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We formulate a general setting for the cluster expansion method and we discuss
sufficient criteria for its convergence. We apply the results to systems of classical
and quantum particles with stable interactions. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3124770�

I. INTRODUCTION

The method of cluster expansions was introduced in the 1930s in statistical mechanics in order
to study gases of classical interacting particles. Its main achievement, from the point of view of
physics, may be the derivation of the van der Waals equation of state for weakly interacting
systems. The method was made rigorous by mathematical physicists in the 1960s, see Ref. 23 and
references therein.

The method split afterwards. One branch involves continuous systems, with applications to
classical systems,19,17,5 quantum systems,10,11,21 or quantum field theory.12,16,2,6 The other branch
involves polymer systems, i.e., discrete systems with additional internal structure.13,7,3,18,25,9,14 An
important step forward was the article of Kotecký and Preiss with its simplified setting and its
elegant condition for the convergence of the cluster expansion.15

The methods for proving the convergence are diverse. Let us mention the study of Kirkwood–
Salsburg equations that involves correlation functions �see Ref. 23 and references therein�, the
algebraic approach of Ruelle,23 combinatorial approaches using tree identities,19,5,2,6 and induc-
tions for discrete systems.7,3,18

Important and useful surveys were written by Brydges,4 Pfister,20 and Abdesselam and
Rivasseau.1 Recent articles have been devoted to combinatorial aspects25,8,14 and to weakening the
assumptions.9,8,22

The method of cluster expansions applies when the objects do not interact much; this is the
case when they are far apart �low density� or when interactions are weak. An extension of the
criterion of Ref. 15 that takes into account these two aspects was proposed in Ref. 26; it applies to
both discrete and continuous systems.

All abstract �i.e., general� approaches involve restrictions that correspond to repulsive inter-
actions. Yet the old results for classical and quantum systems only assume stable interactions, that
may include an attractive part. The aim of the present article is to propose a general approach that
applies to discrete and continuous systems with repulsive or stable interactions. Our proof is split
into several independent steps and this helps clarify the situation.

The setting and the results are presented in Sec. II. We consider applications to classical
systems of particles in Sec. III, to polymer systems in Sec. IV, and to the quantum gas in Sec. V.
A fundamental tree estimate is derived in Sec. VI, and the theorems of Sec. II are proved in Sec.
VII.
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II. CLUSTER EXPANSIONS

We consider a set X whose elements may represent widely different objects—in the three
applications considered in this article, an element x�X represents �i� the position of a classical
particle, �ii� a polymer, i.e., a connected set of Zd, and �iii� a closed Brownian bridge. For the
general abstract theory, we assume the structure of a measure space, �X ,X ,��, with � a complex
measure. We denote ��� the total variation �absolute value� of �. Let u and � be complex mea-
surable symmetric functions on X�X, that are related by the equation

��x,y� = e−u�x,y� − 1. �2.1�

We allow the real part of u to take the value +�, in which case ��x ,y�=−1. In typical applications
u�x ,y� represents the interactions between x and y, and the value +� corresponds to a hard core
repulsion. We define the “partition function” by

Z = �
n�0

1

n!
� d��x1�¯� d��xn�exp�− �

1�i�j�n

u�xi,xj�	 , �2.2�

or, equivalently,

Z = �
n�0

1

n!
� d��x1�¯� d��xn� 


1�i�j�n

�1 + ��xi,xj�� . �2.3�

The term n=0 of the sums is understood to be 1.
The main goal of cluster expansions is to express the partition function as the exponential of

a convergent series of “cluster terms.” The main difficulty is to prove the convergence. We first
assume that the potential u is stable.

Assumption 1: There exists a non-negative function b on X such that, for all n and almost all
x1 , . . . ,xn�X,



1�i�j�n

�1 + ��xi,xj�� � 

i=1

n

eb�xi�.

In other words, we assume the lower bound

�
1�i�j�n

Re u�xi,xj� � − �
i=1

n

b�xi� . �2.4�

When the function b is constant, this is the usual definition of stability. “Almost all” means that,
for given n, the set of points where the condition fails has measure zero with respect to the product
measure �n�. If X is countable, the condition must be satisfied for all x1 , . . . ,xn such that ��xi�
�0. The second condition deals with the strength of interactions.

Assumption 2: There exists a non-negative function a on X such that for almost all x�X,

� d����y����x,y��ea�y�+2b�y� � a�x� .

In order to guess the correct form of a, one should consider the left side of the equation above
with a�y��0. The integral may depend on x; a typical situation is that x is characterized by a
length ��x�, which is a positive number, so that the left side is roughly proportional to ��x�. This
suggests to try a�x�=c��x�, and one can then optimize on the value of c.

We also consider an alternate criterion that involves u rather than �. It is inspired by the recent
work of Procacci.22 Let
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ū�x,y� = �u�x,y� if Re u�x,y� � �

1 if Re u�x,y� = � .
	 �2.5�

Assumption 2�: There exists a non-negative function a on X such that for almost all x�X,

� d����y��ū�x,y��ea�y�+b�y� � a�x� .

