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Abstract
In the present survey, we reveal links between abstract convex

analysis and two variants of the Monge�Kantorovich problem (MKP),
with given marginals and with a given marginal difference. It includes:
(1) the equivalence of the validity of duality theorems for MKP and
appropriate abstract convexity of the corresponding cost functions;
(2) a characterization of a (maximal) abstract cyclic monotone map
F : X → L ⊂ IRX in terms connected with the constraint set

Q0(ϕ) := {u ∈ IRZ : u(z1)− u(z2) ≤ ϕ(z1, z2) ∀z1, z2 ∈ Z = domF}

of a particular dual MKP with a given marginal difference and in terms
of L-subdifferentials of L-convex functions; (3) optimality criteria for
MKP (and Monge problems) in terms of abstract cyclic monotonicity
and non-emptiness of the constraint set Q0(ϕ), where ϕ is a special
cost function on X ×X determined by the original cost function c on
X × Y . The Monge�Kantorovich duality is applied then to several
problems of mathematical economics relating to utility theory, demand
analysis, generalized dynamics optimization models, and economics of
corruption, as well as to a best approximation problem.

∗Supported in part by the Russian Foundation for Humanitarian Sciences, grant 06-
02-00028a.
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1 Introduction
Abstract convexity or convexity without linearity may be defined as a theory
which deals with applying methods of convex analysis to non-convex objects.
Today this theory becomes an important fragment of non-linear functional
analysis, and it has numerous applications in such different fields as non-
convex global optimization, various non-traditional duality schemes for par-
ticular classes of sets and functions, non-smooth analysis, mass transporta-
tion problems, mathematical economics, approximation theory, and measure
theory; for history and references, see, e.g., [15], [30], [41], [43], [53], [54] [59],
[60], [62]...1

In this survey, we'll dwell on connections between abstract convexity and
the Monge�Kantorovich mass transportation problems; some applications
to mathematical economics and approximation theory will be considered as
well.

Let us recall some basic notions relating to abstract convexity. Given
a nonempty set Ω and a class H of real-valued functions on it, the H-
convex envelope of a function f : Ω → IR ∪ {+∞} is defined to be the
function coH(f)(ω) := sup{h(ω) : h ∈ H(f)}, ω ∈ Ω, where H(f) com-
prises functions in H majorized by f , H(f) := {h ∈ H : h ≤ f}. Clearly,
H(f) = H(coH(f)). A function f is called H-convex if f = coH(f).

In what follows, we take Ω = X × Y or Ω = X × X, where X and Y
are compact topological spaces, and we deal with H being a convex cone or
a linear subspace in C(Ω). The basic examples are H = {huv : huv(x, y) =
u(x)−v(y), (u, v) ∈ C(X)×C(Y )} for Ω = X×Y and H = {hu : hu(x, y) =
u(x)−u(y), u ∈ C(X)} for Ω = X×X. These examples are closely connected
with two variants of the Monge�Kantorovich problem (MKP): with given
marginals and with a given marginal difference.

Given a cost function c : X × Y → IR∪ {+∞} and finite positive regular
Borel measures, σ1 on X and σ2 on Y , σ1X = σ2Y , the MKP with marginals
σ1 and σ2 is to minimize the integral

∫

X×Y

c(x, y) µ(d(x, y))

subject to constraints: µ ∈ C(X × Y )∗+, π1µ = σ1, π2µ = σ2, where π1µ and
1Abstract convexity is, in turn, a part of a broader field known as generalized convexity

and generalized monotonicity; see [14] and references therein.
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π2µ stand for the marginal measures of µ.2
A different variant of MKP, the MKP with a given marginal difference,

relates to the case X = Y and consists in minimizing the integral
∫

X×X

c(x, y) µ(d(x, y))

subject to constraints: µ ∈ C(X ×X)∗+, π1µ− π2µ = σ1 − σ2.
Both variants of MKP were first posed and studied by Kantorovich [17,

18] (see also [19, 20, 21]) in the case where X = Y is a metric compact space
with its metric as the cost function c. In that case, both variants of MKP
are equivalent but, in general, the equivalence fails to be true.

The MKP with given marginals is a relaxation of the Monge `excavation
and embankments' problem [49], a non-linear extremal problem, which is to
minimize the integral ∫

X

c(x, f(x)) σ1(dx)

over the set Φ(σ1, σ2) of measure-preserving Borel maps f : (X, σ1) → (Y, σ2).
Of course, it can occur that Φ(σ1, σ2) is empty, but in many cases it is
nonempty and the measure µf on X × Y ,

µfB = σ1{x : (x, f(x)) ∈ B}, B ⊂ X × Y,

is positive and has the marginals π1µf = σ1, π2µf = σ2. Moreover, if µf is
an optimal solution to the MKP then f proves to be an optimal solution to
the Monge problem.

Both variants of MKP may be treated as problems of infinite linear pro-
gramming. The dual MKP problem with given marginals is to maximize

∫

X

u(x)σ1(dx)−
∫

Y

v(y)σ2(dy)

over the set

Q′(c) := {(u, v) ∈ C(X)× C(Y ) : u(x)− v(y) ≤ c(x, y) ∀(x, y) ∈ X × Y },
and the dual MKP problem with a given marginal difference is to maximize

∫

X

u(x) (σ1 − σ2)(dx)

2For any Borel sets B1 ⊆ X, B2 ⊆ Y , (π1µ)(B1) = µ(B1×Y ), (π2µ)(B2) = µ(X×B2).
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over the set

Q(c) := {u ∈ C(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}.

As is mentioned above, in the classical version of MKP studied by Kan-
torovich, X is a metric compact space and c is its metric. In that case, Q(c)
proves to be the set of Lipschitz continuous functions with the Lipschitz
constant 1, and the Kantorovich optimality criterion says that a feasible
measure µ is optimal if and only if there exists a function u ∈ Q(c) such that
u(x)− u(y) = c(x, y) whenever the point (x, y) belongs to the support of µ.
This criterion implies the duality theorem asserting the equality of optimal
values of the original and the dual problems.

Duality for MKP with general continuous cost functions on (not neces-
sarily metrizable) compact spaces is studied since 1974; see papers by Levin
[24, 25, 26] and references therein. A general duality theory for arbitrary com-
pact spaces and continuous or discontinuous cost functions was developed by
Levin and Milyutin [47]. In that paper, the MKP with a given marginal dif-
ference is studied, and, among other results, a complete description of all cost
functions, for which the duality relation holds true, is given. Further gener-
alizations (non-compact and non-topological spaces) see [29, 32, 37, 38, 42].

An important role in study and applications of the Monge�Kantorovich
duality is played by the set Q(c) and its generalizations such as

Q(c; E(X)) := {u ∈ E(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X},

where E(X) is some class of real-valued functions on X. Typical examples
are the classes: IRX of all real-valued functions on X, l∞(X) of bounded real-
valued functions on X, U(X) of bounded universally measurable real-valued
functions on X, and L∞(IRn) of bounded Lebesgue measurable real-valued
functions on IRn (Lebesgue equivalent functions are not identified).

Notice that the duality theorems and their applications can be restated
in terms of abstract convexity of the corresponding cost functions. In that
connection, mention an obvious equality Q(c; E(X)) = H(c) where H =
{hu : u ∈ E(X)}. Conditions for Q(c) or Q0(c) = Q(c; IRZ) to be nonempty
are some kinds of abstract cyclic monotonicity, and for specific cost func-
tions c, they prove to be crucial in various applications of the Monge�
Kantorovich duality. Also, optimality criteria for solutions to the MKP
with given marginals and to the corresponding Monge problems can be given
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in terms of non-emptiness of Q(ϕ) where ϕ is a particular function on X×X
connected with the original cost function c on X × Y .

The paper is organized as follows. Section 2 is devoted to connections
between abstract convexity and infinite linear programming problems more
general than MKP. In Section 3, both variants of MKP are regarded from
the viewpoint of abstract convex analysis (duality theory; abstract cyclic
monotonicity and optimality conditions for MKP with given marginals and
for a Monge problem; further generalizations). In Section 4, applications
to mathematical economics are presented, including utility theory, demand
analysis, dynamics optimization, and economics of corruption. Finally, in
Section 5 an application to approximation theory is given.

