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ABSTRACT. Our aim is to study computability from the viewpoint of the analog
computer. We present a mathematical definition of an analog generable function of a real
variable. This definition is formulated in terms of a simultaneous set of nonlinear
differential equations possessing a "domain of generation." (The latter concept is explained
in the text.) Our definition includes functions generated by existing general-purpose analog
computers. Using it we prove two theorems which provide a characterization of analog
generable functions in terms of solutions of algebraic differential polynomials. The
characterization has two consequences. First we show that there are entire functions which
are computable (in the sense of recursive analysis) but which cannot be generated by any
analog computer in any interval—e.g. l/r(x) and 2^-i (x°/n^')). Second we note that the
class of analog generable functions is very large: it includes special functions which arise
as solutions to algebraic differential polynomials. Although not all computable functions
are analog generable, a kind of converse holds. For entire functions,/(x) = X"o b,x', the
theorem takes the following form. If f(x) is analog generable on some closed, bounded
interval then there is a finite number of bk such that, on every closed bounded interval, f(x)
is computable relative to these bk. A somewhat similar theorem holds if/is not entire.
Although the results are stated and proved for functions of a real variable, they hold with
minor modifications for functions of a complex variable.

Introduction. This work represents a chapter in the development of a mathe-
matical theory of the analog computer. As stated in the abstract, the definition
of analog generable function which we present is expressed in terms of a
simultaneous set of nonlinear differential equations. We will see that it includes
functions generated by existing general purpose analog computers—i.e., the
electronic analog computer and the mechanical differential analyzer. Our defini-
tion with its "domain of generation" appears to differ considerably from the
approach taken in [17]. We have found our approach necessary for reasons stated
in footnotes 4 and 12.
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2 M. B. POUR-EL

One of our main concerns is to relate analog generable functions to abstract
computability. Here one has to be a bit careful. In an analog computer the
variables vary continuously. However, the basic concept of abstract computabil-
ity is formulated in terms of computable functions from nonnegative integers to
nonnegative integers. In order to relate these two concepts the following remarks
may be helpful.

As is well known, the concept of abstract computability represents the
distillation of several equivalent formulations—due to Turing [22], Herbrand-
Gödel flO], Church, Markov [13] and others. Interestingly enough no serious
attempt seems to have been made to formulate a notion of computability based
on analog computers. This is certainly, not because the analog computer was
unknown at that time, for the results of William Thomson, Lord Kelvin [20] date
back to 1876 and the work of Vannevar Bush [2] goes back to 1931.(la) By
co trast, the digital computer fared much better than the analog machine. We
recall that on Turing's approach, computability means computability by a most
general type of digital computer—the Turing Machine. The equivalence of the
above-mentioned formulations of Turing, Herbrand-Gödel, etc. provides us with
our definition of "computable function from nonnegative integers to nonnegative
integers". This definition leads naturally to a definition of "computable real
number" and "computable function of a real variable". For example, to obtain
"computable real" one merely "effectivizes" the classical constructions obtained
from the foundations of mathematics—Cauchy sequence, Dedekind cut, etc. [16].
Similarly by effective approximation techniques one arrives at a definition of a
computable function of a real variable (cf. [5]). Thus we have introduced
recursive analysis.

Our concept of analog generability will be related to abstract computability via
"computable function of a real variable". For technical convenience we do not
use the definitions given in the literature. Rather we formulate our own
definitions—Definitions 3 and 6—below. We use our definitions to give easy
proofs that certain functions are computable. Computability on our definition is
equivalent to computability relative to the more usual definitions [5]-Pour-El,
Caldwell (to appear).

In our opinion interest in the topic of this paper stems from the following three
considerations. The first is conceptual. As indicated above this research may be
regarded as a first step in a study of an alternative approach to the concept of
computability—an approach motivated by existing analog computers. Thus
eventually we hope to do for existing analog computers what Turing did for
digital computers. But much more is involved. For as we know the distinguishing
feature of an analog computer—as opposed to a digital computer—is that the
variables change continuously. Thus on this approach we can expect computable
function of a real variable to be the fundamental concept explicated: computable

(la) Shannon [17] is not concerned with abstract computability.
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ABSTRACT COMPUTABILITY 3

functions from nonnegative integers to nonnegative integers will be a derived
concept. This is, of course, a reversal of the procedure employed in connection
with existing formulations of abstract computability. For as we have seen,
existing formulations of computability follow along the traditional foundational
development of mathematics—from 0 and the successor through functions from
N to N to a definition of real number and a function of a real variable.(2) They
proceed by effectivizing the corresponding classical constructions. The conse-
quences of the aforementioned reversal—for the foundations of mathematics and
for research in higher order computability as studied by logicians—appear to be
of considerable interest. We do not wish to give the impression that we are
against the traditional approach in any of its formulations. This approach is
exceedingly fruitful. Furthermore it satisfies man's desire for simplicity and
order. Our point is merely this. It may be possible to conceive that nature generates
a computable function of a real variable directly and not necessarily by approxima-
tion as in the traditional approach. We believe it is of some interest to investigate
this phenomenon.

The second consideration is technical: we believe that the techniques employed
here may be of some independent interest. We have found it useful to combine
the methods and results of classical analysis and differential equations with those
of recursive function theory.(3) Work by Pólya, Holder, Cauchy-Peano, Weier-
strass, and others find application here. In some cases—e.g. in the use of Pólya's
theorem and the Cauchy-Peano existence theorem for differential equations—the
original result is used. In other cases, an effective—i.e. recursion-theoretic—
version of the result is employed. In addition some algebraic results are also
evident in our work. However this is not unusual in logical investigations.

Third, and most obvious, is the following consideration. We believe that it is
of some interest to users of analog computers to investigate, from the point of
view of abstract computability, the properties of the functions their devices
generate. We further believe that this will also be of interest to users of digital
and hybrid machines. For recently experts in digital computers have become
increasingly concerned with hybrids—i.e. computers combining the features of
both analog and digital machines—in an effort to maximize the advantages of
both types of devices.

Survey of results. Throughout this paper we assume that our functions are
continuous, with continuous derivatives. However it is not necessary to make
such stringent requirements. We realize that some logicians may be unfamiliar
with differential equations and conversely. For this reason, painstaking—and
even tedious—attention is paid to detail in many sections of this work.

The plan of the paper is as follows. In § 1 we give recursion-theoretic, and other
definitions which will be used later in this work. The main novelty occurs in

(2) N is the set of nonnegative integers.
(3) I.e., the theory of abstract computability
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4 M. B. POUR-EL

Definition 3 and Definition 6. Here we give the definition of "computable
function of a real variable"—from the point of view of abstract computability
theory—which we remarked upon above. The section concludes with definitions
concerned with algebraic differential polynomials and other well-known con-
cepts.

In §2 we give the basic definition of a function generated by a general purpose
analog computer (Definition 10). We show that our definition encompasses in a
natural way all functions which can be generated by existing general purpose
analog computers—e.g. the electronic differential analyzer and the mechanical
differential analyzer.

§§3 and 4 contain the principal theorems of this paper.(4) Since an analog
computer generates a function in a closed bounded interval, the following
notation will be useful. Let / and J be closed bounded intervals of the real line
with nonempty interiors.

One of the main results of §3 is the following: there are entire computable
functions which cannot be generated by any general purpose analog computer on
any / however small. As examples we cite \/T(x) and 2"=i x"/n^n,\ This result is
a consequence of the following local characterization of analog generable
functions in terms of algebraic differential polynomials.

(1) If/is analog generable on /, then there is a J Q I such that, on /,/satisfies
an algebraic differential polynomial.

(2) If for some /,/satisfies an algebraic differential polynomial on /, then there
is a J C I such that / is analog generable on J.

