V ) ) f  Let (V,) be a sequence in L ~(X)  increasing 
to V. Then 0 = (2I  - A + V, j f +  ( V -  V , ) f  so 

R(2, A - V,)g = f +  R(2, A - V,)(V--  V , ) f .  

But I[R(2, A - V , ) [ I < I I R ( 2 ,  A)N and I [ ( V - V , ) f H ~ O  as n ~ ,  so 
f =  R(2, A - V)g = R(2, Av)Tv(O)gsD(Av) c LP(Xv). Since Tv(O) is a band  pro-  
jection, all the results follow. [] 

The converses of  Proposi t ion  4.3 do not  hold. In Example  7.2, we will show that  
it is possible that  D(A)~  O(V) = {0}, but Tv is a Co-semigroup. Nevertheless, the 
next proposi t ion  does establish an upper  bound  for Tv(O). 

Proposition 4.4. Let Wv = { x ~ X :  V(x) < ~} .  Then Tv(O) <= lw .  

Proof Let M = W~ = {x ~ X: V(x) = ~ } ,  and put 

{ 0  ( x e M )  
z(x) = (xe  We) 

Then V > :~, so Tv(O) < Tz(O). 
Take  2 > co. For  f in LP(X), 

R(2, A ) f  - R(2, A -- n l M ) f =  nR(2, A) 1MR(2, A - nlM) f . 

Thus, if g, = R(2, A)IMR(2,  A - n lM) f  then rig, ~ R(2, A ) f - -  R(2, A - z ) f  so 
g, ~ 0, and R(2, A)IMR(2,  A - z ) f =  0. Hence, IMR(2, A -- z ) f =  0. Since Tx(O ) is 
the projection of LP(X) onto the closure of the range of R(2, A - D, it follows that  
1MTv(0) < IMTz(0) = 0, SO the result is proved. [] 

Propos i t ion  4.4 establishes the inclusion: LP(Xv)= Tv(O)LP(X)~_ LP(EWv). 
This inclusion may  be strict (see Example  4.7), but equality does hold in the 
norm-cont inuous  case. (By saying that  T is norm-cont inuous ,  we mean  that  
t ~ T(t) is cont inuous in the opera tor  no rm on [0, co ).) 

Corollary 4.5. Suppose that T is norm-continuous. Then L ' (Xv )=LP(Wv) ,  
D(Av) = D(V) and A v f  = l w v A f  - Vf ( feD(V)) .  

Proof Since D(A) = LP(X) and D(V) = LP(Wv), this follows from Proposi t ions  4.3 
and 4.4. [] 

N o w  let V, 17: X ~ [0, ~ ]  be measurable  functions. We can use the construc-  
tion of this section to form the (degenerate) cont inuous  semigroup Tv, which is 
a C0-semigroup on LP(Xv) and vanishes on LP(X~v). We can then repeat  the 
construct ion to form the cont inuous semigroup (Tv)r which will be a Co-semi- 
group on par t  of  Lr(Xv) and vanish on LP(X~v). Similarly, we can construct  

{R(/~, Av - if1) o n L P ( X v ) } = ~ e _ ~ , ( T v ) r  ' 
R(2, (A - V ) -  I~):= 0 on LP(X~v) o 

where V1 = l~lx. 

Proposition 4.6. Let V, P': X ~ [0, ~ ]  be measurable functions. Then (Tv)f = 

Tv+r and R(2, (A - V) - P') = R(2, A - (V - 1~)) (4 > co). 
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Proof Firstly, suppose that 17e L~~ Let(V,) be a sequence in L~(X)  increasing 
to V. Choose 2o>CO such that ItVll IIR(20, A) l l : = q < l .  For 2 > 2 o ,  
II 171[ I] R(2, A -- V,)II < q, so 

R(2, A - (V, + 17)) = R(2, A - V,)(I - 17R(2, A -- V,)) -1 

= R(2, A - V,) ~ (17R(2, A -- V,))'. 
r = O  

This series is uniformly convergent in n, so, letting n ~ oo, 

R(2, A - ( V +  17)) = R(2, 

For f in LV(Xv), R(2, A - V ) f =  R(2, 

R(2, A -- (V + 17))f= 

A -  V) ~ (17R(2, A -  V)) r . 
r = 0  

Av)f, so 

R(2, Av) ~ (k'R(2, Av))rf  
r = O  

R(2, Av -- 17~)f= R(2, (A - V) - 17)f. 

V +  17))f< R(2, A - V ) f = O ,  and R(2, 
Thus, R(2, (A - V) - V) = R(2, A - 

(T(t)f)(x) = f ( x  + t).  

For V in L| the perturbed semigroup is given by: 

(Tv(t)f)(x) = exp -- V(s) ds f ( x  + t). 
x 

It follows, on taking a limit, that this formula holds for arbitrary V > 0. Thus 

Xv = x e R "  S V(s) ds < oo for s o m e 6 > 0  . 
x 

It is not difficult to give a direct proof that V(x) < oo for almost all x in Xv, thus 
verifying Proposition 4.4. 

For f in Lv(X~)+,  0__<R(2, A - (  
(A - V ) -  V ) f =  O, by definition. 

( V +  17)) whenever 17eL~176 This holds for 2 > 20, and hence for 2 > co by 
analytic continuation. 

Now, consider a general 17, and let (17,) be asequence in L~176 increasing to 17. 
Then R(2, A - - ( V +  V,)) [ R(2, A - - ( V +  V)) by Proposition 4.2, and 
R(2, (A - V) - V,) ,~ R(2, (A -- V) - V), from the definition. Hence 

R(2, A - (V + I7)) = lira R(2, A - (V + 17,)) 
n--* co 

= lim R(2, ( A -  V ) -  17,)= R(2, ( A -  V ) -  17). 