Our goal here is to clarify connections between the Monge - Kantorovich
duality and abstract convex analysis rather than to present the corresponding
duality results (and their applications) in maximally general form.

2 Abstract convexity and infinite linear prog-
rams

Suppose Ω is a compact Hausdorff topological space, and c : Ω → IR∪{+∞}
is a bounded from below universally measurable function on it. Given a
convex cone H ⊂ C(Ω) such that H(c) = {h ∈ H : h ≤ c} is nonempty, and
a measure µ0 ∈ C(Ω)∗+, we consider two infinite linear programs, the original
one, I, and the dual one, II, as follows.

The original program is to maximize the linear functional 〈h, µ0〉 :=∫
Ω

h(ω) µ0(dω) subject to constraints: h ∈ H, h(ω) ≤ c(ω) for all ω ∈ Ω.
The optimal value of this program will be denoted as vI(c; µ0).

The dual program is to minimize the integral functional

c(µ) :=

∫

Ω

c(ω) µ(dω)

subject to constraints: µ ≥ 0 (i.e., µ ∈ C(Ω)∗+) and µ ∈ µ0 −H0, where H0

stands for the conjugate (polar) cone in C(Ω)∗+,

H0 := {µ ∈ C(Ω)∗ : 〈h, µ〉 ≤ 0 for all h ∈ H}.

The optimal value of this program will be denoted as vII(c; µ0).
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Thus, for any µ0 ∈ C(Ω)∗+, one has

vI(c; µ0) = sup{〈h, µ0〉 : h ∈ H(c)}, (1)

vII(c; µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0}. (2)
In what follows, we endow C(Ω)∗ with the weak∗ topology and consider

vI(c; ·) and vII(c; ·) as functionals on the whole of C(Ω)∗ by letting vI(c; µ0) =
vII(c; µ0) = +∞ for µ0 ∈ C(Ω)∗ \ C(Ω)∗+.

Clearly, both functionals are sublinear that is semi-additive and positive
homogeneous. Furthermore, it is easily seen that the subdifferential of vI at
0 is exactly the closure of H(c),

∂vI(c; 0) = clH(c). (3)

Note that
vI(c; µ0) ≤ vII(c; µ0). (4)

Also, an easy calculation shows that the conjugate functional v∗II(c; u) :=
sup{〈u, µ0〉− vII(c; µ0) : µ0 ∈ C(Ω)∗}, u ∈ C(Ω), is the indicator function of
clH(c),

v∗II(c; u) =

{
0, u ∈ clH(c);
+∞, u /∈ clH(c); (5)

therefore, the second conjugate functional v∗∗II (c; µ0) := sup{〈u, µ0〉−v∗II(c; u) :
u ∈ C(Ω)} is exactly vI(c; µ0),

v∗∗II (c; µ0) = vI(c; µ0), µ0 ∈ C(Ω)∗. (6)

As is known from convex analysis (e.g., see [47] where a more general
duality scheme was used), the next result is a direct consequence of (6).
Proposition 2.1 Given µ0 ∈ dom vI(c; ·) := {µ ∈ C(Ω)∗+ : vI(c; µ) < +∞},
the following assertions are equivalent:

(a) vI(c; µ0) = vII(c; µ0);
(b) the functional vII(c; ·) is weakly∗ lower semi-continuous (lsc) at µ0.

Say c is regular if it is lsc on Ω and, for every µ0 ∈ dom vI(c; ·),
vII(c; µ0) = inf{c(µ) : µ ≥ 0, µ ∈ µ0 −H0, ‖µ‖ ≤ M‖µ0‖}, (7)

where M = M(c; H) > 0. Note that if µ0 /∈ dom vI(c; ·) then, by (4),
vII(c; µ0) = +∞; therefore, for such µ0, (7) is trivial. Thus, for a regular c,
(7) holds true for all µ0 ∈ C(Ω)∗.
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Proposition 2.2 (i) If c is regular, then vII(c; ·) is weakly∗ lsc on C(Ω)∗+
hence both statements of Proposition 2.1 hold true whenever µ0 ∈ C(Ω)∗+.

(ii) If, in addition, µ0 ∈ dom vI(c; ·) then there exists an optimal solution
to program II.

Proof. (i) It suffices to show that for every real number C the Lebesgue
sublevel set L(vII(c; ·); C) := {µ0 ∈ C(Ω)∗+ : vII(c; µ0) ≤ C} is weakly∗
closed. According to the Krein�Shmulian theorem (see [11, Theorem V.5.7]),
this is equivalent to that the intersections of L(vII(c; ·); C) with the balls
BC1(C(Ω)∗) := {µ0 ∈ C(Ω)∗ : ‖µ0‖ ≤ C1}, C1 > 0, are weakly∗ closed.
Since c is regular, one has

L(vII(c; ·); C) ∩BC1(C(Ω)∗) = {µ0 : (µ0, µ) ∈ L′(C, C1)}, (8)

where

L′(C, C1) := {(µ0, µ) ∈ C(Ω)∗+ × C(Ω)∗+ : ‖µ0‖ ≤ C1, ‖µ‖ ≤ M‖µ0‖,
c(µ) ≤ C, µ ∈ µ0 −H0}. (9)

Note that the functional µ 7→ c(µ) is weakly∗ lcs on C(Ω)∗+ because of lower
semi-continuity of c as a function on Ω, and it follows from here that L′(C, C1)
is weakly∗ closed hence weakly∗ compact in C(Ω)∗ ×C(Ω)∗. Being a projec-
tion of L′(C,C1) onto the first coordinate, the set L(vII(c; ·); C)∩BC1(C(Ω)∗)
is weakly∗ compact as well, and the result follows.

(ii)This follows from the weak∗ compactness of the constraint set of (7)
along with the weak∗ lower semi-continuity of the functional µ 7→ c(µ). ¤

We say that the regularity assumption is satisfied if every H-convex func-
tion is regular.

The next result is a direct consequence of Proposition 2.2.

Corollary 2.1 Suppose the regularity assumption is satisfied, then the du-
ality relation vI(c; µ0) = vII(c; µ0) holds true whenever c is H-convex and
µ0 ∈ C(Ω)∗+. If, in addition, µ0 ∈ dom vI(c; ·), then these optimal values are
finite, and there exists an optimal solution to program II.

We now give three examples of convex cones H, for which the regularity
assumption is satisfied. In all the examples, Ω = X × Y , where X, Y are
compact Hausdorff spaces.
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Example 2.1 Suppose H = {h = huv : huv(x, y) = u(x) − v(y), u ∈
C(X), v ∈ C(Y )}. Since H is a vector subspace and 1Ω ∈ H, one has
‖µ‖ = 〈1Ω, µ〉 = 〈1Ω, µ0〉 = ‖µ0‖ whenever µ ∈ µ0 − H0, µ ≥ 0, µ0 ≥ 0;
therefore, (7) holds with M = 1, and the regularity assumption is thus sat-
isfied.

Remark 2.1 . As follows from [42, Theorem 1.4, (b)⇔(c)] (see also [43, The-
orem 10.3]), a function c : Ω = X × Y → IR∪ {+∞} is H-convex relative to
H from Example 2.1 if and only if it is bounded below and lsc. (Note that,
since Ω is compact, every lsc function c is automatically bounded below.)