The consequence is obtained by applying a theorem of Holder and/or Pólya
to (1) above. On the other hand (2) shows that the class of analog generable
functions is very large. In fact many well-known special functions which arise as
solutions to algebraic differential polynomials—e.g. Bessel functions—can be
generated by a general purpose analog computer on every / for which they are
defined. This takes us far beyond the elementary functions—ex, sin x, etc.—
which are, of course, included.

The proofs of (1) and (2) use some results from differential equations together
with some simple facts on the degree of transcendence of transcendental field
extensions.

It is natural to ask whether every analog generable function is "essentially
computable". We answer this question in the affirmative in §4. (See Theorems 7

(4) There is apparently no counterpart to §4 in Shannon [17]. Some statements similar to (1) and
(2) above appear to be proved by Shannon [17] on the basis of his Theorem I. Unfortunately there is
a gap in his proof of (1). For a detailed account of the gap see footnote 12. To fix this gap it was not
only necessary to change Shannon's proof but to introduce the previously mentioned definition which
includes "domain of generation". In §2 we show, not only that existing analog computers possess this
concept but that they would be useless without it. As indicated above different mathematical concepts
than in [17] are used in the proofs.
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ABSTRACT COMPUTABILITY 5

and 8.) One interesting sidelight of the work in §4 is that it provides criteria which
allow us to conclude immediately that many well-known functions are, in fact,
computable in the sense of recursive analysis. For entire functions f(x)
= 2£o aix' tne criterion is quite simple. If each a¡ is a computable real and if

f(x) satisfies an algebraic differential polynomial then f(x) is computable on
every closed bounded interval. Actually, as we will see in §4, the results can be
extended to functions which are not necessarily entire.

Although the results of this paper are given for functions of a real variable,
they hold—with trivial modifications—for functions of a complex variable.(5)

The paper concludes with a few remarks concerning further areas of research.

1. Preliminaries. In order to make this work self-contained and accessible to
the nonspecialist, we summarize recursion-theoretic and other facts which will be
used here. We do not presuppose extensive knowledge of recursion theory. We
merely assume that the reader is acquainted with the class of recursive functions
and its relation to the intuitive concept of "effectively calculable".

As explained in the introduction, our definition of "computable function of a
real variable" differs from the usual ones—e.g. [5]. We first define computability
on a closed bounded interval (Definition 3). Then we extend our definition to
cover computability over the whole real line (Definition 6). A function is said to
be computable if it is computable over the whole real line.

The definition which we give here is motivated by Weierstrass's well-known
approximation theorem. In order to "effectivize" this theorem it is convenient to
state it in a rather awkward form: if <p is continuous on [a, b], then there exists a
sequence of polynomials (í¡(x)} and an N(M) such that, for all n > N(M),
\<p(x) - P„(x)\ < \/2M. Definition 3 (below) represents an "effectivization" of this
form of Weierstrass's theorem. It effectivizes both the sequence of polynomials
(Definition 1) and the modulus of continuity (Definition 2).

Definition 1. A sequence of polynomials {%(x)} is said to be recursively
enumerable if there exist recursive functions q, r, s, and d such that(6)

r"[x)     jè0{  l)      1 +(r(n)).

Definition 2. Let <p be a continuous function on [a,b]. A sequence of
polynomials {Pn(x)} is said to converge recursively to <p on [a,b] if there exists a

(5) One note of caution. Do not use a Weierstress approximation by polynomials of a complex
variable to define "computable function of a complex variable" as in Definitions 3 and 6.
Weierstrass's theorem does not hold! Instead, require that the real and imaginary parts be
computable. Here an obvious modification allows us to pass from functions of one real variable to
functions of two real variables.

(6) (a)j is Kleene's notation: (a)j is the power to which the y'th prime p¡ appears in the prime
factorization of a. (The number 2 is referred to as the 0th prime.) (0)y = 0 for ally.
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6 M. B. POUR-EL

recursive function g such that, whenever a < x < b,

\<p{x) - Pn(x)\ < ±

for all n > g(M).
Definition 3. Let <p be continuous on [a, b]. Then <p is computable on [a, b] if

there exists a sequence {%(x)} of polynomials which is recursively enumerable
and which converges recursively to <p on [a, b].

We now turn to defining the computability of <p on the entire line. Note that it
is not sufficient that 9 be computable on every closed bounded interval. We must
require that <p be uniformly computable. Thus by analogy to the above we are led
to the following definitions.

Definition 4. A double sequence of polynomials {.P/v.nC*)} IS said to be
recursively enumerable if there exist recursive functions q, r, s, and d such that

P   (x)     T(   l)"»"»-   (qiN'n))j   x'

Definition 5. Let <p be continuous on the real line. A double sequence of
polynomials [PNi„(x)} is said to converge recursively to <p if there exists a recursive
function g so that, whenever — N < x < N,

tin >g{N,M).
Definition 6. Let <p be continuous on the real line. <p is computable if there

exists a recursively enumerable sequence of polynomials ^(x)} which converg-
es recursively to qp.

We now turn our attention from computability to "essential computability". In
the next definition we assume that « is a real number which can be written in
decimal notation as ±(t/(0). w(l)w(2) • • • u(n) • • • ). We exclude the case in which
the decimal expansion has the form ±(u(Q). u(l)u(2) • • • u(n)9999 • • • ). Further-
more '+' or ' —' is employed according as u > 0 or u < 0. Consider the sequence
of partial sums

. .      I0u(0) + »(1) 10^(0)+ 10"-'«(1)+ ••• + »(«)
—u\y)> — m »•••»— JO«

Define the function v by

v(n) = 10" («(0)) + 10n-'«(l) + • • • + «(«).

The function v defined above is said to be the associate of the real number u.
It is now an easy matter to define essential computability in ux, ..., uk. One

merely relativizes Definitions 1-6 in the obvious way. For example:
A sequence of polynomials {Pn{xj} is said to be essentially recursively enumera-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSTRACT COMPUTABILITY 7

ble in a finite set of reals uu ..., uk if there exist functions a, r, s and d, each of
which is recursive in the associates of W[, ..., uk such that

P(*)=S(-l)«"ft   iq{n))j   xJ

The relativization of Definition 3 gives essential computability in uu ..., uk on
[a,b]. The relativization of Definition 6 gives essential computability inux, ..., uk
(over the whole real line). We leave it to the reader to make the appropriate
modifications.

Our preliminary discussion of recursion theory closes with the following
definition.

Definition 7. The sequence a0, ax, ..., a„, ... of reals is essentially comput-
able in a finite set of reals ux, ..., uk if there exist functions q, r, s and g each of
which is recursive in the associates of ux,..., uk such that

(_1)«(^). 4(n>"i)
1 + r(n,m)

<^j   form > g(n,k).

We recall the following definitions concerning algebraic differential polyno-
mials.

Definition 8. An algebraic differential polynomial is an expression of the form

2 a,* VC/)* • • • (y{ki))"k''
<=i

where a, is a real number, p¡, q®, ..., qk¡¡ are nonnegative integers and y is a
function of x.

Definition 9. A function y(x) satisfies an algebraic differential polynomial if it
satisfies an equation of the form P(x,y,y',..., yW) = 0 where P is an algebraic
differential polynomial.

We conclude this section with the following well-known terminology. A
function f(x) is analytic on an interval I if it is the restriction of a function of a
complex variable which is analytic in a region including /; a function f(x) is
entire if it is the restriction of an entire function of a complex variable.