The fact that (Tv)r = Tv+r follows from uniqueness of Laplace transforms (or 
directly by taking suitable limits in the Dyson-Phylips formula). [] 

Example 4.7. Let X = R (with Lebesgue measure), and T be the translation 
semigroup: 
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Let V: R ~ [0, oo) be any measurable function with finite values which is not 
integrable over any open interval in R. (For example, let {q,:n > 1} be an 
enumeration of Q, choose 6, > 0, c, > 0 such that ~ , ~ 1  6, < ~ ,  c,6, ~ oo as 

n ~ o% and let 1, = (q, - 6,, q, + 6,), V = ~ ,~1  c, 1,,; since lim s u p , ~  I ,  is nul, 
V(x) < m a.e.) Then Tv = 0, and Xv is empty. This shows that the inclusion in 
Proposition 4.4 may be strict. 

Example 4.8 (Feller semigroups). Let X be a second countable, locally compact, 
Hausdorff space, and # be a stictly positive Radon measure on X. Recall that 
a Feller semigroup is a positive, contractive, Co-semigroup T on Co(X). For any 
Feller semigroup T, there is a strong Markov process Z = {Z(t):t  > 0} with 
right-continuous paths in X such that 

(T(t)f) (x) = E ~ [f(Z(t))] (4.2) 

[16, Chap. 4], [44, Chap. 2], [15, Sect. 2]. Here, E x denotes expectation with 
respect to the probability measure W corresponding to the process starting at x. 
We shall assume that T interpolates to give Co-semigroups on each 
LP(X)(1 < p < ~); this is automatic in the symmetric case [15, Proposition 2.5]. 
These semigroups will also be denoted by T; (4.2) remains valid for f in 
LP(X). 

For V in L ~176 (RN), the perturbed semigroup Tv is given by the Feynman-Kac 
formula: 

(Tv(t)f)(x) = E X [ e x p ( -  i V(Z(s))ds)f(Z(t)) 1 �9 (4.3) 

It follows, on taking a limit, that the Feynman-Kac formula is valid for arbitrary 
V > 0. With the aid of Blumenthal's Zero-One Law, it is easily seen that 

o f~176 '} 
(see [26]). Thus Proposition 4.4 expresses the fact that V(x) < oo for almost all 
points x such that to V(Z(s))ds < oo for small t if the process starts at x. 

In the case when X = R N (with Lebesgue measure), and T is the Gaussian 
semigroup: (T(t)f)(x)=(f*pt)(x), where p, denotes the Gaussian kernel: 
pt(x) = (2~zt)-~/Ze -1~12/2t, then Z is N-dimensional Brownian motion, and the 
generator A is given by: A = �89 where Ap is the Laplacian o n  LP(R N) with 
appropriate domain. The Feynman-Kac formula (4.3) shows that it is consistent 
with the literature ([26, 36, 9, 45, 15] etc.) to call Tv a Schr6dinger semigroup when 
T is the Gaussian semigroup, and a generalized Schrddinger semigroup when T is 
a Feller semigroup. Readers who prefer to define Schr6dinger semigroups via 
quadratic forms should turn to Sect. 7. 

Example 4.9 (Elliptic operators). Let X = R N and/~ be Lebesgue measure. Con- 
sider a real strongly elliptic operator 

N N 

A = ~ a,,jDiDj + ~ biDi + c,  (4.4) 
i , j = l  i = 1  
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o r  

N N 

A = ~ Di(a,jD~) + ~ b'zDi + c,  (4.5) 
i , j = l  i = 1  

Here, Di is the partial derivative: Dif= ~ ,  the coefficients a~j, b~, b~, c are real 

functions in L~(RU), and there is a constant 7 > 0 such that 

N N 

a,j(x)~i~j > ~ ~ ~ (x~R N, ~,~R).  (4.6) 
i , j = l  i = 1  

Without essential loss of generality, we assume that aij -~- aft. If the coefficients 
aij are Lipschitz continuous, then (4.4) and (4.5) are equivalent, but if a~j are not 
differentiable, then (4.5) has only a formal sense. Nevertheless, there is a quadratic 
form ao associated with A: 

D(ao) = WI'2(RN) , 

N N 

ao(f) = ~, ~a~j(D,f)(Djf) - ~ ~b'~(D~f)f- J 'cl/I  2 . 
i , j = l  i = l  

The (non-symmetric) Beurling-Deny criteria [25, 28, Sect. 4] can be applied to 
show that there is a positive semigroup T on LZ(R u) which interpolates to provide 
positive semigroups on each LP(R u) for 2 < p < ~ .  If the coefficients b'i are 
Lipschitz continuous, then duality arguments show that T also interpolates to 
LP(R N) for 1 < p < 2. This also occurs if a#~ W3'~(R N) and b~, c~L~(R u) [33, 
Chap. V, Theorem 2.7]. We shall write Ap for the generator of T on LP(R u) 
whenever this exists. If a~j~ W3'~~ then Ap is the closure of the operator 
A defined by (4.4) with D (A) = C~ (R N) [33, Chap. V, Theorem 2.7]. Further details 
of the quadratic form approach are given in Section 7, but here we relate this 
example to Example 4.8. 

In many cases, A is associated with a diffusion process Z, a strong Markov 
process with continuous paths, and T is given by (4.2). This occurs in the 
symmetric case if c < 0, or, more generally if each b~ is Lipschitz continuous 
and c is sufficiently negative, as ao is a regular Dirichlet form with the 
local property [17, 25]. Then the discussion of Example 4.8 is applicable, and Tv 
is given by (4.3), even though T may not define a Feller semigroup on C0(RN). 
Sufficient conditions on the coefficients for this last property are given in [16, 
Theorem 1.6, p. 370; 15, Example 2.12], etc. We shall call T the diffusion 
semigroup associated with A, and Tv an absorption-diffusion semigroup. By exten- 
sion, we shall also use this terminology in all cases when T defines a semigroup on 
LP(RU). 