For positive u we can take b�x��0 and since 1−e−u�u, Assumption 2 is always better than
Assumption 2�. We actually conjecture that, together with Assumption 1, a sufficient condition is

� d����y� min����x,y��, �u�x,y���ea�y�+b�y� � a�x� . �2.6�

That is, it should be possible to combine the best of both assumptions. In this respect Assumption
2 is optimal in the case of positive potentials, and Assumption 2� is optimal in the case of hard
core plus negative potentials.

We denote by Gn the set of all graphs with n vertices �unoriented, no loops� and Cn�Gn the set
of connected graphs with n vertices. We introduce the following combinatorial function on finite
sequences �x1 , . . . ,xn� of elements of X:

��x1, . . . ,xn� = �1 if n = 1

1

n! �
G�Cn




i,j��G

��xi,xj� if n � 2.� �2.7�

The product is over edges of G.
Theorem 2.1 (Cluster expansions): Suppose that Assumptions 1 and 2, or 1 and 2�, hold

true. We also suppose that �d����y� �ea�y�+2b�y���. Then we have

Z = exp��
n�1

� d��x1� ¯ d��xn���x1, . . . ,xn�	 . �2.8�

The term in the exponential converges absolutely. Furthermore, for almost all x1�X, we have the
following estimate:

�
n�2

n� d����x2�¯� d����xn����x1, . . . ,xn�� � �ea�x1� − 1�e2b�x1�. �2.9�

�Under Assumption 2�, Eq. �2.9� holds with eb�x1� instead of e2b�x1�.� Let us turn to correlation
functions. We only consider one-point and two-point correlation functions since these are the most
useful and expressions become more transparent. We refer to Ref. 26 for more general functions.
First, we define the un-normalized one-point correlation function by

Z�x1� = �
n�1

1

�n − 1�!� d��x2�¯� d��xn� 

1�i�j�n

�1 + ��xi,xj�� �2.10�

�the term n=1 is 1 by definition�. And we define the un-normalized two-point correlation function
by

Z�x1,x2� = �
n�2

1

�n − 2�!� d��x3�¯� d��xn� 

1�i�j�n

�1 + ��xi,xj�� �2.11�

�the term n=2 is equal to 1+��x1 ,x2��. Notice that Z�x1� can be viewed as a regular partition
function, given by Eq. �2.2�, but with the modified measure �1+��x1 ,x����x� instead of ��x�. The
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normalized correlation functions are Z�x1� /Z and Z�x1 ,x2� /Z. As is shown in Theorem 2.2, they
can be expressed using the “cluster functions”

Ẑ�x1� = �
n�1

n� d��x2�¯� d��xn���x1, . . . ,xn� �2.12�

and

Ẑ�x1,x2� = �
n�2

n�n − 1�� d��x3�¯� d��xn���x1, . . . ,xn� . �2.13�

Notice that �Ẑ�x1���ea�x1�+2b�x1� by �2.9�.
Theorem 2.2 (Correlation functions): Under the same assumptions as in Theorem 2.1, we

have

Z�x1�
Z

= Ẑ�x1� ,

Z�x1,x2�
Z

= Ẑ�x1�Ẑ�x2� + Ẑ�x1,x2� .

In statistical mechanics, the relevant expression is the truncated two-point correlation function

Z�x1,x2�
Z

−
Z�x1�Z�x2�

Z2 .

When the cluster expansion converges, it is equal to Ẑ�x1 ,x2� by the theorem above. This function
usually provides an order parameter for phase transitions and it is useful to estimate its decay
properties.

Theorem 2.3 (Decay of correlations): If Assumptions 1 and 2 hold true, we have for almost
all x ,y�X,

�Ẑ�x,y�� � ea�y�+2b�y�����x,y��ea�x�+2b�x� + �
m�1

� d����x1�¯� d����xm�

i=0

m

���xi,xi+1��ea�xi�+2b�xi��
(with x0�x and xm+1�y). If Assumptions 1 and 2� hold true, we have the same bound but with
�ū�· , ·�� instead of ���· , ·�� and eb�·� instead of e2b�·�.

In many applications the functions ��x ,y� and u�x ,y� depend on the difference x−y �this

assumes that X has additional structure, namely, that of a group�. The estimates for �Ẑ�x ,y�� are
given by convolutions. The theorems of this section are proved in Sec. VII.

III. CLASSICAL GAS

We consider a gas of point particles that interact with a pair potential. We work in the
grand-canonical ensemble where the parameters are the fugacity z and the inverse temperature 	
�both are real and positive numbers�. The set X is an open bounded subset of Rd and ��x�=zdx
with dx the Lebesgue measure. We actually write 
=X so as to have more traditional notation.
The interaction is given by a function U :Rd→R� 
�� which we take to be piecewise continuous;
u�x ,y�=	U�x−y�. We suppose that U is stable, i.e., that there exists a constant B�0 such that for
any n and any x1 , . . . ,xn�Rd:
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�
1�i�j�n

U�xi − xj� � − Bn . �3.1�

Our Assumption 1 holds with b�x��	B. The system is translation invariant so all x�Rd are
equivalent. The function of Assumptions 2 and 2� can then be taken to be a constant, a�x��a. We
seek a condition that does not depend on the size of the system. Then integrals over y are on Rd

instead of 
. By translation invariance we can take x=0.
Assumption 2 gives the condition

ze2	B�
Rd

�e−	U�y� − 1�dy � ae−a. �3.2�

We obviously choose the constant a that maximizes the right side, which is a=1. This condition
is the one in Ref. 23. Let us now assume that U consists of a hard core of radius r and that it is
otherwise integrable. Again with a=1, Assumption 2� gives the condition

ze	B��B�rd + 	�
�y��r

�U�y��dy� � e−1. �3.3�

Here, �B�=�d/2 /
�d /2+1� is the volume of the ball in d dimensions. This condition is often better
than �3.2�. Without hard core it is the one in Ref. 5. The domains of parameters where these
conditions hold correspond to low fugacities and high temperatures.

