
Abstract Computability
and Algebraic Specification

J. V. TUCKER

University of Wales, Swansea

and

J. I. ZUCKER

McMaster University

Abstract computable functions are defined by abstract finite deterministic algorithms on many-
sorted algebras. We show that there exist finite universal algebraic specifications that specify
uniquely (up to isomorphism) (i) all abstract computable functions on any many-sorted algebra;
(ii) all functions effectively approximable by abstract computable functions on any metric alge-
bra. We show that there exist universal algebraic specifications for all the classically computable
functions on the set R of real numbers. The algebraic specifications used are mainly bounded uni-
versal equations and conditional equations. We investigate the initial algebra semantics of these
specifications, and derive situations where algebraic specifications precisely define the computable
functions.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of
Computation—Computability theory; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Computability theory; Proof theory

General Terms: Theory, Verification

Additional Key Words and Phrases: Abstract computability, algebraic specification, computable
analysis, conditional equations, equational logic, metric algebras, topological algebras

0. INTRODUCTION

Abstract computability theory is the theory of computable functions and re-
lations over many-sorted algebras. It is a generalisation of classical recursion
theory on the natural numbers, based on notions of finite deterministic com-
putation on an arbitrary many-sorted algebra. An important feature of the
theory is its analysis of computations that are uniform over classes of alge-
bras, and a natural application of the theory is to analyse the scope and limits

The research of the second author was supported by a grant from the Natural Sciences and
Engineering Research Council (Canada), and by a visiting fellowship from the Engineering and
Physical Sciences Research Council (U.K.).
Authors’ addresses: J. V. Tucker, Department of Computer Science, University of Wales, Swansea
SA2 8PP, Wales; email: J.V.Tucker@swansea.ac.uk.; J. I. Zucker, Department of Computing and
Software, McMaster University, Hamilton, Ontario L8S 4L7, Canada; email: zucker@mcmaster.ca.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1529-3785/02/0400–0279 $5.00

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002, Pages 279–333.

280 • J. V. Tucker and J. I. Zucker

of models of computation and specification over abstract data types and
their implementations. Since the 1960s, many abstract models of computa-
tion have been defined and classified, starting with the models of E. Engeler,
Y. Moschovakis, H. Friedman and J. C. Shepherdson. Moreover generalised
Church-Turing Theses for computation and specification have been formulated
and defended [Tucker and Zucker 1988, 1992]. Here we will use the model
of computation µPR∗ (a generalised form of Kleene schemes), which involves
simultaneous primitive recursion and least number search over a many-sorted
algebra augmented by the booleans, natural numbers and finite sequences of
every sort. In Tucker and Zucker [1988] the model µPR∗ is shown to be equiv-
alent to ‘while’-array programs over these algebras, the primary mathematical
model of imperative programming.

Working with finite computation on any algebra enables us to develop a
number of special computability theories for algebras, such as rings and fields

of real numbers [Tucker 1980; Engeler 1993; Blum et al. 1989; Blum et al. 1996;
Blum et al. 1997] and topological and metric algebras [Tucker and Zucker 1999].
For a comprehensive introduction to abstract computability, including a survey
of its origins in the 1950s and principal literature, see our survey [Tucker and
Zucker 2000].

In this paper we prove theorems that show that functions that are abstractly
computable over many-sorted algebras, or have abstractly computable approx-

imations on topological algebras, can be specified by purely algebraic methods.
However, we show that the converse does not hold in the absence of certain
topological conditions.

Algebraic specification methods characterise functions as the solutions of
systems of algebraic formulae; normally, the solutions are unique. By algebraic
formulae, we mean equations

t(x) = t ′(x)

or conditional equations

t1(x) = t ′
1(x) ∧ · · · ∧ tk(x) = t ′

k(x) → t(x) = t ′(x), (∗)

or, more generally, conditional formulae

R1 ∧ · · · ∧ Rk → R (∗∗)

where the formulae Ri and R are generalisations of equations, making use of
the distinguished sorts nat of naturals and real of reals (as we will see below).
To define a unique solution for a system of equations, in logic one often thinks
of definability up to isomorphism, and in computing one often thinks in terms
of initial algebra semantics (or possibly final algebra semantics). However, no-
tice that there are many more equational methods, for example, for specifying
concurrent processes using metric space methods to solve equations [de Bakker
and Rutten 1992; de Bakker and de Vink 1999], or for computing solutions of
differential or integral equations.

In computation over a many-sorted algebra A we use the booleans, natural
numbers and finite sequences over A. With regard to algebraic specifications
over such structures, generalising conditional equations leads to the concept of

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 281

conditional bounded universal (BU) equations, in which the formulae Ri and
R of (∗∗) may have the form

t1 = t2 or ∀z < t [t1 = t2]

where the variable z and term t are of sort nat.
Conditional BU equations are new and provide us with more appropriate

axiomatisations for some properties using the natural number sort; we show
they are equivalent with conditional equations. The main theorems are first
proved for conditional BU equations and the reduction method applied to obtain
conditional equational specifications.

In the first part of the paper, we begin with the “simple” situation where there
is a system E of conditional equations over a signature 6, and a 6-algebra A

such that E has one, and only one, solution f on A. We call this method of
characterising functions conditional equation definability on A. We address
the obvious general question:

Does abstract computability imply conditional equation definability?

The answer is yes, and we show that there exist universal specifications that
specify all computable functions, as follows (Section 5, Theorem 4).

THEOREM A (ALGEBRA). Given a signature 6 and function type τ over 6, there

exists a finite set of conditional equations E(z) (with a distinguished natural

number variable z) over a finite expansion 6′ of 6, such that for any abstract

program α over 6, if A is any 6-algebra and f a total function on A of type τ

computed by α, then f is defined uniquely on A by E(k̄), where k̄ is a nu-

meral instantiating z which is effectively calculable from α. The system E(z) is

uniformly computable from 6 and τ .

Applying our abstract computability theory to metric algebras, we can ob-
tain an important, strictly broader, class of functions: namely, those uniformly

approximable by abstractly computable functions. In metric algebras, approx-
imation is elegantly formulated in terms of the distance function, which uses
the sort real. This gives rise to a class of conditional formulae called conditional

equations and inequalities, which is a broader class than (∗), namely formulae
(∗∗) in which the formulae Ri and R may have the form

t1 = t2 or t1 < t2

where, in the case of inequality (t1 < t2), t1 and t2 are of sort real.
From Theorem A we then prove (Section 6, Theorem 2):

THEOREM B (METRIC ALGEBRA). Given a signature 6 and function type τ over

6, there exists a finite set of conditional equations and inequalities E(z) (with a

distinguished natural number variable z) over a finite expansion 6′ of 6, such

that for any abstract program α over 6, if A is any metric 6-algebra and f a

total function on A of type τ , approximable by α in the following sense: for all

a ∈ A and all n

d (f (a), [[α]](n, a)) < 2−n,

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

282 • J. V. Tucker and J. I. Zucker

then f is defined uniquely on A by E(k̄), where k̄ is a numeral instantiating z

which is effectively calculable from α. The system E(z) is uniformly computable

from 6 and τ .

Thus, there is a bound B(6, τ) on the number of conditional equations and

inequalities needed to define all computable or computably approximable func-

tions, that depends only on the signature 6 and the function type τ .

Using Theorem B, we show that all the classically computable functions of
real analysis are unique solutions of finite sets of conditional equations and
inequalities. These classically computable functions have several characterisa-
tions, starting with those of Grzegorczyk [1955, 1957] and Lacombe [1955], and
hence are often called GL-computable. The familiar functions of analysis, such
as sin x, ex , log x, and so on, are all GL-computable. Now there exists a cer-
tain simple total metric algebra Id over the real unit interval I = [0, 1], such
that the total functions on I which are uniformly approximable by abstractly
computable functions on Id are precisely the GL-computable functions on I

[Tucker and Zucker 1999, 2000]. We prove the following (Section 6, Theorem 3).

THEOREM C (METRIC ALGEBRA OVER A REAL INTERVAL). For each positive inte-

ger m there is a signature 6∗
m which is an expansion of the signature of Id by

finitely many function symbols, and a finite system of conditional equations and

inequalities Em(z) (with a distinguished natural number variable z) over 6∗
m,

such that any total function f : [0, 1]m → R that is GL-computable, is the unique

solution of E(k̄) for some substitution of a numeral k̄ for z. The specification

(6∗
m, Em(z)) is uniformly computable from m.

Thus there is a bound B(m) on the number of conditional equations and

inequalities needed to define all m-ary GL-computable functions on [0, 1].

The signature 6∗
m consists of the sorts of booleans B and naturals N, with

their standard operations; the sort of reals R, with its ring operations, together
with division of reals by naturals; the sort of the unit interval I , with its em-
bedding into R; the sort of finite arrays on R with their standard operations; the
standard metrics on all these sorts; a “universal function” which approximably
abstractly computes all m-ary GL-computable total functions on I , together
with the auxiliary functions used in its computation; the function 2−n used for
expressing approximations; and a function for computing bounded quantifica-
tion over N.

This theorem has some interesting consequences, one of which we illustrate
(Section 6, Theorem 4):

COROLLARY. For each n> 0, there is a finite universal algebraic specifica-

tion, consisting of conditional equations and inequalities, for all computable

finite dimensional dynamical systems on the unit n-cube and over the unit time

interval.

Next we consider the converse problem:

PROBLEM. Find (reasonable) conditions under which algebraic definability

implies abstract computability.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 283

From Theorem C it follows that the converse to Theorem A is false, at least
for specifications consisting of conditional equations and inequalities; for ex-
ample, for the sine and cosine functions on the unit interval.

It is an open problem whether the converse of the approximation result
(Theorems B and C) holds. It seems that some extra topological condition such
as continuity is required for a converse result. This suggests an interesting
research area; see the example and discussion in Section 6.3.

In the second part of the paper, we show how the conditional equational
theories, and conditional BU equational theories, can be used with standard
algebraic specification methods associated with proof systems, term rewriting
and initial algebra semantics.

Now, when using the booleans, natural numbers, and finite sequences, the
algebraic specifications and their initial algebra semantics must define the
corresponding standard models of the booleans, natural numbers, and finite
arrays. We develop extensions of the Birkhoff-Mal’cev Completeness Theo-
rems that underlie the algebraic specification methods, designed to ensure
that these sorts have standard models. Then we prove (Section 8, Theorems 4
and 5):

THEOREM D (INITIAL ALGEBRA). Given a signature 6 and function type τ over

6, there exists a finite set of conditional equations E(z) (with a distinguished

natural number variable z) over a finite expansion 6′ of 6, such that for any

abstract program α over 6, if α computes a total function f on A of type τ ,
and A has an initial algebra specification by a set E of either conditional equa-

tions or conditional BU equations (with hidden sorts and functions), then (A, f)
has an initial algebra specification by a set E ∪ E(k̄), where E(z) consists of

conditional equations and k̄ is a numeral instantiating z, which is effectively

calculable from α. The system E(z) is uniformly computable from 6 and τ .

Furthermore, if the specification E of A has e axioms, then the specification of

(A, f) is finite, with e + e′ axioms, where e′ is a constant computed uniformly

from 6 and τ .

This paper is part of our series on abstract computability theory on many-
sorted algebras and its applications, starting in Tucker and Zucker [1888]
and most recently surveyed in Tucker and Zucker [2000]. Knowledge of com-
putation and our studies of computation versus specifications [Tucker and
Zucker 1991, 1992] and verification [Tucker and Zucker 1993] will be help-
ful, but only our work on topological data types [Tucker and Zucker 1999] is
necessary.

The subject of this paper is also a generalisation of the theory of algebraic
specifications for computable, semicomputable and co-semicomputable algebras
developed by one of us (JVT) with J. A. Bergstra: see Bergstra and Tucker
[1980a,b, 1982, 1983, 1987, 1995] and the surveys Meseguer and Goguen [1985];
Stoltenberg-Hansen and Tucker [1995]. However, at least initially, the gener-
alised computability raises new questions concerning topological data types,
uniformity and parameterisation, and standard models. Knowledge of the the-
ory for computable algebras is not required for this paper.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

284 • J. V. Tucker and J. I. Zucker

In Section 1 we define how to augment structures with the standard sorts of
the booleans and naturals, and finite sequences or arrays over all sorts, together
with the corresponding operations. For the rest of the paper we consider, without
loss of generality, only N-standard signatures and structures with the booleans
and naturals.

In Section 2 we introduce a number of proof systems, all based in the cal-
culus of sequents over a many-sorted signature 6. These are systems for (i)
first order logic over 6 with equality, (ii) conditional equational logic, (iii) con-
ditional bounded universal (BU) equational logic, and (iv) conditional standard
universal (SU) equational logic. The systems (ii) and (iii) are subsystems of the
classical predicate calculus (i), and are used in the following sections, while (iv)
is an infinitary system introduced for interest.

In Section 3 we define the basic technical notion of a theory uniquely speci-
fying a function on an arbitrary algebra with hidden sorts and functions. This
leads to a simple notion of specifiable parameterisation which we illustrate by
showing how a conditional equational (or conditional BU equational) specifica-
tion of a standard structure A can be extended to a similar specification of the
array structure A∗. We also show how to “reduce” a conditional BU equational
specification over 6 to a conditional equational specification over an expansion
of 6.

In Section 4 we recall the basic notions of computability of functions, includ-
ing universality of the µPR∗ functions.

In Section 5 we prove Theorem A, concerning the conditional equational
definability of computable functions.

In Section 6 we prove Theorems B and C, concerning the definability, by
conditional equations and inequalities, of computably approximable functions
on metric algebras.

In Section 7 we describe the construction of initial standard models for
conditional equational and conditional BU equational theories, and work out
the completeness theorems for the corresponding proof systems in Section 2.
The reduction of a conditional BU equational specification over 6 to a con-
ditional equational specification over an expansion of 6 is proved for initial
models.

In Section 8 we investigate the relationship between computability and al-

gebraic specifiability of functions on initial N-standard algebras, and prove
Theorem D. Finally, in Section 9, we consider the converse problem
of finding sufficient conditions for algebraic specifiability to imply com-
putability on classes of standard structures. Two equivalence theorems are
proved.

1. MANY-SORTED SIGNATURES AND ALGEBRAS

In this section we briefly review concepts defined and discussed in Tucker and
Zucker [2000, §1], where more detailed information can be found. Background
information on universal algebra can be found in Meinke and Tucker [1992];
Ehrig and Mahr [1985]; Wechler [1992].

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 285

1.1 Basic Definitions

A signature 6 (for a many-sorted algebra) is a pair consisting of (i) a finite set
Sort(6) of sorts, and (ii) a finite set Func (6) of (primitive) function symbols,
each symbol F having a type s1 × · · · × sm → s, where s1, . . . , sm, s ∈ Sort(6);
in that case we write F: s1 × · · · × sm → s, with dom(F) =df s1 × · · · × sm. (The
case m = 0 corresponds to constant symbols.)

A 6-product type has the form u = s1 × · · · × sm (m ≥ 0), where s1, . . . , sm

are 6-sorts. We use the notation u, v, w, . . . for 6-product types.
A 6-algebra A has, for each sort s of 6, a non-empty carrier set As of sort s,

and for each 6-function symbol F : u→s, a function F A: Au → As (where, for
the 6-product type u = s1 × · · · × sm, we write Au =df As1

× · · · × Asm
).

Given an algebra A, we sometimes write 6(A) for its signature.
The algebra A is total if F A is total for each 6-function symbol F . Without

such a totality assumption, A is called partial.
In this paper we deal with total algebras, except in §8.4.
We will also consider classes K of 6-algebras. A 6-adt (abstract data type) is

defined to be any such class, closed under 6-isomorphism. In particular, Alg (6)
denotes the class of all 6-algebras.

Examples. (a) The algebra of booleans has the carrier B = {tt, ff } of sort
bool. It can be displayed as follows:

algebra B

carriers B

functions tt, ff : → B,

andB, orB : B2 → B

notB : B → B

end

with signature

signature 6(B)
sorts bool

functions true, false : → bool,

and, or : bool2 → bool

not : bool → bool

end

For notational simplicity, we will usually not distinguish between function
names in the signature (true, etc.) and their intended interpretations (trueB =

tt, etc.)

(b) The algebra N 0 of naturals has a carrier N of sort nat, together with the
zero constant and successor function:

algebra N0

carriers N

functions 0 : → N,
S : N → N

end

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

286 • J. V. Tucker and J. I. Zucker

(c) The ring R0 of reals has a carrier R of sort real:

algebra R0

carriers R

functions 0, 1 : → R

+, × : R2 → R,
− : R → R

end

We make the following assumption about the signatures 6.

Instantiation Assumption. For every sort s of 6, there is a closed term of

that sort, called the default term δs of that sort.

This guarantees the presence of default values δs
A in a 6-algebra A at all

sorts s, and default tuples δu
A at all product types u.

1.2 Some Definitions

Definition 1 (Subalgebra). Given 6-algebras A and B, we say that B is a
6-subalgebra of A (written B ¹ A) iff (i) for all 6-sorts s, Bs ⊆ As, and (ii) for
every 6-function symbol F , F B = F A

↾ B.