2. The basic definition. In this section we give our fundamental definition, y(x)
is generated by a general purpose analog computer (G.P.A.C.). The definition
encompasses existing general purpose analog machines. We will see that it can
be conceived of in terms of a set of simultaneous nonlinear differential equations.
At first sight the relation between our definition and existing analog machines
may seem a bit strange. In order to see that this is a natural generalization which
includes existing G.P.A.C. we proceed as follows. First we give our definition of
"function generated by a G.P.A.C." (Definition 10 below). Next we give a brief
discussion of the nature of existing analog computers. This is followed by a
discussion of a preliminary definition—which will be in terms of black boxes,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 M. B. POUR-EL

feedback, etc. (It should be clear from this account that the existing G.P.A.C.'s
are included under our preliminary definition.) We will see that we are led to a
definition which is essentially graph-theoretic in character. Finally we relate our
preliminary definition to the final definition which, as we have already remarked,
involves nonlinear differential equations with a "domain of generation".

Notation. I, J: (with and without subscripts and superscripts) closed bounded
intervals with nonempty interiors,

ciJk : real numbers,
yo-yo(x) = 1,
yi-yi(x) = x.

(The last two items of notation are used in [17].)
Definition 10. The function y(x) is generated by a G.P.A.C. on / if there exists

a set of functions y2(x), ..., y„(x) and a set of initial conditions y ¡(a) = y*—
where a G /—such that:

(0 {yi> ■ ■ ■ »a) is the unique solution on / of a set of differential equations of
the form

A(x,y)^ = b(xJ)

satisfying the initial conditions.
(Here the vector y has components y2, '" ,yn, A(x, y ) is an (« - 1) x (n - 1)

matrix, and each entry of  A   and b  is linear in   l,x,y2,'",y„ over the reals.)
(2) For some i such that 2 < i < n, y(x) = y¡(x) on /.
(3) (fl,y%,... ,y*y has a domain of generation with respect to the equations of (I).

See remark below.
Remark. The concept "domain of generation" will be explained at the end of

this section-page 12-because we need some preliminaries to make it understand-
able. We will see that it is a very natural requirement to make.

We now turn our attention to existing analog computers. It is often said that
a digital computer is any device in which the variables vary discretely whereas an
analog computer is any device in which the variables vary continuously. Thus,
on this rather vague definition, a drop of water issuing from a faucet at regular
intervals may be conceived of as a digital computer. The literature on digital
computers is more restrictive than that! Similarly—although an analog computer
is often conceived of as any device in which the variables vary continuously—the
literature on analog computers is much more restrictive. So what does the
literature on analog computers conceive an analog computer to be? Clarence
Johnson, in his well-known textbook on Analog Computer Techniques [9], divides
the class of analog computers into two main categories.(7) The first category
consists of the special purpose machines. Here we find the planimeter, the wind

(7)  This classification is employed by many authors. The reader is invited to consult the
literature.
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ABSTRACT COMPUTABILITY 9

tunnel and other special purpose machines. In this paper we will not be
concerned with these specialized devices. Rather our attention will be focused on
the second category, the class of general purpose analog computers. The main
types of devices listed under the heading "general purpose analog computer" are
the electronic differential analyzer and the mechanical (or electro-mechanical)
differential analyzer. We recall that the electronic differential analyzer is also
referred to as the "D.C. analog computer" or just as the "analog computer"—as
this is probably the most well-known of the general purpose devices.

In order to understand the motivation behind Definition 10 it is useful to
discuss briefly the structure of both the electronic differential analyzer and the
mechanical differential analyzer. The electronic differential analyzer will be
considered first; we will then make a few remarks to relate this discussion to the
mechanical differential analyzer.

The functions generated by an electronic differential analyzer are functions of
time: they are usually measured in terms of volts. This device is composed of a
finite number of black boxes of the following types. The integrator is a one-input,
one-output device with a setting for initial conditions: if we input u(t) and set the
initial condition e{a) at time t = a, we will output fa u[t) dt + e(a). There is also
an adder, a two-input, one-output device: if u(t) and v(t) are the inputs then
u(t) + v(t) is the output. For each rational constant k, there is a constant
multiplier. This is a one-input, one-output device: if we input u(t) we obtain ku{i)
as output. Finally we have the variable multiplier, a two-input, one-output
device: if we input u{i) and v(t) we obtain u(t) • v(t) as output.

The electronic differential analyzer is constructed from a finite number of the
above-mentioned units. This is accomplished by interconnecting these units by
wires or plugs. Feedback is, of course, permitted! Interconnections and their
relation to feedback, the method of generating functions, as well as other matters,
will be discussed in greater detail—in a more general setting—as part of our
preliminary definition of a general purpose analog computer. Those interested in
the hardware needed to construct an electronic differential analyzer are referred
to standard texts [8], [9],-cf. [11], [18], [21].

The functions generated by a mechanical differential analyzer are also
functions of time. Of course they are not measured in volts! Nevertheless, the
mechanical differential analyzer possesses essentially the same basic units subject
to the following modifications. First the hardware which realizes this analyzer is
mechanical or electro-mechanical in nature, rather than electronic. (Since this
paper is not concerned with hardware, this is not an essential difference for us.)
Second the integrator is slightly more general. For a more detailed account of the
structural features of a mechanical differential analyzer the reader is invited to
consult [4].

We now turn our attention to a preliminary definition. This definition is
motivated by the structure of the differential analyzers discussed above. Accord-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 M. B. POUR-EL

ingly we will be concerned with the following units.ty (Note that our functions
are not necessarily functions of time.) We will consider functions of one variable
only although our discussion is obviously applicable to functions of several
variables.

1. Integrator. A two-input, one-output device with a setting for initial condi-
tions. If u(x) and v(x) are inputs, we obtain as output J*o u(x)dv(x) + C—where
C is a constant depending on the initial conditions and J*0 u(x)dv(x) is the
Riemann-Stieltjes integral.

2. Constant multiplier. For each real constant k, there is a device with one input
and one output. If u(x) is the input, then ku(x) is the output.

3. Adder. A two-input, one-output device. If u(x) and v(x) are inputs, then
u(x) + v(x) is the output.

4. Variable multiplier. A two-input, one-output device. If u(x) and v(x) are
inputs, then u(x) • v(x) is the output.

5. Constant function. A one-input, one-output device. If u(x) is the input, then
Cx (x)—where Q (x) = 1—is the output.

To construct a general purpose analog computer a finite number of these units
must be interconnected. We require, as in practice, that two inputs and two
outputs can never be interconnected. We say that 3Í is a general purpose analog
computer if 31 is a collection of « — 1 units U2, ..., Un(9) which are interconnect-
ed so that each input is connected to at most one output. Thus the reader might
envision a portion of the computer as follows. (Assume the input terminals are
on the left and the output terminals are on the right.)

Note that feedback, which may be conceived of as a form of continuous recursion, is
permitted). Without feedback this study would degenerate into an uninteresting
academic exercise. Incidentally it is easy to describe feedback in terms of the
units of an analog computer. We say that a general purpose analog computer 31—
with n — 1 units—has feedback if it is not possible to enumerate the units of 31—
viz. U2, ..., U„—in such a way that if the output of U¡ is connected to an input
of Uj then / < j. Denote the output of U¡ by y¡. We say that the function u(x) is

(8) Contrary to engineering realities the units will be considered as idealized—and hence
perfect—components.

(9) The reason for this rather peculiar notation is the following. It is convenient to refer to the
output of U¡ as_y,(x). But we have already established the following notation: y0(x) = l,yt(x) = x.
Thus we index our units beginning with 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSTRACT COMPUTABILITY 11

generated by 2Í on 7(10) if we can prescribe initial conditions to the integrators of
91 at jc = a for some a G / so that if x is applied to every input not connected
to an output, then for some », (2 < i < n), we have y¡(x) = u(x) on /. We say
that u(x) is generable by an analog computer on I if there is some 2Í such that u(x)
is generated by 21 on /.