Example 2.2 Let X = Y and H = {h = hu : hu(x, y) = u(x) − u(y), u ∈
C(X)}, then H0 = {ν ∈ C(Ω)∗ : π1ν − π2ν = 0}, where π1ν and π2ν are
(signed) Borel measures on X as given by 〈u, π1ν〉 =

∫
X×X

u(x) ν(d(x, y)),
〈u, π2ν〉 =

∫
X×X

u(y) ν(d(x, y)) for all u ∈ C(X). Observe that any H-
convex function c : Ω = X × X → IR ∪ {+∞} is lsc (hence, bounded from
below), vanishes on the diagonal (c(x, x) = 0 ∀x ∈ X), and satisfies the
triangle inequality c(x, y)+c(y, z) ≥ c(x, z) whenever x, y, z ∈ X. Moreover,
it follows from [47, Theorem 6.3] that every function with such properties is
H-convex. Let µ0, µ ∈ C(Ω)∗+ and µ ∈ µ0 −H0. Then ν = µ− µ0 ∈ −H0 =
H0, hence π1µ− π2µ = π1µ0 − π2µ0, and (2) is rewritten as

vII(c; µ0) = inf{c(µ) : µ ≥ 0, π1µ− π2µ = π1µ0 − π2µ0}. (10)

Furthermore, since c is lsc, vanishes on the diagonal, and satisfies the triangle
inequality, it follows from [47, Theorem 3.1] that (10) is equivalent to

vII(c; µ0) = inf{c(µ) : µ ≥ 0, π1µ = π1µ0, π2µ = π2µ0}. (11)

Therefore,

‖µ‖ = 〈1Ω, µ〉 = 〈1X , π1µ〉 = 〈1X , π1µ0〉 = 〈1Ω, µ0〉 = ‖µ0‖ (12)

whenever µ satisfies the constraints of (11); therefore, (7) holds with M = 1,
and the regularity assumption is thus satisfied.

Example 2.3 Let X = Y and H = {h = huα : huα(x, y) = u(x) − u(y) −
α, u ∈ C(X), α ∈ IR+}, then (−1Ω) ∈ H, and for any µ ∈ µ0 −H0 one has
‖µ‖ − ‖µ0‖ = 〈1Ω, µ − µ0〉 ≤ 0. Therefore, (7) holds with M = 1, and the
regularity assumption is satisfied.
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Remark 2.2 . Taking into account Example 2.2, it is easily seen that any
function c : Ω = X × X → IR ∪ {+∞} of the form c(x, y) = ϕ(x, y) − α,
where α ∈ IR+,ϕ is lsc, vanishes on the diagonal, and satisfies the triangle
inequality, is H-convex relative to H from Example 2.3. On the other hand,
it is clear that any H-convex function c satisfies the condition c(x, x) =
const ≤ 0 ∀x ∈ X.

Now suppose that µ0 = δω is the Dirac measure (delta function) at some
point ω ∈ Ω, 〈u, δω〉 := u(ω) whenever u ∈ C(Ω). We shall show that
in this case some duality results can be established without the regularity
assumption.

Observe that for all ω ∈ Ω one has vI(c; δω) = vI(coH(c); δω) = coH(c)(ω).

Proposition 2.3 Two statements hold as follows:
(i) If c is H-convex, then the duality relation vI(c; δω) = vII(c; δω) is valid

whenever ω ∈ Ω;
(ii) If, for a given ω ∈ Ω, vI(c; δω) = vII(c; δω), then vI(coH(c); δω) =

vII(c; δω) = vII(coH(c); δω).

Proof. (i)By using the definition of vI and taking into account that c is
H-convex, one gets vI(c; δω) = coH(c)(ω) = c(ω). Further, since µ = δω

satisfies constraints of the dual program, it follows that vII(c; δω) ≤ c(ω);
hence vI(c; δω) ≥ vII(c; δω), and applying (4) completes the proof.

(ii)Since c ≥ coH(c), it follows that vII(c; δω) ≥ vII(coH(c); δω); there-
fore, vI(coH(c); δω) = vI(c; δω) = vII(c; δω) ≥ vII(coH(c); δω), and taking into
account (4), the result follows. ¤

Let us define a function

c#(ω) := vII(c; δω). (13)

Clearly, c# ≤ c.

Lemma 2.1 H(c) = H(c#).

Proof. If h ∈ H(c), then, for every µ ≥ 0, µ ∈ δω − H0, one has c(µ) ≥
〈h, µ〉 ≥ h(ω), hence c#(ω) = inf{c(µ) : µ ≥ 0, µ ∈ δω −H0} ≥ h(ω), that is
h ∈ H(c#).

If now h ∈ H(c#), then h ∈ H(c) because c# ≤ c. ¤
The next result is a direct consequence of Lemma 2.1.
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Corollary 2.2 For every ω ∈ Ω, c(ω) ≥ c#(ω) ≥ coH(c)(ω).

It follows from Corollary 2.2 that if c is H-convex, then c# = c.

Corollary 2.3 c# is H-convex if and only if c# = coH(c).

Proof. If c# is H-convex, then c#(ω) = sup{h(ω) : h ∈ H(c#)}, and applying
Lemma 2.1 yields c#(ω) = sup{h(ω) : h ∈ H(c)} = coH(c)(ω). If c# fails to
be H-convex, then there is a point ω ∈ Ω such that c#(ω) > sup{h(ω) : h ∈
H(c#)}, and applying Lemma 2.1 yields c#(ω) > sup{h(ω) : h ∈ H(c)} =
coH(c)(ω). ¤

Proposition 2.4 The following statements are equivalent:
(a) c# is H-convex;
(b) the duality relation vI(c; δω) = vII(c; δω) holds true whenever ω ∈ Ω;
(c) for all ω ∈ dom coH(c) := {ω ∈ Ω : coH(c)(ω) < +∞}, the functional

vII(c; ·) is weakly∗ lsc at δω.

Proof. Taking into account that vI(c; δω) = coH(c)(ω), the equivalence (a) ⇔
(b) is exactly the statement of Corollary 2.3. The equivalence (b) ⇔ (c) is a
particular case of Proposition 2.1. ¤

We now consider two more general mutually dual linear programs, as
follows. Suppose that E,E ′ is a pair of linear spaces in duality relative to a
bilinear form 〈e, e′〉E, e ∈ E, e′ ∈ E ′. We endow them with the corresponding
weak topologies: σ(E, E ′) and σ(E ′, E). Given a convex cone K in E, a
functional e′0 ∈ E ′, and a weakly continuous (i.e., continuous relative to the
weak topology in the Banach space C(Ω) and the weak topology σ(E, E ′)
in E) linear map A : E → C(Ω) such that the set {e ∈ K : Ae ≤ c} is
nonempty, one has to find the optimal values

v′I(c; e
′
0) := sup{〈e, e′0〉E : e ∈ K, Ae ≤ c}, (14)

v′II(c; e
′
0) := inf{c(µ) : µ ≥ 0, A∗µ ∈ e′0 −K0}, (15)

where K0 is the convex cone in E ′ conjugate to K,

K0 := {e′ ∈ E ′ : 〈e, e′〉E ≤ 0 for all e ∈ K}.
Clearly, both the functionals, (14) and (15), are sublinear, and v′I(c; e

′
0) ≤

v′II(c; e
′
0). Similarly to Proposition 2.1, the next result is a particular case of

Lemma 5.1 (see also Remark 1 after it) in [47].
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Proposition 2.5 Given e′0 ∈ dom v′I(c; ·) := {e′ ∈ E ′ : v′I(c; e
′) < +∞}, the

following assertions are equivalent:
(a) v′I(c; e

′
0) = v′II(c; e

′
0);

(b) the functional v′II(c; ·) is weakly lower semi-continuous at e′0.

Let us define H := AK; then H0 = (A∗)−1(K0).
Remark 2.3 . Note that if

dom v′I(c; ·) ⊆ A∗C(Ω)∗+, (16)
then, for every e′0 ∈ dom v′I(c; ·),

v′I(c; e
′
0) = vI(c; µ0) and v′II(c; e

′
0) = vII(c; µ0)

whenever µ0 ∈ (A∗)−1(e′0). Also note that, for e′0 /∈ dom v′I(c; ·), one has
v′I(c; e

′
0) = v′II(c; e

′
0) = +∞.

The next result follows then from Corollary 2.1.
Corollary 2.4 Suppose the regularity assumption is satisfied. If (16) is
valid, then the duality relation v′I(c; e

′
0) = v′II(c; e

′
0) holds true whenever c is

H-convex and e′0 ∈ E ′. If, in addition, e′0 ∈ dom v′I(c; ·) then there exists an
optimal solution to program II.

3 Abstract convexity and the Monge - Kan-
torovich problems (MKP)

In this section, we consider two variants of the Monge�Kantorovich problem
(MKP), with given marginals and with a given marginal difference. Both the
problems are infinite linear programs, and abstract convexity plays impor-
tant role in their study. Abstract cyclic monotonicity along with optimality
criteria for MKP will be studied as well.