The thermodynamic pressure is defined as the infinite volume limit of

p
�	,z� =
1

�
�
log Z . �3.4�

Using Theorem 2.1, we have

p
�	,z� =
1

�
��


dx1��
n�1

zn�



dx2¯�



dxn��x1, . . . ,xn�� . �3.5�

Consider now any sequence of increasing domains 
1�
2�¯ such that 
n→Rd. Thanks to the
estimate �2.9� and using translation invariance, we get

p�	,z� � lim
n→�

p
n
�	,z� = �

n�1
zn�

Rd
dx2¯�

Rd
dxn��0,x2, . . . ,xn� . �3.6�

�The term with n=1 is equal to z.� This expression for the infinite volume pressure p�	 ,z� should
be viewed as a convergent series of analytic functions of 	 ,z. Then p�	 ,z� is analytic in 	 and z
by Vitali’s theorem and no phase transition takes place in the domain of parameters where the
cluster expansion is convergent.

The truncated two-point correlation function ��x� is given by Ẑ�0,x�. We consider only the
case of Assumption 2 but a similar claim can be obtained with Assumption 2�. Let c�x� be a
function that satisfies the triangle inequality. The estimate of Theorem 2.3 yields

ec�x���x� � e2+4	B �
m�0

zmem+2	Bm�ec�·��e−	U�·� − 1���m�x� �3.7�

�with f�0� f�. Recall that �f�n��� �f���f�1
n−1, and let

Cp = �ec�·��e−	U�·� − 1��p. �3.8�

Then we get
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��x� � e−c�x�e2+4	BC�

C1
�1 − ze1+2	BC1�−1. �3.9�

If the inequality �3.2� is strict, one can usually find a function c�x� that satisfies the triangle
inequality and such that C1� �ze1+2	B�−1; the truncated two-point correlation function then decays
faster than e−c�x�.

IV. POLYMER SYSTEMS

Polymer systems are discrete, which is technically simpler, but they also have internal struc-
ture. The first application of cluster expansions to polymer systems is due to Gruber and Kunz.13

Among the many articles devoted to this subject, let us mention Refs. 15, 7, and 9. The main goal
of this section is to illustrate our setting; we therefore restrict ourselves to a specific model of
polymers with both repulsive and attractive interactions.

Our space X is the set of all finite connected subsets of Zd. The measure � is the counting
measure multiplied by the activity z�x� �a function X→R+�. We choose z�x�=e−��x� with ��0. The
interaction is hard core when polymers overlap and it is attractive when they touch:

u�x,y� = �� if x � y � 0”

− �c�x,y� if x � y = 0” .
	 �4.1�

Here, c�x ,y� is the number of “contacts” between x and y, i.e., the number of bonds between sites
of x and y; ��0 is a parameter. The interaction is zero when the distance between polymers is
greater than 1.

The stability condition can be written as

1

2�
i=1

n

�
j�i

u�xi,xj� � − �
i=1

n

b�xi� . �4.2�

Only disjoint polymers need to be considered; the left side is infinite otherwise. The sum over j is
always larger than −� times the number of bonds connecting xj with its exterior. Thus we can take
b�x�=�d�x�.

The function a in Assumption 2� grows like �x�, so it is natural to choose a�x�=a�x� for some
constant a. A sufficient condition is that

�
y,y�x�0”

z�y�ea�y�+�d�y� + �
y,dist�x,y�=1

�z�y�c�x,y�ea�y�+�d�y� � a�x� . �4.3�

We can bound �c�x ,y� by 2�d�y�. Summing over the sites of x and requiring that y contains the
given site or comes at distance 1, we get

�
y�0

�1 + 2d��y��z�y�ea�y�+�d�y� � a . �4.4�

We used the fact that the activity is translation invariant. If x is a connected set, there exists a
closed walk with nearest neighbor jumps whose support is x, and whose length is at most 2��x�
−1�. This can be seen by induction: knowing the walk for x, it is easy to construct one for x� 
i�.
The number of connected sets of cardinality n that contain the origin is therefore smaller than the
number of walks of length 2n−3 starting at the origin, which is equal to �2d�2n−3. Then it suffices
that

�
n�1

e−n��−a−3d�−2 log 2d� � �2d�3a . �4.5�

This is equivalent to
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� � a + log�1 +
1

�2d�3a
� + 3d� + 2 log 2d . �4.6�

Assumption 2� holds for any a. Using log�1+ t�� t and optimizing on a, we find the sufficient
condition

� � 2�2d�−3/2 + 3d� + 2 log 2d �4.7�

with a= �2d�−3/2.
We have just established the existence of a low density phase provided the activity is small

enough. The condition depends on the contact parameter �. For large � one should expect inter-
esting phases with many contacts between the polymers.