Definition 2 (Expansions and Reducts). Let 6 and 6′ be signatures with
6 ⊂ 6′.

(a) If A′ is a 6′-algebra, then the 6-reduct of A′, A′|6 , is the algebra of signature
6, consisting of the carriers of A′ named by the sorts of 6and equipped with
the functions of A′ named by the function symbols of 6.

(b) If A is a 6-algebra and A′ is a 6′-algebra, then A′ is a 6′-expansion of A iff
A is the 6-reduct of A′.

(c) If K′ is a 6′-adt, then K′|6 is the class of 6-reducts of algebras in K′.

1.3 Adding Booleans: Standard Signatures and Algebras

Recall the algebra B of booleans (Example (a) in §1.1).
A signature 6 is called standard if (i) 6(B) ⊆ 6; (ii) the 6-function symbols

include a conditional

ifs: bool × s2 → s

for all sorts s of 6 other than bool; and (iii) the 6-function symbols include an
equality operation

eqs: s2 → bool

for all s ∈ EqSort(6), where EqSort(6) ⊆ Sort(6) is the set of 6-equality sorts.
Given a standard signature 6, a 6-algebra A is standard if (i) it is an expan-

sion of B; (ii) the conditionals have their standard interpretation in A, i.e., for
b ∈ B and x, y ∈ As,

ifs(b, x, y) =

{

x if b = tt

y if b = ff;

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 287

and (iii) the equality operator eqs is interpreted as identity on each 6-equality
sort s.

Note that any many-sorted signature 6 can be standardised to a signature
6B by adjoining the sort bool together with the standard boolean operations;
and, correspondingly, any algebra A can be standardised to an algebra AB by
adjoining the algebra B and the conditional ifs at all 6-sorts s, and the equality
operator eqs at the specified equality sorts:

algebra AB

import A, B
ifs : B × A2

s → As (s ∈ Sort(6)),
eqs : A2

s → B (s ∈ EqSort(6))
end

Thus the standardisation of a 6-algebra A depends on the specification of
EqSort(6). These will be the sorts for which an equality test is considered
to be “computable” in some sense.

Examples. (a) The simplest standard algebra is the algebra B of the
booleans.

(b) The standard algebra of naturals N is formed by standardising the alge-
braN 0 (Example (b) in §1.1) with nat as an equality sort, and, further, adjoining
the order relation lessnat as a boolean-valued operation on N:

algebra N

import N 0, B

functions ifnat: B × N2 → N,

eqnat, lessnat: N2 → B

end

(c) The standard algebra R of reals is formed similarly by standardising the
ring R0 (Example (c) in §1.1), with real not an equality sort. In fact, neither
the equality nor the order relation on R is included as an operation on real. (The
significance of this is discussed later; cf. Remark 3 in §5.3.)

StdAlg (6) denotes the class of all standard 6-algebras.

1.4 Adding Counters: N-Standard Signatures and Algebras

A standard signature 6 is called N-standard if it includes (as well as bool) the
numerical sort nat, and also function symbols for the standard operations of zero

and successor, as well as the conditional and equality and order on the naturals:

0: → nat

S: nat → nat

ifnat: bool × nat → nat

eqnat: nat2 → bool

lessnat: nat2 → bool.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

288 • J. V. Tucker and J. I. Zucker

The corresponding 6-algebra A is N-standard if the carrier Anat is the set of
natural numbers N = {0, 1, 2, . . .}, and the standard operations (listed above)
have their standard interpretations on N.

Note that any standard signature 6 can be N-standardised to a signature
6N by adjoining the sort nat and the operations 0, S, eqnat, lessnat and ifnat.
Correspondingly, any standard 6-algebra A can be N-standardised to an alge-
bra AN by adjoining the carrier N together with the corresponding standard
functions:

algebra AN

import A, N
end

Examples. (a) The simplest N-standard algebra is N (Example (b) in §1.3).

(b) The N-standard algebra RN of reals is formed by N-standardising the
standard real algebra R (Example (c) in §1.3).

NStdAlg(6) denotes the class of all N-standard 6-algebras.

N-Standardness Assumption. We will assume throughout this paper that

the signatures and algebras are N-standard, except where stated otherwise.

We also consider a notion stricter than N-standardness.

1.5 Strictly N-Standard Signatures and Algebras

An N-standard signature 6 is strictly N-standard if the only operations

of 6 with range sort nat or bool are the standard numerical operations

0, S, ifnat eqnat, lessnat (§1.4) and the boolean operations true, false, and, or, not

(§1.1). An algebra is strictly N-standard if its signature is.

Remarks

(1) Any N-standardised signature and algebra are automatically strictly
N-standard.

(2) A strictly N-standard signature has no equality sorts other than nat.

(3) Any subterm of a term of sort nat or bool of a strictly standard signa-
ture is itself of sort nat or bool. (Proved by structural induction on the
term.)

The notion of strict N-standardness will be used in Section 9.

1.6 Adding Arrays: Algebras A∗ of Signature 6∗

The significance of arrays for computation is that they provide finite but

unbounded memory.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 289

Given a standard signature 6, and standard 6-algebra A, we expand 6 and
A in two stages:

(1◦) N-standardise these to form 6N and AN , as in §1.3.

(2◦) Define, for each sort s of 6, the carrier A∗
s to be the set of finite sequences

or arrays a∗ over As, of “starred sort” s∗.

The reason for introducing starred sorts is the lack of effective coding of
finite sequences within abstract algebras in general. (Note that, for simplicity,
our definition excludes a starred sort nat∗, which would be redundant.)

The resulting algebras A∗ have signature 6∗, which expands 6N by includ-
ing, for each sort s of 6, the new starred sort s∗, and also the following new
function symbols:

(i) the operator Lgths: s∗ → nat, where Lgth(a∗) is the length of the array a∗;

(ii) the application operator Aps: s∗ × nat → s, where

ApA
s (a∗, k)

{

a∗[k] if k < Lgth(a∗)

δs otherwise

where δsis the default value at sort s guaranteed by the instantiation
assumption (§1.1)1;

(iii) the null array Nulls: s∗ of zero length;

(iv) the operator Updates: s∗ × nat × s → s∗, where UpdateA
s (a∗, n, x) is the

array b∗ ∈ A∗
s of length Lgth(b∗) = Lgth(a∗), such that for all k < Lgth(a∗)

b∗[k] =

{

a∗[k] if k 6= n

x if k = n

(v) the operator Newlengths: s∗ × nat → s∗, where NewlengthA
s (a∗, m) is the

array b∗ of length m such that for all k < m,

b∗[k] =

{

a∗[k] if k < Lgth(a∗)

δs if Lgth(a∗) ≤ k < m

(vi) the conditional on A∗
s for each sort s; and

(vii) the equality operator on A∗
s for each equality sort s.

Note that A∗ is an N-standard 6∗-expansion of A.
The justification for (vii) is that if a sort s has “computable” equality, then

clearly so has the sort s∗, since it amounts to testing equality of finitely many
pairs of objects of sort s, up to a computable length.

2. PROOF SYSTEMS AND THEORIES FOR 6-ALGEBRAS

To reason about computations, we choose a first-order language based on 6 as
a specification language.

Note, in this connection, that the operations in 6 are used for computation.
In particular, boolean-valued operations are used for tests in computations. By

1We assume that a∗[k] is undefined for k ≥ Lgth(a∗).

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

290 • J. V. Tucker and J. I. Zucker

contrast, for specification and reasoning about these algebras, we may add pred-

icates to the language, which are not, in general, computable or testable. For
example, our specification language will include the equality predicate at all
sorts (as we will see), whereas only the equality sorts s have the “computable”
equality operator eqs (§1.3). In writing specifications on the reals we may also
add the ‘<’ predicate (again, not computable, at least if defined totally), as we
will do later (§5.3) for the specification of approximable computability. Note
that these predicates added to the language do not form part of the signa-
ture. Intuitively, think of the equality operation as a “computable” boolean test,
but the equality predicate as a “provable” assertion of equality between two
terms.

So let Lang(6) be the first order language over the signature 6, with the
equality predicate at all sorts. The syntax of Lang(6) is generated as fol-
lows. For each 6-sort s there are countably many variables of sort s, denoted
a, b, . . . , x, y, Next, for each 6-sort s, there are terms of sort s, generated
from variables and the function symbols of 6 according to the standard typ-
ing rules. We write ts or t : s if t is a term of sort s, and, for a product type
u = s1 × · · · × sm, we write t : u if t is a u-tuple of terms, that is, an m-tuple of
terms of type s1 × · · · × sm.

The atomic formulae of Lang(6), then, are equations (ts
1 = ts

2) between
terms of sort s, for all 6-sorts s (whether equality sorts or not), and the propo-
sitional constants true and false. Formulae of Lang(6) are built up from these
by the logical connectives ∧, ∨, →, ¬, and the quantifiers ∀s and ∃s for all
sorts s of 6.

We will consider (in the following four subsections) four formal systems in
Lang(6), conveniently formulated as sequent calculi. The first is our basic sys-
tem FOL(6), full first order logic with equality over 6. The next two are sub-
systems of this, that will be used in Section 7. The final system is a subsystem
of FOL(6), extended by an infinitary proof rule.

Background information on sequent calculus proof systems can be found in
Takeuti [1987].

Note that we do not assume (N-)standardness of 6 in subsections 2.1 and 2.2
(only) below.

2.1 FOL(6): Full First Order Logic with Equality over 6

This can be formulated in a system LKe(6), which is an adaptation to the
many-sorted signature 6 of the systems LK and LKe of Gentzen [1969]; Takeuti
[1987]. The atomic formulae are equations at all 6-sorts.

A sequent of LKe(6) is a construct of the form Ŵ 7→ 1, where Ŵ and 1 are
each finite sequences of formulae of Lang(6).

Derivations (of sequents) are then constructed from certain specified initial

sequents (“axioms”) by means of specified inference rules.
The system LKe can be augmented in two ways:

(a) Adding axioms of a theory, or rather all substitution instances of these, as
initial sequents;

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 291

(b) Adding induction for a class C of formulae (in case 6 is N-standard), in the
form of the inference rule

C-Ind(6):
Ŵ 7→ 1, F (0) F (a), 5 7→ 3, F (Sa)

Ŵ, 5 7→ 1, 3, F (t)

where the induction variable a has sort nat, and the induction formula F (a)
belongs to the class C. We write Ind(6) for full 6-induction—where C is the set
of all first-order 6-formulae.

We will also be interested in the “intuitionistic” version C-Indi of C-Ind, in
which the sequences 1 and 3 above are empty.

Analogous augmentations can be made for the other systems considered
below.

In the next three subsections we will consider three further systems, the
first two of which are subsystems of FOL(6) and the third of which is a
subsystem of FOL(6) augmented by an infinitary ω-rule. These subsystems
are, in fact, also subsystems of LJe(6), which is an adaptation to 6 of the
“intuitionistic” system LJe (loc. cit.), in which the sequents have only one for-
mula on the rhs. (When we are working with these subsystems, the scheme
C-Ind will consist of intuitionistic sequents, so that the sequences 1 and 3 above
are empty.)

2.2 CondEq(6): Conditional Equational Logic over 6

A conditional equation is a formula of the form

P1 ∧ · · · ∧ Pn → P (∗)

where n ≥ 0 and Pi and P are equations. A conditional equational theory is a
set of such formulae (or their universal closures). An equational sequent is a
sequent of the form

P1, . . . , Pn 7→ P

where n≥ 0 and Pi and P are equations. This sequent corresponds to the con-
ditional equation (∗).

The initial sequents are all substitution instances of the 6-equality axioms
(expressing that equality is a congruence relation with respect to 6), and the
inferences are structural inferences, atomic cuts and substitution of terms for
free variables in sequents.

2.3 CondBUEq(6): Conditional BU Equational Logic over 6

A BU (bounded universal) quantifier is a quantifier of the form ‘∀z < t ’, where
z : nat and t : nat. (The most elegant approach is to think of this as a primitive
construct, with its own introduction rule: see below.) A (6-) BU equation is
formed by prefixing an equation by a string of 0 or more bounded universal
quantifiers. A conditional BU equation is a formula of the form

Q1 ∧ · · · ∧ Qn → Q (∗∗)

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

292 • J. V. Tucker and J. I. Zucker

where n ≥ 0 and Q i and Q are BU equations. A conditional BU equational

theory is a set of such formulae (or their universal closures). A BU equational

sequent is a sequent of the form

Q1, . . . , Qn 7→ Q

where n ≥ 0 and Q i and Q are BU equations. This sequent corresponds to the
conditional BU equation (∗∗).

The system CondBUEq(6) consists of BU equational sequents. The initial
sequents are the 6-equality axioms, as before, plus the boundedness axioms

BddAx(6): P (0), . . . , P (n − 1) 7→ ∀z < k̄P (z)

for all 6-equations P and all n ∈ N, where n̄ is the numeral for n: the
term S . . .S0 (n times ‘S’). The only inferences are structural inferences, cut,
substitution, and the rules for the BU quantifiers:

∀bL :
Ŵ 7→ s < t Q(s), 1 7→ Q

∀z < tQ(z), Ŵ, 1 7→ Q
∀bR :

a < t, Ŵ 7→ Q(a)

Ŵ 7→ ∀z < tQ(z)

where s and t are terms of sort nat, ‘s < t ’ stands for ‘lessnat(s, t) = true,’ and
the variable a : nat is the ‘eigenvariable’ of the inference ∀bR, which does not
occur in the conclusion of that inference.

Remark (Boundedness Axioms). The boundedness axioms BddAx(6) hold
(of course) in N-standard models. We remark here that they are derivable in
FOL(6) from the N-standardness axioms NStdAx0(6) (a set of conditional equa-
tions defined in §7.2), plus the single formula

z1 < Sz2 → z1 < z2 ∨ z1 = z2

which is, however, not a conditional BU equation. This formula is derivable,
in turn, in FOL(6) + QF-Ind(6) (induction for quantifier-free formulae), from
NStdAx0(6). It is not clear whether the boundedness axioms are derivable in
conditional BU equational logic alone from NStdAx0(6), which is why we are
adding them as axioms.

2.4 CondSUEqω(6): Conditional SU Equational Logic over 6

The final two systems that interest us, in this and the next subsection, are
not subsystems of LKe, but infinitary systems. They will be used for another
illustration of a Malcev-type theorem for N-standard algebras (see Section 6,
Theorem 4). However they will not be used in the investigation of the relation-
ship between computability and algebraic specifiability in Section 8.

A (6-)SU (standard universal) equation is formed by prefixing an equation by
a string of 0 or more universal quantifiers of sort nat. A conditional SU equation

is a formula of the form

R1 ∧ · · · ∧ Rn → R (∗∗∗)

where n ≥ 0 and Ri and R are SU equations. A conditional SU equational

theory is a set of such formulae (or their universal closures). An SU equational

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 293

sequent is a sequent of the form

R1, . . . , Rn 7→ R

where n ≥ 0 and Ri and R are SU equations. This sequent corresponds to the
conditional SU equation (∗∗∗).

The system CondSUEqω(6) contains SU equational sequents. It contains the
equality axioms and the following inferences: the structural inferences, cut,
and the following rules for the universal number quantifier (where t : nat):

∀L :
R(t), Ŵ 7→ R

∀zR(z), Ŵ 7→ R
∀ω R :

· · ·Ŵ 7→ R(n̄) · · · (all n ∈ N)

Ŵ 7→ ∀zR(z)
(∗)

Note that the rule ∀ωR is actually an infinitary ω-rule.

2.5 FOLω(6): Full First-Order Logic with Equality and an ω-Rule over 6

This modifies the system FOL(6) (§2.1) by replacing the usual universal num-
ber quantifier rule ∀R by the infinitary rule ∀ωR (§2.4), also with the corre-
sponding rule ∃ωL dually. We omit details, except to point out that FOL + Ind(6)
can easily be interpreted in it.

We write Eq(6), BUEq(6) and SUEq(6) for the classes of equations, BU
equations and SU equations (respectively) over 6.

2.6 Conservativity Lemmas

One reason for the importance of (finite or infinite) conditional equational logic
lies in the following lemmas. First we need a definition which will be given
again in context in Section 7. Let F be a formal system (typically CondEq(6)
or CondEqω(6)), and let T be a theory over 6 (typically a conditional equational
or ω-conditional equational theory). We say that T determines nat in F if every
closed term of sort nat is, provably in F from T , equal to a numeral.

(1) (FOL over CondEq.) Let E be a 6-conditional equational theory, and let
Ŵ 7→ P be a 6-equational sequent. Then Ŵ 7→ P is provable from E in
FOL(6) if, and only if, it is provable from E in CondEq(6).

(2) (FOL+ Ind over CondEq.) Let E be a 6-conditional equational theory which
determines nat in CondEq(6), and let Ŵ 7→ P be a closed 6-equational
sequent. Then Ŵ 7→ P is provable from E in FOL(6) + Ind(6) if, and only
if, it is provable from E in CondEq(6).