3.1 MKP with given marginals
Let X and Y be compact Hausdorff topological spaces3, σ1 and σ2 finite
positive regular Borel measures on them, σ1X = σ2Y , and c : X × Y →

3For the sake of simplicity, we assume X and Y to be compact; however, the corre-
sponding duality theorem (Theorem 3.1 below) holds true for any Hausdorff completely
regular spaces; see [42, Theorem 1.4] and [43, Theorem 10.3]. See also [29, Theorem 1].
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IR ∪ {+∞} an universally measurable function bounded from below. The
natural projecting maps of X × Y onto X and Y will be denoted as π1 and
π2, respectively.

The MKP with given marginals is to find the optimal value

C(c; σ1, σ2) := inf{c(µ) : µ ≥ 0, π1µ = σ1, π2µ = σ2} (17)

where
c(µ) :=

∫

X×Y

c(x, y) µ(d(x, y)), (18)

(π1µ)B1 = µπ−1
1 (B1) = µ(B1 × Y ) for every Borel set B1 ⊂ X,

(π2µ)B2 = µπ−1
2 (B2) = µ(X ×B2) for every Borel set B2 ⊂ Y.

The dual problem is to find the optimal value

D(c; σ1, σ2) := sup{〈u, σ1〉 − 〈v, σ2〉 : (u, v) ∈ Q′(c)}, (19)

where

Q′(c) = {(u, v) ∈ C(X)×C(Y ) : u(x)−v(y) ≤ c(x, y), (x, y) ∈ X×Y }. (20)

Clearly, always

D(c; σ1, σ2) ≤ D′(c; σ1, σ2) ≤ C(c; σ1, σ2), (21)

where D′(c; σ1, σ2) stands for supremum of
∫

X
u(x) σ1(dx) − ∫

Y
v(y) σ2(dy)

over all pairs of bounded Borel functions (u, v) satisfying u(x)−v(y) ≤ c(x, y)
whenever x ∈ X, y ∈ Y .

Let H be as in Example 2.1, E := C(X)× C(Y ), E ′ := C(X)∗ × C(Y )∗,
〈e, e′〉E := 〈u, σ′1〉 − 〈v, σ′2〉 for all e = (u, v) ∈ E, e′ = (σ′1, σ

′
2) ∈ E ′, K := E,

and A : E → C(X × Y ) is given by Ae(x, y) := u(x) − v(y), e = (u, v).
Clearly, H = AK, Q′(c) = A−1(H(c)), and

C(c; σ1, σ2) = v′II(c; e
′
0), D(c; σ1, σ2) = v′I(c; e

′
0),

where e′0 = (σ1, σ2), v′I(c; e
′
0) and v′II(c; e

′
0) are given by (14) and (15), re-

spectively. Note that (16) is satisfied.

Theorem 3.1 ([42, Theorem 1.4]). The following statements are equivalent:
(a) c is H-convex;
(b) c is bounded below and lsc;
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(c) the duality relation C(c; σ1, σ2) = D(c; σ1, σ2) holds for all σ1 ∈ C(X)∗+,
σ2 ∈ C(Y )∗+.

Moreover, if these equivalent statements hold true then, for any positive
measures σ1, σ2 with σ1X = σ2Y , there exists an optimal solution to the
MKP with marginals σ1, σ2.

Proof. (a) ⇔ (b)See Remark 2.1.
(a) ⇒ (c)Taking into account Example 2.1, this follows from Corollary

2.4.
(c) ⇒ (a)Since µ = δ(x,y) is the sole positive measure with marginals

σ1 = δx, σ2 = δy, one gets C(c; δx, δy) = c(x, y). Now, taking into account
Remark 2.3, we see that vI(c; δ(x,y)) = D(c; δx, δy), vII(c; δ(x,y)) = C(c; δx, δy);
therefore, c = c#, and applying Proposition 2.4 completes the proof.

Finally, the latter statement of the theorem is a particular case of the
latter assertion of Corollary 2.4. ¤

3.2 MKP with a given marginal difference
Let X be a compact Hausdorff topological space4, ρ ∈ C(X ×X)∗ a signed
measure satisfying ρX := 〈1X , ρ〉 = 0, and c : X × X → IR ∪ {+∞} an
universally measurable function bounded from below. As before, π1 and
π2 stand for the projecting maps of X × X onto the first and the second
coordinates, respectively. The corresponding marginals of a measure µ ∈
C(X ×X)∗+ are designated as π1µ and π2µ.

The MKP with a given marginal difference is to find the optimal value

A(c; ρ) := inf{c(µ) : µ ≥ 0, π1µ− π2µ = ρ}, (22)

where
c(µ) :=

∫

X×X

c(x, y) µ(d(x, y)). (23)

The dual problem is to find the optimal value

B(c; ρ) := sup{〈u, ρ〉 : u ∈ Q(c)}, (24)
4For the sake of simplicity, we assume X to be compact; however, the corresponding

duality theorems (Theorems 3.2 and 3.3 below) hold true for more general spaces (in
particular, for any Polish space); see [32, Theorems 9.2 and 9.4], [42, Theorem 1.2] and
[43, Theorem 10.1 and 10.2].
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where

Q(c) = {u ∈ C(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}. (25)

(Note that A(c; ρ) = B(c; ρ) = +∞ when ρX 6= 0.)
Suppose H is as in Example 2.2, E := C(X), E ′ := C(X)∗, 〈e, e′〉E :=

〈u, σ〉 for all e = u ∈ E, e′ = σ ∈ E ′, K := E, and A : E → C(X×X) is given
by Ae(x, y) := u(x) − u(y), e = u. Clearly, H = AK, Q(c) = A−1(H(c))
(hence H(c) is nonempty if and only if Q(c) is such), and

A(c; ρ) = v′II(c; e
′
0), B(c; ρ) = v′I(c; e

′
0), (26)

where e′0 = ρ, v′I(c; e
′
0) and v′II(c; e

′
0) are given by (14) and (15), respectively.

Note that

dom v′I(c; ·) = domA(c; ·) ⊆ A∗C(X ×X)∗+ = {ρ ∈ C(X)∗ : ρX = 0}.

Let U(X) stands for the class of all bounded universally measurable func-
tions on X,

Q(c; U(X)) := {v ∈ U(X) : v(x)− v(y) ≤ c(x, y) ∀(x, y) ∈ X ×X}.

Theorem 3.2 (cf. [47, Theorems 3.1, 3.2 and 4.4], [42, Theorem 1.2], [43,
Theorem 10.1]). Suppose that c is an universally measurable function van-
ishing on the diagonal D = {(x, x) : x ∈ X} and satisfying the triangle
inequality, the following statements are then equivalent:

(a) c is H-convex relative to H from Example 2.2, that is Q(c) 6= ∅ and

c(x, y) = sup{u(x)− u(y) : u ∈ Q(c)} for all x, y ∈ X; (27)

(b) c is bounded below and lsc;
(c)Q(c) 6= ∅, and the duality relation A(c; ρ) = B(c; ρ) holds for all

ρ ∈ C(X)∗;
(d)Q(c; U(X)) 6= ∅, and the duality relation A(c; ρ) = B(c; ρ) holds for

all ρ ∈ C(X)∗, ρX = 0.
Moreover, if these equivalent statements hold, then, for any ρ, ρX = 0,

and for any positive measures σ1, σ2 with σ1 − σ2 = ρ, there is a measure
µ ∈ C(X × X)∗+ such that π1µ = σ1, π2µ = σ2 and A(c; ρ) = C(c; σ1, σ2) =
c(µ).
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Proof. (a) ⇒ (b) and (c) ⇒ (d) are obvious; as for (b) ⇒ (a), see Example
2.2. The implication (a) ⇒ (c) and the latter statement of the theorem
follow from Corollary 2.4 if one takes into account Example 2.2 along with
identities (26). The proof will be complete if we show that (d) implies (a).
Suppose (27) fails; then

c(x0, y0) > sup{u(x0)− u(y0) : u ∈ Q(c)} = B(c; δx0 − δy0) (28)

for some x0, y0 ∈ X with x0 6= y0; hence, B(c; δx0 − δy0) < +∞. We define
the function

c′(x, y) := min{c(x, y)− v(x) + v(y), N}+ v(x)− v(y), (29)

where v ∈ Q(c; U(X)),

N > max{0,B(c; δx0 − δy0)− v(x0) + v(y0)}. (30)

Clearly, it is bounded and universally measurable, and c′ ≤ c. Furthermore,
c′ satisfies the triangle inequality (this is easily derived from non-negativeness
of c(x, y) − v(x) + v(y)); therefore, w(x) := c′(x, y0) belongs to Q(c; U(X)).
Consider

B(c; ρ; U(X)) := sup{〈v′, ρ〉 : v′ ∈ Q(c; U(X))}
and note an obvious inequality

A(c; ρ) ≥ B(c; ρ; U(X)) ∀ρ, ρX = 0. (31)

Now, taking into account (29) - (31), one gets

A(c; δx0 − δy0) ≥ B(c; δx0 − δy0 ; U(X)) ≥ w(x0)− w(y0)
= c′(x0, y0) > B(c; δx0 − δy0),

which contradicts the duality relation. ¤
The next Proposition supplements Theorem 3.2.

