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Abstract. Abstract Cesàro spaces are investigated from the optimal
domain and optimal range point of view. There is a big difference
between the cases on [0, ∞) and on [0, 1], as we can see in Theorem
1. Moreover, we present an improvement of Hardy’s inequality on [0, 1]
which plays an important role in these considerations.
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1. Introduction and Basic Definitions

For a Banach ideal space X on I = [0, 1] or I = [0,∞) let us consider, as in [6],
the abstract Cesàro space CX on I defined as CX = {f ∈ L0(I) : C|f | ∈ X}
with the norm given by

‖f‖CX = ‖C|f |‖X ,

where C is the Cesàro operator

Cf(x) =
1
x

∫ x

0

f(t) dt, x ∈ I.

One may look at these spaces, on one hand, as on generalization of the well-
known Cesàro spaces Cesp[0, 1] and Cesp[0,∞) which were investigated for
example in [1]. On the other hand, CX is the optimal domain of C for X
since, just by definition, C : CX → X is bounded and CX is the largest ideal
space satisfying this relation. Consequently, the abstract Cesàro spaces may
be considered also from the optimal domain point of view, as it was done in
[3,9–11]. In this paper we discuss the Cesàro function spaces on [0,∞) and
on [0, 1] from the point of view of optimal domain and optimal range of the
Cesàro operator C. Such concept was already considered for X = Lp(·) on
[0, 1] in [10,11] and for X = Lp(·) on R

n in [9], although the most interesting
situation of CX on [0, 1] was omitted there. We develop and complete the
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discussion under some minimal assumptions. In this more interesting case of
interval [0, 1] a very important role is played by the improvement of Hardy
inequality presented in Theorem 2.

We present some basic definitions to understand further description of
results. By L0 = L0(I) we denote the space of Lebesgue measurable func-
tions (in fact, respective equivalence classes with respect to equality almost
everywhere) on I = [0, 1] or I = [0,∞). A Banach space X ⊂ L0 is called a
Banach ideal space on I if g ∈ X, f ∈ L0(I), |f | ≤ |g| a.e. on I implies f ∈ X
and ||f || ≤ ||g||. We will also assume that suppX = I, i.e. there exists f ∈ X
with f(x) > 0 for each x ∈ I.

For a given Banach ideal space X on I and a function w ∈ L0(I) such
that w(x) > 0 a.e. on I, the weighted Banach ideal space X(w) is defined as
X(w) = {f ∈ L0(I) : fw ∈ X} with the norm

‖f‖X(w) = ‖fw‖X .

In the whole paper only two concrete weights on I = [0, 1] will appear, namely
v and 1/v where

v(x) = 1 − x. (1.1)

We will need also a non-increasing majorant f̃ of a given function f , which
is just

f̃(x) = ess supt∈I, t≥x |f(t)|, x ∈ I.

Moreover, for a given Banach ideal space X on I, we define a new
Banach ideal space X̃ = X̃(I) as X̃ = {f ∈ L0(I) : f̃ ∈ X} with the norm
given by

‖f‖
X̃

= ‖f̃‖X .

By a symmetric function space on I with the Lebesgue measure m (symmetric
space in short), we mean a Banach ideal space X = (X, ‖ · ‖X) with the
additional property that for any two equimeasurable functions f ∼ g, f, g ∈
L0(I) (that is, they have the same distribution functions df ≡ dg, where
df (λ) = m({x ∈ I : |f(x)| > λ}), λ ≥ 0) and f ∈ X we have g ∈ X
and ‖f‖X = ‖g‖X . In particular, ‖f‖X = ‖f∗‖X , where f∗(t) = inf{λ >
0: df (λ) < t}, t ≥ 0.