(3) (FOL+ Ind over CondBUEq.) Let F be a 6-conditional BU equational theory
which determines nat in CondBUEq(6), and let Ŵ 7→ Q be a closed 6-BU
equational sequent. Then Ŵ 7→ Q is provable from F in FOL(6)+ Ind(6) if,
and only if, it is provable from F in CondBUEq(6).

(4) (FOLω over CondSUEqω.) Let G be a 6-conditional SU equational theory
over 6 which determines nat in CondSUEqω(6), and let Ŵ 7→ R be a closed

6-conditional SU equational sequent. Then Ŵ 7→ R is provable from G in
FOLω(6) if, and only if, it is provable from G in CondSUEqω(6).

All four lemmas can be proved by cut elimination. We omit proofs, except to
note briefly that the two conditions, that E determines nat and that Ŵ 7→ P

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

294 • J. V. Tucker and J. I. Zucker

is closed, are used in (2) and (3) to eliminate induction inferences, and in (4) to
eliminate cuts of formulae universally or existentially quantified over nat.

Remarks. (1) These conservativity lemmas (at least for simple equations)
also follow from the Birkhoff-Mal’cev-type completeness Theorems 1–4 in
Section 7.

(2) Infinitary systems come into their own when reasoning about infinite ob-
jects such as infinite streams of data. Some applications in this direction, using
a related infinitary system (CondEqω), are given in Tucker and Zucker [2001b].

3. SPECIFIABILITY OF FUNCTIONS BY THEORIES

3.1 Specifiability over Algebras and over Classes of Algebras

Recall from Section 2 that Lang(6) is the first order language over 6, with
equality as the only predicate at all sorts.

A 6-theory is just a set T of formulae in Lang(6). The axioms of T are the
formulae in T . We will be particularly interested in theories T satisfying certain
syntactic conditions; for example, T might be a set of conditional equations. This
is considered more carefully in Section 7.

We are also interested (when 6 is N-standard) in classes K of the N-standard

models of such 6-theories: K = NStdAlg (6, T) ⊆ NStdAlg(6). In this case
we say also that (6, T) is an (N-standard) specification for the adt K.

Assume, for the rest of this section, that 6, 6′ and 6′′ are N-standard sig-

natures with 6 ⊂ 6′ ⊂ 6′′. Also, A is an N-standard 6-algebra and A′ is an

N-standard 6′-algebra. Also, T is a 6-theory, T ′ is a 6′-theory and T ′′ is a

6′′-theory.

Note that any expansion of a standard algebra is also standard, and any
expansion of an N-standard algebra is also N-standard.

Definition 1. Let A′
1 and A′

2 be two 6′-algebras with A′
1|6 = A′

2|6 . Then A′
1

and A′
2 are 6′/6-isomorphic, written A′

1
∼=6′/6 A′

2, if there is a 6′-isomorphism
from A′

1 to A′
2 whose restriction to 6 is the identity on A′

1|6 .

Definition 2. Suppose A′ is a 6′-expansion of A. We say that (6′, T ′)
specifies A′ over A iff A′ is the unique (up to 6′/6-isomorphism) 6′-expansion
of A satisfying T ′; in other words:

(i) A′ |= T ′; and

(ii) for all 6′-expansions B′ of A, if B′ |= T ′ then B′ ∼=6′/6 A′.

We will occasionally write: “T ′ specifies A′ over A” instead of “(6′, T ′)
specifies A′ over A.”

An important special case of Definition 2 is the following.

Definition 2 f . Suppose 6′ = 6 ∪ { f }. We say that (6′, T ′) specifies f over

A iff f is the unique (up to 6′/6-isomorphism) function on A (of the type of f)
such that (A, f) |= T ′.

Definition 3. Suppose A′ is a 6′-expansion of A. We say that (6′′, T ′′)
specifies A′ over A with hidden sorts and/or functions iff A′ is the unique

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 295

(up to 6′/6-isomorphism) 6′-expansion of A such that some 6′′-expansion of
A′ satisfies T ′′; in other words:

(i) A′ is a 6′-reduct of a 6′′-model of T ′′; and

(ii) for all 6′-expansions B′ of A, if B′ is a 6′-reduct of a standard 6′′-model of
T ′′, then B′ ∼=6′/6 A′.

Again, an important special case:

Definition 3 f . Suppose 6′ = 6 ∪ { f }. We say that (6′′, T ′′) specifies f over

A with hidden sorts and/or functions iff f is the unique function on A (of the
type of f) such that some 6′′-expansion of (A, f) satisfies T ′′.

Definition 4. An operator 8: NStdAlg(6) → NStdAlg(6′) is expanding

(over 6) iff for all N-standard 6-algebras A, 8(A) is a 6′-expansion of A, i.e.,
8(A)|6 = A.

Example. The array construction A 7→ A∗ is an expanding operator.

Assume further, for the rest of this section, that 8 : NStdAlg(6) →

NStdAlg(6′) is an expanding operator over 6, and that K ⊆ NStdAlg(6).

Notation

(1) We will write A8 for 8(A).

(2) We write K8 for (the closure with respect to 6′-isomorphism of) the class
{A8 | A ∈ K} ⊆ NStdAlg(6′).

Definition 5

(a) (6′, T ′) specifies 8 uniformly over K iff for all A ∈ K, (6′, T ′) specifies A8

over A.

(b) (6′, T ′) specifies 8 uniformly over 6 iff (6′, T ′) specifies 8 uniformly over
NStdAlg(6).

PROPOSITION 1. Suppose (6′, T ′) specifies 8 uniformly over K.

(i) For A ∈ K, A |= T ⇔ A8 |= T + T ′.

(ii) If K = NStdAlg (6, T), then K8 = NStdAlg(6′, T + T ′).

Definition 6

(a) (6′′, T ′′) specifies 8 uniformly over K with hidden sorts and/or functions

iff for all A ∈ K, (6′′, T ′′) specifies A8 over A with hidden sorts and/or
functions.

(b) (6′′, T ′′) specifies 8 uniformly over 6 with hidden sorts and/or functions iff
(6′′, T ′′) specifies 8 uniformly over NStdAlg(6) with hidden sorts and/or
functions.

PROPOSITION 2. Suppose (6′′, T ′′) specifies 8 uniformly over 6 with hidden

sorts and/or functions.

(i) A |= T ⇔ A8 is a 6′-retract of a 6′′-model of T + T ′′.

(ii) If K = NStdAlg (6, T), then K8 = (NStdAlg(6′′, T + T ′′))|6′ .

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

296 • J. V. Tucker and J. I. Zucker

Interesting special cases of the above notions, in which the theories T , T ′

and T ′′ are subject to certain syntactic conditions, are considered below (§3.3)
and in Section 7. First we give an important example of a specification of an
expanding operator.

We write conditional equational specification and conditional BU equational

specification for specifications in which the formulae are all conditional equa-
tions and conditional BU equations, respectively.

3.2 Conditional BU Equational Specification of the Array Construction

Let ArrAx(6) be the following set of axioms in A (dropping sort subscripts):

Lgth(Null) = 0,
lessnat(z, Lgth(a)) = false → Ap(a, z) = δ,

Lgth(Update(a, z, x)) = Lgth(a),
eqnat(z, z0) = false → Ap(Update(a, z0, x), z) = Ap(a, z),
lessnat(z, Lgth(a)) = true → Ap(Update(a, z, x), z) = x,

Lgth(Newlength(a, z)) = z,
lessnat(z, z1) = true → Ap(Newlength(a, z1), z) = Ap(a, z),

Lgth(a1) = Lgth(a2) ∧ ∀z < Lgth(a1) [Ap(a1, z) = Ap(a2, z)] → a1 = a2.

The last axiom relates equality on s∗ to equality on s, for all equality sorts s

except nat (since there is no starred sort nat∗, as explained in §1.6).
Note that all the axioms of ArrAx(6) are conditional equations, except for

the last one, which is a conditional BU equation!

THEOREM 1. The specification (6∗, ArrAx(6)) specifies the array construc-

tion A 7→ A∗ uniformly over 6.

PROOF. (Outline): Given an N-standard 6-algebra A, and a 6-sort s, the
axioms for ‘Null’, ‘Newlength’ and ‘Update’ guarantee that at least all the
“standard” arrays over As are present (or can be “constructed”). On the other
hand, the axiom for array equality guarantees that there are no “non-standard”
arrays, i.e., no elements of A∗

s other than these.

This array specification will be considered again, from the viewpoints of spec-
ification of µPR∗ computations (§5.2), and initial algebra specifications (§8.2).

3.3 Reducing Conditional BU to Conditional Equational Specifications

THEOREM 2 (BU ELIMINATION). Let 6 ⊂ 6′, let A′ be a 6′-expansion of A,
and let F be a conditional BU equational 6′-theory which specifies A′ over A.

Then there is an expansion 6′′ of 6′ by function symbols, and a conditional

equational 6′′-theory E which specifies A′ over A, with hidden functions. If F

contains q occurrences of BU quantifiers, then 6′′ expands 6′ by q new function

symbols. Moreover, if F is finite, with e axioms (say), then so is E, with e + 4q

axioms.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 297

PROOF. The idea is to incorporate in the signature, for each BU quanti-
fier occurring in F, a characteristic function for that quantifier, or (expressed
differently) a function which computes that quantifier. Consider (for notational
simplicity) the case of an equation with a single BU quantifier

∀z < s(x) [t1(z, x) = t2(z, x)]. (∗)

with x : u. (In the general case, we “eliminate” the quantifiers successively,
from the inside out.) We adjoin, for each such BU quantifier (∗) occurring in F ,
a boolean-valued function symbol

f : nat × u → bool

intended to satisfy in A

f(n, x) = true ⇔ ∀z < n[t1(z, x) = t2(z, x)].

for all n ∈ N, x ∈ Au. This interpretation is imposed on f by adjoining to F the
following axioms giving the inductive definition for f :

f(0, x) = true

f(z, x) = true ∧ t1(z, x) = t2(z, x) → f(Sz, x) = true

f(Sz, x) = true → f(z, x) = true

f(Sz, x) = true → t1(z, x) = t2(z, x)

(∗∗∗)

and replacing (∗) in F by

f(s(x), x) = true. (∗∗∗∗)

In this way we replace F by a conditional equational 6′′-theory E, with the
stated properties.

Note that if F contains infinitely many occurences of BU quantifiers, then
6′′ contains, correspondingly, infinitely many new function symbols, which is
(strictly speaking) not allowed by our definition of signature, although it is
harmless enough here.

We will return to this topic in the context of initial algebra specifications
in §7.7.

4. COMPUTABLE FUNCTIONS

In this section we consider various notions of computability over abstract al-
gebras. (An equivalent approach, using an imperative model of programming
featuring the ‘while’ construct, was developed in Tucker and Zucker [1988, 2000]
where the equivalence of these two approaches are explained.) In §4.1 two
computability classes are introduced. In §4.2 two more classes are formed by
adjoining the µ operator to these.

4.1 PR(6) and PR∗(6) Computable Functions

Given an N-standard signature 6, we define PR schemes over 6 which gen-
eralise the schemes for primitive recursive functions over N in Kleene [1952].
They define (total) functions f either outright (as in the base cases (i)—(ii)

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

298 • J. V. Tucker and J. I. Zucker

below) or from other functions (g , . . . , h, . . .) (as in the inductive cases (iii)—(v))
as follows:

(a) Basic schemes: Initial functions

(i) Primitive 6-functions:

f (x) = F (x)

f (x) = c

of type u→s, for all the primitive function symbols F : u → s and
constant symbols c of 6, where x : u.

(ii) Projection:

f (x) = xi

of type u → si, where x = (x1, . . . , xm) is of type u = s1 × · · · × sm.

(b) Inductive schemes

(iii) Composition:

f (x) = h(g1(x), . . . , gm(x))

of type u → s, where gi: u → si (i = 1, . . . , m) and h : s1 × · · · × sm → s.

(iv) Definition by cases:

f (b, x, y) =

{

x if b = tt

y if b = ff

of type bool × s2 → s.

(v) Simultaneous primitive recursion on N: This defines, on each
A ∈ NStdAlg(6), for fixed m > 0 (the degree of simultaneity), n ≥ 0
(the number of parameters), and product types u and v = s1 × · · · × sm,
an m-tuple of functions f = (f1, . . . , fm) with f i: nat × u → si, such
that for all x ∈ Au and i = 1, . . . , m,

f i(0, x) = gi(x)

f i(z + 1, x) = hi(z, x, f1(z, x), . . . , fm(z, x))

where gi: u → si and hi: nat × u × v → s1 (i = 1, . . . , m).

Note that the last scheme uses the N-standardness of the algebras, i.e. the
carrier N.

For details of the syntax and semantics of PR schemes, see Tucker and Zucker
[1988, §4.1.5], from which it can be seen that a scheme for a function contains
(hereditarily) the schemes for all the auxiliary functions used to define it.

In the context of algebraic specification theory, it often turns out to be more
convenient to work with PR derivations instead of PR schemes. A PR derivation
is, roughly, a “linear version” of a PR scheme, in which all the auxiliary functions
are displayed in a list. More precisely:

Definition (PR Derivation). A PR(6) derivation α is a list of pairs

α = ((f0, σ 0), (f1, σ 1), . . . (fn, σ n)) (∗)

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 299

of functions (actually function symbols) f i and PR schemes σ i (i = 1, . . . , n)
where for each i, either f i is an initial function, or f i is defined by αi from
functions f j , for certain j < i. The derivation α is said to be a PR derivation of

fn, with auxiliary functions f0, . . . , fn−1. The type of α is the type of fn.

Notation. A PR(6)u→s scheme (or derivation) is a PR(6) scheme (or deriva-
tion) of type u → s.

Remarks. (1) The formalism of PR(6) derivations is equivalent to that of
PR(6) schemes: from a PR scheme we can derive an equivalent PR derivation
by “linearising” the subschemes, and conversely, given the derivation (∗), the
scheme σ n is equivalent to it. Below, we will usually work with derivations.

(2) A PR(6)u→s derivation α: u → s defines, or rather computes, a function
fA
α : Au → As, or, more generally, a family of functions {fA

α | A ∈ NStdAlg(6)}
uniformly over NStdAlg(6).

(3) We assume a standard Gödel numbering of PR(6) derivations, writing
pαq for the Gödel number of derivation α.

It turns out that a broader class of functions provides a better generalisation
of the notion of primitive recursiveness, namely PR∗ computability. A function
on A is PR∗(6) computable if it is defined by a PR derivation over 6∗, inter-
preted on A∗ (i.e., using starred sorts for the auxiliary functions used in its
definition).

4.2 µPR(6) and µPR∗(6) Computable Functions

The µPR schemes over 6 are formed by adding the inductive scheme to the PR
schemes of §4.1:

(vi) Least number or µ operator:

f (x) ≃ µz[g (x, z) = tt]

of type u → nat, where g : u × nat → bool is µPR. Here f (x) ↓ z if, and
only if, g (x, y) ↓ ff for each y < z and g (x, z) ↓ tt.

Note that this scheme also uses the N-standardness of the algebra. Also, µPR
computable functions are, in general, partial. We use the notation f (x) ↓ y

to mean that f (x) is defined and equal to y . The notation ‘≃’ means that the
two sides are either both defined and equal, or both undefined. The schemes
for composition and simultaneous primitive recursion are correspondingly
re-interpreted to allow for partial functions.

These schemes generalise the schemes given in Kleene [1952] for partial
recursive functions over N.

As before, we can define the concepts of µPR(6) derivations and µPR(6)
computability.

Again, a broader class turns out to be more useful, namely µPR∗ computabil-

ity. This is just PR∗ computability with µ.

Notation. PR(A) is the class of functions PR computable on A, and
PR(A)u→s is the subclass of PR(A) of functions of type u → s. Similarly for
PR∗(A), µPR(A), and so on.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

300 • J. V. Tucker and J. I. Zucker

There are many other models of computability, due to Moschovakis,
Friedman, Shepherdson and others, which turn out to be equivalent to µPR∗

computability: see Tucker and Zucker [2000, §7]. All these equivalences have
led to the postulation of a generalised Church-Turing Thesis for deterministic

computation of functions, which can be roughly formulated as follows:

Computability of functions on many-sorted algebras by deterministic

algorithms can be formalised by µPR∗ computability.

4.3 Equivalent Imperative Programming Models of Computation

In Tucker and Zucker [2000] we investigate computation on many-sorted 6-
algebras, using imperative programming models: While(6), based on the
‘while’ loop construct over 6, For(6), based similarly on the ‘for’ loop, and
While∗(6) and For∗(6), which use arrays, that is, auxiliary variables of starred
sort over 6.

Writing While (A) for the class of functions While-computable on A, and
so on, we can list the equivalences between the “schematic” and “imperative”
computational models as follows.

THEOREM

(i) PR (A) = For(A)

(ii) PR (A) = For∗(A)

(iii) µPR (A) = While (A)

(iv) µPR∗(A) = While∗(A),

in all cases, uniformly for A ∈ NStdAlg(6).

These results are all stated in Tucker and Zucker [2000], and can be proved
by the methods of Tucker and Zucker [1988].