When A = �89 then T is the Gaussian semigroup, and Tv is the Schr6dinger 
semigroup as in Example 4.8. 

Remark. Example 4.9, and the forthcoming discussion of elliptic operators in 
Example 5.6, Proposition 5.7, Theorem 6.2, and Section 7, can be extended to the 
case when X is a second countable, connected, Lie group,/~ is left Haar measure, 
and Di is the left regular representation of some chosen basis of the Lie algebra. The 
necessary semigroup properties are given in [7, 33]. 
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5 Barred semigroups 

As in Sect. 4, we take as given a positive Co-semigroup T o n  LP{X)(1 <= p < o0) 
with generator A. Let Y be a measurable subset of X, yc = X \  Y, and 

{ ~  (xe yc) 
ZYc(X) = 0 (x~ Y) . 

When V = )(to, we shall write Tr, At, and Y*, instead of Tv, Av, and Xv, respec- 
tively. We shall call Tr a barred semigroup, as the potential Zro represents a form of 
barrier to the semigroup (see Examples 5.4 and 5.5). 

By construction and Proposition 4.4, 0 < Ty(t) < T(t), Y * \ Y  is null, and Ty(t) 
maps LP(X) into LP(Y) and vanishes on LP(YC). If (D(A)c~ LP(Y)) ~ = LP(Y~), then 
1y, = Tr(0) = l r ,  by Proposition 4.3. 

Proposition 5.1. With respect to the ordering of operators on LP(X), Tr is the largest 
semigroup S such that (a) 0 < S(t) < T(t) and (b) S(t) maps LP(X) into LP(Y) (t > 0). 

Proof Let S be any semigroup such that 0 < S(t) < T(t) and S(t) maps LP(X) into 
LP(Y). For f in LP(X)+, n > 1, 

0 < S( t ) f=  lrS(t)f<= 1yT( t ) f< e -'"~'~ T(t) f .  

Thus 

S (t) f = S (t/m) m f <_ (e-"/m)" 1 r e T(t/m))mf. 

Letting m ~ 0% the Trotter product formula gives: S(t)f<= T,1yo(t)f, and letting 
n ~ ~ ,  we obtain S(t)f<= Tr( t ) f  [] 

A variant of Proposition 5.1 is that Tr is the largest semigroup S such that (a) 
0 < S(t) < T(t) and (b) S(t)]Lp(ro) = 0 (t > 0). It follows from Proposition 5.1, or its 
variant, that TrlLp(r ) is the largest semigroup S on Lv(Y) such that 
0 <= S(t)f<= r ( t ) f  (t > O,f~LP(Y)+). 

In the present context, Proposition 4.3 and Corollary 4.5 can be interpreted in 
the following way. 

Proposition 5.2. Let f e D ( A ) ~  LP(Y). Then f~D(Ar)  ~- LP(Y*), and A r f  = Iy, A f 
I f  T is norm-continuous, then Tr(O)= 1r, TyIL~ty) is norm-continuous, and 
At f =  1 r A f  for all f in LP(r). 

The multiplication operator e-tz'~ can naturally be interpreted as the projection 
Ir  of Yv(X) onto LP(Y). Thus the following result is a Trotter  product formula for 
the perturbation - Zro of A. We do not know whether the corresponding formula 
holds for arbitrary absorptions V. However, if p = 2 and A is negative-definite and 
self-adjoint, then the formula does hold. This will follow from Proposition 7.1 and 
Kato's Theorem [13, Theorem 4.36; 21]. 

Theorem 5.3. For any measurable subset Y of X, 

Tr(t) f= lim (1r T(t/n))"f = lim (r(t /n)lr)"f(t  > O, f e  LP(X)). 
. - - + a t )  n ~ oo 

Proof We may suppose that f_>_ 0. Let e > 0. There exists k such that I[ Tr(t)f 
- Tk(t)f[t < e, where Tk = Tkl,o. By the Trotter product formula for bounded 
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t 

perturbations, there exists N such that [[ (e-~k~Y~ Tk(t)fll < e whenever 
n > N. Since Tr(t) < l rT( t )  for all t, 

0<= l r T  f - -  Tr(t)f<= e -~k l~T  f - -  Tr(t)f .  

Hence 

l r T  f -  Tr( t ) f  < e-~k~'~ -- T~(t)f + II Tk(t)f-- Z~(t)fll 

< 2e 

whenever n > N. This establishes one equality, and the other can be proved 
similarly. [] 

Example 5.4. Let X = R and Tbe  the translation semigroup of Example 4.7. Then 

Y* = { x ~ R : ( x , x  + 6 ) \Y i s  null for some 6 > 0} , 

(Tr(t)f(x)= ~ f (x  + t) i f ( x , x  + t ) \ Y  is n u l l ,  

to otherwise . 

If Y = R \ U , I , ,  where I ,  is as in Example 4.7, then yc has finite measure, but 
Tr = 0, Y* is empty. 

Example 5.5. Let T be a Feller semigroup as in Example 4.8. Then 

Y* = { x ~ X : P  c [there exists t > 0 such that Z(s)~ Yfor almost all s < t] = 1}. 