Thus we conclude our preliminary sketch of "general purpose analog comput-
er" and "function generated by a general purpose analog computer". At this
point the reader will note that the definitions given here are essentially graph-
theoretic in nature. We invite him to translate these concepts into rigorous graph-
theoretic definitions for himself: it is a rather simple exercise.(") For our
purposes this translation will not be necessary as we will now prove Proposition
1, a very simple proposition, which will partly explain the use of Definition 10 as
the final form of our definition. Proposition 1 is related to [17, Theorem 1] which
is concerned with Bush's mechanical differential analyzer. Before turning to the
proposition, we wish to make a remark which will be useful in its proof.

Remark. The variable multiplier can be eliminated. This is because

u(x) • v(x) = j   u(x)dv(x) + j    v(x)du(x) + u(a)v(a).

Proposition 1. If a function y(x) is generable on I in the "graph-theoretic" sense
it is generable on I in the sense of Definition 10.

Proof. We recall that in the previous remark we showed that the variable
multiplier can be eliminated. Thus our analog computer has as units only:
integrators, constant multipliers, the constant function Q, and adders.

We first show that this holds if y is the output of an integrator. Let 21 be an
analog computer with n - 1 integrators having as outputs y2, ...,y„ respectively.
Now each input of an integrator must be the output of one of the following: a
constant multiplier, an adder, the constant function Cx, an integrator, or the
independent variable. Thus the integrand of the £th integrator is expressible as
2?=o c?ky¡ f°r suitable constants cfk. Similarly the variable of integration of the
kth integrator can be expressed as 2"=o cj*yf Thus

(10) An obvious modification of this can be made when dealing with functions of more than one
variable. Simply require that precisely one of the independent variables be applied to each input not
connected to an output.

(") The reader versed in formal logic will note that the concepts sketched above can be
"Gödelized" within the reals. For assume we have countably many integrators, countably many
adders and countably many constant multipliers for each real constant. Then it is easy to define "y
is the nth integrator", "y is the nth adder", "y is the nth constant multiplier associated with the real
k". Thus we can obtain "y is a unit". From this it is easy to formulate "y is an interconnection" and
"y is an analog computer".License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 M. B. POUR-EL

Ä- f 2 c&yJt c*k*yj) + C,Ja    ,=0 \y=0   y       V

Ä--JL     2    c£cj¡*y,<fyj + C.
If we define ci:/jt so that ci;/Vt = cfk c*k* then we have

dx      tJíj^W'dx'       K     *' """'
It is easy to extend this result to cover the output of any unit. For suppose y is
the output of a unit of an analog computer 31. Then, since y(x) = ff 1 • dy
+ y(a), y can be considered as the output of an integrator in an analog computer
31', obtained by adding the integrator associated with J" 1 dy and suitably altering
the connections.    D

We now discuss the concept domain of generation. Suppose that {y2,... ,y„} is
the unique solution on / of a set of equations of the form

,->■
(Eo) A(x,y)£ = b(x,y)

satisfying the initial conditions^(a) = y*¡. Then the use of analog computers in
the real world suggests that each point (x**,u**,... m**> sufficiently close to
(a,y\,... ,y*y should provide initial conditions for a unique solution of (E0) on
some interval /**. This is because the initial conditions represent initial settings
on the integrators. (In practice the operator is allowed to vary the initial
conditions on an analog computer slightly.) More precisely we require the
following. There are closed intervals /,, ..., J„—with nonempty interiors—such
that (a,y*2,... ,y*„ ) is an interior point of J} x J2 x • • • x J„. Furthermore when-
ever <***,«£*,...,«**> G y, XJ2 X ••• x Jn there exists a set of functions
{u2,...,u„) such that:

(i) «,(***) = "?* for i = 2, ..., n.
(ii) {u2,...,un} satisfies (En) on some I** for which x** G /**.
(iii) {m2, ...,«„} is locally unique— i.e. unique on /** and on any subinterval of

/** containing x**.
Jxy.J2Y,---J„is called a domain of generation of (fl,y*2,... ,y*} with respect to

(E0) and is denoted by Dg.
Remark. The reader versed in recursion-theoretic techniques will note with

surprise that we have taken as units constant multipliers for every real constant
k. Thus we will see that the functions generated by an analog computer become
"essentially computable" as defined in § 1 rather than computable. One reason for
our choice of units is to emphasize the fact that even if we allow ourselves all real
numbers there exist computable entire functions which cannot be generated by
any G.P.A.C.—e.g. \/T(x). The more constructively oriented reader may wish to
restrict the class of constant multipliers to a class of constants which can be more
effectively defined. He will find that, modulo trivial and obvious modifications,
our work will hold for his analog computers.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let F be the class of functions differentiable on [a,x]. Recall that Definition 10
makes sense whenever y2, ...,y„ are members of F. However the proof of
Proposition 1 makes use of the Riemann-Stieltjes integral. Thus, in order to prove
it we must restrict our attention to a subclass G oï F having the following
properties. If m G G and v G G then

(a) fa u(x)dv(x) exists;
(b) if w(x) = fa u(x)dv(x), then dw/dx = u(x)dv/dx.
Certainly these assumptions hold if G is the class of functions with continuous

derivatives on [a,x] (see [1, pp. 191-232]).
There are two approaches which one can take to the range of variables of

Definition 10. The first approach is to restrict the use of Definition 10 to
functions which are members of G. The second is to allow the v's of Definition
10 to range over all of F. However Definition 10 will be associated with existing
hardware differential analyzers when the v's are members of G. For the purposes
of this paper it does not matter which approach is employed.

It ought to be remarked that Definition 10 can be extended to cover the case
in which y2, ..., y„ are functions of more than one variable in an obvious way.
We leave the precise statement of the extended definition to the reader.

3. Entire functions which are computable but not analog generable. Our primary
aim in this section is to give an example of an entire computable / such that for
every I, f\ I cannot be generated by a G.P.A.C. Many examples—including
\/T{x)—can be found in Theorem 3 below. The proof of Theorem 3 depends on
Theorem 2 which relates generability by a G.P.A.C. to solutions of an algebraic
differential polynomial. The section concludes with Theorem 4. Roughly Theo-
rem 4 may be conceived of as a converse to Theorem 2. As a consequence of
these two theorems we become aware of the relation between analog generable
functions and functions satisfying an algebraic differential polynomial. From
Theorem 4 it follows that the class of analog generable functions is very
comprehensive.

It ought to be remarked that the techniques in classical analysis and differential
equations used to obtain Theorem 3 may be viewed as a replacement for the technique
of diagonalization of recursion theory. Such a replacement appears to be necessary
as it is difficult to conceive of using diagonalization itself to obtain an entire
function.

Recall that I and J—with and without subscripts and superscripts—are closed
bounded intervals with nonempty interiors.

Theorem 2.('2) If y is generable on I by an analog computer then there is an
/' C / such that, on I', y satisfies an algebraic differential polynomial.

(I2) A statement somewhat similar to this appears as part of Theorem II [17, p.342]. We believe
that there is a serious gap in the brief proof which appears on the top of p. 343. For this reason we
have found it necessary to proceed along entirely different lines. Our work is considerably more
involved than that sketched in [17]. As remarked in the text it uses matrix theory, the Cauchy-PeanoLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof. By Definition 10 there is a {y2,... ,yn} such that {y2,... ,y„] satisfies a
set of equations of the form

(E) a(*t$ = **?>

where y = y2, y is the column vector with components y2, ...,y„; A is an
(« — 1) x (n — 1) matrix whose components are linear in 1, x, y2, ...,y„; B is an
n — 1 dimensional vector whose components are linear in I, x,y2, . ..,y„. We
can consider the entries of A and B as elements of the ring generated from the
reals by adjoining x,y2, ...,yn.