4.4 Universal Function Theorem for µPR∗

The following is a uniform version of a theorem proved in Tucker and Zucker
[2000, §4.9] (using the equivalent formalism of While∗ programs):

THEOREM. For any 6-function type u → s, there is a µPR∗(6) derivation

υ: nat × u → s which is universal for µPR∗(6) derivations of type u → s.

In other words, we can enumerate all the µPR∗ derivations of type u → s:

α0, α1, α2, . . .

so that, putting

ϕA
i =df fA

αi
: Au → As

and

Univ A
u→s = fA

υ: N × Au → As

we have

Univ A
u→s(i, a) = ϕA

i (a)

for all A ∈ NStdAlg(6) and i = 0, 1, 2,

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 301

Remarks (Canonical Forms of µPR∗ Derivations). (1) From the construc-
tion of the universal µPR∗(6)u→s derivation υ Tucker and Zucker [2000, §4],
it can be seen that υ uses the µ-operator exactly once.

(2) For any µPR∗(6)u→s derivation α, the universal derivation υ : nat ×

u → s provides an equivalent canonical or normal form derivation α̂, such
that fA

α̂ = fA
α for all N-standard 6-algebras A. This canonical derivation is

formed in a simple way from υ, essentially by substituting the Gödel number
pαq of α for the distinguished nat variable of υ, so that for all N-standard A,

fA
α̂ = ϕA

pαq
= fA

α .

This is, in fact, a generalisation to NStdAlg(6) of Kleene’s [1952] Normal
Form Theorem for (essentially) µPR(N).

(3) From the constructions in (1) and (2) it follows that α̂ also uses the
µ-operator exactly once, and in such a way that for any N-standard A,

fA
α̂ is total if, and only if, this application of the µ-operator is total on A.

5. ALGEBRAIC SPECIFICATIONS FOR COMPUTABLE FUNCTIONS

We will consider functions f computable on a 6-algebra, by PR and µPR∗

derivations, and show that they are algebraically specifiable by conditional
equational, and conditional BU equational, theories.

We will also consider, in the context of metric algebras (i.e., algebras with
metrics such that the functions in the signature are continuous) a broader
class of functions than µPR∗ computable, namely those functions uniformly

approximable by µPR∗ computable functions, and show that such functions
are specifiable by conditional equations and inequalities, which are conditional
formulae built up from inequalities (t1 < t2) on the reals as well as equations
(t1 = t2) between terms of the same sort.

5.1 Algebraic Specifications for PR Computable Functions

Let 6 be an N-standard signature. For each PR(6) derivation α, there is a finite
set Eα of “specifying equations” for the function f , as well as the auxiliary
functions g = (g1, . . . , gkα

), defined by α.
The set Eα consists of equations in an expanded signature 6α = 6 ∪ {gα, fα},

where gα ≡ gα,1, . . . , gα,kα
. It is defined by course of values induction on the

length of the derivation α, with cases (i)—(v) (§4.1) according to the last
scheme in α. In fact, Eα is formed by adjoining, in each case, specifying equa-
tion(s) like those shown for that case in §4.1. These are simple (i.e., not condi-
tional) equations; for example, in the case (iv) definition by cases, there are two
equations:

f(true, x, y) = x

f(false, x, y) = y

and in the case (v) simultaneous primitive recursion, there are 2m equations

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

302 • J. V. Tucker and J. I. Zucker

(where m is the degree of simultaneity):

fi(0, x) = gi(x)

fi(z + 1, x) = hi(z, x, f1(z, x), . . . , fm(z, x))

for i = 1, . . . , m.
Thus we have an effective map α 7→ (6α, Eα) from PR(6) derivations to

(simple) equational specifications.
Now for each PR derivation α and N-standard 6-algebra A, let fA

α be the func-
tion on A computed by α, and let gA

α be the corresponding auxiliary functions
on A. Consider the operators

A 7→
(

A, fA
α

)

(∗)

and

A 7→
(

A, gA
α , fA

α

)

. (∗∗)

Recall the definition of uniform specification of an operator over a class of
6-algebras (§3.1, Definitons 5 and 6).

THEOREM 1 (EQUATIONAL SPECIFICATION OF PR FUNCTIONS). For each PR(6)
derivation α, the equational specification (6α, Eα) specifies the operator (∗∗)
uniformly over A ∈ NStdAlg(6). Hence it specifies the operator (∗) uniformly

over all N-standard 6-algebras A, with hidden functions.

PROOF. By course of values induction on the length of α.

In other words, the equations Eα specify not only fA
α , but also the auxiliary

functions gA
α , uniformly over all N-standard 6-algebras A.

Similarly with PR∗ computability: for a PR∗(6) derivation α, let Eα be the
set of specifying equations for the function fα and the auxiliary functions gα

defined by α, in the signature 6∗
α = 6∗ ∪ {gα, fα}.

COROLLARY. For each PR∗(6) derivation α, the equational specification

(6∗
α, Eα) specifies the operator (∗) uniformly over 6, with hidden sorts and

functions.

5.2 Algebraic Specifications for µPR∗ Computable Functions

We now consider µPR∗(6) derivations α. For each such derivation there is again
a finite set Fα of “specifying equations” for the function f defined by α and
its auxiliary functions g . This set is constructed like Eα (§5.1), by structural
induction on α. Now, however, Fα consists of conditional BU equations in a
signature 6∗

α = 6∗ ∪ {gα, fα}, because of the new case, i.e., scheme (vi) for
the µ-operator (§4.2), which results in the addition to Fα of the conditional BU
equation

(Fµ) ∀z < y (g0(x, z) = false) ∧ (g0(x, y) = true) → f(x) = y.

Again we have an effective map α 7→ (6∗
α, Fα) from µPR∗(6) derivations to

conditional BU equational specifications.
Now there are complications in the theory, since µPR∗ computable functions

are, in general, partial. We intend to systematically study specification theory

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 303

for partial algebras in a future paper. Here we limit ourselves to the case where
the µPR∗ computable function is, in fact, total.

As before, for a µPR∗ derivation α and an N-standard 6-algebra A, let fA
α be

the function on A defined by α, and let gA
α be corresponding auxiliary functions

on A∗. A further problem is that, even if fA
α is total, the functions gA

α might not
be. We will now show that we can, without loss of generality, restrict attention to
the case that the gA

α are also total. We accomplish this by the use of the uniform
derivations provided by the Universal Function Theorem for µPR∗ (§4.4), as we
now explain.

Definition. A µPR∗ derivation α is total on A iff the auxiliary functions gA
α ,

as well as fA
α , are all total on A∗.

TOTALITY LEMMA. Given any µPR∗(6) derivation α: u → s, we can effectively

find a µPR∗6 derivation α̂: u → s such that for any N-standard 6-algebra A,

(i) fA
α̂ = fA

α ;

(ii) if fA
α is total, then α̂ is total on A.

PROOF. This follows from the Universal Function Theorem and the three
remarks following it (§4.4).

Now consider the operators (∗) (§5.1 above) and

A 7→
(

A∗, gA
α̂ , fA

α̂

)

(∗∗∗)

where α̂ is constructed from α as in the totality lemma. Let 6∗
α = 6∗ ∪ { gα̂, fα̂ }.

Recall the definition of the array specification ArrAx(6) in §3.2, and the defini-
tion of the conditional BU specification Fα̂ of fA

α̂ (= fA
α).

THEOREM 2 (CONDITIONAL BU EQUATIONAL SPECIFICATION OF µPR∗ FUNCTIONS).
For each µPR∗(6) derivation α, let

F ∗
α =df ArrAx(6) + Fα̂

where α̂ is constructed from α as in the totality lemma. Then the conditional

BU equational specification (6∗
α, F ∗

α) specifies the operator (∗∗∗) in the following

sense: for any A on which fA
α is total,

(

A∗, gA
α̂ , fA

α̂

)

|= F ∗
α .

Hence (6∗
α, F ∗

α) specifies the operator (∗) uniformly over all N-standard

6-algebras A on which fA
α is total, with hidden sorts and functions.

PROOF. As with Theorem 1, by course of values induction on the length
of α.

Note that the specification given in Theorem 2 is uniform over all N-standard
6-algebras A on which α is total. In fact, there is a stronger form of uniformity
for µPR∗ computability, following from the Universal Function Theorem for
µPR∗. (Actually, this is already implicit in the construction of the derivation α̂ in
the totality lemma, which is really a normal form lemma for µPR∗ derivations.)

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

304 • J. V. Tucker and J. I. Zucker

THEOREM 3 (UNIVERSAL CONDITIONAL BU EQUATIONAL SPECIFICATION). For each

6-function type u → s we can effectively find a signature 6∗
u,s which expands

6∗ by function symbols, and a finite conditional BU equational specification

(6∗
u,s, F U

u,s(z)) which is universal for specifications of total µPR∗(6)-computable

functions of that type, in the following sense: it contains a distinguished number

variable z such that for each µPR∗(6) derivation α: u → s, and each N-standard

6-algebra A, if fA
α is total on A, then (6∗

u,s, F U
u,s(k̄)), where k = pαq, specifies fA

α

on A, with hidden sorts and functions.

(Here F U
u,s(k̄) is the result of substituting the numeral k̄ for z in F U

u,s(z).)
Next, by the BU Reduction Theorem (Theorem 2 in Section 3), we derive as

a corollary to Theorem 3:

THEOREM 4 (UNIVERSAL CONDITIONAL EQUATIONAL SPECIFICATION). For each 6-

function type u → s we can effectively find a signature 6∗′
u,s which expands

6∗
u,s (of Theorem 3) by function symbols, and a finite conditional specification

(6∗′
u,s, EU

u,s(z)) which is universal for specifications of total µPR∗(6)-computable

functions of that type, in the following sense: it contains a distinguished num-

ber variable z such that for each µPR∗(6) derivation α : u → s, and each

N-standard 6-algebra A, if fA
α is total on A, then (6∗′

u,s, EU
u,s(k̄)), where k = pαq,

specifies fA
α on A, with hidden sorts and functions.

From the above uniformity theorems it follows trivially that for a given
6-function type u → s there is a uniform bound to the lengths of conditional
BU 6∗-specifications, or conditional equational 6∗-specifications respectively,
for total µPR∗-computable functions on N-standard 6-algebras.

6. ALGEBRAIC SPECIFICATIONS FOR COMPUTABLY

APPROXIMABLE FUNCTIONS

We have shown that

computability ⇒ algebraic specifiability

where, for example, if “computability” means µPR∗ (or, equivalently, While∗)
computability, then “algebraic specifiability” means specifiability by conditional
BU equations.

It is natural to ask in what sense a converse holds. We will see below, that
a full converse to the above cannot be expected, since algebraic specifiability is
more powerful, in some sense, than µPR∗-computability. (In Section 7 we will
investigate partial converses.) We show here that in fact, on metric algebras,

computable approximability ⇒ algebraic specifiability.

“Computable approximability,” to be defined shortly, is a strong extension of the
notion of computability; while “algebraic specifiability” will be (re)defined so as
to permit the order relation (as well as equality) between pairs of terms of sort
real.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 305

6.1 Metric Algebras

We refer to Tucker and Zucker [1999] and Tucker and Zucker [2000, §6] for
definitions of (total) metric algebra and related concepts. We review some def-
initions and results from these references. (Note that in these references the
subject is discussed in the broader context of partial algebras.)

A metric 6-algebra (A, d), based on a 6-algebra A, is an algebra of the form

algebra (A, d)
import A

carriers R

functions ds: A2
s → R (s ∈ Sort(6))

end

where d is a family 〈ds | s ∈ Sort(6)〉 of metrics ds on the carriers As, where
(in the case that A is standard or N-standard) dbool and dnat are the discrete
metrics on B and N respectively, and such that the primitive functions on A

are all continuous under these metrics.
We will often write ‘d ’ for the metric ds, and ‘A’ for the metric algebra (A, d).

Examples. (a) The metric algebra R
d on the reals (“d” for “distance”) is

defined by

algebra R
d

import R
N

functions divnat: R × N → R,

dreal: R2 → R,

dnat: N2 → R,

dbool: B2 → R

end

where R
N is the N-standard algebra of reals (§1.4, Example (b)), divnat is divi-

sion of reals by naturals (where division by zero is defined as zero), the metric
on R is the standard one, and the metrics on N and B are discrete.

Note that R
d does not contain the (total) boolean-valued functions eqreal or

lessreal, since they are not continuous with respect to this metric.

(b) The interval metric algebra Id : Here the unit interval I = [0, 1] is
included as a separate carrier of sort ‘intvl’, again with the usual metric. This is
useful for studying real continuous functions with compact domain. (We could
also choose I = [−1, 1], etc.) The algebra Id is defined by

algebra Id

import R
d

carriers I

functions ιI : I → R,
dintvl: I2 → R

end

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

306 • J. V. Tucker and J. I. Zucker

where ιI is the embedding of I into R. Because of the importance of the met-
ric algebra Id as in our computation theory, let us review its construction. It
contains R with its standard ring operations, N and B with their standard op-
erations, functions for definition by cases on R, N and B, division of reals by
naturals, the unit line interval I and its embedding in R, and the standard
metrics on all four carriers.

6.2 Definitions and Theorems

Now let A be an N-standard metric 6-algebra with metric d.

Definition 1 (µPR∗ Computably Approximable Functions). A total function
f : Au → As on A is µPR∗ computably approximable, uniformly on A, if there
is a total µPR∗ computable function

G: N × Au → As

and a total computable function g : N → N on A such that, putting Gn =df

G(n, ·), the sequence Gn approximates f uniformly on Au with modulus of
approximation g , that is, for all n, k and all x ∈ Au,

k ≥ g (n) ⇒ d (Gk(x), f (x)) < 2−n.

Definition 2 (Fast µPR∗ Computably Approximable Functions). A total
function f : Au → As on A is fast µPR∗ computably approximable, uniformly

on A, if there is a total µPR∗ computable function G: N× Au → As on A such
that, putting Gn =df G(n, ·), the sequence Gn approximates f uniformly fast

on Au, i.e., for all n and all x ∈ Au,

d (Gn(x), f (x)) < 2−n. (∗)

Remark 1. It is easy to see that Definitions 1 and 2 are equivalent; for given
a (computable) approximating sequence Gn with modulus of approximation g ,
we can effectively replace it by the fast (computable) approximating sequence
G ′

n =df Gn ◦ g . We will therefore usually tacitly assume without loss of gener-
ality that our approximating sequences are fast, and work with the (simpler)
Definition 2.

Definition 3 (Fast µPR∗ Approximating Derivations). Let A be a metric
6-algebra. A derivation γ: nat × u → s is an approximating derivation for a
total function f : Au → As if (i) the function G: N × Au → As computed by γ

on A is total on A; and (ii) G and f satisfy (∗) above.

Note that at most one function is µPR∗ approximable by a given derivation
on any metric algebra.

Definition 4 (Conditional Equation or Inequality)

(a) A conditional equation or inequality is defined like a conditional equation,
except that the atomic statements may be either equations (t1 = t2) between
terms of the same sort, or order (t1 < t2) between terms of sort real.

(b) A conditional BU equation or inequality is defined like a conditional equa-
tion, except that the atomic statements may be either equations (t1 = t2) or

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 307

BU equations (∀z < t [t1 = t2]) between terms of the same sort, or inequal-
ities (t1 < t2) between terms of sort real.

Remark 2. Here we are treating the order relation on the reals as a new
atomic predicate of Lang(6∗) (like equality), not as a boolean-valued operation

lessreal: real2 → bool.

This predicate (unlike such an operation) does not form part of the signa-
ture 6. (See the analogous Remark concerning equality at the beginning of
Section 2.)

Note also that (∗) is a conditional inequality (actually a simple inequality,
without an antecedent).

Notation. We write µPR∗-Approx(A) for the class of µPR∗ computably ap-
proximable functions on A, and µPR∗-Approx(A)u→s for those of type u → s.

In preparation for the next theorem, we note that a “Universal Function The-
orem” holds for µPR∗-Approx(A), in the following sense. For any 6-function
type u → s, let

Hu, s =df UnivA
nat×u→s: N × N × Au → As

be the universal function for µPR∗(A)nat×u→s given by the Universal Func-
tion Theorem (§4.4). Then for each f ∈ µPR∗-Approx(A)u→s, there is a num-
ber k such that (writing Hu,s

k,n = Hu, s(k, n, ·)) the sequence of functions
Hu,s

k,0 , Hu,s
k,1 , Hu,s

k,2 , . . . uniformly approximates f . The number k can be chosen
as the Gödel number of an approximating derivation for f , that is, a derivation
γ: nat × u → s of the function Hu,s(k, ·). Combining this with Theorem 3 of
Section 5, we obtain:

THEOREM 1 (UNIVERSAL CONDITIONAL BU SPECIFICATION OF µPR∗ APPROXIMABLE

FUNCTIONS). For each 6-function type u → s we can effectively find a signa-

ture 6∗
u,s which expands 6∗ by function symbols, and a finite conditional BU

specification (6∗
u,s, F V

u,s(z)) consisting of conditional BU equations and inequal-

ities, which is universal for specifications of µPR∗(6)-computably approximable

functions of that type, in the following sense: it contains a distinguished number

variable z such that for each µPR∗(6) derivation γ: nat × u → s and each metric

6-algebra A and total function f : Au → As, if γ is an approximating derivation

for f on A, then (6∗
u,s, F V

u,s(k̄)), where k = pγq, specifies f on A, with hidden

sorts and functions.