In the context of Brownian motion on R N, this set Y* arises in the Kac approach to 
potential theory [12, 42, 18]. Our notation agrees with [18], but conflicts with [42]. 
In the language of [42], Y* is the set of points which are strongly exterior irregular 
for yc. Proposition 4.4 includes the semigroup proof [18] that Y * \ Y  is null (see 
also [12, Theorem 9.3, Corollary 9.6; 42, p. 833; 9, Proposition 5.1]). The semigroup 
Tr is given by: 

(Tr(t) f )(x)  = E x [f(Z(t))  ltz~s)~ r for almost all s < t ] ]  �9 ( 5 . 1 )  

Now, take Yto be an open subset f2 of X. Then f2 c f2*, so LP(12) = LP(f2*), and 
Ta is a Co-semigroup on LP(12). Moreover, there is a related Co-semigroup T d on 
LP(I2), given by the formula: 

(T~(t) f )  (x) = E ~ [f(Z(t))  ltzts ) ~  for all s_< t]]" (5.2) 

It is clear from (5.1) and (5.2) that Td( t )< To(t) and Tn,(t)< To(t) and 
T~,(t) <= T~(t) if f2' ~ I2. (The first two of these statements also follow from 
Proposition 5.1) If each point of c~f2 is regular for f2~ in the sense of [10, Definition 
11.1], then f2* = f2. Following [42, 18], we shall say that f2 c is Kac-regular for Z if 
P~[Z(z~)~(2*] = 0 for all x in ~2, where z~ = inf{t > O:Z(t)~O~}. If f2 c is Kac- 
regular, then a straightforward application of the strong Markov property shows 
that T~ = Tn (see [18]). 

Now suppose that Z has continuous paths (for a sufficient condition, see [16, 
Proposition 2.9, p. 171]). Let (I2,) be an increasing sequence of open subsets of 
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~2 such that ~.  _ ~2 and O = U.Y2.. Then it is clear from (5.1), (5.2) and the 
continuity of paths that 

Td( t ) f=  sup T~.(t)f  (feLP((2)+, t > 0). (5.3) 
n 

Let Ad, v and Ae, v be the generators of T d and Ta respectively. It follows from the 
monotone convergence theorem that 

R(2, A~,p)f--- S e-X'T~(t) fdt  = lira S e-a'Ts~.(t)fdt = lira R(2, Ae..v)la.U, 
0 n ~  O n ~ o o  

(5.4) 

for 2 > 0 and for all f in LP(O)+ and hence for f in LP(Q). 
We have shown that T d is given by a double limiting procedure: 

T~(t) = lim lira Tkl.~(t ) . (5.5) 

This has also been established in [15, Theorem 4.3]. If V:~2-* [0, ~ ]  is measur- 
able, we can apply the construction of Sect. 4 to obtain the absorption semigroup 
T~.v = (T~)v; this is also given by a double limit: 

Ta~,v(t)f = (T~)v(t)f  = lim lim rv.~(t)f 
n - + c o  k ~ o o  

]. f+.6, 
where V,k(X) = k(xef2~), V,k(X) = V(x) ^ k (xeO, )  (see, [15, Theorem 4.4]). 

Example 5.6. Let A be an elliptic operator as in Example 4.9, T be the associated 
diffusion semigroup on L~(RN), and f~ be an open subset of R N. If each b} is 
Lipschitz continuous and c is sufficiently negative, then A is associated with 
a diffusion process Z with continuous paths, Te is defined by (5.1), and T~ by (5.2) 
or (5.5). Then T~ is the semigroup associated with the operator A with Dirichlet 
boundary conditions on Q (see [36, Theorem 21.1; 29, Sect. 7.3; 16, Theorem 1.4, p. 
368; 15, Sect. 4] and Sect. 7 of this paper). For arbitrary c in L+(RN), T~ may be 
defined by (5.5), or equivalently by letting S(t) = e-a~T(t) for a large constant 2, 
forming S~, and then putting T~(t) = eXtS~(t). For  arbitrary coefficients, T~ may 
be defined by (5.5). (Although it is not clear that this is independent of the choice of 
(~,), we shall see in Sect. 7 that this is so if each f2, is bounded.) We shall call 
T~ and Te the Dirichlet diffusion semigroup and the pseudo-Dirichlet diffusion 
semigroup associated with A on Q, and we shall again denote their generators on 

d respectively. When V: (2 ~ [0, oo] is measurable, we shall LP((2) by Ae, p and Ao, p 
call T~,v, given by (5.6), the Dirichlet absorption-diffusion semigroup associated 
with A and V on O. 

Suppose that A is given in the form (4.5) where a~j and b} are Lipschitz 
continuous on f2. Then the adjoint A* is defined as an elliptic operator on C~((2). 
Let A~,p . . . .  be the maximal operator on LP(O) associated with A, defined in the 
distributional sense: 

D(Aa, p . . . .  ) = {feLP(O):there exists 9 in LP(Y2) such that 

(a*q~, f )  = (qL 9) (q) E C~ ((2)) } , 

Aa, p . . . .  f =  g , 



440 W. Arendt and C.J.K. Batty 

where ( . ,  �9 > denotes the standard duality. 
If (2 is of class C 2, then each point of ~f2 is regular for ffc with respect to the 

diffusion process associated with A, so Tn = T d. If, in addition, f2 is bounded and 
the coefficients of A are sufficiently smooth, then 

O(A~,~) = w~ 'P(O)~  w~'P(~) (1 < p < ~ )  , 

D(Ao, 1) = Wol'~(f2) c~ D(An, p . . . .  ) ,  

A~,pf  = Ao, p . . . .  f ( f eD(A~,p ) ,  1 < p < ~ )  

1,-29, Sect. 7.3] (see also 1-43]). In the absence of any assumption on f2, we can 
d easily establish the following information about Ao,p and Aa, p. Recall that if 

a~je W 3' | then A v is the closure in LP(R N) of the operator A defined by (4.4) 
on C~(R N) [33, Chap. V, Theorem 2.7], so W2'P(R N) ~ D(A~). 