Proposition 3.1 . Suppose c : X × X → IR is bounded universally mea-
surable, vanishes on the diagonal, and satisfies the triangle inequality, then
Q(c; U(X)) is nonempty.

Proof. Let us fix an arbitrary point y0 ∈ X and consider the function v(x) =
c(x, y0). Clearly, it is universally measurable, real-valued and bounded, and
as c satisfies the triangle inequality, one has v ∈ Q(c; U(X)). ¤
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Remark 3.1 . Suppose that c : X × X → IR ∪ {+∞} satisfies the triangle
inequality and vanishes on the diagonal. As follows from [47, Theorem 3.35],
Q(c; U(X)) is nonempty if c is Baire measurable or if its Lebesgue sublevel
sets L(c; α) = {(x, y) ∈ X × X : c(x, y) ≤ α}, α ∈ IR, are the results of
applying the A-operation to Baire subsets of X×X. (If X is metrizable, the
latter means that all L(c; α) are analytic (Souslin).)

Now consider the case where the cost function c : X ×X → IR ∪ {+∞}
vanishes on the diagonal but fails to satisfy the triangle inequality, and define
the reduced cost function c∗ associated with it as follows:

c∗(x, y) : = inf
n

inf

{
n+1∑
i=1

c(xi−1, xi) : xi ∈ X, x0 = x, xn+1 = y

}

= lim
n→∞

inf

{
n+1∑
i=1

c(xi−1, xi) : xi ∈ X, x0 = x, xn+1 = y

}
.

(32)

Clearly, c∗ ≤ c, c∗ satisfies the triangle inequality (we assume, by definition,
that +∞ + (−∞) = +∞), and H(c∗) = H(c); therefore, Q(c∗) = Q(c), and
if Q(c) is nonempty, then c∗ does not take the value −∞ and is bounded
from below. We get

B(c; ρ) = B(c∗; ρ) ≤ A(c∗; ρ) ≤ A(c; ρ) ∀ρ ∈ C(X)∗. (33)

Proposition 3.2 Suppose c∗ is universally measurable. If Q(c) is nonempty
and A(c; ρ) = B(c; ρ) for all ρ ∈ C(X)∗, then c∗ is H-convex and c∗ =
coH(c) = c# where c# is given by (13). In such a case,

c∗(x, y) = sup
u∈Q(c)

(u(x)− u(y)) for all x, y ∈ X. (34)

Proof. It follows from (33) that A(c∗; ρ) = B(c∗; ρ) for all ρ ∈ C(X)∗. Note
that c∗ vanishes on the diagonal because c vanishes on the diagonal and
Q(c∗) = Q(c) 6= ∅. Now, applying Theorem 3.2 yields H-convexity of c∗,
and as H(c) = H(c∗), one gets c∗ = coH(c). Finally, the duality relation
A(c; δx − δy) = B(c; δx − δy) may be rewritten as vI(c; δ(x,y)) = vII(c; δ(x,y))
(see Remark 2.3), and applying Proposition 2.4 and Corollary 2.3 yields
c# = coH(c). ¤

5See also [32, Theorem 9.2 (III)], where a more general result is proved.
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Remark 3.2 . As is proved in [47, Lemma 4.2], if the Lebesgue sublevel sets
of c, L(c; α) = {(x, y) ∈ X × X : c(x, y) ≤ α}, α ∈ IR, are the results of
applying the A-operation to Baire subsets of X ×X, then Lebesgue sublevel
sets of c∗, L(c∗; α), α ∈ IR, have the same property hence c∗ proves to be
universally measurable.

The next result is a direct consequence of (33) and Theorem 3.2.
Proposition 3.3 If c∗ is H-convex and A(c; ρ) = A(c∗; ρ), then A(c; ρ) =
B(c; ρ).

Remark 3.3 . As is established in [32, Theorem 9.6] and (for a metrizable
case) in [47, Theorem 2.1], a reduction theorem is true: if the Lebesgue
sublevel sets of c are the results of applying the A-operation to Baire subsets
of X ×X, then A(c; ρ) = A(c∗; ρ) provided that the equality holds

A(c; ρ) = lim
N→∞

A(c ∧N ; ρ), (35)

where (c ∧ N)(x, y) = min{c(x, y), N}. (Note that, for a bounded c, (35) is
trivial.)

Taking into account Remarks 3.2 and 3.3, the next result is derived from
Propositions 3.2, 3.3 and the reduction theorem.
Theorem 3.3 (cf. [47, Theorems 3.1 and 3.2], [32, Theorem 9.4], [43, The-
orem 10.2]). Suppose that c is bounded from below and vanishes on the di-
agonal, and that its sublevel sets are the results of applying the A-operation
to Baire subsets of X ×X. The following statements are then equivalent:

(a) the reduced cost function c∗ is H-convex, and condition (35) is satis-
fied whenever ρX = 0;

(b)Q(c) is nonempty, and the duality relation A(c; ρ) = B(c; ρ) holds for
all ρ ∈ C(X)∗.
Proof. (a) ⇒ (b) Taking into account the reduction theorem (see Remark
3.3), this follows from Proposition 3.3.

(b) ⇒ (a) In accordance with Remark 3.2, c∗ is universally measurable;
then, by Proposition 3.2, it is H-convex. It remains to show that (35) is
satisfied. First, note that, being a bounded function, every u ∈ Q(c) belongs
to Q(c ∧N), where N = N(u) > 0 is large enough; therefore,

B(c; ρ) = lim
N↑∞

B(c ∧N ; ρ).
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Now, by using the monotonicity of A(c; ρ) in c, one gets

A(c; ρ) ≥ lim sup
N↑∞

A(c ∧N ; ρ) ≥ lim inf
N↑∞

A(c ∧N ; ρ)

≥ lim
N↑∞

B(c ∧N ; ρ) = B(c; ρ),

which clearly implies (35). ¤
Corollary 3.1 Suppose c is Baire measurable, bounded from below, and
vanishes on the diagonal. Then c∗ is H-convex if and only if Q(c) is nonempty
and A(c; ρ) = B(c; ρ) for all ρ ∈ C(X)∗.

3.3 A connection between two variants of MKP
Given compact Hausdorff topological spaces X and Y , we define X ⊕ Y to
be the formal union X ∪ Y of disjoint copies of X and Y with the topology
of direct sum: by definition, a set G is open in X ⊕ Y if G ∩ X is open
in X and G ∩ Y is open in Y . Clearly, X ⊕ Y is compact, both X and
Y are open-closed in it, and C(X ⊕ Y ) = C(X) × C(Y ). Furthermore,
C(X ⊕ Y )∗ = C(X)∗ × C(Y )∗, that is a pair (σ1, σ2) ∈ C(X)∗ × C(Y )∗ is
identified with a measure σ̂ ∈ C(X ⊕ Y )∗,

σ̂B = σ1(B ∩X) + σ2(B ∩ Y ) for any Borel B ⊆ X ⊕ Y,

and every σ̂ ∈ C(X ⊕ Y )∗ is obtained in such a way. We shall write this as
σ̂ = (σ1, σ2).