PROOF. Define

F V
u,s(z) =df F U

u,s(z) + Einvexp + E∗(z)

where F U
u,s(z) is the conditional BU equational specification constructed as in

Theorem 3 in Section 5 for the universal function H for µPR∗ computable func-
tions of type nat × u → s, Einvexp is the set of specifying equations for the com-
putable real-valued function invexp(n) = 2−n, that is, its recursive definition:

invexp(0) = 1, invexp(Sn) = divnat(invexp(n), 2),

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

308 • J. V. Tucker and J. I. Zucker

and E∗(z) is the inequality (∗) above—or rather, its formal version

d(H(z, n, x), f(x)) < invexp(n). (∗∗)

(Note that every µPR∗ function G: N × Au → As is obtainable from H by sub-
stituting the Gödel number of its derivation for the first argument z of H.) Let
6∗

u,s be the signature formed by expanding 6∗ by symbols for H and invexp, as
well as the auxiliary functions used in their computations. Then for any µPR∗

derivation γ: nat × u → s, metric 6-algebra A and function f : N × Au → As,
if γ is an approximating derivation for f then (6∗

u,s, F V
u,s(k̄)) (where k = pγq)

is a conditional BU specification of f on A, with hidden sorts and functions,
consisting of conditional BU equations and inequalities.

Now, by adapting the BU Reduction Theorem (§3.3) to specifications with
inequalities, we derive as a corollary to Theorem 1:

THEOREM 2 (UNIVERSAL CONDITIONAL SPECIFICATION OF µPR∗ APPROXIMABLE

FUNCTIONS). For each 6-function type u → s we can effectively find a signa-

ture 6∗′
u,s which expands 6∗

u,s (of Theorem 1) by function symbols, and a fi-

nite conditional specification (6∗′
u,s, EV

u,s(z)), consisting of conditional equations

and inequalities, which is universal for specifications of approximably µPR∗(6)-
computable functions of that type, in the following sense: it contains a distin-

guished number variable z such that for each µPR∗(6)-derivation γ: nat × u → s

and each metric 6-algebra A and total function f : Au → As, if γ is an approxi-

mating derivation for f on A, then (6∗′
u,s, EV

u,s(k̄)), where k = pγq, specifies f on

A, with hidden sorts and functions.

Remark 3 (Replacing the Order Predicate by a Boolean-Valued Operation).
The order relation in the above specification is used in one place only: in the
(conditional) relation (∗) (or (∗∗)). In fact (Remark 2 above notwithstanding),
(∗) could be interpreted as a conditional equation (so that f is conditionally

equationally definable with hidden sorts and functions) by interpreting ‘t1 < t2’
as ‘lessreal(t1, t2) = true,’ where the boolean-valued operator

lessreal: real2 → bool

is included in the signature of the metric algebra over R. The problem here is
that (as discussed in Tucker and Zucker [1999]) whereas all functions in the
signature of metric algebras (and hence all functions computable over these)
are continuous, the (total) function lessreal is discontinuous. The only way to
restore continuity is to consider a partial continuous lessreal operator, which
leads to a study of topological partial algebras. This can be done, and the whole
of the present theory could be re-cast in such a context, but that would take us
too far afield from the present study.

Let us apply Theorem 2 to the classical notion of Gzegorczyk-Lacombe (GL)

computability on the unit interval I = [0, 1]. This includes all the well-know
functions of real analysis (sin, exp, log, etc.) restricted to I .

Notation. We write GLT
m(I) for the class of GL-computable total functions

f : Im → R.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 309

Many concrete models of computation on I are equivalent to this class
[Pour-El and Richards 1989; Weihrauch 2000]. It has been shown that (recall
the definition of Id in Example (b)):

GLT
m(I) = µPR∗-Approx (Id)intvl

m
→real.

(For details, see Tucker and Zucker [1999, §9]; Tucker and Zucker [2000, §5.9].)
Hence, again, a kind of “Universal Function Theorem” holds for GLT

m(I), in
the following sense. For m = 1, 2, . . . , let

Hm =df UnivI
d

nat×intvl
m

→real : N × N × Im → R

be the universal function for µPR∗(Id)nat×intvl
m

→real given by the Universal

Function Theorem (§4.4). Then for each f ∈ GLT
m(I), there is a number k, effec-

tively obtainable from the GL-code for f , such that (writing Hm
k,n = Hm(k, n, ·))

the sequence of functions Hm
k,0, Hm

k,1, Hm
k,2, . . . uniformly approximates f on I .

So by Theorem 2 applied to Id :

THEOREM 3 (UNIVERSAL SPECIFICATION OF GL COMPUTABLE FUNCTIONS). For

each m > 0 there is a signature 6∗
m which is an expansion of 6(Id)

∗
by finitely

many function symbols, and a finite conditional specification (6∗
m, EW

m (z))
consisting of conditional equations and inequalities, which is universal for

specifications of GLT
m(I), in the following sense: it contains a distinguished

natural number variable z such that each function f ∈ GLT
m(I) is specified (with

hidden sorts and functions) by a suitable substitution instance (6∗
m, EW

m (k̄)),
where k can be found effectively from a GL-code for f .

Remark 4 (Description of the Signature 6∗
m of Theorem 3). The signature

6∗
m is an expansion of 6(Id) (for a description of which see the remark at the

end of §6.1) by the following sorts and functions:

(i) the sorts and functions of the array structure over Id (§1.6);

(ii) the µPR∗ “universal function” F m for GLT
m(I) (as described in the above

discussion) together with the auxiliary functions in its derivation;

(iii) the function 2−n, used for assertions about computable approximations, as
explained in the proof of Theorem 1;

(iv) the characteristic function for BU quantification, as described in the proof
of the BU elimination theorem (§3.3).

Note that there is only one function of type (iv) in 6∗
m, namely that obtained

by eliminating the conditional BU equation Fµ (§5.2) specifying the (single!)
µ-operator occurrence in the µPR∗ derivation for Hm in (ii) (see Remark 1 in
§4.4). (There are no conditional BU equality axioms for arrays (§3.2) to elimi-
nate here, since real and intvl are not equality sorts.)

6.3 Illustration: Specification of Dynamical System

We illustrate the connection between algebraic specification methods and mod-
els of physical systems.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

310 • J. V. Tucker and J. I. Zucker

A deterministic dynamical system with finite dimensional state space S ⊆ Rn

and time T ⊆ R is represented in a model by a function

φ: T × S → S

where for t ∈ T , s ∈ S, φ(t, s) is the state of the system at time t with initial
state s. For example, the state of a particle in motion is represented by position
and velocity. Thus, for a system of n particles in 3-dimensional space, the state
space has 6n dimensions.

In practice, the model is specified by ordinary differential equations (ODEs)
whose complete solution is φ. Specifically, in the modern qualitative theory
of ODEs [Arnold 1973], φ is differentiable, and the function φt : S → S

defined by

φt(s) = φ(t, s) for t ∈ T, s ∈ S,

is a 1-parameter group of diffeomorphisms of S; the action of this group on S

is called the flow on the phase space S. This flow can be specified by a vector
field on S.

In modelling a physical system, one aim is to compute values of the function
φ on some time interval and subspace of the space of initial conditions. Many
methods exist to derive algorithms for φ from the equations that define it.
Indeed, various fields of applied mathematics exist in order to design such
equations, and the field of numerical analysis exists to design such solution
methods.

Conversely, we suppose that φ can be simulated on a digital computer, that
is, φ is a classically computable (e.g., GL-computable) function. Assume also

that the state space S is the unit n-cube In, and the time dimension T is the unit

interval I . Thus

φ: I × In → I.

We can now apply Theorem 3 to show that the dynamical system has a finite
algebraic specification.

THEOREM 4 (UNIVERSAL SPECIFICATION OF COMPUTABLE DYNAMICAL SYSTEMS).
For each n > 0 there is a signature 6̃

∗

n which extends 6(Id)
∗

by function

symbols, and a finite conditional specification (6̃
∗

n, ẼW
n (z)) consisting of con-

ditional equations and inequalities, which is universal for all classically

computable dynamical systems on the unit n-cube In over the unit time

interval I .

Note that 6̃
∗

n is essentially the signature 6∗
m of Theorem 3, with n = m + 1.

We have shown above how powerful algebraic specifications are, even for
topological data types. More research needs to be done to determine the extent
of its power, especially on metric algebras. Here, topological notions such as
continuity can play a part, as we see from the following example.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 311

6.4 Example: Specification of Function Assuming Continuity

Consider the two equations for a (total) function f on the real line:

f (x + y) = f (x) × f (y), f (1) = c (∗)

for some constant c > 0. If we assume that f is continuous, even at one
point, then it is easy to see that these equations are satisfied uniquely by the
function

f (x) = cx .

However, in the absence of any such continuity assumption, it can be shown
that (for any c > 0) there are 22ℵ0 non-constructive solutions to (∗). Here
“nonconstructive” means both that these solutions are non-computable, and
that their existence is proved by nonconstructive means, using Zorn’s Lemma
to show the existence of a Hamel basis on R, that is, a maximal linear indepen-
dent subset of R over Q.

Note that any solution f of (∗) is a homomorphism from the additive group
of reals to the multiplicative group of positive reals.

This example suggests the following

QUESTION. On metric algebras, does conditional equational specifiability,

together with a topological condition such as continuity, imply computability?

Specifically, is there a continuous function on I which is definable by equa-
tions but not approximably computable?

Note, in this connection, that there are other “equational specifications” for
the exponential function ex :

(1) the differential equation f ′(x) = f (x) with initial condition f (0) = 1;

(2) from the polynomial approximations given by the partial sums of the
Maclaurin expansion

∑∞
i=0 xi/i!, a specification consisting of conditional

equations and inequalities can be derived by the methods of this section for
approximating computations;

(3) similarly, from the polynomial approximations, (1 + x/n)n, a specification
consisting of conditional equations and inequalities can be derived.

Note that in the first of these specifications, differentiability of f is (of course)
implicitly assumed, and uniqueness of the solution follows by the Lipschitz
condition; however no assumptions of continuity are needed in (2) or (3).

The above question points to an open field of research. The investigation of
computable solutions of recursive equations in Gärtner and Hotz [2000] would
be relevant here.

7. INITIAL ALGEBRA SPECIFICATIONS WITH CONDITIONAL EQUATIONS

AND CONDITIONAL BU EQUATIONS

In this section we will consider theories T , which we assume to be for-
malised in logical formalisms F of the kind described in Section 2; for example,
F = CondBUEq(6).

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

312 • J. V. Tucker and J. I. Zucker

7.1 Pre-Initial and Initial Models

In this subsection (only), we make no assumptions concerning the (N-)stand-
ardness of signatures or algebras. Let 6 be a signature and let K be a 6-adt.

A formalism F is said to be valid for K if the axioms and inference rules of
F hold for all algebras in K. Note, for example, that CondBUEq(6) is valid for
NStdAlg (6), but not, in general, for Alg (6).

A 6-algebra A is pre-initial for K if there is a unique 6-homomorphism from
A to every algebra in K; pre-initial in that it might not itself belong to K. (The
notion of 6-homomorphism between 6-algebras is defined as usual [Meinke
and Tucker 1992].)

Note that the closed term algebra T(6) is pre-initial for K.
An initial algebra of K is a pre-initial algebra which belongs to K. As is easily

seen, any two initial algebras of K must be 6-isomorphic. We denote any initial
algebra of K by Init(6, K).

We will be interested in the case that

K = Alg (6, T),

the class of models of a first-order 6-theory T , where T may have certain
syntactic restrictions. We will assume:

r in this subsection that T is a conditional equational theory;
r in §7.2 likewise, but restrict attention to N-standard models of T ;
r in §7.3 that T is a conditional BU equational theory (again with N-standard

models);
r and in §7.4 that it is a conditional SU equational theory (again with

N-standard models).

(Recall the formal systems defined in Section 2.) Finally in §7.5 we will show
how conditional BU equational initial algebra specifications can be “reduced”
to conditional equational initial algebra specifications.

Let T be a 6-theory. We write Init(6, T) for the initial algebra Init(6,
Alg (6, T)) (if it exists), and call it the initial model of T .

Consider the closed term algebra T(6, T, F) formed from T(6) by identifying
closed terms provably equal from T , in some formalism F , that is,

T(6, T, F) ⇔df T(6)/≈T,F

where

t1 ≈T,F t2 ⇔df t1 = t2 is provable from T in F .

LEMMA . If F is valid for Alg (6, T), then T(6, T, F) is pre-initial for

Alg (6, T).

We will investigate whether T(6, T, F) is, further, initial for Alg (6, T),
i.e., whether

T(6, T, F) = Init(6, T).

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 313

INITIALITY LEMMA. Suppose F is valid for Alg (6, T). If T(6, T, F) ∈

Alg (6, T), then it is (6-isomorphic to) Init(6, T).

Definitions. Let A be a 6-algebra.

(1) A has an initial algebra specification (6, T) if A ∼= Init(6, T).

(2) A has an initial algebra specification with hidden sorts and/or functions

(6′, T ′) if 6′ is an expansion of 6 by sorts and/or functions, T ′ is a
6′-theory and

A ∼= Init(6, Alg(6′, T ′)|6).

THEOREM 1 [MAL’CEV 1973]. Let E be a conditional equational theory over

6. Let I =df T(6, E, CondEq(6)). Then I is an initial model of E. Furthermore,

if t1, t2 are two closed 6-terms of the same sort, then the following are equivalent:

(i) t1 and t2 have the same value in I,

(ii) t1 and t2 have the same value in all models of E,

(iii) t1 = t2 is provable from E in CondEq(6),

(iv) t1 = t2 is provable from E in FOL(6).

PROOF. The main thing here is to show that I |= E, from which (ii) ⇒ (i) will
follow. Since I is a (closed) term model, it is sufficient to show that I satisfies all
closed substitution instances of the axioms of E. So consider any closed instance
P1 ∧ · · · ∧ Pn → P of an axiom of E, where Pi and P are closed equations. Note
that the corresponding sequent

P1, . . . , Pn 7→ P (∗)

is derivable from E in CondEq(6), by the substitution rule. Suppose I |= Pi for
i = 1, . . . , n. Then, by the definition of I , Pi is provable from E in CondEq(6).
But then P is also provable, by repeated (atomic) cuts of the sequent (∗) with
the sequents 7→Pi, and so I |= P .

Hence I |= E. It follows, by the Initiality Lemma, that I is an initial model
of E. Hence also (ii) ⇒ (i). The further implications (i) ⇒ (iii) ⇒ (iv) ⇒ (ii) are
all trivial.

Remark (Completeness and Conservativity). Mal’cev’s Theorem [Mal’cev
1973], in the form given above, can be viewed as expressing both (a) complete-

ness of CondEq(6), given by the implication (ii) ⇒ (iii), and (b) conservativity

of first order logic with equality over CondEq(6), given by the implication
(iv) ⇒ (iii). (Cf. conservativity lemma (1) and the remark in §2.6.)

Necessary and sufficient conditions for the existence of initial models of
theories are given in Mahr and Makowsky [1984].

7.2 Initial N-Standard Models

Assume, from now on, that 6 is N-standard, and that K consists of
N-standard 6-algebras; for example, K = NStdAlg (6, T), for some 6-theory
T . Then T(6, T, F), although it is pre-initial for K, might fail to be initial for

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

314 • J. V. Tucker and J. I. Zucker

K for two reasons: it might not satisfy T , and it might not even be N-standard!
(We return to the second point below.)

An initial N-standard model of T is an initial algebra of NStdAlg (6, T).
Any two initial N-standard models of T are 6-isomorphic. We denote any such
model by

InitNStdAlg (6, T) =df Init(6, NStdAlg (6, T)).

N-STANDARD INITIALITY LEMMA. Suppose F is valid for NStdAlg (6, T).

If T(6, T, F) ∈ NStdAlg (6, T) then it is (6-isomorphic to) InitNStd-

Alg (6,T).

Definition 1. Let A be an N-standard 6-algebra.

(a) A has an initial N-standard algebra specification (6, T) if A ∼=

InitNStdAlg (6, T).

(b) A has an initial N-standard algebra specification with hidden sorts and/or

functions (6′, T ′) if 6′ is an expansion of 6 by sorts and/or functions, T ′ is
a 6′-theory and

A ∼= Init(6, NStdAlg(6′, T ′) |6).

Note that InitNStdAlg (6, T) (if it exists) might not be an initial model
of T—T might have another, non-N-standard, initial model, as the following
example demonstrates.