Proposition 5.7. Let A be a real strongly elliptic operator of order 2 on R N with 
coefficients alj in W3'~(RN), ble WL~(RN), ceL~(RN), and T be the associated 
semigroup on LP(RN). Let f2 be any open subset of R N. Then 

(1) D(A~,)c~ LP(f2) ~_ D(An, p) ~- D(An, p . . . .  ) ,  

(2) Wo2'p(f2) _ O(Aa~,p) ~ D(An,~ . . . .  ). 

Moreover, An, p and A~,p are the restrictions of An, p . . . .  to their respective domains. 

Proof (1) The first inclusion is given by Proposition 5.2. 
Let f eD(An ,  p), 2 > ~o, and g = 2 f -  A n , , f  Then f =  R(2, A , -  Zo~)g = 

l im,_~f , ,  where f ,  = R(2, Ap - n l~)geD(Ap) .  Hence 2f, - Apfn -4- nl~of, = g. 
Let q~ e Cc ~ (f2). Then 

Letting n ~ ~ ,  

2(~p,f,> - (A*cp, f ,> = (~0, g>.  

2Qp, f >  - <A*cp, f >  = < ~p, g ) .  

Thus f eD(An ,  p . . . .  ) and 

Ao, p . . . .  f =  = 2 f -  g = A~,pf.  

(2) Let (~.) be an increasing sequence of open sets such that ft. ___ Q, U ,  O, = ~" 
Let ~ > r 

Let feC~(f2) .  For  large n, s u p p f _  f2,. Let g = 2 f -  A f =  2 f -  An , ,p f  by (1). 
Hence f =  R(2, an,,p)g --* R(2, A~,p)g, by (5.4), so f =  R(2, A~,p)geD(A~,p) and 
A~,p f=  2 f -  g = A f  It follows on taking closures that W~'P(f2) _ D(A~,p). 

Now, let f e  D(A~,p), g 2 f -  d = An, p)g = lim,-~oof,, An, p f  By (5.4), f =  R(2, a 
where f ,  = R(2, An.,p) l~,g. Let ~oe C~(Y2). For  large n, (1) gives 

2(q~,f,> -- (A*q~,f,) = <q~, l n .g )  = (~o, g) = 2(q~ , f )  -- (~p ,A~ ,p f ) .  

Letting n ~ ~ ,  it follows that f r  D(An,~, . . . .  ) and An. p . . . .  f = A~,pf [] 

Remark. It should be noted that the results of this section are valid in a more 
general framework. Let E be a Banach lattice with order-continuous norm, T be 
a positive Co-semigroup on D with generator A, and P be a band projection on E. 
We can define the degenerate semigroup Tp(t)= lim,~| e '~a-"r Then Te is 
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a continuous positive semigroup, Tp(0) is a band projection with Tp(0) < P, and 
Tp(t) = lim,_.| If T is norm-continuous then Te is also norm-continu- 
ous, and Te(t) = eteap. 

6 Holomorphic semigroups 

In this section, we suppose that p = 1, and that T is a positive, contractive, 
holomorphic, semigroup on L ~(X). We shall show that the absorption semigroup 
Tv associated with a measurable function V: X --. [0, ~ ]  is also holomorphic and 
we shall apply this to (pseudo) Dirichlet diffusion semigroups. 

Theorem 6.1. Suppose that T is a positive, contractive, holomorphic, semigroup on 
LI(X), and V:X ~ [0, oo] is measurable. Then TvlL,r is also holomorphic. 

Proof Since T is holomorphic, there are positive constants c, r such that 

< c_ (Re). > 0, I).1 > r) (6.1) IIR(L A)II = [).1 

where A is the generator of T [27, A-II, Theorem 1.14]. 
First, suppose that Vz L ~(X)+. We adapt the argument of [22]. Let fE D(A), 

Re ). > 0. Since T is contractive, A is dissipative, so 

<Re((sign f )Af ) ,  1> < O, 

where ( . , .  > denotes the duality between L~(X) and L~(X) [27, A-II.2]. Thus 

I1().I - Z + V)f l l  _-> < R e ( ( s i g n f ) ( ) . I  - A + V ) f ) ,  1> 

= <Re) . l f l  + Vl f l ,  1> - <Re( ( s ign f )A f ) ,  1> 

> (Re).)II f II + II Vf II 

>-- I[ VT II �9 

By (6.1), if Re). > 0 and I).1 > r, then 

I).111fll < c l l ( ) . l  - a ) f l l  _-< c ( l l ) . I  - Z + V ) f l l  + II V f l ] )  < 2 c l l ( ) . I  - a + V ) f l l ,  

SO 

2c 
IIR() . ,A-  V)g[I ~ i~ Ilgll (g~Ll(X) ,Re) .>O, 121>r). (6.2) 

Now, consider a general V > 0. We complete the argument with a variant of 
resolvent convergence for holomorphic semigroups (see [11]). Taking a sequence 
(V,) in L~~ increasing to V, applying (6.2) to V,, and taking the limit as n ~ oo, it 
follows from (4.1) that (6.2) is valid for all V >  0. Restricting to g in LI(Xv), it 
follows that 

2c 
][R(2, Av)]l < I-~ (Re). > 0, I).l > r). (6.3) 

Hence Av generates a holomorphic semigroup Tv [27, C-II, Theorem 1.14]. [] 

The fact that the right-hand side of(6.3) is independent of V implies that there is 
an angle ct > 0, independent of V, such that Tv generates a holomorphic semigroup 
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of angle (at least) e, with bounds independent of V. (This is easily seen by examining 
the proof  of [27, C-II, Theorem 1.14], but the maximal angle c~ will depend on V in 
general.) This fact will also be relevant to the discussion of the Dirichlet diffusion 
semigroups in the following result. For  V in LI~or Kato [22] proved that the 
Schr6dinger semigroup Sv is holomorphic on LI(RU). For f2 of class C 2, the 
Dirichlet diffusion semigroup T~ associated with a strongly elliptic operator is 
known to be holomorphic [3]. Our result removes these constraints on V and O. 