Lety2{a) = y\, ...,y„(a) = y* be the initial conditions guaranteed by Defi-
nition 10.

The proof is detailed. Hence it may be of use to give a brief summary. We first
show that det A #0 on /. This is proved by contradiction. Roughly we use the
Cauchy-Peano existence theorem to show the following. If 0 < rank A < n — 1
then (E) would have more than one solution satisfying a certain set of initial
conditions. Note that this set of initial conditions will, in general, differ from
yi(a) = y%> •••■> yAa) = y*- We show only that considered as a point in n-space
it lies in the domain of generation of (E) with respect to (fl,y\,... ,y*}. But by
definition elements of the domain of generation lead to unique solutions of (E).
Once we have demonstrated that det A #0 our theorem follows from some
simple facts on the degree of transcendence of transcendental field extensions.

Let Ji x • • • x Jn be a domain of generation of (a,y*, ... ,/¡¡> with respect to
(E). Let J{° be a subset of Jx such that

(i) a is an interior point of Jt0;

existence theorem for differential equations, and some facts concerning the degree of transcendence
of transcendental field extensions.

Let us make a few comments stating the reason we believe there is a gap. In the case of
Sylvester's method one must rule out the following possibility: at some stage s, after the first î
variables have been eliminated the system of equations in the remaining n2 — 2n — s variables
vanishes identically. If these variables were not related to each other by differentiation then one could
conclude that given any values for the remaining n2 — In — s variables one could find values for the
first i variables so that the (n — l)2 equations would be satisfied. Thus the equations would not have
a unique solution, contradicting the basic assumption. However, and this is the main point, it is
conceivable that the system of (n - l)2 equations may have many solutions if we ignore the fact that
the n2 — 2/1 variables are related .by differentiation, but only one solution if we consider that they are
related by differentiation. This possibility ought to be ruled out. (For an account of the complications
involved in Sylvester's method see van der Waerden's Modern Algebra (English translation) vol. II,
§§77 and 78.) It ought to be remarked that other methods of elimination have their problems which
prevent the proof from being completely trivial. For example, in using Cramer's rule we must prove
that the determinant of the coefficient matrix is not identically zero.

In conclusion, this author believes that it is preferable not to use a technique which requires
additional differentiation on the set of equations which demonstrate that>>2, ..., y„ can be generated
by a G.P.A.C, for such a procedure requires additional assumptions on the differentiability of the y¡,
which is not necessary for the proof of the theorem.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(ii) if x G J¡° then <jc,y2(x),... ,y„(x)) G /, X • • • X J„ .
Let /, = Jx° D /.

We first show that det A ^ 0 on Ix. For suppose not:
Case 1. Suppose A is of rank 0 on /,. Then each entry of A is zero on Ix. Thus

we have

0 = bx(x,y2(x),... ,y„(x))

0 = b2(x,y2(x), ...,y„(x))

0 - bn_x{x,y2{x), ...,y„(x))

on Ix. Hence by, ..., b„_x are identically zero on Ix. Now y2(x), .. ,,y„(x) cannot
be the unique solution of a set of equations of the form 0 = 0 no matter what the
initial conditions may be. So this case cannot hold.

Case 2. Suppose A is of rank r where 0 < r < n — 1.
By relabelling we can assume that det B, where

an    ■■■
b=   ;

is not identically zero on Ix. Let <x0,y2{x0),... ,y„(xoy) be such that det B
evaluated at (x0,y2(x0),... ,y„{x0)y is not zero. Then by continuity there is an
I2 Q Ix so that

(iii) x0 G I2;
(iv) det B(x,y2(x),... ,y„(x)) =/= 0 for any x G I2.

We can assume without loss of generality that x0 is an interior point of I2. We
now restrict our attention to the interval I2. By a well-known fact concerning
matrices with entries which are in a commutative ring, for each / > r and for all
k we can find//r+1, fn, ...,f,k such that//r+I ¥= 0 and

ftr+\ <*lk  = fl\ °\k + ' ' ' + ftrark •

Note that in the above application JJr+1 = det B. Hence on I2, for all k, if / > r,

a¡k = (fn/ftr+Mk + ••• + (flr/flr+l)ark,

i.e. if / > r, the /th row is a linear combination of the first r rows. Thus on I2 our
set of equations reduces to

andy2/dx + •■■ + aXn_xdyJdx = bx(x,y2(x),..., ,yn(x))

a^dyjjdx + ■•■ + arn_xdyjdx = br(x,y2(x),... ,yn(x)).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 M. B. POUR-EL

Transposing we obtain:

dy2 dyr+\a»í + ' • + a^ = *(**(**• • • JfcW) - fli-^f

a" îf + • • •+ fl^ = *<*»(** • • • .*w) - *— ̂

Solving for dy2/dx, ..., dyr+l/dx using Cramer's rule,

^-^r+i-as-a'^-dx-)

1^2 ^
dx      det B

(E')
^3

«12     «13

«r2     «r3

[dx'

air

Or,

dyr+i m
dx

Let ur+2(x), ..., u„(x) be any fixed continuous functions with continuous
derivatives such that ur+2(x0) = yr+2(x0), ..., u„(x0) = yn(x0) and such that
det B(x,y2,...,yr+l,ur+2,...,u„) does not vanish on I2. Replace yr+2(x) by
ur+2(x), ... ,y„(x) by u„(x) in the right-hand side of the equations of (E'). The
equations of (E') considered as functions of x, y2, ..., yr+l become

dy2 _ T2(x,y2,... .y,+l)
dx      S(x,y2,...,yr+l)

dyr+i = Tr+l(x,y2,... ,yr+i)
dx S(x,y2,... ,yr+1)

Since S(x0,y2(x0),... ,yr+\(x0)) # 0 there is an 1\ X J\ X • • • X J*+i Q I2XJ2
X ••• xyf+1 such that <.x0,y2(x0),... ,yr+i(x0)) G I*2XJ*2X ■■■ Xj*+l and
S(x,y2,... ,yr+i) does not vanish on I*2 x J\ x • • • X J*+i. By the Cauchy-Peano
theorem there exists a solution u2, ..., ur+x on some I3 Q 1% such that x0 G /»
and such that u¡(x0) = y¡(x0) for / = 2, ..., r + 1. This contradicts the unicity
of solution which follows from the fact that (x0,y2(x0),... ,yn(x0)) G Dg.

Hence rank A = n — 1 on V¡. Let /' C /, be such that det A #0 for any
x G /'. We now restrict our attention to /'. Solving equations (E) we obtain:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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dyj = Px(x,y2,... ,y„)
<** " Q{x,y2,... ,yn)

(E") ;
dyn = Pn-\(x,y2, ■ • • ,yn)
dx      Q(x,y2, ■ • ■ ,yn)

where Px, ..., Pn_x are polynomials in x,y2, ..., y„ and Q(x, y2,... ,yn) = det A.
We now show that there is a nontrivial polynomial P such that

P(x,y2, dy2/dx,..., dn+xy2/dxn+x ) = 0   on /'.

Differentiating dyjdx = P2Íx,y2,...,yn)/Q{x,y2,...,yn) with respect to x
and using (E") we get

dky2/dxk = Rk{x, y2(x),... ,yn(x)),       k = \,...,n+l,

where the Rk are rational in x, y2, ..., y„ and the denominator of each Rk is of
the form (Q(x,y2,... ,y„))r for some natural number r. We can assume that each
Rk # 0 on /' and that R¡ # Rj for /' ¥= j—for otherwise we are finished.