Example (Initial N-Standard Model of a Theory Which is Not an Initial Model

of That Theory). Let 6 contain (in addition to the standard operations on nat

and bool) a constant uı : bool, and let T contain the single axiom ‘uı 6= true’.
Then the term algebra T(6) trivially satisfies T , and is hence (by the Initial-
ity Lemma of §7.1) an initial model of T . It is not N-standard, since it has a
3-element carrier of sort bool, with distinct denotations of true, false and uı.
There is, however, also an initial N-standard model of T with an N-standard
(2-element) carrier of sort bool, formed by identifying uı and false.

Now T(6, T, F) may fail to be N-standard for two reasons: that T proves
“too little” or “too much,” roughly speaking. The first reason is connected with
non-N-standard interpretations of the sorts nat and bool. Thus, there may be a
function symbol f in 6 with range sort nat, without corresponding axioms in T

capable of “reducing” f (t), for some closed term t, to a numeral. Similarly (as in
the above example), not all closed boolean terms (i.e., terms of sort bool) may be
(provably in T) equal to true or false. (In the terminology of Guttag and Horning
[1978] the specification (6, T) is not “sufficiently complete.”) The second reason
is that T may be inconsistent, in the sense that it proves ‘true = false’ (or,
equivalently in a suitable weak background theory, ‘0 = 1’). This motivates the
following definitions. Note that we must (to begin with) speak of provability
relative to some formal system F , which will typically be one of the system
CondEq(6) or CondBUEq(6) of Section 2.

Definition 2. T is consistent in F if the equation ‘true = false’ is not provable
in F from T .

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 315

Definition 3. T determines nat in F if every closed term of sort nat is, prov-
ably in F from T , equal to a numeral; and T determines bool in F if every closed
term of sort bool is, provably in F from T , equal to true or false.

Definition 4 (N-Standardness Axioms)

(a) NStdAx(6) is the following set of conditional equations:

and(true, true) = true, and(true, false) = and(false, true) = and(false, false) = false,
or(false, false) = false, or(true, true) = or(true, false) = or(false, true) = true,

not(true) = false, not(false) = true,
ifs(true, xs

1, xs
2) = xs

1, ifs(false, xs
1, xs

2) = xs
2,

eqnat(0, 0) = true, eqnat(Sz, 0) = eqnat(0, Sz) = false,
eqnat(Sz1, Sz2) = eqnat(z1, z2),

lessnat(0, Sz) = true, lessnat(z, 0) = false,
lessnat(Sz1, Sz2) = lessnat(z1, z2),

eqs(x
s, xs) = true,

eqs(x
s
1, xs

2) = true → ts
1 = ts

2.

where, in the axioms for ifs, s ranges over all 6-sorts other than bool; and in
the axioms for eqs, s ranges over all 6-equality sorts other than nat,

(b) NStdAx0(6) is the set of all closed 6-substitution instances of NStdAx(6).

Note that NStdAx(6) + Ind(6) holds in any N-standard 6-algebra.
We use the terminology: T proves NStdAx0(6) in F to mean: NStdAx0(6) is

derivable from T in F .
We now state some lemmas which give sufficient conditions for a term model

T(6, T, F) to be N-standard.

LEMMA 1. (N-STANDARDNESS LEMMA). Suppose that in F

(i) T is consistent,

(ii) T determines nat and bool, and

(iii) T proves NStdAx0(6).

Then T(6, T, F) is N-standard.

LEMMA 2. If 6 is strictly N-standard then NStdAx0(6) determines nat and

bool in CondEq(6).

PROOF. By structural induction on all closed 6-terms of sort nat and bool

(simultaneously).

The following is an immediate consequence of Lemmas 1 and 2.

LEMMA 3. (STRICT N-STANDARDNESS LEMMA). Suppose 6 is strictly N-

standard, F is at least as strong as CondEq(6), and in F

(i) T is consistent, and

(ii) T proves NStdAx0(6) (or NStdAx(6)).

Then T(6, T, F) is N-standard.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

316 • J. V. Tucker and J. I. Zucker

7.3 Conditional Equational Theories

We now give the analogue of Mal’cev’s Theorem (§7.1) for N-standard models
of conditional equational theories.

THEOREM 2. Let E be a conditional equational theory over 6. Suppose that

in CondEq(6), E is consistent, determines nat and bool, and proves NStdAx0(6).
Then I =df T(6, E, CondEq(6)) is an initial N-standard model of E. Further-

more, if t1, t2 are two closed 6-terms of the same sort, then the following are

equivalent:

(i) t1 and t2 have the same value in I,

(ii) t1 and t2 have the same value in all N-standard models of E,

(iii) t1 = t2 is provable from E in CondEq(6),

(iv) t1 = t2 is provable from E in FOL(6) + Ind(6).

PROOF. By the N-standardness Lemma (§7.2), I is an N-standard algebra.
As in Theorem 1, the main thing is to show that I |= E. This is done exactly as
in the proof of Theorem 1. It follows, by the N-standard Initiality Lemma (§7.2),
that I is an initial N-standard model of E. The rest of the proof is similar to
that for Theorem 1. Note for the implication (iv) ⇒ (ii), we use the fact that the
rule Ind(6) is valid for N-standard 6-algebras.

Remarks. (1) By Lemma 2 in §7.2, the assumption in the theorem that E

determines nat and bool can be replaced by the assumption that 6 is strictly
N-standard.

(2) (Completeness and Conservativity.) Here again, the implication (ii) ⇒ (iii)
can be construed as a completeness theorem, and (iv) ⇒ (iii) as a conservativity
theorem. (See the Remark in §2.6 and the Remark following Theorem 1.)

(3) (The N-Standardness Axioms.) We have “incorporated” the N-standard-
ness axioms NStdAx0(6) in the theory E, so to speak, by assuming that E

proves them. Another feasible approach would be to incorporate these axioms
in the logics CondEq, CondBUEq and FOL, by adding them as axioms (as we
did with the boundedness axioms BddAx in CondBUEq). This would entail some
minor re-wording of the theorems.

We turn our attention to theories with syntactic structure more complicated
than conditional equations.

7.4 Conditional BU Equational Theories

We give the analogue of Mal’cev’s Theorem for N-standard models of BU
conditional equational theories.

THEOREM 3. Let F be a conditional BU equational theory over 6. Sup-

pose that in CondBUEq(6), F is consistent, determines nat and bool and proves

NStdAx0(6). Then I =df T(6, F, CondBUEq(6)) is an initial N-standard model

of F . Furthermore, if t1, t2 are two closed 6-terms of the same sort, then the

following are equivalent:

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 317

(i) t1 and t2 have the same value in I,

(ii) t1 and t2 have the same value in all N-standard models of F,

(iii) t1 = t2 is provable from F in CondBUEq(6),

(iv) t1 = t2 is provable from F in FOL(6) + Ind(6).

PROOF. By the N-standardness Lemma, I is N-standard. As in Theorems 1
and 2, the main thing is to show that I |= F . Again, since I is a term model, it
is sufficient to show that I satisfies the set of closed substitution instances of F .
First note that, by definition, I satisfies precisely all closed equations provable
from F in CondBUEq, that is, for any closed equation P :

I |= P ⇔ F ⊢ P (∗)

where ‘⊢’ here means provability in CondBUEq. Further, by use of the bound-

edness axioms BddAx of CondBUEq (§2.3), the same holds for any closed BU

equation Q :

I |= Q ⇔ F ⊢ Q . (∗∗)

For suppose Q ≡ ∀z < t P (z), where P (z) is an equation. Since I is N-standard,

I |= t = n̄ (∗∗∗)

for some (unique) n. Then

I |= ∀z < t P (z) ⇔ for all k < n, I |= P (k̄)

⇔ for all k < n, F ⊢ P (k̄) by (∗)

⇔ F ⊢ ∀z < t P (z) by BddAx and (∗∗∗).

Now consider any closed instance f ≡ Q1 ∧ · · · ∧ Qm → Q of an axiom of F

(where Q i and Q are closed SU equations). Suppose I |= Q i for i = 1, . . . , m.
Then by (∗∗) Q i is provable from F in CondBUEq. But then so is Q , by repeated
cuts of the sequent Q1, . . . , Qm 7→ Q corresponding to f with the sequents
7→Q i, and so I |= Q .

Remarks. (1) As before, the assumption in the theorem that F determines
nat and bool can be replaced by the assumption that 6 is strictly N-standard.

(2) (Completeness and Conservativity.) Again, the implication (ii) ⇒ (iii) can
be construed as a completeness theorem, and (ii) ⇒ (iii) as a conservativity
theorem.

7.5 Conditional SU Equational Theories

Now we turn to the infinitary conditional SU equational logic (§2.4). Although
it will not be used further in the paper, it is interesting in its own right.

Remember that the infinitary ω-rule ∀ω R obviates the need for an induction
rule.

THEOREM 4. Let G be a conditional SU equational theory over 6. Suppose

that in CondSUEqω(6), G is consistent, determines nat and bool and proves

NStdAx0(6). Then I =df T(6, G, CondSUEqω(6)) is an initial N-standard model

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

318 • J. V. Tucker and J. I. Zucker

of G. Furthermore, if t1, t2 are two closed 6-terms of the same sort, then the

following are equivalent:

(i) t1 and t2 have the same value in I,

(ii) t1 and t2 have the same value in all N-standard models of G,

(iii) t1 = t2 is provable from G in CondSUEqω(6),

(iv) t1 = t2 is provable from G in FOLω(6).

PROOF. By the N-standardness Lemma, I is N-standard. Again, the main
thing is to show that I satisfies closed substitution instances of axioms of G.
By definition, for any closed equation P :

I |= P ⇔ G ⊢ P (∗)

where ‘⊢’ here means provability in CondSUEqω. Further, by use of the ∀ω R rule,
the same holds for any closed SU equation R:

I |= R ⇔ G ⊢ R.

For suppose R ≡ ∀zP (z), where P (z) is an equation. Then

I |= ∀zP (z) ⇔ for all n, I |= P (n̄)

⇔ for all n, G ⊢ P (n̄) by (∗)

⇔ G ⊢ ∀zP (z) by ∀ω R

The rest of the proof follows the pattern of Theorems 1, 2 and 3.

Remarks. (1) As before, the assumption in the theorem that G determines
nat and bool can be replaced by the assumption that 6 is strictly N-standard.

(2) (Completeness and conservativity.) Once again, the implication (ii) ⇒ (iii)
can be viewed as a completeness theorem, and (iv) ⇒ (iii) as a conservativity
theorem.

7.6 Open Term Algebras

So far (Theorems 1, 2, 3 and 4) we have concentrated on closed term algebras.
We could also formulate our results in a more general setting, namely, with
term algebras constructed from open terms: terms containing free variables
(from a given set X).

The problem here is that with open terms (an analogy of) the N-Standardness
Lemma (§7.2) will fail in general. However, under a certain syntactic con-
dition (the “N-term condition” below), a version of this Lemma can still be
formulated.

First we need some definitions and notation. Given a signature 6, and a
set X ⊆ Var (6), let T(6, X) be the set of 6-terms in X : 6-terms containing
variables from X only. In particular, for X = ∅, we have the set of closed
6-terms T(6) = T(6, ∅).

Given a first-order 6-theory T and formalismF which is valid for Alg (6, T),
let T (6, X , T, F) be the 6-term algebra formed from T(6, X) by identify-
ing terms provably equal from T in F . (The closed term algebra T(6, T, F)
considered above corresponds to the special case X = ∅).

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 319

The algebra I =df T (6, X , T, F) is free for T over X . This means that
for every model A of T , and every assignment ρ: X → A of elements of A to
variables in X (of the same sort), there is a unique 6-homomorphism h: I → A

such that h ↾ Xρ. (This reduces to initiality in Alg (6, T) when X = ∅.)
Note that I need not itself be a model of T . However, this will be the case,

provided T satisfies certain syntactic conditions (e.g., if T is a conditional equa-
tional theory; cf. Theorem 1 above).

Again, assuming that 6 is N-standard, we are interested in the question of
whether I is N-standard. A useful criterion in this connection is the following
syntactic condition on 6 and X :

N-TERM CONDITION FOR (6, X). No 6-term of sort nat or bool contains any

variables from X .

Remarks. (1) The N-term condition for (6, X) is trivially satisfied when
X = ∅.

(2) When 6 is strictly N-standard, it is equivalent to the condition:

there are no variables in X of sort nat or bool.

This follows from Remark 3 in §1.5.
Now the theory given above, and specifically Theorems 1 to 4, can be gener-

alised to the case of open term models T (6, X , T, F) , where (6, X) satisfies
the N-term condition. First, the N-standardness lemma becomes:

N-STANDARDNESS LEMMA
X. Suppose that (6, X) satisfies the N-term condi-

tion. Suppose further that in F

(i) T is consistent,

(ii) T determines nat and bool, and

(iii) T proves NStdAx0(6).

Then T (6, X , T, F) is N-standard.

Next, the strict N-standardness lemma becomes (using Remark 2 above):

STRICT N-STANDARDNESS LEMMA
X. Suppose 6 is strictly N-standard, and

there are no variables in X of sort nat or bool. Suppose also F is at least as

strong as CondEq(6), and in F

(i) T is consistent, and

(ii) T proves NStdAx(6).

Then T (6, X , T, F) is N-standard.

Consider next, for example, Theorem 2. This can be reformulated as follows.

THEOREM 2X . Suppose (6, X) satisfies the N-term condition. Let E be a con-

ditional equational theory over 6. Suppose that in CondEq(6), E is consistent, de-

termines nat and bool, and proves NStdAx(6). Then I =df T(6, X , E, CondEq(6))
is an N-standard model of E, which is free for E over X . Furthermore, if t1, t2

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

320 • J. V. Tucker and J. I. Zucker

are two terms in T(6, X) of the same sort, then the following are equivalent:

(i) t1 and t2 have the same value in I,

(ii) t1 and t2 have the same value in all N-standard models of E,

(iii) t1 = t2 is provable from E in CondEq(6),

(iv) t1 = t2 is provable from E in FOL(6) + Ind(6).

The strict N-standardness LemmaX , and Theorem 2X , will be used in
Section 9.

7.7 Reducing Conditional BU to Conditional Equational Specifications

We re-consider the work of §3.3 from the viewpoint of initial algebra
specifications.

THEOREM 5 (BU ELIMINATION FOR INITIAL ALGEBRA SPECIFICATIONS). Let F be a

conditional BU equational theory over 6. Then there is an expansion 6′ of 6

and a conditional equational theory E ′ over 6′ which is equivalent to F (relative

to N-standard models) in the sense that:

(i) if A is an N-standard 6-model of F , then it has a 6′-expansion which is a

N-standard model of E ′;

(ii) if A ∼= InitNStdAlg (6, F) then it has a unique (up to 6′/6-isomorphism)

6′-expansion A′ such that A′ ∼= InitNStdAlg(6′, E ′);

(iii) if A′ is an N-standard 6′-model of E ′, then its 6-reduct A is an N-

standard model of F ; and if A′ ∼= InitNStdAlg(6′, E ′) then A ∼=

InitNStdAlg (6, F).

If F contains q occurrences of BU quantifiers, then 6′ expands 6 by one new

sort and q new function symbols. Moreover, if F is finite, with e axioms (say),

then so is E ′, with e + 4q axioms.

PROOF. The idea, again, is to incorporate in the signature, for each BU quan-
tifier occurring in F , a characteristic function for that quantifier. The problem
with adjoining a boolean-valued function symbol f : nat × u → bool satisfying
(∗∗) in the BU elimination theorem in §3.3, is in the case that A is an initial
N-standard model of F . In order that its 6′-expansion A′ be N-standard, the
value of f(n, x) must be either true or false for every value of the arguments n, x.
Furthermore, in order that A′ also be initial, the 6-homomorphism h from A

to every N-standard model B of F must be extendible to a 6′-homomorphism
h′ from A′ to the 6′-expansion B′ of B. However, the rhs of (∗∗) in §3.3 will
hold “more often” in B than in A (since B is a homomorphic image of A), with
a corresponding change in the value of f(n, x) from false to true! Hence h cannot,
in general, be extended as desired. (Making f a 0,1-valued function will cause
exactly the same problem.)

We therefore adjoin a special sort D for the range of such functions f, with a
constant d which takes the place of ‘true’ in (∗∗) in §3.3. (The point is that when
the condition on the rhs of (∗∗) fails, f(n, x) is not “forced” to equal anything else
at all.) Now for each BU quantifier as in (∗) of §3.3, adjoin to the signature the

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 321

function symbol

f: nat × u → D,

and adjoin the axioms formed from (∗∗∗) and (∗∗∗∗) in §3.3 by replacing ‘true’
by ‘d’ throughout. In this way we replace F by a conditional equational theory
E ′ in 6′, with the stated properties.

Remark. If A is an N-standard model of F , then its N-standard
6′-expansion A′ modelling E ′, given by part (i) of the theorem, is not (in gen-
eral) uniquely determined. However, the added condition of initiality (on A and
A′) determines A′ uniquely.

8. INITIALITY-PRESERVING OPERATORS ON N-STANDARD ALGEBRAS

In this section we combine the theory of Section 5 (“computability ⇒ algebraic
specifiability”) with the initial algebra theory of Section 7.