Theorem 6.2. Let A be a real strongly elliptic operator of order 2 on R N with 
alj~ W3'~(RN), big WI'~176 c~L~(RN), and T be the associated diffusion semi- 
group on LP(RN)(I < p < oo). For any potential V >  O, the asbsorption-diffusion 
semigroup Tv is holomorphic on LP(Xv). For any open subset f2 of R N, the pseudo- 
Dirichlet diffusion semigroup To and the Dirichlet diffusion semigrou p T~ are holo- 
morphic on LP(f2). 

Proof By adding a constant to A, we may assume that Tis contractive on LI(RN). 
Fo r  p = 2, the results are standard because in the symmetric case the semi- 

groups are associated with positive forms (see Section 7), and in the general case the 
first-order terms are a small perturbation [7, p. 385]. Alternatively, holomorphy 
may be derived from an appropriate sector condition for quadratic forms (see [1, 
11, 25]). Since the semigroups interpolate on the LP-spaces, it follows from the Stein 
Interpolation Theorem as in [31, Theorem X.55] that the semigroups are holomor- 
phic for 1 < p < oo. Alternatively, once holomorphy is established for p = 1, it 
follows for other p by duality and interpolation, if each bi is Lipschitz continuous. 

Consider the case p = 1. The diffusion semigroup T is holomorphic on L 1 (R N) 
[33, Chap. 5, Theorem 2.7]. It follows from Example 4.9 and Theorem 6.1 that Tv is 
holomorphic on L 1 (Xv). In particular, To is holomorphic. Moreover, (6.2) shows 
that 

2c 
IIR(2, A l - Z o ~ ) g l t < ~ -  I (gsLI(RN),12I>r,  R e 2 > O ) ,  (6.4) 

where c, r are constants independent of f2. Now, if we take f2 fixed, and (f2n) to be an 
increasing sequence of open sets with f2n ___ f2 and U,f2~ = f2, then it follows from 
(5.4) and (6.4) that, for g in L 1 (f2), 121 > r, and Re 2 > 0, 

2c 
IIR(2, Z~,l)glt = lim 118(2, ao~,l)gll = lim IIR(2, a~ - z~0gll < ~-~ Ilgll , 

n ~ o o  n - - ~  oo 

so the semigroup T~, generated by Ao, 1, is holomorphic. 

Corollary 6.3. Let S be the Gaussian semigroup on LP(RN)(1 < p < ~). For any 
potential V > O, the Schr6dinger semigroup Sv is holomorphic on LP(Xv). For any 
open subset f2 of R zv, the pseudo-Dirichlet semigroup So and the Dirichlet semigroup 
S~ are holomorphic on LP(RN). 

7 Quadratic forms 

Let A be an elliptic operator as in Example 4.9, and T be the associated diffusion 
semigroup. We saw that we could define the absorption-diffusion semigroup by the 
limiting procedure of Sect. 4, and we reconciled this with the Feynman-Kac 
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formula (4.3). In Example 5.6, we defined Dirichlet diffusion semigroups by a sec- 
ond limiting procedure, and we reconciled this with the formula (5.2). An accepted 
alternative method of defining absorption-diffusion semigroups and Dirichlet 
diffusion semigroups is to consider the appropriate quadratic form on LZ(R N) or 
L2((2) ,  verify that it satisfies the Beurling-Deny criteria, and deduce that it is 
associated with a positive semigroup which interpolates to each LP-space. In this 
section, we show that this method is consistent with the previous definitions. This 
will then complete proofs of Theorem 6.2 and other properties, which are com- 
pletely free of probabilistic considerations. Since both approaches to absorption- 
diffusion and Dirichlet diffusion semigroups provide interpolating semigroups, it 
suffices to establish consistency for p = 2, where we use the convergence theory of 
quadratic forms. For general absorption semigroups, the lack of a suitable theorem 
for convergence "from below" for non-symmetric forms confines us to the symmet- 
ric case. 

We show first that the absorption semigroups associated with a C0-semi- 
group arising from a quadratic form are themselves associated with quadratic 
forms. 

Suppose then that p -- 2. Let a be a closed non-negative form on LZ(X) with 

domain D(a), and let - A be the associated self-adjoint operator on D(a). We 
adopt the convention that a ( f )  = ~ for f in LZ(X)\D(a). Define linear operator 
on L2(X) by: 

J(2, a ) f - -  (2 A)-tPaf, Ua(t ) f=etApaf( f6L2(X) ,2>O,t>O),  

where Pa is the orthogonal projection of L2(X) onto D(a). These form a pseudo- 
resolvent and a continuous semigroup o n  L E ( X ) .  The Beurling-Deny criteria [32, 

Sect. XIII.12, Appendix 1] (applied to the restriction of a to D(a)) show that Ua _-> 0 
if and only if a ( l f l )  < a ( f )  for all f in L2(X); under these conditions, Ua inter- 
polates to form positive contraction semigroups on each LP(X) if and only if 
a ( f  A 1) < a ( f )  for all f in LZ(x)+.  

Now suppose that ao is a given closed non-negative form with dense domain in 
L2(X) such that Uao > 0. We shall write - A for the self-adjoint operator asso- 
ciated with ao, and T for the corresponding semigroup: T(t) = e ta = Uao( t  ). Let 
V:X--,  [0, oo] be measurable, and define a closed non-negative form by by: 
bv( f )=~V[ f [  2. Then av:=ao + b v  is a closed non-negative form with 
D(av)=  D(ao)c~D(bv)= {feD(ao):~V[f[2< oo}. We can therefore associate 
with V a pseudo-resolvent J(2, av) and a degenerate semigroup U,v. 