V. QUANTUM GAS

We follow a course that is similar to Ginibre11 using the Feynman–Kac formula so as to get a
gas of winding Brownian loops. We get comparable results, with a larger domain of convergence
in the case of integrable potentials. Winding Brownian loops are kind of continuous polymers;
they combine the difficulties of both cases above—the continuous nature and the internal structure.

A. Feynman–Kac representation

The state space for N fermions �bosons� in a domain 
�Rd is the Hilbert space Lanti
2 �
N�

�Lsym
2 �
N�� of square-integrable complex functions that are antisymmetric �symmetric� with re-

spect to their arguments. The Hamiltonian is

H = − �
i=1

N

�i + �
1�i�j�N

U�qi − qj� , �5.1�

with �i the Laplacian for the ith variable and U�q� a multiplication operator. As in the classical
case, we consider the grand-canonical ensemble whose parameters are the fugacity z and the
inverse temperature 	. The partition function is

Z = �
N�0

zN Tr e−	H. �5.2�

We need to cast the partition function in the form �2.2�, which can be done using the Feynman–
Kac representation. Namely, we have

Z = �
N�0

zN

N! �
��SN

�����

N

dq1 ¯ dqN� dWq1,q��1�

2	 ��1�¯� dWqN,q��N�

2	 ��N��

i=1

N

�
��i��
exp�−

1

2 �
1�i�j�N

�
0

2	

U��i�s� − � j�s��ds	 . �5.3�

SN is the symmetric group of N elements; ���� is equal to the signature of the permutation � for
fermions and �����1 for bosons; Wq,q�

t is the Wiener measure for the Brownian bridge from q to
q� in time t—the normalization is chosen so that

� dWq,q�
t ��� = �2�t�−d/2e−�q − q��2/2t; �5.4�

�
��� is 1 if ��s��
 for all 0�s�2	; it is zero otherwise. An introduction to the Feynman–Kac
formula in this context can be found in the survey of Ginibre.11
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The right side of Eq. �5.3� is well defined for a large class of functions U :Rd→R� 
��, that
includes all piecewise continuous functions. Thus we take �5.3� as the definition for Z. Under
additional assumptions on U, �5.3� is equal to �5.2� with Hamiltonian �5.1� and with Dirichlet
boundary conditions.

We now rewrite the grand-canonical partition function in terms of winding loops. Let Xk be
the set of continuous paths �0,2	k�→Rd that are closed. Its elements are denoted x= �q ,k ,��,
with q�Rd the starting point, k the winding number, and � the path; we have ��0�=��2	k�=q.
We consider the measure � given by

��dx� =
�k+1zk

k
dqe−v�x��
���Wq,q

2	k�d�� . �5.5�

Here, v�x� is a self-interaction term that is defined below in �5.7�; �=−1 for fermions and +1 for
bosons. Let X=�k�1Xk; the measure � naturally extends to a measure on X. The grand-canonical
partition function can then be written as

Z = �
n�0

1

n!
�

Xn
d��x1� ¯ d��xn�exp�− �

1�i�j�n

u�xi,xj�	 . �5.6�

Let x= �q ,k ,�� and x�= �q� ,k� ,���. The self-interaction v�x� and the two-loop interaction u�x ,x��
are given by

v�x� = �
0���m�k−1

1

2
�

0

2	

U���s + 2	�� − ��s + 2	m��ds ,

u�x,x�� = �
�=0

k−1

�
��=0

k�−1
1

2
�

0

2	

U���s + 2	�� − ���s + 2	����ds . �5.7�

We now treat separately the case of integrable potentials and the case of more general potentials.

B. Stable integrable potentials

We suppose that U is stable with constant B, i.e., it satisfies Eq. �3.1�. For given loops
x1 , . . . ,xn, stability implies that

�
i=1

n

v�xi� + �
1�i�j�n

u�xi,xj� � − 	B�
i=1

n

ki. �5.8�

Then Assumption 1 holds with

b�x� = 	Bk + v�x� . �5.9�

Notice that b�x��0, again by the stability of U.
We use Assumption 2� and we choose a function a�x�=ak with a constant a to be determined

later. Explicitly, the assumption is that for any x= �q ,k ,��

�
k��1

zk�eak�

k�
�

Rd
dq�� dWq�,q�

2k�	 ����e−v�x��+b�x���u�x,x��� � ak . �5.10�

We have lifted the restriction that ���s��
 because we want a condition that does not depend on

. Equation �5.10� is easier to handle than its appearance suggests. Notice that the term in the
second exponential is just 	Bk�. Using �dWqq

t ���f���=�dW00
t ���f��+q� and the definition �5.7�

of u�x ,x��, it is enough that
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�
�=0

k−1
1

2
�

0

2	

ds �
k��1

zk�e�a+	B�k�

k�
�

��=0

k�−1 �
Rd

dq�� dW0,0
2k�	�����U���s + 2	�� − ���s + 2	��� − q��� � ak .