Given σ1 ∈ C(X)∗+ and σ2 ∈ C(Y )∗+, we associate them with the measures
σ̂1 = (σ1, 0), σ̂2 = (0, σ2) ∈ C(X ⊕ Y )∗+. Similarly, every µ ∈ C(X × Y )∗+ is
associated with the measure µ̂ ∈ C((X ⊕ Y )× (X ⊕ Y ))∗+,

µ̂B := µ(B ∩ (X × Y )) for any Borel B ⊆ (X ⊕ Y )× (X ⊕ Y ). (36)

Given a cost function c : X×Y → IR∪{+∞}, every pair (u, v) ∈ Q′(c) is
identified with a function w ∈ C(X ⊕ Y ), w|X = u, w|Y = v, which belongs
to Q(ĉ) for

ĉ(z, z′) := sup{w(z)− w(z′) : w = (u, v) ∈ Q′(c)}, z, z′ ∈ X ⊕ Y, (37)

where Q′(c) ⊂ C(X⊕Y ) is defined as in (20). Clearly, ĉ is lsc, vanishes on the
diagonal, and satisfies the triangle inequality, c majorizes the restriction of ĉ
onto X × Y , and Q(ĉ) = Q′(c). Note that if c coincides with the restriction
of ĉ onto X × Y then C(c; σ1, σ2) = C(ĉ; σ̂1, σ̂2).
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Proposition 3.4 (cf. [42, Theorem 1.5] and [26, Lemma 7]). I. Given a cost
function c : X × Y → IR ∪ {+∞}, the following statements are equivalent:

(a) c is H-convex relative to H from Example 2.1;
(b) c is the restriction to X × Y of a function ĉ on (X ⊕ Y )× (X ⊕ Y ),

which is H-convex relative to H ⊂ C((X⊕Y )× (X⊕Y )) from Example 2.2.
If these equivalent statements hold, then Q(ĉ) = Q′(c) and

A(ĉ; σ̂1 − σ̂2) = B(ĉ; σ̂1 − σ̂2) = C(c; σ1, σ2) = D(c; σ1, σ2) > −∞

whenever σ1 ∈ C(X)∗+, σ2 ∈ C(Y )∗+, σ1X = σ2Y .
II. If c ∈ C(X × Y ), then there is a continuous function ĉ satisfying (b).

Proof. I. This follows easily from Theorems 3.1 and 3.2 if one takes ĉ as
given by (37).

II. Define ĉ as follows:

ĉ(z1, z2) =





c(x, y), if z1 = x ∈ X, z2 = y ∈ Y ;
c1(x1, x2), if z1 = x1 ∈ X, z2 = x2 ∈ X;
c2(y1, y2), if z1 = y1 ∈ Y, z2 = y2 ∈ Y ;

c3(y, x), if z1 = y ∈ Y, z2 = x ∈ X,

(38)

where

c1(x1, x2) = max
y∈Y

(c(x1, y)− c(x2, y)) ,

c2(y1, y2) = max
x∈X

(c(x, y2)− c(x, y1)) ,

c3(y, x) = max
x1∈X,y1∈Y

(c(x1, y1)− c(x1, y)− c(x, y1)) .

Clearly, ĉ is continuous, vanishes on the diagonal, and ĉ|X×Y = c. More-
over, a direct testing shows that it satisfies the triangle inequality. Then ĉ
is H-convex with respect to H from Example 2.2, and the result follows. ¤

The next result supplements Theorem 3.1.

Proposition 3.5 (cf. [26, Theorem 5]). Suppose c ∈ C(X × Y ), σ1 ∈
C(X)∗+, σ2 ∈ C(Y )∗+, and σ1X = σ2Y , then there is an optimal solution
(u, v) ∈ C(X)× C(Y ) to the dual MKP, that is, (u, v) ∈ Q′(c) and

∫

X

u(x) σ1(dx)−
∫

Y

v(y) σ2(dy) = D(c; σ1, σ2).

19



Proof. Take a function ĉ ∈ C((X ⊕ Y ) × (X ⊕ Y )) from Proposition 3.4, II
(see (38)) and fix arbitrarily a point z0 ∈ X ⊕ Y . Since ĉ is continuous and
vanishes on the diagonal, the set

Q(ĉ; z0) := {w ∈ Q(ĉ) : w(z0) = 0}
is compact in C(X ⊕ Y ) and there exists a function w0 = (u, v) ∈ Q(ĉ; z0)
such that 〈w0, σ̂1− σ̂2〉 = max{〈w, σ̂1− σ̂2〉 : w ∈ Q(ĉ; z0)}. Now, taking into
account an obvious equality Q(ĉ) = Q(ĉ; z0) + IR and applying Proposition
3.4, one gets

∫

X

u(x) σ1(dx)−
∫

Y

v(y) σ2(dy) = 〈w0, σ̂1 − σ̂2〉

= max{〈w, σ̂1 − σ̂2〉 : w ∈ Q(ĉ)} = B(ĉ; σ̂1 − σ̂2) = D(c; σ1, σ2). ¤

3.4 Abstract cyclic monotonicity and optimality condi-
tions for MKP

Given a set X and a subset L in IRX , a multifunction F : X → L is called
L-cyclic monotone if, for every cycle x1, . . . , xm, xm+1 = x1 in domF =
{x ∈ X : F (x) 6= ∅}, the inequality holds

m∑

k=1

(lk(xk)− lk(xk+1)) ≥ 0 (39)

whenever lk ∈ F (xk), k = 1, . . . , m. By changing the sign of this inequality,
one obtains the definition of L-cyclic antimonotone multifunction. Clearly,
F is L-cyclic monotone if and only if −F is (−L)-cyclic antimonotone.

We say a function U : X → IR ∪ {+∞} is L-convex if it is H-convex
relative to

H := {hlα : hlα(x) = l(x)− α, (l, α) ∈ L× IR}. (40)

A function V : X → IR ∪ {−∞} is said to be L-concave if U = −V is
(−L)-convex.

Examples of L-cyclic monotone multifunctions are L-subdifferentials of
L-convex functions, ∂LU : X → L, where

∂LU(x) := {l ∈ L : l(z)− l(x) ≤ U(z)− U(x) for all z ∈ X}. (41)
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Similarly, examples of L-cyclic antimonotone multifunctions are L-super-
differentials of L-concave functions, ∂LV : X → L, where

∂LV (x) := {l ∈ L : l(z)− l(x) ≥ V (z)− V (x) for all z ∈ X}. (42)

It is obvious from the above definitions that, for every L-concave V ,

∂LV = ∂(−L)(−V ). (43)

Remark 3.4 . The classic monotone (antimonotone) multifunctions can be
considered as examples of L-cyclic monotone (resp., antimonotone) ones,
answering the case where X is a Hausdorff locally convex space, L = X∗

is the dual space, and l(x) = 〈x, l〉, x ∈ X, l ∈ L. Close notions of c-
monotonicity (c-antimonotonicity) and of c-subdifferentials of c-convex func-
tions (c-superdifferentials of c-concave functions) are widespread in literature;
e.g., see [12, 55, 63]. A connection between the corresponding L-concepts and
c-concepts is discussed in [40].

Given a multifunction F : X → L, we denote Z = domF := {z ∈ X :
F (z) 6= ∅} and consider two functions Z × Z → IR ∪ {−∞} as follows:

ϕF (z1, z2) = ϕF,L(z1, z2) := inf{l(z1)− l(z2) : l ∈ F (z1)}, (44)

ψF (z1, z2) = ψF,L(z1, z2) := inf{l(z1)− l(z2) : l ∈ F (z2)}. (45)
Clearly, ψF,L(z1, z2) = ϕ(−F ),(−L)(z2, z1).

Remark 3.5 . Note that if sup
l∈L

|l(z)| < ∞ for every z ∈ Z, then both the
functions are real-valued.