The dilation operators σa (a > 0) defined on L0(I) by

σaf(x) = f(x/a)χI(x/a) = f(x/a)χ[0, min(1, a)](x), x ∈ I,

are bounded in any symmetric space X on I and ‖σa‖X→X ≤ max(1, a) (see
[2, p. 148] and [5, pp. 96–98]). They are also bounded in some Banach ideal
spaces which are not necessarily symmetric spaces. Furthermore, recall that
the Cesàro operator C, the Copson operator C∗ and the Hardy–Littlewood
maximal operator M are defined, respectively, by

Cf(x) =
1
x

∫ x

0

f(t)dt, x ∈ I, C∗f(x) =
∫

I∩[x,∞)

f(t)
t

dt, x ∈ I,

Mf(x) = sup
a,b∈I,0≤a≤x≤b

1
b − a

∫ b

a

|f(t)|dt, x ∈ I.
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We refer the reader to [6], where basic facts about the spaces CX and
X̃ were presented with more details. For more references on Banach ideal
spaces and symmetric spaces we refer to [2,4,5,7,8].

2. Optimal Domain and Optimal Range

Let X and Y be two Banach ideal spaces on I and let T : X → Y be a
bounded linear or sublinear operator. A Banach ideal space Z on I is called
the optimal domain of T for Y within the class of Banach ideal spaces on I, if
T : Z → Y is bounded and for each Banach ideal space W on I, T : W → Y
is bounded implies that W ⊂ Z. The last implication may be formulated
equivalently as: if Z and W are Banach ideal spaces on I and if Z � W , then
T : W �→ Y . Of course in such a case X ⊂ W .

Similarly, we shall say that a Banach ideal space Z on I is the optimal
range of T for X within the class of Banach ideal spaces on I, if T : X →
Z is bounded and for each Banach ideal space W on I, T : X → W is
bounded implies that Z ⊂ W . Once again, the last condition may be replaced
by: W � Z implies T : X �→ W . Such optimal range satisfies of course
Z ⊂ Y .

The following theorem describes the optimal domain and optimal range
problem for Cesàro operator within the class of Banach ideal spaces on I.

Theorem 1. Let X be a Banach ideal space on I such that the maximal
operator M is bounded on X.

(i) If I = [0,∞), then C : CX → X̃ is bounded. Moreover, the space CX is
the optimal domain of C for X and for X̃ (also for CX if the dilation
operator σa is bounded on X for some 0 < a < 1). The space X̃ is the
optimal range of C for CX, X and X̃. In particular, CX = CX̃.

(ii) If I = [0, 1] and v is from (1.1), then C : CX → X̃(1/v)(v) is bounded.

The space CX is the optimal domain of C for X and also for X̃(1/v)(v).
Moreover, if the maximal operator M is bounded on X ′, then the space
X̃(1/v)(v) is the optimal range of C for CX and X(v) (cf. Diagram 2).

In particular, CX = C[X̃(1/v)(v)].
(iii) If I = [0, 1] and the dilation operator σ1/2 is bounded on X, then C :

CX̃ → X̃ is bounded. Moreover, the space CX̃ is the optimal domain
of C for X̃ and the space X̃ is the optimal range of C for CX̃, X and
X̃. One also has CX̃ = CX ∩ L1.

Before we prove the theorem, let us comment on the situation. Suppose
that the corresponding assumptions in Theorem 1 are satisfied. Of course,
boundedness of M on X implies also boundedness of C on X, therefore the
support of CX is for sure the same as support of X (cf. [6]). Let I = [0,∞).
Then the statement of (i) may be therefore pictured, putting the boundedness
of C and respective embeddings, on Diagram 1.
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Diagram 1. The case of I = [0,∞)

Diagram 2. The case of I = [0, 1]

Moreover, point (i) says that, in fact, CX is the optimal domain of C

for X̃, since CX = CX̃. Even more can be said when the dilation operator
σa is bounded on X for a certain 0 < a < 1. Then CX is the optimal domain
of C even for CX since, by Lemma 6 in [6], it follows that CCX = CX. On
the other hand, we will see that X̃ is the optimal range of C for X̃, which by
Diagram 1 means that also for X and for CX.