�5.11�

We can immediately integrate over q�, which yields �U�1. The Wiener integral then gives
�4�k�	�−d/2 and we get the equivalent condition

	�U�1

�4�	�d/2 �
k��1

zk�e�a+	B�k�

�k��d/2 � a . �5.12�

For any d, 	, �U�1, and a, the inequality holds for z small enough. Notice that z�1 in any case.
One can get a more explicit condition for d�3 by choosing a such that zea+	B=1. This yields

z � exp�− 	� �U�1��d/2�
�4�	�d/2 + B�	 . �5.13�

Here, ��d /2�=�n�1n−d/2 is the Riemann zeta function.
When d=3 and when the potential is repulsive, one can rewrite �5.13� in a more transparent

way. Let a0= �1 /8���U�1 denote the Born approximation to the scattering length. The condition is
then

z � exp�−
��3/2�
��

a0

�	
	 . �5.14�

The critical fugacity is expected to be greater than 1. The present result helps nonetheless to obtain
a range of densities where the pressure is analytic. In the bosonic case it compares well with
physicists’ expectations.24

C. Stable potentials with hard core

The presence of a hard core makes the situation more complicated; we only sketch the
argument in this section without trying to get explicit bounds. Our aim is to show that, using
Theorem 2.1, the problem of convergence of the cluster expansion reduces to estimates of Wiener
sausages.

We consider an interaction U=U�+U�. We assume that U��0 is a repulsive potential of
radius r, with a hard core of radius 0�r��r, that U��q�=0 for �q��r, and that U� is integrable
otherwise. We suppose that the stability condition takes the slightly stronger form

�
i=1

n

U�q0 − qi� � − B �5.15�

for any q0 , . . . ,qn such that �qi−qj��r�. For potentials with a hard core this is equivalent to the
property �3.1�, possibly with a different constant B. Then one has10

�
i=1

n

v�xi� + 2 �
1�i�j�n

u�xi,xj� � − 2	B�
i=1

n

ki. �5.16�

Then Assumption 1 holds with

b�x� = 	Bk + 1
2v�x� . �5.17�

Notice that the stability condition also holds with b given in �5.9� �and with a better constant B�.
The advantage of �5.17� is the factor 1

2 in front of v�x�. Then e2b�x� involves a term that cancels the
self-interactions of x.
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Given a loop x= �q ,k ,��, let S�x� be the Wiener sausage generated by a ball of radius r when
its center moves along the trajectory �:

S�x� = 
q � Rd:���s� − q� � r for some s � �0,2k	�� . �5.18�

We also define the Wiener sausage that corresponds to the difference of two winding loops x
= �q ,k ,�� and x�= �q� ,k� ,���:

S�x,x�� = 
q�:���s + 2	�� − ���s + 2	��� − q�� � r for some � = 0, . . . ,k − 1;�� = 0, . . . ,k� − 1;

s � �0,2	�� . �5.19�

We denote the volume of a Wiener sausage S�·� by �S�·��. One can check that

�S�x,y�� �
�S�x���S�y��

rd�B�
, �5.20�

with �B� the volume of the unit ball �see Appendix 2 in Ref. 10�.
We choose a�x�= �S�x��+k in Assumption 2. Then a sufficient condition is that for any x�X,

�
k��1

zk�e�2	B+1�k�

k�
�

Rd
dq�� dW0,0

2k�	�������x,x� + q���e�S�x��� � �S�x�� + k . �5.21�

We consider separately the cases where q� belongs or not to S�x ,x��. First,

�
S�x,x��

���x,x� + q���dq� � �S�x,x��� , �5.22�

which we bound using �5.20�. Second, using �e−u�x,x��−1�� �u�x ,x���e	Bk�,

�
Rd\S�x,x��

���x,x� + q���dq� � 	�U��1kk�e	Bk�. �5.23�

We certainly get �5.21� if we have the two inequalities

�
k��1

zk�e�2	B+1�k�

k�
� dW0,0

2k�	����e�S�x����S�x��� � rd�B� ,

�
k��1

zk�e�3	B+1�k�� dW0,0
2k�	����e�S�x��� �

1

	�U��1
. �5.24�

One can estimate the integrals of Wiener sausages �see Ref. 10�, so that both conditions hold if z
is small enough.

Now that the cluster expansion is known to converge, it is possible to write the pressure as an
absolutely convergent series of analytic functions in 	 and z. It is also possible to study the decay
of correlation functions. In the case of potentials that consist of hard core plus integrable part, one
can apply Assumption 2� instead. This may give better results, especially if the integrable part is
mostly attractive.

VI. TREE ESTIMATES

In this section we obtain estimates of sums of connected graphs in terms of sums of trees. Our
main result is Proposition 6.1 below. Such estimates seem to have been introduced by Penrose19

and they have often been considered in the past.5,2,4,6,20,1,8 We introduce a minimal setting that
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clarifies its role in the cluster expansion. Namely, we fix the polymers so we only deal with the
numbers that represent their interactions, � or u, and the stability function b. Assumption 1 is vital
here, but Assumptions 2 and 2� are not used in this section.