Proposition 7.1. In the notation above, U,v(t)= Tv(t) (t > O) and J(2, a v ) =  

R(2, A - V) (2 > 0). Hence LZ(Xv) = D(av). 

Proof Let (V,) be a sequence in L| increasing to V. Then U,,(t) = e '(A-v") 
= Tv,(t), by the theory of quadratic forms and bounded perturbations. Moreover, 

avl < av~ < . . . .  and av( f )  = lim,~| av.(f).  The result therefore follows from the 
theory of convergence of forms [13, Theorem 4.32; 30, Theorem S14, p. 373]. [] 

If a is a closed sectorial form and V = Znc for some measurable subset Y of X, 
then Proposition 7.1 remains valid. The application of the convergence theory of 
forms is replaced by a comparison of the Kato-Simon version of the Trotter 
product formula for sectorial forms [21, p. 194] with the version of the Trotter 
product formula given in Theorem 5.3 above. 
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Now suppose that A is a symmetric strongly elliptic operator on R N. Formally, 

N 

A = ~ Di(aijDj), 
i , j = l  

where aij are real functions in L ~~ (RN), aij = aji , and (4.6) holds. (We can ignore any 
term of order 0, as it forms a bounded perturbation.) The associated quadratic form 
ao is: 

N 

D(ao)= WI'2(RN), a o ( f ) =  ~ S aij(D,f)(Djf). (7.1) 
i , j  = 1 

Proposition 7.1 shows that our definition of absorption-diffusion semigroups in 
Example 4.9 is consistent with their definition by means of the quadratic form 
av for p = 2 and interpolation for other values of p. Moreover, 

Le(Xv) = WI '2 (R  N) ~ D(bv). 

In particular, if f2 is open and ~ V(x)dx < ~ ,  then L:(fe) _ LZ(Xv). This should 
be compared with Proposition 4.3, which shows that L2(Xv) ~_ Le(Wv). 

Example 7.2. Let N __> 2, and A = �89 Then there exists V: R N -* [0, ~ )  such that 
V is nowhere locally integrable, but Tv(O)= I [41]. In the case N = 2, 
D(Ae) = D(Ae) = W2'2(R N) -- C0(R2). Hence D(A2) ~ D(V) = {0}, but Tv is a Co- 
semigroup on Lg(R2). Thus the inclusion in Proposition 4.4 may be strict. 

Let f2 be an open subset of R to, A be a symmetric strongly elliptic operator, and 
V =  Zao. Proposition 7.1 shows that the pseudo-Dirichlet diffusion semigroup 
Tn on Le(ye) defined in Example 5.6 is associated with the form a~ where 
D(ae) = w~'e(RN)mLZ(O), a n ( f ) =  ao(f)(fe_D(aa)). Let (re,) be an increasing 
sequence of bounded open sets such that re, _~ ~, ~)ge, = re. The decreasing 
sequence of forms (ae,) has limit b: 

D(b) = U D(aa,) = WI'2(RN)(3 U L 2 ( Q n ) ,  b(f )  = ao(f )  ( f eD(b ) ) ,  
n n 

and the closure of b is the form a~ associated with A with Dirichlet boundary 
conditions: 

D(aa~) = Wol'e(o), aa~(f) = ao( f )  (fCD(a~)) 

(see [14, Theorem 2.1.6]). The convergence theory of forms (a routine extension of 
[30, Theorem S16, p. 373] to forms which are not densely-defined) shows that 
U~(t) = lim,.~o Tn,(t). Comparing this with (5.3) shows that our definition of the 
Di[ichlet diffusion semigroups T~ in Example 5.6 is consistent with the alternative 
definition by means of the form a~ for p = 2 and by interpolation for other values 
of p. Moreover, knowing (by interpolation) that (5.3) holds for all p is sufficient for 
the proof of Theorem 6.2, so we have completed a non-probabilistic proof of the 
holomorphy of absorption-diffusion semigroups and Dirichlet diffusion semi- 
groups defined on LP(r by means of symmetric forms. For Dirichlet diffusion 
semigroups, the argument may be extended to the non-symmetric case, using the 
remark following Proposition 7.1 and the theorem for convergence "from above" 
for sectorial forms (whose domains need not be dense) [20, Theorem 3.6, p. 455]). 

Note that if O ~ is Kac-regular, then T~ = T~, so a~ = an and w~'e(Ru)c~ 
Le(Ie) = W~'e(~2) (see [18, Theorem 2.1]). 
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8 Asymptotic stability 

N 
Let A = ~i , j= 1 Di(ai~Dj) be a symmetric strongly elliptic opera tor  on R N, and T be 

the corresponding diffusion semigroup on LP(RN), so that T is associated with the 
quadrat ic  form ao given by (7.1). Let  (2 be an open subset o f R  ~, V: (2 ~ [0, oo] be 
measurable, and d Te,  v = (Td)v  be the corresponding Dirichlet absorption-diffu- 
sion semigroup, associated with the form ae,e v.' 

1 , 2  . O O }  D(ad, v) = { f s  Wo (O).~ V i i i  2 < , 

a~ ,v ( f )  = ao ( f )  + ~ V l f [  z. 

We shall discuss the asymptotic behaviour  of T~, v, firstly whether it is exponenti-  
ally stable on LP(O), that is: II T d, e(t)I[ --' 0 as t --, ~ .  Since T, and hence T d is ~ , V ,  

ultracontractive, and its kernel Pt satisfies a Gaussian upper bound [14], an 
argument  of Simon [37] shows that this condit ion is independent  of p. Hence 

d T~. v is exponentially stable if and only if there is a constant c > 0 such that 

a~ .v ( f )  => c ~ Ifl  2 ( fE Wo1'2(~2)) . 