Let i/2> ..., v„ be indeterminates. Consider the rational functions

Rx(x,v2,... ,vn), ..., Rn+X(x,v2,. ..,vtt).

By simple facts concerning the degree of transcendence of transcendental field
extensions there exists a nontrivial polynomial P with coefficients in the reals
such that

P(RX (x, v2,..., v„),..., Rn+X (x, v2,..., vn)) = 0.

From this it follows that

P(Ri (x,y2(x),... ,yn(x)),..., Rn+X(x,y2(x),... ,y„(x))) = 0,

i.e.

P(dy2/dx, d2y2/dx2,..., d"+iy2/dx"+l ) = 0.    D

Note that v2 is the restriction of an analytic function on a subinterval I+. This
is a well-known fact which holds because y2 satisfies an algebraic differential
polynomial. We will not go further into the proof of this fact. We merely use it
in the proof of Theorem 8 below.

Theorem 3. There exist entire functions which are computable, but are such that
the restriction to any closed bounded real interval cannot be generated by an analog
computer.

Proof. The proof is an immediate consequence of Theorem 2 and a result of
Pólya and/or Holder. Pólya's result provides us with many examples. Holder's
result shows that \/T(x) is also an example. We will discuss both.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 M. B. POUR-EL

Suppose / is an entire function which satisfies an algebraic differential
polynomial on some closed bounded interval /. Let/* be the (entire) function of
a complex variable such that/*(x) = f(x) on the real line. Then by the identity
theorem for analytic functions/*(z) satisfies an algebraic differential equation on
the whole plane. Thus to prove Theorem 3 we must exhibit entire computable
functions/*(z) which do not satisfy any algebraic differential polynomial. For by
Theorem 2, they will not be analog generable on any /.

The theorem of Pólya(13) referred to above may be stated as follows: if the
coefficients of an entire transcendental function w = b0 + bx z + • • • + bn z"
+ • • • are rational numbers and if the function satisfies an algebraic differential
polynomial then lim sup,,^ (log|è„|/n(log n)2) is finite.

As indicated above Pólya's theorem allows us to construct many examples. We
give one. Let

oo      vr oo      7r

It is easy to see that/*(z) is entire. Furthermore

m logliM^l
"-"»  «(log n)2

is not finite. Hence / cannot satisfy an algebraic differential polynomial.
Furthermore it is trivial to show that/is computable. Define/?,, by

n+l yt

AW  = £yl<ñ-
Let g(N,M) = (2(N + l))M. Then if |jc| < N (where N is positive), M > \, and
n>g(N,M),

00   I r\' °°        (N 4- 1Vl/W-ftWI<2|ä<2p^L
00 1 00 1 1

< y —— < y —- < —

Note that the functions a, r, s, d and g of Definitions 4 and 5 which are used
in showing that / is computable are all elementary. Hence / is not merely
computable but elementary recursive.

To show that l/T(x) is also an example we recall the following. T(x) is analytic
except at x = 0, — 1, —2, ... where it has simple poles. T(x) does not satisfy an
algebraic differential polynomial (Holder [6]). The function l/T(x) is entire. Thus
l/r(x) cannot satisfy an algebraic differential polynomial on any closed bounded
interval /. Hence the only task which remains is to show that  I/IXa:) is

(13) We have used Pólya [14], but Pólya [15] may also be used instead.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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computable. By definition

where y = limm_00{l + 1/2 + • • • + \/m — log m). The proof that l/r(x) is
computable is very long. The author has written up the details and is willing to
supply them on request.    □

We note that T(x) is not analog generable on any interval on which it is
defined.

Theorem 4. Suppose y(x) satisfies an algebraic differential polynomial on I. Then
there is an I' Q I such that on T, y{x) can be generated by a G.PA.C.

Proof. Since the proof is detailed, a brief outline may be useful. We take a
certain algebraic differential polynomial—say of order n + 1—and we show that
for some /0 G /, y(x) is the unique solution of this polynomial satisfying a set of
initial conditions^), ...,yW(a). We then proceed to relabel the derivatives.
Thus y(x) becomes y2(x), y'(x) becomes j3(x), ..., etc. Hence, in effect, we are
rewriting the differential equation in terms of x,y2, ... ,yn and adding the
defining equations dyjdx = yM. The remaining task is two-fold. First we must
convert this set of equations into a set of equations of the form required by
Definition 10. Second we must show that the set of initial conditions guaranteed
by Definition 10 has a "domain of generation".

We now proceed with the proof. Assume without loss of generality that P is an
algebraic differential polynomial of lowest order—say of order n—and of lowest
degree in that order such that P(x,y,y',... ,yW) = 0 on I. Differentiating P
formally we obtain

(*) Äy("+1> - Q = 0
where Q(x,y,y',... ,yW) and R(x,y,y',... ,^('1') are algebraic differential polyno-
mials of order at most n. Furthermore it is easily seen that either R is of order
lower than n or, if R is of order n, then it is of lower degree than P in y("\ In
either case we see that R(x,y,y',... ,y^) # 0 on /. Let a, y(a), y'(a), ..., yW(a)
—where a G /—be such that R(a,y(a),... ,y^(a)) ¥= 0. Then there is a J0 X /,
x • • • x J„+i such that:

0RÇ/.
(ii) (a,y{a),... ,y^(a)} G J0 X Jx X • • ■ X Jn+l.
(iii) If <c0,c,,c2,...,c„+J> G J0 X J¡ X • • • X Jn+i then R^,^,...,cn+l) # 0.
(iv) x G J0 => (x,y(x),... ,yB>(x)> G 70 X • • • X Jn+X.
Hence on J0, y{x) is the unique solution possessing initial conditions y(a), y'{a),

..., y(n~^(a), yW(a) at x = a which satisfies (*) on J0.
Note (*) satisfies the Lipschitz condition because of the choice of J0 X • • •

X Jn+l. Furthermore yn+1)(x) exists on J0 and satisfies (*).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We wish to prove that, on J0, y(x) can be generated by a G.P.A.C. Our first task
is to find a set of equations of the form required by Definition 10. Solving for
yn+i) in (*) we obtain

(A) v(n+.) = Q(x,y,y',...,/n))
y R(x,y,y',...,yWy

Now we introduce variables as follows: let yx = x, y2 m y, y i =/,..., y„+2
— vw, yn+2 = y<n+1\ Then equation (A) becomes

dyk/dyx = yk+x,       k = 2,...,n + 2,

6(vi,v2,...,^,+2)
%+3 R(y\,yi, ■ ■ • ,yn+iY

So the problem remains to show that the last equation of this set can be replaced
by a set of equations of the form required by Definition 10. Consider first the
polynomial Q. Each term of Q which is not a constant is of the form bvx.vr
where each v¡ is one of the yy and b is a real number. Let

4H.+4 _ .    dv2 dvx
—j— = bvx-j—I- bv2-j—dyx xdyx 2dyx

Set the initial conditions of yn+A so that yn+4(a) = bvx{a) • v2(a). Thus %+4(x)
= bvx(x)v2(x). Then let

dy„+s _ „ öX+4 aVj
dyx   ~  3 a>,  +y"+4dyx

and set>>n+5(a) = i/3(a) • ̂ n+4(a). Then^+j = bvxv2v2. If we continue this proce-
dure we finally obtain >»n+r+2 — bvx.vr Let the y's corresponding to the
nonconstant terms of Q be wx, ..., ws ; let those corresponding to the noncon-
stant terms of R be w*x, ..., w*r. Then

(B) Ä+3 = (¿ », + c) / ( ¿ w* + c*)

where c and c* are real constants which may be zero. We must now reduce (B)
to a set of equations of the form required by Definition 10. Suppose the last v, w*„
wasj^,. Let('t)

(M) A simple modification of the technique used in equations (C) will allow us to conclude: if y
can be generated by a G.P.A.C. on / and if y{x) # 0 for x e /, l/y(x) can be generated by a G.P.A.C
on /.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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%r-yP+id(í< + c*)/dyi,
(C) {

dy¡»i     ,  ây,
dyx        Zy"dyi-

Set the initial conditions of yp and yp+1 by

y,(a) = (.2 w*(a) + c*)   ,       Vl(a) = ^(«).