Let Tn�Cn denote the set of trees with n vertices. Let n be an integer, b1 , . . . ,bn be real
non-negative numbers, and �ij =� ji, 1� i , j�n, be complex numbers. We assume that the follow-
ing bound holds for any subset I� 
1, . . . ,n�:



i,j�I,i�j

�1 + �ij� � 

i�I

ebi, �6.1�

Let uij be such that �ij =e−uij −1; let ūij =1 if �ij =−1, and ūij =uij otherwise. We state two distinct
tree estimates, the first one involving ��ij� and the second one involving �ūij�. These bounds will
allow to prove the convergence under either Assumption 2 or Assumption 2�.

Proposition 6.1: If (6.1) holds true, we have the two bounds

(a)

� �
G�Cn




i,j��G

�ij� � �

i=1

n

e2bi� �
G�Tn




i,j��G

��ij�;

(b)

� �
G�Cn




i,j��G

�ij� � �

i=1

n

ebi� �
G�Tn




i,j��G

�ūij� .

We actually conjecture that the following estimate holds under the same hypotheses:

� �
G�Cn




i,j��G

�ij� � �

i=1

n

ebi� �
G�Tn




i,j��G

min��uij�, ��ij�� . �6.2�

We prove Proposition 6.1 �a� below using Ruelle’s algebraic approach.23 This method is
usually combined with a Banach fixed point argument for correlation functions. However, we use
it differently so as to get a tree estimate. Proposition 6.1 �b� follows from a tree identity due to
Brydges, Battle, and Federbush,5,2,4 combined with an argument due to Procacci;22 its proof can be
found at the end of this section.

Let A be the set of complex functions on the power set P�
1, . . . ,n��. We introduce the
following multiplication operation for f ,g�A:

f � g�I� = �
J�I

f�J�g�I \ J� . �6.3�

We use the standard conventions for sums and products, namely, that the empty sum is zero and
the empty product is 1. Together with the addition, A is a commutative algebra with unit 1A�I�
=�I,0”. It is possible to check that each f �A \ 
0� has a unique inverse, which we denote f��−1�. We
have

f�k�I� = �
J1,. . .,Jk�I

Ji�Jj=0” ,�Ji=I

f�J1� ¯ f�Jk� . �6.4�

Let A0 be the subset of functions f such that f�0”�=0 �A0 is an ideal of A�. Notice that f�k=0 for
any k�n when f �A0. We define the exponential mapping expA :A0→A0+1A by
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expA f = 1A + f +
1

2
f�2 + ¯ +

1

n!
f�n. �6.5�

Let � and � be the functions defined by

��I� = �
G�C�I�




i,j��G

�ij ,

��I� = 

i,j�I,i�j

�1 + �ij� = �
G�G�I�




i,j��G

�ij . �6.6�

Here, G�I� �C�I�� is the set of graphs �connected graphs� on I. We have the relation

� = expA � . �6.7�

We also introduce an operation that is reminiscent of differentiation:

DJf�I� = � f�I � J� if I � J = 0”

0 otherwise.
	 �6.8�

One can check that D
i� expA f = �expA f��D
i�f .
For disjoint I ,J� 
1, . . . ,n�, we define

g�I,J� = ����−1� � DI���J� . �6.9�

Let I� 
1, . . . ,n�. The assumption of Proposition 6.1 implies that



i�I



j�I\
i�

�1 + �ij� � 

i�I

e2bi. �6.10�

Then there exists i� I such that



j�I\
i�

�1 + �ij� � e2bi. �6.11�

Such i is not unique in general but it does not matter. We consider a function � that assigns one of
the indices i= ��I� above to each nonempty subset I� 
1, . . . ,n�. Notice that ��I�� I for any subset
I. It is also useful to introduce the notation I�= I \ 
��I��.

Lemma 6.2: The function g�I ,J� of Eq. (6.9) is solution of the following equation:

�g�0” ,J� = �0” ,J,

g�I,J� = �

i�I�

�1 + �i,��I��� �
K�J

�

i�K

�i,��I��g�I� � K,J \ K� if I � 0” .

Since the equation gives g�I ,J� in terms of g�K ,L� with �K�+ �L�= �I�+ �J�−1, it is well defined
inductively and it has a unique solution. Notice that g�0” ,0”�=1, and that g�
i� ,0”�=1 for any index
i.

Proof: Recall the definition �6.6� of �. For disjoint I , K we have

��I � K� = � 

j�I��K

�1 + � j,��I�����I� � K� = � 

j�I�

�1 + � j,��I���� �
L�K



k�L

�k,��I����I� � K� .

�6.12�

Then
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g�I,J� = �
K�J

���−1��J \ K���I � K� = � 

j�I�

�1 + � j,��I��� �
L�K�J

�

k�L

�k,��I�����−1��J \ K���I� � K�

= � 

j�I�

�1 + � j,��I����
L�J

�

k�L

�k,��I�� �
K��J\L

���−1��J \ L \ K����I� � L � K�� . �6.13�

The last sum is equal to g�I��L ,J \L�. One recognizes the equation of Lemma 6.2. �

We now estimate the function g using another function h that satisfies an equation that is
similar to that of Lemma 6.2.

�h�0” ,J� = �0” ,J,

h�I,J� = e2b��I� �
K�J

�

i�K

��i,��I���h�I� � K,J \ K� if I � 0” . �6.14�

It also has a unique solution. Since 
i�I��1+�i,��I���e2b��I�, we can check inductively that

�g�I,J�� � h�I,J� �6.15�

for any sets I ,J �with I�J=0”�. Now the function h can be written explicitly.17,21 Let FI�J� be the
set of forests on I�J rooted in I. That is, a graph G�FI�J� is a forest such that each tree contains
exactly one element of I.