8.1 Initiality Preserving Operators and the HEP

Assume now (as in §3.1) that 6′ and 6′′ are N-standard signatures with 6 ⊂

6′ ⊂ 6′′, and 8: NStdAlg(6) → NStdAlg (6′) is an expanding operator over
6. Recall Definitions 5 and 7 in §3.1.

Definition 1. 8 is initiality preserving (with respect to 6 and 6′) iff for all
K ⊆ NStdAlg(6) and A ∈ NStdAlg(6), A is initial in K iff A8 is initial in K8.

LEMMA 1. Suppose 8 is initiality preserving, and (6′, T ′) specifies 8 uni-

formly over 6. Then for any 6-theory T and N-standard 6-algebra A,

A ∼= InitNStdAlg (6, T) ⇔ A8 ∼= InitNStdAlg (6′, T + T ′).

LEMMA 2. Suppose 8(A) = 9(A)|6′ for all A ∈ NStdAlg(6), where

9 : NStdAlg(6) → NStdAlg(6′′)

is an expanding operator which is initiality preserving with respect to 6 and

6′′. Then 8 is initiality preserving, and for any 6′′-theory T ′′ and N-standard

6-algebra A, if (6′′, T ′′) specifies 9 uniformly over 6, then (6′′, T ′′) specifies

8 uniformly over 6 with hidden sorts and/or functions; and for any 6-theory T

and N-standard 6-algebra A,

A ∼= InitNStdAlg (6, T) ⇔ A9 ∼= InitNStdAlg (6′′, T + T ′′)

⇔ A8 ∼= InitNStdAlg (6′′, T + T ′′)|6′

⇔ A8 ∼= Init
(

6′, NStdAlg (6′′, T + T ′′)|6′

)

.

PROOF. From Lemma 1.

Definition 2. 8 has the homomorphism extension property (HEP) (with

respect to 6 and 6′) iff every homomorphism h: A → B between N-standard 6-
algebras can be extended uniquely to a homomorphism h8: A8 → B8 between
their images under 8.

LEMMA 3. If 8 has the HEP, then 8 is initiality preserving.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

322 • J. V. Tucker and J. I. Zucker

We will apply the above theory to three cases: array specifications in §8.2,
and specifications for PR and µPR∗ computable functions in §8.3 and §8.4
respectively.

8.2 Initial Algebra Specification of Array Algebras

Recall the array specification (6∗, ArrAx(6)) defined in §3.2.

LEMMA 1. The array construction A 7→ A∗ (§1.6) has the HEP, and (hence)

is initiality preserving.

LEMMA 2. For any N-standard 6-algebra A and 6-theory T:

A ∼= InitNStdAlg (6, T) ⇔ A∗ ∼= InitNStdAlg (6∗, T + ArrAx(6)).

PROOF. By §8.1, Lemma 1, and §3.2, Theorem 1.

Of particular interest is the case that T is a conditional BU equational theory:

THEOREM 1. If a 6-algebra A has an initial N-standard algebra specification

by a set of conditional BU equations, then so does A∗. Moreover, if the specifi-

cation for A is finite, with e axioms (say), then so is that for A∗, with at most

e + 8s axioms, where s is the number of sorts in 6.

Next, from the BU elimination theorem for initial algebras (Theorem 5 in
Section 7) we can reduce such a specification for A∗ further to one with condi-

tional equations only.

THEOREM 2. If a 6-algebra A has an initial N-standard algebra specifica-

tion by a set of conditional equations, then so does A∗ (with hidden sorts and

functions). Moreover, if the specification for A is finite, with e axioms (say), then

so is that for A∗, with at most e + 12s axioms, where s is the number of sorts

in 6.

PROOF. First apply Theorem 1 (or Lemma 2) above. Then replace the equal-
ity axiom for s∗ in ArrAx(6), which is a conditional BU 6∗-equation (§3.2), by
a conditional 6∗-equation, for each 6-equality sort s other than nat, by BU
elimination (Theorem 5 in §7.7, applied to 6∗).

8.3 Initial Algebra Specifications for PR Computable Functions

Now we apply the above theory to the results in §5.1.

LEMMA 1. For each PR(6) derivation α, the operator (∗∗) (§5.1) has the

HEP, and is (therefore) initiality preserving. Hence the operator (∗) is initiality

preserving.

PROOF. By structural induction on α.

Hence, by Theorem 1 in Section 5 and Lemma 2 in §8.1:

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 323

LEMMA 2. For each PR(6) derivation α, and for each N-standard 6-algebra

A and 6-theory T :

A ∼= InitNStdAlg (6, T) ⇔
(

A, gA
α , fA

α

)

∼= InitNStdAlg (6α, T + Eα)

⇔
(

A, fA
α

)

∼= InitNStdAlg (6α, T + Eα) |6f

⇔
(

A, fA
α

)

∼= Init(6f, NStdAlg (6α, T + Eα) |6f

)

.

Here 6f = 6 ∪ {fα}. (Remember, 6α = 6 ∪ {gα, fα}, where gα is the list of
auxiliary functions of α.) Of particular interest is the case that T is a conditional

equational theory:

THEOREM 3. Let f be a PR function on a 6-algebra A. If A has an initial

N-standard algebra specification by a set of conditional equations, then so does

(A, f) (with hidden functions).

8.4 Initial Algebra Specifications for µPR∗ Computable Functions

We turn to µPR∗ computability (§5.2). The problem here (as noted in §5.2) is
that even if the computed function is total, the auxiliary functions need not
be. However, by applying the totality lemma (§5.2), we are able restrict our
attention to total derivations.

LEMMA 1. For each µPR∗(6) derivation α and each N-standard 6-algebra

A on which fA
α is total, the operator (∗∗∗) (§5.2) has the HEP, and is (therefore)

initiality preserving. Hence the operator (∗) (§5.1) is initiality preserving.

PROOF. By structural induction on α.

Hence, by Theorem 2 in Section 5 and Lemma 2 in §8.1, we have:

LEMMA 2. For each µPR∗(6) derivation α, each N-standard 6-algebra A on

which fA
α is total, and each 6-theory T :

A ∼= InitNStdAlg (6, T) ⇔
(

A, fA
α

)

∼= Init
(

6f, NStdAlg(6∗
α, T + ArrAx(6) + Fα̂) |6f

)

.

where α̂ is the total derivation for fα given by the totality lemma, and Fα̂ is the

conditional BU specification for α̂.

Here, as before, 6f = 6 ∪ {fα}. Of particular interest are the two cases that
T is a conditional BU equational theory, and a conditional equational theory.
First, assuming the former:

THEOREM 4. Let f be a total µPR∗ function on a 6-algebra A. If A has an

initial N-standard algebra specification (6, F), where F is a set of conditional

BU equations, then likewise (A, f) has such a specification (6f, F f) with hidden

sorts and functions, where F f is also a set of conditional BU equations. Moreover,

F f can be obtained by adjoining to F an instantiation F U (k̄) of some universal

conditional BU equational specification F U (z), which depends only on 6 and

the type of f .

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

324 • J. V. Tucker and J. I. Zucker

The universal specification F U (z) in this theorem is obtained as in
Theorem 3 in Section 5.

Finally, by assuming T in Lemma 2 above is a conditional equational theory,
and applying Theorem 4 above and then BU elimination for initial algebras
(Theorem 5 in Section 7):

THEOREM 5. Let f be a total µPR∗ function on a 6-algebra A. If A has an

initial N-standard algebra specification (6, E), where E is a set of conditional

equations, then likewise (A, f) has such a specification (6 f , E f) with hidden

sorts and functions, where E f is also a set of conditional equations. Moreover,

E f can be obtained by adjoining to E an instantiation EU (k̄) of some universal

conditional equational specification EU (z), which depends only on 6 and the

type of f .

9. COMPUTABILITY OF ALGEBRAICALLY SPECIFIABLE FUNCTIONS

In this section we prove (partial) converses to the results of Section 5. First we
need a definition.

Definition (Strong Specifiability). Let K be a 6-class, let 6′ ⊇ 6∪{f} and let
T be a 6′-theory. We say that T strongly specifies a family { f A| A ∈ K} (possibly
with hidden sorts and/or functions) iff

(i) T specifies { f A | A ∈ K }, and further

(ii) for every A, B ∈ K with B ¹ A, f B = f A
↾ B.

(Here f A
↾ B denotes the restriction of f A to B.)

The significance of this concept is seen by rephrasing it in either of the fol-
lowing two ways.

LEMMA 1. Let K be a 6-class, let 6′ ⊇ 6 ∪ {f} and let T be a 6′-theory.

T strongly specifies a family { f A | A ∈ K } (possibly with hidden sorts and/or

functions) iff

(i) T specifies { f A | A ∈ K }, and further

(ii′) for every A, B ∈ K with B ¹ A, B is closed under f A.

LEMMA 2. Let K be a 6-class which is closed under finitely generated sub-

algebras, let 6′ ⊇ 6 ∪ {f} and let T be a 6′-theory. T strongly specifies a family

{ f A | A ∈ K } (possibly with hidden sorts and/or functions) iff

(i) T specifies { f A | A ∈ K }, and further

(ii′′) for every A ∈ K and every finitely generated B ¹ A, B is closed under f A.

We consider algebras and functions specified by conditional equational theo-
ries. We have to assume now that these theories have effective axiomatisations:
that the axioms are finite, for example, or at least recursively enumerable.

We will also make use of Theorem 2X in §7.6. Recall the remarks preceding
the theorem there, that the N-term condition for (6, X) follows from either

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 325

(i) X = ∅; or (ii) strict N-standardness of 6, together with X containing no
variables of sort nat or bool.

We will prove two theorems, making each of these assumptions in turn.

9.1 Computability of Specifiable Function on Minimal Algebras

We first consider a partial converse, using Remark 1 on the N-term condi-
tion (§7.6), that is, restricting our attention to minimal models (i.e., models
in which every element is named by a closed term). We use the nota-
tion MinNStdAlg (6, T) for the set of minimal N-standard 6-models of a
theory T .

THEOREM 1. Suppose 6 is N-standard. Let E be a recursively enumerable

conditional equational 6-theory which in CondEq(6) is consistent, determines

nat and bool and proves NStdAx0(6). Suppose 6′ ⊇ 6 ∪ {f}, and let E ′ be a

recursively enumerable conditional equational 6′-theory which strongly specifies

{ f A | A ∈ MinNStdAlg (6, E) } (possibly with hidden sorts and/or functions).

Assume also that E + E ′ determines nat and bool, and is conservative over E,
in CondEq(6), and also that all sorts of dom(f) other than bool are equality

sorts. Then f A is uniformly µPR∗ computable over A ∈ MinNStdAlg (6, E).

PROOF. We will describe a pseudo-While∗(6) algorithm for computing f A

uniformly over minimal N-standard 6-models A of E. Suppose f: u → s, where
u = s1 × · · · × sn. In general, some of the si are nat or bool, and the others not.
Suppose (without loss of generality) that for some m < n, sorts sm+1, . . . , sn are
all either nat or bool, and sorts s1, . . . , sm are not. Write u = v × w where
v = s1 × · · · × sm and w = sm+1 × · · · × sn. By assumption, sorts s1, . . . , sm are
equality sorts.

For any A ∈ MinNStdAlg (6, E), we will show how to compute

f A: Au → As.

Choose a tuple k = (k1, . . . , kn−m) ∈ Aw (of naturals and truth values), and
consider the function

f A
k =df f (· , k): Av → As.

We will show how to compute f A
k uniformly in the (numerical and boolean)

parameters k.
Let I = T(6, E, CondEq(6)) and J = T(6′, E + E ′, CondEq(6′)) (recall

the definitions in §7.1). By the N-Standardness Lemma (and the conservativity
assumption for E + E ′ over E), both I and J are N-standard. (Below we denote
elements of these algebras by ‘[t]’, that is, suitable equivalence classes of terms
t, or tuples thereof. We also write k̄ for the tuple of numerals and/or truth
constants corresponding to k.)

Note that the identity mapping on T(6) induces a 6-homomorphism

ιI : I → J |6 .

By conservativity of E + E ′ over E, ιI is injective. Hence I ¹ J |6 .
Further, the function f J specified by E ′ on J |6 is clearly the same as

that defined “naturally” on J by f J ([t]) = [f(t)]. By the strong specification

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

326 • J. V. Tucker and J. I. Zucker

assumption,

f I = f J
↾ I.

Hence for any closed 6-term t0,

f J
k ([t0]) = f I

k ([t0]) = [t]

for some closed 6-term t. By definition of J , this means that the equation

f(t0, k̄) = t (∗)

is provable from E + E ′ in CondEq(6′).
Now take any A ∈ MinNStdAlg (6, E), and any a ∈ Av. Since A is minimal,

there is a tuple of closed 6-terms t0 : v such that t A
0 = a. By Theorem 2 of

Section 6 applied to 6′, there is a 6′-homomorphism

h : J → (A, f A, . . .)

with h([t0]) = a. Hence, since (∗) holds in J , it also holds in (the 6′-expansion
of) A, with ‘f ’ interpreted as f A.

This suggests the following algorithm for f A
k with A minimal. With inputs

a ∈ Av: first generate all (Gödel numbers of) tuples of closed 6-terms of type v,
until you find a tuple t0 with t A

0 = a. (This is where we use computability of
equality on type v.) Then generate all Gödel numbers of theorems of E +E ′ until
you find one of the form pf(t0) = tq, for some closed 6-term t. Then the output

is t A.
The search is effective in the term evaluation function for closed 6-terms in

A, by recursive enumerability of E and E ′. Further, since term evaluation is PR∗

computable ([Tucker and Zucker 2000, §4]), this algorithm can be formalised
as a µPR∗(6) derivation for f A, as desired.

Remark. The assumption that the sorts of dom(f) are equality sorts
can clearly be weakened to the assumption that equality is (uniformly over
MinNStdAlg (6, E)) computable on these sorts.

9.2 Computability of Specifiable Function in Strictly N-Standard Algebras

We consider a second partial converse, using Remark 2 on the N-term condition,
that is, no free variables of sort nat or bool, plus strict N-standardness.

THEOREM 2. Suppose 6 is strictly N-standard. Let E be a recursively

enumerable conditional equational 6-theory which in CondEq(6) is consistent

and proves NStdAx(6). Suppose 6′ ⊇ 6 ∪ {f} is also strictly N-standard and

proves NStdAx(6′). Let E ′ be a recursively enumerable conditional equational

6′-theory which strongly specifies { f A | A ∈ NStdAlg (6, E)} (possibly with hid-

den sorts and/or functions). Assume also that E + E ′ is conservative over E in

CondEq(6′). Then f A is uniformly µPR∗ computable over A ∈ NStdAlg (6, E).

PROOF. We will describe a pseudo-While∗(6) algorithm for computing f A

uniformly over A ∈ NStdAlg (6, E). Suppose f : u → s, where u = s1 × · · · × sn.
In general, some of the si are nat or bool, and the others not. Suppose (without

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 327

loss of generality) that for some m < n, sorts sm+1, . . . , sn are all either nat or
bool, and sorts s1, . . . , sm are not. Write u = v×w where v = s1 × · · · × sm and
w = sm+1 × · · · × sn.

For any A ∈ NStdAlg (6, E), we will show how to compute

f A: Au → As.

Choose a tuple k = (k1, . . . , kn−m) ∈ Aw (of naturals and truth values), and
consider the function

f A
k =df f (· , k): Av → As.

We will show how to compute f A
k uniformly in the (numerical and boolean)

parameters k.
Choose a tuple of variables x : v (i.e., of the same product type as a). Let

I = T(6, x, E, CondEq(6)) and J = T(6′, x, E + E ′, CondEq(6′)) (recall the
definitions in §7.6). By the strict N-standardness LemmaX (§7.6), both I and
J are N-standard.

Note that the identity mapping on T (6, x) induces a 6-homomorphism

ιI : I → J |6 .

By conservativity of E + E ′ over E, ιI is injective. Hence I ¹ J |6 .
Further, the function f J specified by E ′ on J |6 is clearly the same as

that defined naturally on J by f J ([t]) = [f(t)]. By the strong specification
assumption,

f I = f J
↾ I.

Hence

f J
k (x) = f I

k (x) = [t]

for some t ∈ T (6, x). By definition of J , this means that the equation

f(x, k̄) = t (∗)

is provable from E + E ′ in CondEq(6′).
Now take any A ∈ NStdAlg (6, E), and any a ∈ Av. By Theorem 2X applied

to 6′, there is a 6′-homomorphism

h : J → (A, f A, . . .)

where h(x) = a. Hence, since (∗) holds in J , it also holds in (the 6′-expansion
of) A, with ‘f ’ interpreted as f A and a assigned to x.

This suggests the following algorithm for f A
k . With inputs a ∈ Av: generate

all Gödel numbers of theorems of E + E ′ until you find one of the form pf(x) = tq,
for some 6-term t (in x). This search is effective, by recursive enumerability of
E and E ′. Then the output is the evaluation of the term t in A with a assigned
to x.