Much more interesting and delicate is the case of interval [0, 1]. Suppose
that C : X → X is bounded and all assumptions of (ii) and (iii) are satisfied.
Then C : CX → X is bounded, where CX is by definition the optimal
domain of C for X. The case (ii) says that the optimal range of C for CX is

then X̃(1/v)(v). It is however interesting that one may look at the situation
also in another way. Let’s start once again with C : X → X and find first the
optimal range. It appears to be just X̃ (cf. [10, Theorem 8.2], [11, Theorem

3.16] and [9, Theorem 4.1]) which is much smaller than X̃(1/v)(v). If we now
find optimal domain of C for X̃ it is then just CX∩L1 = C(X̃). The diagram
describing this dichotomy is now more complicated (see Diagram 2).

In general, there is no inclusion relation between X(v) and CX̃. For
example, if X is a symmetric space on I = [0, 1], we have for f(x) := 1

1−x

that f ∈ X(v) while f �∈ CX̃ because Cf(x) → ∞ as x → 1− and so C̃f is
not defined (or just ∞ everywhere). Therefore, X(v) �⊂ CX̃. This means also
that C does not act from X(v) into X̃. On the other hand, let X = L2 and put
f(x) = |12 − x|−1/2. Then f �∈ L2, but Cf ∈ L∞ and so C̃f ∈ L∞ ⊂ L2. This
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gives CX̃ �⊂ X(v). For general symmetric space X on I such that C : X → X
is bounded, one could take f ∈ L1 in such a way that f−fχ[1/2−ε,1/2+ε] ∈ L∞

for each 0 < ε < 1/2 but f �∈ X, to achieve the same effect.

Proof of Theorem 1. (ii). Let 0 ≤ f ∈ CX. Suppose first that 0 ≤ y ≤ t ≤
2y ≤ 1. Then

Cf(t) =
1
t

∫ t

0

f(s)ds ≥ 1
2y

∫ y

0

f(s)ds =
1
2
Cf(y). (2.1)

If now 0 ≤ x ≤ y and y ≤ 1
2 , then applying (2.1) one gets

MCf(x) ≥ 1
2y − x

∫ 2y

x

Cf(t)dt ≥ 1
2y

∫ 2y

y

Cf(t)dt

≥ 1
2y

∫ 2y

y

Cf(y)
2

dt =
1
4
Cf(y) ≥ 1 − y

4(1 − x)
Cf(y).

Suppose now that 1
2 ≤ y ≤ t ≤ 1. Then, similarly as in (2.1),

Cf(t) =
1
t

∫ t

0

f(s)ds ≥
∫ y

0

f(s)ds ≥ 1
2
Cf(y). (2.2)

In consequence, when 0 ≤ x ≤ y and 1
2 ≤ y ≤ 1, applying (2.2) we obtain

MCf(x) ≥ 1
1 − x

∫ 1

x

Cf(t)dt ≥ 1
1 − x

∫ 1

y

Cf(t)dt

≥ 1
1 − x

∫ 1

y

Cf(y)
2

dt =
1 − y

2(1 − x)
Cf(y).

Consequently,

MCf(x) ≥ 1
4(1 − x)

ess sup0≤x≤y≤1(1 − y)Cf(y) =
1

4(1 − x)
[̃vCf ](x).

(2.3)
Since M is bounded on X, by our assumption, it follows that

‖Cf‖
˜X(1/v)(v)

= ‖[̃vCf ]/v‖X ≤ 4‖M‖X→X‖Cf‖X = 4‖M‖X→X‖f‖CX .

This means that C : CX → X̃(1/v)(v) is bounded and the first statement

of (ii) is proved. It remains to show that the space X̃(1/v)(v) is the optimal
range of C for CX (in fact, even for X(v)). Suppose that there is a Banach
ideal space Z on I such that

Z � Y but C : CX → Z is bounded.

Let 0 ≤ f ∈ Y \Z. Define

g(x) =
1

(1 − x)
[̃vf ](x), x ∈ I.