Lemma 6.3: The solution of Eq. (6.14) is

h�I,J� = � 

i�I�J

e2bi� �
G�FI�J�




i,j��G

��ij� .

Proof: Since the solution of Eq. �6.14� is unique, it is enough to check that the ansatz of the
lemma satisfies the equation. First, let us observe that both sides are multiplied by 
i�I�Je

2bi. Thus
it is enough to consider the case bi�0.

The sum over graphs in FI�J� can be realized by first summing over the set K of indices
�necessarily in J� that are connected to ��I� and then over sets of trees in J \K and over connections
to I��K. Explicitly,

�
G�FI�J�




i,j�

��ij� = �
K�J

�

i�K

��i,��I��� �
G�FI��K�J\K�




i,j��G

��ij� . �6.16�

This equation is precisely �6.14�. �

Proof of Proposition 6.1, bound (a): When I has a single element, the function g is equal to

g�
1�,
2, . . . ,n�� = �
G�Cn




i,j��G

�ij . �6.17�

This is the left side of Proposition 6.1, bound �a�. We have F
1��
2, . . . ,n��=Tn, the set of trees
with n vertices. Thus h�
1� , 
2, . . . ,n�� is equal to the right side of Proposition 6.1, bound �a�, and
the proof follows from Eq. �6.15�. �

We now turn to the proof of Proposition 6.1, bound �b�. Notice that in the absence of “hard
cores,” i.e., when �ij�−1, our claim is just a reformulation of Corollary 3.2 �a� of Ref. 4. The
present proof follows Ref. 22.

Proof of Proposition 6.1, bound (b): Let P be the set of 
i , j� such that �ij =−1, i.e., such that
Re uij =�. We regularize those numbers by setting

vij
�m� = �m if 
i, j� � P

uij if 
i, j� � P .
	 �6.18�

This allows to use the tree identity of Refs. 5, 2, and 4; we will eventually take m to infinity. The
tree identity can be written as
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�
G�Cn




i,j��G

�e−vij
�m�

− 1� = �
G�Tn




i,j��G

�− vij
�m��� d�G�
sij��e−�i�jsijvij

�m�
. �6.19�

The full definition of the measure �G can be found in Ref. 4; here we only mention its relevant
properties. �G depends on the tree G and it is a probability measure supported on a subset
L� 
sij � �0,1� :1� i� j�n�. If vij

�m� satisfies the stability condition, then

�
i,j�I,i�j

sij Re uij � − �
i�I

bi �6.20�

for all 
sij��L and all I� 
1, . . . ,n�.
If Re uij�� for any i , j, we immediately get the claim by using the stability condition above,

since �d�G�
sij��=1. The extension to possibly infinite numbers can be obtained using a trick due
to Procacci.22 Let G be a fixed tree and ��0. We introduce

wij
�m,�� = ��1 − ��m if 
i, j� � G � P

� if 
i, j� � G \ P

0 otherwise.
� �6.21�

Then

�
1�i�j�n

sij Re vij
�m� � �

1�i�j�n

sij Re vij
��m� + �

1�i�j�n

sijwij
�m,�� − ��G \ P� . �6.22�

If m is large enough �depending on ��, 
vij
��m�� is stable and the first term of the right side is

bounded below by −�bi. Then

� 


i,j��G

�− vij
�m��� d�G�
sij��e−�sijvij

�m�� � �

i=1

n

ebi�� 


i,j��G�P

wij
�m,��

1 − �
�

� � 


i,j��G\P

wij
�m,��e�

�
�uij��� d�G�
sij��e−�i�jsijwij

�m,��
.

�6.23�

A special case of the tree identity �6.19� is




i,j��G

wij
�m,��� d�G�
sij��e−�i�jsijwij

�m,��
= 



i,j��G

�1 − e−wij
�m,��

� = �1 − e−�1−��m��G�P��1 − e−���G\P�.

�6.24�

We get

� 


i,j��G

�− vij
�m��� d�G�
sij��e−�sijvij

�m�� � �

i=1

n

ebi��1 − e−�1−��m

1 − �
��G�P�� 



i,j��G\P
�uij�

e� − 1

� � .

�6.25�

We can insert this estimate into Eq. �6.19�. Letting m→� and then �→0, we get Proposition 6.1,
bound �b�. �

VII. PROOFS OF THE THEOREMS

In this section we prove the theorems of Sec. II. We consider only the case where Assumption
2 holds true—the case with Assumption 2� is entirely the same; one only needs to replace all
���x ,y�� with �u�x ,y�� and all e2b�·� with eb�·�. The proofs are based on the following tree estimate,
which is a direct consequence of Proposition 6.1: for almost all x1 , . . . ,xn�X,
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���x1, . . . ,xn�� �
1

n!
i=1

n

e2b�xi� �
G�Tn




i,j��G

���xi,xj�� . �7.1�

Proof of Theorem 2.1: We start by proving the bound �2.9�. Let us introduce

KN�x1� = �
n=1

N
1

�n − 1�!� d����x2�¯� d����xn�

i=1

n

e2b�xi� �
G�Tn




i,j��G

���xi,xj�� ,

K�x� = lim
N→�

KN�x� . �7.2�

�The term n=1 is equal to e2b�x1� by definition.� We show by induction that

KN�x� � ea�x�+2b�x� �7.3�

for any N. Then K�x��ea�x�+2b�x� for almost all x, and using �7.1� we get �2.9�.
The case N=1 reduces to 1�ea�x� and it is clear. The sum over trees with n vertices can be

written as a sum over forests on 
2, . . . ,n� and a sum over edges between 1 and each tree of the
forest. Explicitly,