Thus yp(x) = CS'-i w*(x) + c*)_1. We replace (B) by (C) together with the
equation

dy,'rt+3

dyx =AkWi+c)/dyi+{%w'+cYi
whereyn+3(d) = (2<-i wf(a) + c) ■ yp{a).

We now consider the set of equations we have created—viz.

dy2

dx   _Ä+3
dy„+A _ ,   dv2 dvi
-dx--bv^ + bv^

(D) dyp-\ dvm        dy 2        _
■£■ - ** dx" + *■■&■   where,mG{>2,...,%+2}

fx

dy,        -^dx

(J><+c)A^ = -V.4 2< + cl/dv1

n+3
dx = ^(2w( + c)/dy1 + (|iw(. + c)g.

Note that we have placed the equation whose left member is dyn+Jdx at the
end. All other equations are in the normal order.

By construction for some /' Q J0 there is a unique solution {y2,... ,yn+2,
y«+4, • • • ,yP,yp+i,yn+3} satisfying the initial conditions>>2(a) = y(a), y%{a) = y'{a),
etc. and such that^M = y(x) for x G /'.

We must now produce a domain of generation for (a,y2{a),y^{a),... ,yn+2(a),
yn+ÁaX • • • iyp(a),yP+i(a),y„+3(a)y. To do this we rewrite the set of equations as:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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A(x,y2,... ,y„+2,yn+4,... ,yp,yp+i ,y„+j)

dyp
dx

dyp+\
dx

dyn+3
dx

[f we look at the matrix Á we find it is of the form

0

dyi
dx

dy,'n+2
dx

dy„+4
dx

= b(x,y2,...,ypJrX,yn+i)

1      0
0      1

0     ••• 10
—bvx     • • •     —bv2     1

-yn+4   •■•    -"3    l

yP+x yP+x l
-2yp 1

-y,    •••    -y,   •••   -Œ>, + <0  o   i
Hence the determinant of this matrix is 1. Therefore the set of equations we are
considering is equivalent to

dy2/dx = b*2(x,y2,... ,yp,yp+x,yn+3)

(D')

dyn+i/dx = b*+2(x,y2,... ,yp,yp+x,yn+3)

dy„+Jdx = b*+4(x,y2,... ,yp,yp+x,yn+3)

dyp+l/dx = b*+x(x,y2,... ,yp>yp+x,yn+3)

dyn+i/dx = b*+3(x,y2,... ,yp,yp+x,yn+3)

where the b*'s are polynomials in the v/s. Thus the Lipschitz condition is satisfied.
Hence given c = (c,c2,.. .,cn+2,cn+i,.. .,cp,cp+x,cn+3), there is a jj^X«"
X Jjfy X JJQ X • • • X Jp+fr) X J¿£\ containing c such that there is a unique solution
M* • • • 0&2>J¡Ím> • • • >yUu&3) of (D') on Jxic) x ' • • x JM satisfying yj(c) = c.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Thus associated with every set of initial conditions c, there exists a domain of
generation with respect to (D') and hence with respect to (D) itself.    D

Trivially ex, log x, and all the trigonometric functions can be generated by a
G.P.A.C. on every / for which they are defined. (Note that both sin x and cos x
are solutions of the same differential equation d2y/dx2 + y = 0. However sin x
is the unique solution satisfying y(a) = sin a, y'(a) = cos a whereas cos x is the
unique solution satisfying y(a) = cos a, y'{d) = —sin a. Note further that 1/sin x
and 1/cos x can be shown to be generable by a technique similar to that used in
equations (C) of the preceding theorem.)(14) But we need not confine our
attention to elementary functions. The above considerations show that special
functions which arise as solutions of differential equations can also be generated by
G.PA.C.—e.g. Bessel functions, etc. The reader is invited to consult the literature
on special functions for numerous examples.

4. Essential computability of analog generable functions. In this section we show
that, roughly, analog generable functions are "essentially computable". The
results are given in Theorems 7 and 8 below. Theorem 7 is concerned with entire
functions; Theorem 8 deals with a more extensive class of analog generable
functions.

In order to obtain our results we concern ourselves with power series which
satisfy an algebraic differential polynomial. This approach is very natural. For
the characterization of analog generable functions in terms of algebraic differen-
tial polynomials—which was given in the last section—leads naturally to a study
of solutions of algebraic differential polynomials. Since functions satisfying
algebraic differential polynomials are locally analytic—see remark following
Theorem 2—we can deal with power series. This explains the motivation behind
Theorems 5 and 6 below. Indeed the main results of this section are consequences
of Theorems 5 and 6.

The following terminology will be useful. Let f(x) = 2,™ o b¡(x — c)' be a
power series (c and b¿ are assumed to be real). By the formal extension of / we
mean the function/* defined by/*(z) = 2£o b¡(z — c)'.

Theorem 5.(15) Suppose f*{z) satisfies an algebraic differential polynomial. Then
the sequence of coefficients {b¡} is essentially computable in a finite number of the b¡'s
ande.

Proof. The theorem is trivial if f*(z) is a polynomial. So suppose/*(z) is not a
polynomial. By assumption there is a polynomial P such that

(1) P(w^,w^-l\...,w,z) = 0.

We assume that (1) is an algebraic differential equation of as low an order as

(15) In this proof we adapt to our needs some of the techniques used by Hurwitz in the proof of
a very different theorem [7] involving power series with rational coefficients. We present enough
details to indicate that the proof is effective in the recursion-theoretic sense.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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possible, and of as low a degree as possible in that order which is satisfied by
w = /*(z). Now consider Pn defined by

(2) 3P/3vvM = P„.

If one substitutes/*(z) in Pn, there is a nonnegative integer r and a number d + 0
so that

(3) Pn = d(z-c)r+---.

{Pn cannot vanish identically because of the choice of P.)
In the remainder of the proof we use the notation Qtu, Q, and R,u to refer to

certain polynomials in wW, w('_1), ..., w, z with coefficients which are rational in
the coefficients of P. (Note that the highest derivative which appears is at most
of order t.)

We first show that, for s = n + 2{r + 1) where r is as in (3), there exist
Qn+X, ..., Qn+r>, 2,-r-i such that

(4) w®Pn + w(°-»Qn+x + ■■■ + w^)Qn+r + Qs-r-x = 0.

This is proved by showing that for every m, there exist Q„+X¡m, ..., ô«+m-i,m>
e„+m,m such that

(5)m    w(»+*»)Pn + w(»+*»-VQn+x¡m + ■■■ + w^^)Qn+m_x<m + Qn+m<m = 0.

The proof of (5)m is by induction on m. For m = 1 the equation holds trivially.
In order to prove (5)m+1 from (5)m we differentiate (5)m twice and rearrange the
terms carefully. The tedious details are left to the reader. (4) follows immediately
from (5)r+1. (Here we abbreviate Qn+X¡r+X by Q„+x, etc.)