Then f ≤ g and g ∈ X̃(1/v)(v) ⊂ X because 1
1−x [̃vg](x) = 1

1−x [̃vf ](x). We
have
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C(g/v)(x) =
1
x

∫ x

0

[̃vg](t)
(1 − t)2

dt ≥ [̃vf ](x)
x

∫ x

0

1
(1 − t)2

dt

=
[̃vf ](x)

x

x

(1 − x)
≥ f(x),

which means that C(g/v) �∈ Z. However, g ∈ X and so g/v ∈ X(v). Also, by
Theorem 2 below, X(v) ⊂ CX and therefore g/v ∈ CX which means that
C : CX �→ Z. Note that we have already shown C : X(v) �→ Z, which by

inclusion X(v) ⊂ CX means that X̃(1/v)(v) is the optimal range also for
X(v).

(iii). The argument is analogous to the one from statement (5.1) in
[10]. However, we need to modify it because in [10] the maximal operator is
defined on a larger interval than [0, 1]. Let 0 ≤ f ∈ CX ∩ L1[0, 1]. We shall
understand that f(x) = 0 for x > 1. Of course, inequality from (2.1) remains
true in this case, since f ∈ CX. Suppose that 0 < x ≤ y ≤ 1 and consider
two cases. If y/2 ≤ x, then

Mσ1/2Cf(x) ≥ 2
y

∫ y

y/2

σ1/2Cf(u)du.

If x ≤ y/2, then

Mσ1/2Cf(x) ≥ 1
y − x

∫ y

x

σ1/2Cf(u)du ≥ 1
y

∫ y

y/2

σ1/2Cf(u)du.

Altogether we get

Mσ1/2Cf(x) ≥ 1
y

∫ y

y/2

σ1/2Cf(u)du =
1
2y

∫ 2y

y

Cf(t)dt ≥ 1
4
Cf(y).

Therefore, similarly as before,

Mσ1/2Cf(x) ≥ 1
4

ess supx≤y Cf(y) =
1
4

C̃f(x),

which gives

‖f‖
CX̃

= ‖C̃f‖X ≤ 4 ‖Mσ1/2Cf‖X ≤ 4 ‖M‖X→X‖σ1/2‖X→X‖Cf‖X

= 4 ‖M‖X→X‖σ1/2‖X→X‖f‖CX ≤ 4 ‖M‖X→X‖σ1/2‖X→X‖f‖CX∩L1 .

On the other hand, if 0 ≤ f ∈ CX̃, then

‖f‖L1 =
∫ 1

0

f(t)dt
‖χ[0,1]‖X

‖χ[0,1]‖X
=

‖(
∫ 1

0
f(t)dt)χ[0,1]‖X

‖χ[0,1]‖X
≤ ‖C̃f‖X

‖χ[0,1]‖X
.

Thus also

‖f‖CX∩L1 ≤ max{1,
1

‖χ[0,1]‖X
}‖C̃f‖X ,

which means that CX̃ = CX ∩ L1. For the sake of completeness we present
the argument that X̃ is the optimal range of C for CX̃, although it works just
like in [10, Theorem 8.2]. Let Z be a Banach ideal space on I and suppose
that 0 ≤ f ∈ X̃\Z. Then also f̃ ∈ X̃\Z and Cf̃ ≥ f̃ . However f̃ �∈ Z, which
means that Cf̃ �∈ Z and C : CX̃ �→ Z.
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(i) This case is easier and may be deduced directly from [9]. Since for
0 < y also 2y ∈ I it is enough to follow (2.1) and after that to get for
y ≥ x ≥ 0

MCf(x) ≥ 1
2y − x

∫ 2y

x

Cf(t)dt ≥ 1
4
Cf(y).