Given a function ζ : Z × Z → IR ∪ {−∞} vanishing on the diagonal
(ζ(z, z) = 0 ∀z ∈ Z), we consider the set

Q0(ζ) := {u ∈ IRZ : u(z1)− u(z2) ≤ ζ(z1, z2) ∀z1, z2 ∈ Z}. (46)

It follows from (46) that if Q0(ζ) is nonempty, then ζ is real-valued.
Clearly, Q0(ζ) = Q0(ζ∗) where ζ∗ is the reduced cost function associated with
ζ (for the definition of the reduced cost function, see (32)). Also, observe
that if Z is a topological space and ζ is a bounded continuous function on
Z ×Z vanishing on the diagonal, then Q0(ζ) = Q(ζ). (Here, Q(ζ) is defined
for a compact Z as in (27), and if Z is not compact, we define Q(ζ) to be
the set of all bounded continuous functions u satisfying (46).)
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Theorem 3.4 ([40, Theorem 2.1]). A multifunction F : X → L is L-cyclic
monotone if and only if Q0(ϕF ) is nonempty.

Theorem 3.5 ([40, Theorem 2.2]). Suppose F : X → L is L-cyclic mono-
tone. Given a function u : Z = domF → IR ∪ {+∞}, the following state-
ments are equivalent:

(a)u ∈ Q0(ϕF );
(b)u is a restriction to Z of some L-convex function U : X → IR∪{+∞},

and F (z) ⊆ ∂LU(z) for all z ∈ Z.

The next result extending a classical convex analysis theorem due to
Rockafellar is an immediate consequence of Theorems 3.4 and 3.5.

Corollary 3.2 ([39], [40], [53]6). A multifunction F : X → L is L-cyclic
monotone if and only if there is a L-convex function U : X → IR ∪ {+∞}
such that F (x) ⊆ ∂LU(x) for all x ∈ X.

Suppose F : X → L is a L-cyclic monotone multifunction. We say F is
maximal L-cyclic monotone if F = T for any L-cyclic monotone multifunc-
tion T such that F (x) ⊆ T (x) whenever x ∈ X.

Theorem 3.6 ([40, Theorem 2.3]). A multifunction F : X → L is maximal
L-cyclic monotone if and only if F = ∂LU for all L-convex functions U :
X → IR ∪ {+∞} satisfying U |domF ∈ Q0(ϕF ).

Remark 3.6 . Theorem 3.6 is an abstract version of the corresponding clas-
sical result due to Rockafellar [58]. In classical setting, X is a Hausdorff
locally convex space, L = X∗ is the conjugate space, and l(x) = 〈x, l〉. In
this case, L-convex functions, their L-subdifferentials, and L-cyclic monotone
multifunctions are, respectively, convex lsc functions, their subdifferentials,
and classical cyclic monotone multifunction X → X∗. Rockafellar's theorem
says that maximal cyclic monotone multifunctions are exactly the subdif-
ferentials of lsc convex functions, and if U1 and U2 are two such functions
with ∂U1 = ∂U2, then U1 − U2 is a constant function. However, in general
case both these assertions fail: there is a L-convex function, for which ∂LU
is not maximal, and there are two L-convex functions, U1 and U2, such that

6See also [4, 12, 56, 61, 63], where close abstract results related to c-cyclic mono-
tonicity and c-subdifferentials of c-convex functions (c-cyclic antimonotonicity and c-
superdifferentials of c-concave functions) may be found.
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the multifunction F = ∂LU1 = ∂LU2 is maximal L-cyclic monotone but the
difference U1 − U2 is not constant. The corresponding counter-example can
be seen in [40, Example 2.1].

Let X, Y be compact Hausdorff topological spaces. Given a cost function
c ∈ C(X ×Y ), we consider the MKP with marginals σ1 and σ2, σ1X = σ2Y .
Recall (see subsection 3.1), that it is to find the optimal value

C(c; σ1, σ2) = inf{c(µ) : µ ∈ Γ(σ1, σ2)},

where c(µ) is given by (18),

Γ(σ1, σ2) = {µ ∈ C(X × Y )∗+ : π1µ = σ1, π2µ = σ2}.

We consider the set of real-valued functions on X,

L := {−c(·, y) : y ∈ sptσ2}. (47)

where the symbol spt stands for the support of the corresponding measure.
Every µ ∈ Γ(σ1, σ2) can be associated with the multifunction Fµ : X → L,

Fµ(x) := {−c(·, y) : (x, y) ∈ sptµ}. (48)

(Fµ is well-defined because the projection of (a compact set) sptµ onto Y is
exactly sptσ2.)

Note that for F = Fµ function (44) takes the form

ϕFµ(z1, z2) = inf
y:(z1,y)∈sptµ

(c(z2, y)− c(z1, y)). (49)

Furthermore, since c is continuous and sptµ is compact, infimum in (49)
is attained whenever z1 ∈ Z = domFµ = π1(sptµ) = sptσ1, and the function
ϕFµ is continuous and vanishes on the diagonal in Z×Z; therefore, Q0(ϕFµ) =
Q(ϕFµ).

Theorem 3.7 (cf. [40, Theorem 5.1] and [44, Theorem 2.1]). Given a mea-
sure µ ∈ Γ(σ1, σ2), the following statements are equivalent:

(a)µ is an optimal solution to the MKP, that is c(µ) = C(c; σ1, σ2);
(b) the set Q0(ϕFµ) = Q(ϕFµ) is nonempty;
(c)Fµ is L-cyclic monotone.
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Proof. (a) ⇒ (b) By Proposition 3.5, there is an optimal solution (u, v)
to the dual MKP; therefore,

D(c; σ1, σ2) =

∫

X

u(x) σ1(dx)−
∫

Y

v(y) σ2(dy), (50)

and taking into account the duality relation C(c; σ1, σ2) = D(c; σ1, σ2) (see
Theorem 3.1), (50) can be rewritten as

c(µ) =

∫

X

u(x) σ1(dx)−
∫

Y

v(y) σ2(dy). (51)

Furthermore, since π1µ = σ1, π2µ = σ2, and (u, v) ∈ Q′(c), (51) implies

u(x)− v(y) = c(x, y) whenever (x, y) ∈ sptµ. (52)

Note that π1( sptµ) is closed as the projection of a compact set; therefore,
Z = domFµ = π1( sptµ) = sptσ1, and (52) means

u(z)− v(y) = c(z, y) whenever z ∈ Z, l = −c(·, y) ∈ Fµ(z). (53)

Now, given any z, z′ ∈ Z, and l ∈ Fµ(z) = {−c(·, y) : (z, y) ∈ sptµ}, we
derive from (53) u(z′)− u(z) = u(z′)− c(z, y)− v(y) ≤ c(z′, y)− c(z, y), and
taking infimum over all y with (z, y) ∈ sptµ, yields u(z′)−u(z) ≤ ϕFµ(z, z′)
hence (−u) ∈ Q(ϕFµ).

(b) ⇒ (a) Since every measure from Γ(σ1, σ2) vanishes outside the set
sptσ1 × sptσ2, one can consider µ as a measure on Xµ × Yµ (instead of
X × Y ), where Xµ = sptσ1, Yµ = sptσ2. It suffices to show that µ is an
optimal solution to the MKP on Xµ × Yµ.

Note that u ∈ Q(ϕFµ) means

u(z1)− u(z2) ≤ c(z2, y)− c(z1, y) (54)

whenever (z1, y) ∈ sptµ. Let us define

v(y) := − inf
z:(z,y)∈sptµ

(u(z) + c(z, y)), y ∈ Yµ. (55)

Since sptµ is compact and u, c are continuous, the infimum in the right-
hand side of (55) is attained and v proves to be a bounded lsc function on
Yµ. Moreover, it follows from (54) that

−u(z)− v(y) ≤ c(z, y) ∀(z, y) ∈ Xµ × Yµ (56)
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and
−u(z)− v(y) = c(z, y) ∀(z, y) ∈ sptµ. (57)

Note now that (57) implies
∫

Xµ

(−u)(x) σ1(dx)−
∫

Yµ

v(y) σ2(dy) = c(µ). (58)

We derive from (58) that D′(c; σ1, σ2) ≥ c(µ) ≥ C(c; σ1, σ2), and as always
D′(c; σ1, σ2) ≤ C(c; σ1, σ2) (see (21)), µ is optimal.

(b) ⇔ (c) This is a particular case of Theorem 3.4. ¤

Remark 3.7 . A different proof of a similar theorem is given in [40, Theorem
5.1] and [44, Theorem 2.1], where non-compact spaces are considered. A close
result saying that optimality of µ and c-cyclic antimonotonicity of sptµ are
equivalent may be found in [12].