KN�x1� = �
n=1

N
1

�n − 1�! �
m�1

�

V1,. . .,Vm�

partition of 
2,. . .,n�

� d����x2�¯� d����xn�

�

i=1

n

e2b�xi�

k=1

m

� �
��Vk

���x1,x��� �
G�T�Vk�




i,j��G

���xi,xj��� . �7.4�

Here, T�V� denotes the set of trees with V as the set of vertices. If �Vk�=1 the sum over G
�T�Vk� is 1 by definition. The term after the sum over partitions depends on the cardinalities of
the Vk but not on the actual labeling. Also, each ��Vk gives the same contribution. We get

KN�x1� = e2b�x1��
n=1

N

�
m�1

1

m! �
n1,. . .,nm�1

n1+¯+nm=n−1



k=1

m � 1

�nk − 1�!� d����y1�¯� d����ynk
�

����x1,y1��

i=1

nk

e2b�yi� �
G�Tnk




i,j��G

���yi,yj��� . �7.5�

We obtain an upper bound by releasing the constraint n1+ ¯ +nm�N−1 to nk�N−1, 1�k
�m. We then get

KN�x1� � e2b�x1� exp��
n=1

N−1
1

�n − 1�!� d���y1�¯� d����yn����x1,y1��

i=1

n

e2b�yi� �
G�Tn




i,j��G

���yi,yj��	
= e2b�x1� exp�� d����y1����x1,y1��KN−1�y1�	 . �7.6�

We have KN−1�y1��ea�y1�+2b�y1� by the induction hypothesis. Equation �7.3� follows from Assump-
tion 2.

The rest of the proof is standard combinatorics. The partition function can be expanded so as
to recognize the exponential of connected graphs. Namely, we start with
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Z = 1 + �
n�1

1

n!
� d��x1�¯� d��xn� �

G�Gn




i,j��G

��xi,xj� . �7.7�

The graph G�Gn can be decomposed into k connected graphs whose sets of vertices form a
partition of 
1, . . . ,n�. Summing first over the number mi of vertices for each set of the partition,
we get

Z = 1 + �
n�1

�
k�1

1

k! �
m1,. . .,mk�1

m1+¯+mk=n

1

m1 ! ¯ mk!


�=1

k �� d��x1�¯� d��xm�
� �

G�Cm�




i,j��G

��xi,xj�	
= 1 + �

n�1
�
k�1

1

k! �
m1,. . .,mk�1

m1+¯+mk=n



�=1

k �� d��x1�¯� d��xm�
���x1, . . . ,xm�

�	 . �7.8�

The triple sum is absolutely convergent, thanks to the estimate �2.9� that we have just estab-
lished. One can then interchange the sums by the dominated convergence theorem. This removes
the sum over n, and this completes the proof of Theorem 2.1. �

Next we prove Theorems 2.2 and 2.3 in reverse order, since we will use the convergence
properties in the latter theorem to get the former.

Proof of Theorem 2.3: From the definition �2.13� and the tree estimate �7.1�, we have

�Ẑ�x1,x2�� � �
n�2

1

�n − 2�!� d����x3�¯� d����xn�

i=1

n

e2b�xi� �
G�Tn




i,j�

���xi,xj�� . �7.9�

The expression above involves a sum over trees of arbitrary size that connect 1 and 2. Any such
tree decomposes into a line of m+1 edges that connect 1 and 2 �m�0� and m+2 trees rooted in
the vertices of the connecting line. Taking into account the combinatorial factors, we obtain

�Ẑ�x,y�� � ���x,y��K�x�K�y� + �
m�1

� d����x1�¯� d����xm��

i=0

m

���xi,xi+1��K�xi��K�y� ,

with x0�x and xm+1�y. The result follows from the bound �7.3� for K. �

Proof of Theorem 2.2: It is actually similar to the end of the proof of Theorem 2.1. Z�x� can
be expanded as a sum over graphs, that can be decomposed into a connected graph that contains
1, and other connected graphs. Taking into account the combinatorial factors, the contribution of

connected graphs containing 1 yields Ẑ�x�, and the contribution of the others yields the expression

�2.8� for Z. Thus Z�x�= Ẑ�x�Z. One step involved interchanging unbounded sums, which is justified
because everything is absolutely convergent, thanks to �2.9� and Theorem 2.3.

In the graph expansion for Z�x ,y�, the terms where 1 and 2 belong to the same connected

graph yield Ẑ�x ,y�Z, and the terms where 1 and 2 belong to different connected graphs yield

Ẑ�x�Ẑ�y�Z. The detailed argument is the same as above. We then obtained the desired expression.
�
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