Then

‖Cf‖
X̃

= ‖C̃f‖X ≤ 4‖MCf‖X ≤ 4‖M‖X→X‖Cf‖X = 4‖M‖X→X‖f‖CX ,

which means that C : CX → X̃ is bounded and CX = CX̃. The optimal
range of C for X̃,X,CX is once again X̃ and the proof is the same as in (iii)
(see also [10, Theorem 8.2], [11, Theorem 3.16] and [9, Theorem 4.1]). �

3. Hardy Inequality

We present an improvement of the Hardy inequality which appears for spaces
on I = [0, 1].

Theorem 2. If C is bounded on a Banach ideal space X on I = [0, 1] and the
maximal operator M is bounded on X ′, then

C : X(v) → X

is also bounded, where v is from (1.1).

Proof. Let 0 ≤ f ∈ X. We have for 0 < x ≤ 1
2

C(f/v)(x) =
1
x

∫ x

0

f(s)
1 − s

ds ≤ 2
x

∫ x

0

f(s)ds

and for 1
2 < x ≤ 1

C(f/v)(x) =
1
x

∫ x

0

f(s)
1 − s

ds ≤ 2
∫ x

0

f(s)
1 − s

ds.

If we define the operator T as Tf(x) =
∫ x

0
f(s)
1−s ds, then

C(f/v) ≤ 2(Cf + Tf).

Therefore, we need to show that T is bounded on X. Consider an involution
operator τ : f(x) 
→ f(1 − x). Then

Tf(x) =
∫ x

0

f(s)
1 − s

ds =
∫ 1

1−x

f(1 − s)
s

ds = τC∗τf(x). (3.1)

Observe that the space

X− = {f : τf ∈ X}
with its natural norm ‖f‖X− = ‖τf‖X is also a Banach ideal space on I and
so (X−)−. Just by definition σ : X → X−, τ : X− → X are bounded and
ττ = id. Thus T is bounded on X if and only if C∗ is bounded on X−. We
will prove the last equivalence. Notice that simply

Mf(1 − x) = sup
a
=b,0≤a≤1−x≤b≤1

1
b − a

∫ b

a

f(s)ds (3.2)
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= sup
a
=b,0≤1−b≤x≤1−a≤1

1
b − a

∫ 1−a

1−b

f(1 − s)ds = (Mτf)(x)

(3.3)

and so Mτf = τMf which means that for any Banach ideal space Y , M is
bounded on Y if and only if M is bounded on Y −, which by our assumption
gives that M is bounded on (X ′)−. Thus also C is bounded on (X ′)− and by
duality C∗ is bounded on [(X ′)−]′. However, it is evident that for any Banach
ideal space Y there holds (Y ′)− = (Y −)′. Then [(X ′)−]′ = (X ′′)− = X− and
so C∗ is bounded on X−. �

Remark 1. If X is a symmetric space, then evidently X = X− and we
get Lemma 10 from [6], whose proof was a generalization of the Astashkin–
Maligranda result from [1]. Moreover, our Theorem 2 includes Theorem 9 in
[6] for the weighted Lp(xα) spaces when 1 ≤ p < ∞ and −1/p < α < 1−1/p.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution, and reproduction in any
medium, provided the original author(s) and the source are credited.
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Appl. (2015). doi:10.1016/j.jmaa.2014.11.023

[7] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, II. Function
Spaces. Springer, Berlin (1979)

[8] Maligranda, L.: Orlicz Spaces and Interpolation. Seminars in Mathematics
5. University of Campinas, Campinas (1989)

[9] Mizuta, Y., Nekvinda, A., Shimomura, T.: Hardy averaging operator on gen-
eralized Banach function spaces and duality. Z. Anal. Anwend. 32(2), 233–
255 (2013)

[10] Nekvinda, A., Pick, L.: Optimal estimates for the Hardy averaging opera-
tor. Math. Nachr. 283(2), 262–271 (2010)

[11] Nekvinda, A., Pick, L.: Duals of optimal spaces for the Hardy averaging oper-
ator. Z. Anal. Anwend. 30(4), 435–456 (2011)

http://dx.doi.org/10.1016/j.jmaa.2014.11.023


Vol. 81 (2015) Abstract Cesàro Spaces. Optimal Range 235
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