Since term evaluation is PR∗ computable [Tucker and Zucker 2000, §4], this
algorithm can be formalised as a µPR∗(6) derivation for f A, as desired.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

328 • J. V. Tucker and J. I. Zucker

Remarks

(1) The above algorithm gives, for each tuple of numerical and boolean
arguments k, a fixed term t ∈ T (6, x) as the value of f A

k (a) for all
A ∈ NStdAlg (6, E) and all a ∈ Av.

(2) Theorems similar to Theorems 1 and 2 above can be formulated for con-
ditional BU equational theories and specifications, using a variation of
Theorem 3 (instead of Theorem 2) in Section 7.

9.3 Significance of Strong Specifiability; Equivalence of Specifiability

and Computability

We want to combine some of the above results into an equivalence result
between computability and specifiability.

Note that by the Locality Theorem for While computations [Tucker and
Zucker 2000, §2.8], if f is µPR∗ computable on an algebra A, then any sub-
algebra of A is closed under f . This suggests the following formulations for
equivalence theorems, which are simple consequences of the above theorems
and the lemmas on strong specifiability at the beginning of this section.

We give one formulation (Theorem 3 above) for minimal algebras
(cf. Theorem 1 above), and another (Theorem 4 above) for strictly N-standard
algebras (cf. Theorem 2 above).

THEOREM 3. Suppose 6 is N-standard. Let E be a recursively enumerable

conditional equational 6-theory, which in CondEq(6) is consistent, determines

nat and bool and proves NStdAx0(6). Let f = 〈 f A | A ∈ MinNStdAlg (6, E)〉
be a family of functions on MinNStdAlg (6, E). Assume that all sorts of dom(f)
other than bool are equality sorts. Then the following are equivalent:

(i) f is µPR∗ computable uniformly on MinNStdAlg (6, E);

(ii) f is strongly specifiable uniformly on MinNStdAlg (6, E), with hidden sorts

and functions, by a finite set of conditional equations which (together with E)
is conservative over E in CondEq(6).

THEOREM 4. Suppose 6 is strictly N-standard. Let E be a recursively enu-

merable conditional equational 6-theory, which in CondEq(6) is consistent and

proves NStdAx0(6). Let f = 〈 f A | A ∈ NStdAlg (6, E)〉 be a family of functions

on NStdAlg (6, E). Then the following are equivalent:

(i) f is µPR∗ computable uniformly on NStdAlg (6, E);

(ii) f is strongly specifiable uniformly on NStdAlg (6, E), with hidden sorts

and functions, by a finite set of conditional equations which (together with E)
is conservative over E in CondEq(6), and such that the signature of these

equations is also strictly N-standard.

Remark (Herbrand-Gödel Computability on N). The above theorem gener-
alises the classical equivalence result on N [Kleene 1952].

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 329

10. CONCLUDING REMARKS AND FUTURE DIRECTIONS

10.1 Computation on Topological Data Types

We have extended the theory of algebraic specifications from the world of count-
able computable algebras to that of all algebras, and especially metric algebras,
by means of abstract computability theory. Topological data types and algebraic
specifications play a fundamental role in many areas of computing, including
semantics and scientific computation.

Our main theorems concern the transformation of abstract algorithms to
algebraic specifications and provide some basic techniques for the theory of
specifying and verifying abstract computations. An obvious question is:

Under what circumstances can the conditional equations be replaced by

equations in our theory?

However, the converse results on the derivation of algorithms from algebraic
specifications need strengthening to provide completeness or equivalence the-
orems. Improving results in the reverse direction is an important problem, as
stated in the Introduction. There is much more to this topic than the results in
Section 9. A key technical problem in this area is:

To develop general techniques for solving equations, conditional equations

and other algebraic formulae in topological algebras.

In semantics, for example, special cases of the problem are common. Se-
mantic modelling makes heavy use of fixed-point equations. One thinks of the
introduction of metric methods into semantics by M. Nivat (see Nivat [1979];
Arnold and Nivat [1980a,b]), or their use in concurrency theory by De Bakker
and others [de Bakker and Zucker 1982; de Bakker and Rutten 1992; de Bakker
and de Vink 1999]. Studies of the methods of equation solving in ultrametric al-
gebras, including equivalence between metric, algebraic and domain-theoretic
techniques, are in Stoltenberg-Hansen and Tucker [1988, 1991, 1993]; see also
Stoltenberg-Hansen et al. [1994].

In scientific computation, numerical methods are concerned with obtaining
computable solutions from differential and integral equations. Mathematical
models of systems in the world are specified by sets of equations, from which
algorithms are sought to compute their solutions and hence to simulate the
system. Our main theorems and examples in Section 5 show the opposite: if a
system can be approximately simulated on a computer then there exist alge-
braic specifications that capture the system’s behaviour. Such results seem to
be new and, in our view, draw loci that help delimit the computability theory
of physical systems. We conjecture that it is possible

to show that certain parts of the theory of numerical approximation of

differential and integral equations are special instances of a general

theory of algebraic specifications.

This is an exciting and difficult problem with many obvious applications.
Given the wealth of algorithms and theory in numerical methods, it seems to

us that relatively little is known about the computational and logical scope and

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

330 • J. V. Tucker and J. I. Zucker

limits of equations, the classical mathematical methods of science. Progress in
the area has awaited the creation of stable computation theories for topological
data types. Over the past decade, computability theory for topological spaces
and algebras has developed dramatically. Several general approaches have pro-
duced deep results and have been shown to be equivalent. Some approaches are

r metric spaces [Moschovakis 1964],
r axiomatic computation structures [Pour-El and Richards 1989],
r type two effectivity [Weihrauch 2000],
r algebraic domain representability [Stoltenberg-Hansen 1988, 1995; Blanck

1997],
r continuous domain representability [Edalat 1997],
r abstract computability [Tucker and Zucker 1999, 2000; Blum et al. 1989]

The equivalence of the first five approaches is proved in [Stoltenberg-Hansen
and Tucker 1989]. The equivalence of all these with the last one is proved in
[Brattka 1997, 1999; Tucker and Zucker 1999, 2001a].

However, this computability theory needs to be complemented by a logical
theory which includes equation solving in topological algebras.

10.2 Theory of Computable Data Types

The theory of algebraic specifications of computable (semicomputable, and
cosemicomputable) data types contains many techniques for proving special
properties of algebraic specifications, and showing the equivalence or non-
equivalence of specification methods. Can some of these results be generalised?
We believe the answer is yes, but not without much further work. Many results
depend on special techniques of classical computability theory on the natural
numbers. The theory for computable algebras uses representations by recursive
algebras of numbers. It is possible to make a representation theory for topolog-
ical algebras based on Baire space NN using the type two effectivity methods of
Klaus Weihrauch [2000]. The use of the Diophantine Theorem for recursively
enumerable sets is more difficult: the theory of recursively enumerable sets
in abstract computability differs from the classical case, and no Diophantine
Theorem is known (even for minimal algebras).

Since abstract computability theory is uniform over classes of algebras, our
results on specifications are uniform, yielding parameterised specifications. As
we have seen, this process is surprisingly delicate because it leads to questions
about standardness. In abstract computations it is natural to augment an alge-
bra by basic data types such as booleans, naturals and finite arrays. These have
an effect on the axiomatisations. There are other important additional types,
of both theoretical and practical interest, that may be used to augment a given
data type and are in need of a standard algebraic specification theory, including:

(i) infinite streams (necessary for developing the theory of interactive
systems);

(ii) real numbers (necessary for developing the theory of metric algebras and
normed linear spaces).

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 331

An attempt to extend the specification methods of this paper to both these data
types, using infinitary equational specifications, is made in [Tucker and Zucker
2001b].

Finally, we note there are several other basic properties of specifications in
need of investigation, especially term rewriting properties.

ACKNOWLEDGMENTS

We wish to thank an anonymous referee for some very helpful comments.

REFERENCES

ARNOLD, A. AND NIVAT, M. 1980a. Metric interpretations of infinite trees and semantics of nonde-
terministic recursive programs. Theoretical Computer Science 11, 181–205.

ARNOLD, A. AND NIVAT, M. 1080b. The metric space of infinite trees, algebraic and topological
properties. Fundamenta Informaticae 4, 445–476.

ARNOLD, V. I. 1973. Ordinary Differential Equations. MIT Press.
BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1996. Complexity and real computation: A

manifesto. Int. J. Bifurc. Chaos 6, 1, 3–26.
BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1997. Complexity and Real Computation. Springer-

Verlag.
BLANCK, J. 1997. Domain representability of metric spaces. Annals of Pure & Applied Logic 83,

225–247.
BRATTKA, V. 1997. Order-free recursion on the real numbers. Mathematical Logic Quarterly 43,

216–234.
BRATTKA, V. 1999. Recursive and computable operations over topological structures. Ph.D. disser-

tation, Fern Universität Hagen, Fachbereich Informatik, Hagen, Germany, Informatik Berichte
255, Fern Universität Hagen (July).

BLUM, L., SHUB, M., AND SMALE, S. 1989. On a theory of computation and complexity over the real
numbers: np-completeness, recursive functions and universal machines. Bulletin of the American

Mathematical Society 21, 1–46.
BERGSTRA, J. A. AND TUCKER, J. V. 1980a. A characterisation of computable data types by means

of a finite equational specification method. In 7th J. W. de Bakker and J. van Leeuwen, editors,
International Colloquium on Automata, Languages and Programming, Noordwijkerhout, The

Netherlands (July), volume 85 of Lecture Notes in Computer Science, pages 76–90. Springer-
Verlag.

BERGSTRA, J. A. AND TUCKER, J. V. 1980b. A natural data type with a finite equational final se-
mantics specification but no effective equational initial semantics specification. Bulletin of the

European Association for Theoretical Computer Science 11, 23–33.
BERGSTRA, J. A. AND TUCKER, J. V. 1982. The completeness of the algebraic specification methods

for data types. Information & Control 54, 186–200.
BERGSTRA, J. A. AND TUCKER, J. V. 1983. Initial and final algebra semantics for data type specifi-

cations: two characterization theorems. SIAM J. Comput. 12, 336–387.
BERGSTRA, J. A. AND TUCKER, J. V. 1987. Algebraic specifications of computable and semicom-

putable data types. Theoretical Computer Science 50, 137–181.
BERGSTRA, J. A. AND TUCKER. J. V. 1995. Equational specifications, complete term rewriting and

computable and semicomputable algebras. JACM 42, 1194–1230.
DE BAKKER, J. W. AND DE VINK, E. 1999. Control Flow Semantics. The MIT Press.
DE BAKKER, J. W. AND RUTTEN, J. J. M. M. 1992. Ten Years of Concurrency Semantics. World

Scientific.
DE BAKKER, J. W. AND ZUCKER, J. I. 1982. Processes and the denotational semantics of concur-

rency. Information and Control 54, 70–120, 1982. Reprinted, with errata, in Studies in Concur-

rency Semantics: Selected Papers of the Amsterdam Concurrency Group, ed. J. W. de Bakker and
J. J. M. M. Rutten, World Scientific Publishing Co. (1992), 28–80.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

332 • J. V. Tucker and J. I. Zucker

EDALAT, A. 1997. Domains for computation in mathematics, physics and exact real arithmetic.
Bulletin of Symbolic Logic 3, 401–452.

EHRIG, H. AND MAHR, B. 1985. Fundamentals of Algebraic Specification 1, volume 6 of EATCS

Monographs. Springer-Verlag.
ENGELER, E. 1993. Algebraic Properties of Structures. World Scientific Publishing Co.
GENTZEN, G. 1969. Investigations into logical deduction. In M. E. Szabo, editor, The Collected

Papers of Gerhard Gentzen, pages 68–131. North Holland.
GUTTAG, J. V. AND HORNING, J. J. 1978. The algebraic specification of abstract data types. Acta

Informatica 10, 27–52.
GÄRTNER, T. AND HOTZ, G. 2000. Recursive analytic functions of a complex variable. In Com-

putability and Complexity in Analysis: 4th Workshop, Swansea, September 2000, pages 81–97.
Technical Report 272-9/2000, FernUniversität Hagen.

GRZEGORCZYK, A. 1955. Computable functions. Fundamenta Mathematicae 42, 168–202.
GRZEGORCZYK, A. 1957. On the defintions of computable real continuous functions. Fundamenta

Mathematicae 44, 61–71.
KLEENE, S. C. 1952. Introduction to Metamathematics. North Holland.
LACOMBE, D. 1955. Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles, I, II, III. C.R. Acad. Sci. Paris 240, 2470–2480, 241, 13–14, 151–
153.

MAL’CEV, A. I. 1973. Algebraic Systems, volume 192 of Grundlehren der mathematischen

Wissenschaften. Springer-Verlag.
MESEGUER, J. AND GOGUEN, J. A. 1985. Initiality, induction and computability. In M. Nivat and

J. Reynolds, editors, Algebraic Methods in Semantics, pages 459–541. Cambridge University
Press.

MAHR, B. AND MAKOWSKY, J. A. 1984. Characterizing specification languages which admit initial
semantics. Theoretical Computer Science 31, 49–59.

MOSCHOVAKIS, Y. N. 1964. Recursive metric spaces. Fundamenta Mathematicae 55, 215–238.
MEINKE, K. AND TUCKER, J. V. 1992. Universal algebra. In S. Abramsky, D. Gabbay, and

T. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages 189–411. Oxford
University Press.

NIVAT M. 1979. Infinite words, infinite trees, infinite computations. In J. W. de Bakker and
J. van Leeuwen, editors, Foundations of Computer Science III, part 2: Languages, Logic,

Semantics, volume 109 of Mathematical Centre Tracts, pages 3–52. Mathematical Centre,
Amsterdam.

POUR-EL, M. B. AND RICHARDS, J. I. 1989. Computability in Analysis and Physics. Springer-Verlag.
STOLTENBERG-HANSEN, V., LINDSTRÖM, I., AND GRIFFOR, E. 1994. Mathematical Theory of Domains.

Cambridge University Press.
STOLTENBERG-HANSEN, V. AND TUCKER, J. V. 1988. Complete local rings as domains. J. Symb. Logic

53, 603–624.
STOLTENBERG-HANSEN, V. AND TUCKER, J. V. 1991. Algebraic and fixed point equations over inverse

limits of algebras. Theoretical Computer Science 87, 1–24.
STOLTENBERG-HANSEN, V. AND TUCKER, J. V. 1993. Infinite systems of equations over inverse lim-

its and infinite synchronous concurrent algorithms. In J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Semantics: Foundations and Applications, volume 666 of Lecture Notes in

Computer Science, pages 531–562. Springer-Verlag.
STOLTENBERG-HANSEN, V. AND TUCKER, J. V. 1995. Effective algebras. In S. Abramsky, D. Gabbay,

and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages 357–526.
Oxford University Press.

STOLTENBERG-HANSEN, V. AND TUCKER, J. V. 1999. Concrete models of computation for topological
algebras. Theoretical Computer Science 219, 347–378.

TAKEUTI, G. 1987. Proof Theory (2nd ed.). North Holland.
TUCKER, J. V. 1980. Computing in algebraic systems. In F. R. Drake and S. S. Wainer, editors,

Recursion Theory, its Generalisations and Applications, volume 45 of London Mathematical

Society Lecture Note Series, pages 215–235. Cambridge University Press.
TUCKER, J. V. AND ZUCKER, J. I. 1988. Program Correctness over Abstract Data Types, with Error-

State Semantics, volume 6 of CWI Monographs. North Holland.

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

Abstract Computability and Algebraic Specification • 333

TUCKER, J. V. AND ZUCKER, J. I. 1991. Projections of semicomputable relations on abstract data
types. Int. J. Found. Comput. Sci. 2, 267–296.

TUCKER, J. V. AND ZUCKER, J. I. 1992. Deterministic and nondeterministic computation, and horn
programs, on abstract data types. J. Logic Prog. 13, 23–55.

TUCKER, J. V. AND ZUCKER, J. I. 1993. Provable computable selection functions on abstract struc-
tures. In P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 277–306. Cambridge
University Press.

TUCKER, J. V. AND ZUCKER, J. I. 1999. Computation by ‘while’ programs on topological partial
algebras. Theoretical Computer Science 219, 379–420.

TUCKER, J. V. AND ZUCKER, J. I. 2000. Computable functions and semicomputable sets on many-
sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in

Computer Science, volume 5, pages 317–523. Oxford University Press.
TUCKER, J. V. AND ZUCKER, J. I. 2001. Abstract versus concrete models of computation on partial

metric algebras. In preparation.
TUCKER, J. V. AND ZUCKER, J. I. 2001. Infinitary initial algebra specifications for stream algebras.

In W. Sieg, R. Sommer, and C. Talcott, editors, Reflections: A Collection of Essays in Honor of

Solomon Feferman. Association for Symbolic Logic.
WECHLER, W. 1992. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs.

Springer-Verlag.
WEIHRAUCH, K. 2000. Computable Analysis: An Introduction. Springer-Verlag.

Received February 2000; revised March 2001; accepted May 2001

ACM Transactions on Computational Logic, Vol. 3, No. 2, April 2002.