Next, differentiating (4) t times we obtain (6) below. (The proof of (6) proceeds
by a straightforward induction on t, using the fact that (ml,) + (ml2) = (!¿.\).)

w(s+»Pn + w(*+>-i)(Qn+l + tP'n) + w(°+-v(q„+2 + tQ'n+x + {'2)p"n) + • ' '

+ w(*+'-')(Qn+r + tQ'n+r.x + • - • + (')#'>) + lU-r-w = 0'

where the order of the highest derivative occurring in R is at most of order
s + t — {r + 1). Here Pn and the ß's are as in (4) and for / > 0, Rs+,_r_Xtt is
defined by

R,+lHr+xll = H>(-M"'))[ô;+r + (. - l)ô;+r_, + • • • + ('~ l)/»,<*»]

+ -Kí+(<-l)-(r+l),f-l ■

Thus ÄJ+,_(r+I)>f can be determined effectively from RsH,_x)_(r+x)tl_x and the ß's and
P„ of (4). Now substitute/*(z) for w in (6) and set z = c. Then (6) becomes

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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W^Pn + W^'-')(dn+1 + tp'n) + wi^'-2)(dfl+2 + td'n+l + (ÇjK) +'"

+ W^<-»(dn+r + td'n+,_x + • • • + (¿)/>£r)) + Ps+l-r-l,,,c » 0

where pP is an abbreviation for p„ with a string of r primes. Here the d's and
/>„'s—with and without primes—are real numbers. Not all the parenthesized
polynomials in t vanish identically. In particular (dn+r + td'„+r_x + • • • + (r)p$)
is not the zero polynomial since p$, which is a multiple of the d of (3), is nonzero.
Now let v < r be the smallest integer for which

(8) dn+v + d'n+„-1t + --- + (tv)pU

is not identically zero. Then, transposing (7) we have

(9) wt'-v)(dn+v + ••• + (j)j#) = 5,(wc^'-"-»,^+'--2),..., w'c, wc)

where S, is a polynomial. Let m = s + t — v. Then (9) becomes

wc(m)(go + ft « + •■•+ &ih") = S*(w("-»,wlm-2\ ...,w'c, wc)

where the g's are real numbers and S* is the result of replacing t by m — s + v
in S,. Now let m0 be chosen so large that for all m > m0, g0 + gxm + • • •
+ aw" # 0. Then

5'*('u;('"-l)   ^(""-2) w'   w)
w(m) —      «'   ' '    c ' ' ' ' ' c    ('

go +gxm +••• + gvm"

for all m > m0. Now bm = wc(mym!. Hence for m > w0,

6   _Sl(w^),w^-2),...,w'c,wc)
m      m\(g0 + glm + --- + gum'J)'

Thus we see that, for m > w0, 6m can be obtained effectively from c, the
coefficients of P, and from è* for k < m0. Hence the sequence {b¡} is essentially
computable in b0, bx, ..., b^, c and the coefficients of P.

We now remove the dependence on the coefficients of P. This is easy to do.
For if 2i™ o °¡(x — c)' satisfies an algebraic differential polynomial then it satisfies
an algebraic differential polynomial in which the coefficients can be obtained
from a finite number of the b¡ and c by rational operations. If we work with this
polynomial we can conclude that the sequence {b¡} is computable in a finite
number of the b¡ and c. Thus there is an mQ such that for all m > m0, bm can be
obtained effectively by rational operations from b0, ..., b^, c.   □

Theorem 6. Let f(x) = 2S=o b¡(x — c)' be a formal power series where b¡ and c
are real. Letf* be its formal extension. Suppose R*, the radius of convergence off*
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about z = c, is positive. Let p be so chosen that 0 < p < R*. Then the sequence of
partial sums of f converges recursively tofon[c — p,c + p].

Proof. (This proof shows that uniform convergence on [c — p, c + p] is actually
recursive convergence.) Choose a p0 such that p < p0 < R*. It is convenient to
let p0 = p + l/2*o for some integer k0 > 1. There exists a.p0 > 1 such that for
all p > p0, \bp | < 1/po ■ For suppose the contrary. Then for infinitely many p,
\bp\ > 1/po and hence 2 I^Ipo would diverge. Let M be a fixed positive integer
greater than p. Define the recursive function h by

h(t) = 2,+*> • 22*o • {M + if.

Suppose p > h(t). Then on \x — c\ < p we have

/to - t bt(x - Cy¡=o
<J,.    □

Theorem 7. Suppose f(x) = 2S=o b¡x' is entire. Suppose further that for some I,
f [ I can be generated by a G.PA.C. Then for every J,f \ J is essentially computable
in the following sense: there exist a finite number ofb¡ such that for every J,f\J is
essentially computable in these b¡.

Proof. / r / can be generated by a G.P.A.C. Then by Theorem 2, for some
Ix Q I, f satisfies an algebraic differential polynomial on Ix. Since / is entire, /
satisfies an algebraic differential polynomial on the whole line. By Theorem 5, {b¡}
is essentially computable in a finite number of b¡. By Theorem 6, f(x) is
recursively convergent on every interval a < x < b. Thus / I J is essentially
computable in these b¡.   D

In the next theorem the functions need not be entire and c may be chosen to
be rational.

Theorem 8. Suppose for some I,f\ I can be generated by a G.PA.C. Then there
is a J Q I such that f\Jis essentially computable in the following sense, f \ J is
expressible as 2i" o b¡(x — c)', the restriction of a function of a complex variable
which is analytic in a region including J, andf \ J is essentially computable in a finite
number of the b¡.

Proof. / [ I can be generated by a G.P.A.C. Hence for some /+ Ç /, / satisfies
an algebraic differential equation on /+. By the remark following Theorem 2 we
may assume that / is the restriction of a function of a complex variable which is
analytic in a region including /t Now choose c, a rational number in the interior
of /+, and expand / in a power series about c. Thus for some R > 0,
/(•*) = 2"o b¡(x — c)' is the restriction of an analytic function for \x — c\ < R.
(Note that the b¡ are all real since b¡ =/<')(c)//!.) Now let 0 < p < R. By
Theorem 5, {b¡} is essentially computable in a finite number of the b¡s. By
Theorem 6, f(x) is recursively convergent on [c — p, c + p]. Hence / is essentially
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computable in a finite number of the 6,'s on [c — p, c + p].   D
Remark. If, in the proof of Theorems 7 or 8, each b¡ in the power series

expansion of / is a computable real number, then we may strengthen the
conclusion to read: / [ J is computable.

In general, we cannot expect to strengthen either Theorem 7 or 8 to conclude
that/ [ J is computable. One reason is that by definition the function Ck defined
by Ck(x) = k for a given real k can be generated by a G.P.A.C.

As the reader can easily see, the theorems of this section can be used to obtain
results in recursive analysis. The result for entire functions was explained at length
in the introduction—see the survey of results of §4. It can be extended to cover
functions which are not necessarily entire by a trivial modification. We leave the
details to the reader.

Areas for further research. The reader who has journeyed with us this far is
undoubtedly aware of the tremendous number of open problems which arise
quite naturally from the considerations of this paper. Indeed this author has
accumulated a list which is several pages long. The most obvious problems may
be classified into three main areas—not necessarily disjoint.

Area 1. A study of the effect of adding to (or replacing) the black boxes of §2
by other black boxes.

Area 2. A more detailed study of the relation between the approach via analog
computers—perhaps as extended in Area 1—and the usual results and methods
of recursion theory. (Here, the author has some results concerned with "relative
analog generability".)

A rea 3. A more detailed study of foundations along the lines discussed in the
introduction.

These are only a few of the avenues for further research. It is hoped that the
reader will try his hand at some of them.

In conclusion, the author would like to thank her colleagues, Professors J.
Eagon, J. Nitsche and Y. Sibuya for valuable conversations. Thanks also to
Professor Shepherdson for his hospitality at the University of Bristol, where some
of this work was carried out.
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