The strong ellipticity condition (4.6) implies that this condit ion on (2 is independent  
of A. In the case when A is the Laplacian and ~ = R N, exponential  stability was 
characterised in [5; 9, Sect. 4], and it is routine to modify the arguments for general 
O. We recall the following notions. 

Let f f  be the class of all Borel sets F in R N such that 

sup P~[B(s )~F  for all s __< t] = 1 , 
x ~ R  t~ 

where B is Brownian motion on R N. This condit ion is independent  of t(0 < t < ~ )  
[9, Proposi t ion 4.2]. An open set O' belongs to ~ if and only the Dirichlet 
semigroup S~, is not  exponentially stable on LP(Y2 ') (independent of p), or equiva- 
lently, Poincar6's inequality fails, that  is, 

inf{~[ Vf[2 : f~C?( f2 ' ) ,~ l f ]  2 = 1} = 0 .  

The methods of [5, 9] establish the following. Many  other variants of condit ion (2) 
may also be read off from [9]. 

N 
Theorem 8.1. Let  A = ~i , j=  1 Di(a~iDj) be a symmetric strongly elliptic opetator(on 
R N with bounded coefficients, f2 be an open subset of  R N, and V: Q ~ [0, ~ ]  be 
measurable. The following are equivalent: 

(1) T~, v is exponentially stable on LP(Y2); 
(2) ~F V(x)dx = ~ for all (closed) sets F in ~ contained in O. 

I f  VE L~o~(Q), then these conditions are equivalent to: 

(3) ]'~, V(x)dx  = oo for  all open sets g2' in ~- contained in O. 

Now let Z be a diffusion process associated with A, with cont inuous paths. 
Define classes ~-A and f fa  of Borel sets by: 

F~YA r SUp W [ Z ( s ) ~ F  for all s < t] = 1 , 
x ~ R  t~ 

F~ffa<:~  sup P~[Z( s )~F  for almost  all s =< t] = 1 . 
x ~ R  N 
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Similar considerations to those above show that 

F e ~'a <* TF is not exponentially stable on L ~ (F) 

~* TF is not exponentially stable on LZ(F) 

<~-inf{ao(f) : / e  WI'2(R N) n L2(F), S if]2 = 1} = 0 ,  

and that this last condition is independent of A. Since the kernel of T has Gaussian 
bounds, the argument of [9, Proposition 5.11 (see also Example 5.5) shows that 
F ~ A < ~ F  w N ~ A  for some null set N. Thus in Theorem 8.1, it is possible to 
replace ~ by O~A or ~A- 

NOW suppose that A is not symmetric, but is associated with a diffusion process 
Z with continuous paths. We also suppose that the coefficients are sufficiently 
smooth to ensure that the kernel satisfies Gaussian upper and lower bounds (see 
[33, Chap. V]). Quadratic form methods are no longer suitable;in particular, it is 
not clear that exponential stability is independent of p, nor that ~A is independent 
of A. Nevertheless, it is possible to follow the arguments of [9], replacing Brownian 
motion by Z, and explicit formulae for Pt by Gaussian bounds, to obtain the 
following. 

Theorem 8.2. Let  A be a real strongly elliptic operator on R N associated with 
a diffusion process, and with sufficiently smooth bounded coefficients. Let Q be an 
open subset o f  R N, and V: Q ~ [0, o 1  be measurable. The followin9 are equivalent: 

(1) T~,v  is exponentially stable on L*((2); 
(2) S~ V(x )dx  = ~ for  all (closed) sets F in ~A  contained in (2. 

I f  V e  L[oc((2), then these conditions are equivalent to: 
(3) ~ ,  V(x) dx  = oo for all open sets (2' in Y a  contained in •. 

If the adjoint operator A* is associated with a diffusion process, then exponen- 
tial stability of d Ta, v is characterised by conditions (2) and (3) of Theorem 8.2 with 
ffA replaced by "~A*" 

We can also consider the question of strong stability of T d, v on L I(Q), as in [6], 
[9, Sect. 3]. Although quadratic form methods are not applicable, there are 
technical complications concerning the Gaussian bounds in the non-symmetric 
case, so we confine our statement to the symmetric case. Let 6~A be the class of all 
Borel subsets of R N whose complements are transient for Z, so 

F~A<:~  SUp P x [ Z ( s ) e F  for all s _-> 01 = 1 . 
x ~ R  N 

For an open set ~2', 

~2' 6 gA ~r T a ' ( t ) f  -~ 0 a.e. (t -~ oo, i e  L ~ (f2')) 

~" I[ T~, ( t ) f  Ill -~ 0 (t -~ ~ , f e L l ( ( 2 ' ) ) ,  

where the last line depends on the symmetry of A. Following the method of [9, 
Sect. 31, using the Gaussian upper and lower bounds, we obtain the following. 

Theorem 8.3. Let  A N = ~i , j= 1 Di(a~iDj) be a symmetric strongly elliptic operator on 
R N with bounded coefficients, f2 be an open subset o f  R N, and V: f2-* [0, o ]  be 
measurable. 

(a) I f  N = 1 or 2 and V 4= 0 (on a set o f  positive measure), then 

II T~,v ( t ) f [ l l  -~ 0 (t ~ ~ , f e L l ( f 2 ) ) .  (8.1) 
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, . , . ~  V ( x )  
(b) I f  N > 3, then (8.1) holds if and only tj JF ~ dx =- oo for all (closed) sets 

v ( ~ )  . 
F in eA contained in s I f  V~Ldoc(O), then it suffices that ~ ~ ax = oo for all 

open sets F in ga contained in (2. 
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