We now turn to the Monge problem. Recall (see Introduction) that it is
to minimize the functional

F(f) :=

∫

X

c(x, f(x)) σ1(dx)

over the set Φ(σ1, σ2) of measure-preserving Borel maps f : (X, σ1) → (Y, σ2).
(A map f is called measure-preserving if f(σ1) = σ2, that is σ1f

−1(BY ) =
σ2BY for every Borel set BY ⊆ Y .) Any f ∈ Φ(σ1, σ2) is associated with a
measure µf = (idX × f)(σ1) ∈ C(X × Y )∗+, as given by

∫

X×Y

w(x, y) µf (d(x, y)) :=

∫

X

w(x, f(x)) σ1(dx) ∀w ∈ C(X × Y ),

or, equivalently,
µfB := σ1{x ∈ X : (x, f(x)) ∈ B}

whenever B ⊆ (X × Y ) is Borel. It is easily seen that µf ∈ Γ(σ1, σ2) and

F(f) = c(µf ). (59)

The measure µf is called a (feasible) Monge solution to MKP. It follows from
(59) that if there is an optimal solution to MKP which is the Monge solution
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µf , then f is an optimal solution to the Monge problem and optimal values
of both problems coincide,

C(c; σ1, σ2) = F(f) = V(c; σ1, σ2), (60)

where V(c; σ1, σ2) = inf{F(f) : f ∈ Φ(σ1, σ2)}. In general case, C(c; σ1, σ2) ≤
V(c; σ1, σ2), and Φ(σ1, σ2) can be empty; however, in some particular cases
(60) holds true.

Remark 3.8 . When X and Y are subsets in IRn, some existence (and unique-
ness) results for optimal Monge solutions based on conditions of c-cyclic
monotonicity (antimonotonicity) may be found in [3], [5], [6], [12], [39],
[40], [55], [65]. In most of these publications, cost functions of the form
c(x, y) = ϕ(x − y) are considered. (Note that, since a pioneer paper by
Sudakov [64],7 much attention is paid to cost functions c(x, y) = ‖x − y‖
for various norms ‖ · ‖ in IRn; for such cost functions the optimal solution
is not unique.) Several existence and uniqueness theorems for general cost
functions are established in [39, 40].

Notice that for a continuous f ∈ Φ(σ1, σ2) and µ = µf one has sptµ =
{(z, f(z)) : z ∈ sptσ1}; therefore, Fµ as given by (48) is single-valued,
Fµ(x) = −c(·, f(x)), and

ϕFµ(z1, z2) = ϕf (z1, z2) := c(z2, f(z1))− c(z1, f(z1)).

The next optimality criterion is then a direct consequence of Theorem
3.7.

Corollary 3.3 (cf. [44, Corollary 2.2]). Suppose f ∈ Φ(σ1, σ2) is continu-
ous, then µf is an optimal solution to MKP if and only if Q(ϕf ) is nonempty.

Remark 3.9 . If f ∈ Φ(σ1, σ2) is discontinuous, then the support of µf is the
closure of the set {(z, f(z)) : z ∈ sptσ1}. In some cases, Corollary 3.3 and
its generalizations following from Theorem 3.7 enable to find exact optimal
solutions to concrete Monge problems; see [44, 45].

7In spite of a gap in Sudakov's proof (see [3]), its main idea proves to be fruitful.
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3.5 Some generalizations
In this subsection we consider briefly some examples of H-convex functions
similar to Example 2.2 and some sets of type Q(c) and Q0(c) for cost functions
c that can fail to vanish on the diagonal.

Given an arbitrary infinite set X, l∞(X) and l∞(X × X) will denote
the linear spaces of bounded real-valued functions on X and X × X, re-
spectively. They are dual Banach spaces relative to the uniform norms
‖u‖∞ = supx∈X |u(x)|, u ∈ l∞(X) and ‖w‖∞ = sup(x,y)∈X×X |w(x, y)|, w ∈
l∞(X ×X):

l∞(X) = l1(X)∗, l∞(X ×X) = l1(X ×X)∗.

Here, l1(Z) stands for the space of real-valued functions v on Z with at most
countable set spt v := {z ∈ Z : v(z) 6= 0} and ‖v‖1 :=

∑
z∈spt v |v(z)| < ∞,

and the duality between l1(Z) and l∞(Z) is given by the bilinear form

〈v, u〉 :=
∑

z∈spt v

v(z)u(z), u ∈ l∞(Z), v ∈ l1(Z).

Given a cost function c : X×X → IR∪{+∞}, the reduced cost function
c∗ is defined as follows:

c∗(x, y) := min

(
c(x, y), inf

n
inf

x1,...,xn

n+1∑
i=1

c(xi−1, xi)

)
, (61)

where x0 = x, xn+1 = y. Clearly, it turns into (32) when c vanishes on the
diagonal. Also, c∗ satisfies the triangle inequality c∗(x, y)+c∗(y, z) ≥ c∗(x, z)
for all x, y, z ∈ X if one takes, by definition, that (+∞) + (−∞) = (−∞) +
(+∞) = +∞.

Let us define a set

Q(c; l∞(X)) := {u ∈ l∞(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}. (62)

Note that if u ∈ Q(c; l∞(X)), then

u(xi−1)− u(xi) ≤ c(xi−1, xi), i = 1, . . . , n + 1,

and summing up these inequalities with x0 = x, xn+1 = y yields

u(x)− u(y) ≤
n+1∑
i=1

(u(xi−1)− u(xi)) ≤
n+1∑
i=1

c(xi−1, xi).
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This implies u ∈ Q(c∗; l∞(X)), and as c ≥ c∗, it follows that Q(c; l∞(X)) =
Q(c∗; l∞(X)).

Proposition 3.6 (cf. [33, Lemma 2] and [37, Theorem 4.1].) Suppose c∗ is
bounded from above, the following statements are then equivalent:

(a)Q(c; l∞(X)) 6= ∅;
(b) c∗ ∈ l∞(X ×X);
(c) c∗(x, y) > −∞ for all x, y ∈ X;
(d) c∗(x, x) ≥ 0 for all x ∈ X;
(e) for all integers l and all cycles x0, . . . , xl−1, xl = x0 in X, the inequality

holds
∑l

i=1 c(xi−1, xi) ≥ 0;
(f) the function

c̄(x, y) =

{
c∗(x, y), if x 6= y;
0, if x = y; (63)

is H-convex relative to H := {hu(x, y) = u(x)− u(y) : u ∈ l∞(X)}.
Proof. (a) ⇒ (b) Suppose that u ∈ Q(c; l∞(X)). Since Q(c; l∞(X)) =
Q(c∗; l∞(X)), one has u(x) − u(y) ≤ c∗(x, y); therefore, c∗ is bounded from
below, and as, by hypothesis, c∗ is bounded from above, c∗ ∈ l∞(X ×X).

(b) ⇒ (a) Fix arbitrarily a point x0 ∈ X and set u(x) := c∗(x, x0).
Clearly, u ∈ l∞(X), and by the triangle inequality, u(x)−u(y) = c∗(x, x0)−
c∗(y, x0) ≤ c∗(x, y) whenever x, y ∈ X, i.e., u ∈ Q(c∗; l∞(X) = Q(c; l∞(X)).

(b) ⇒ (c) Obvious.
(c) ⇒ (b) Since c∗ is bounded from above, one has c∗(x, y) < M < +∞

for all (x, y) ∈ X ×X. Suppose c∗ /∈ l∞(X), then there are points (xn, yn) ∈
X×X such that c∗(xn, yn) < −n, and applying the triangle inequality yields
c∗(x, y) ≤ c∗(x, xn)+c∗(xn, yn)+c∗(yn, y) ≤ 2M−n; therefore c∗(x, y) = −∞.

(c) ⇒ (d) It follows from the triangle inequality that c∗(x, x) ≤ 2c∗(x, x)
whenever x ∈ X. Therefore, if c∗(x0, x0) < 0 for some x0 ∈ X, then
c∗(x0, x0) = −∞. (Moreover, in such a case, applying again the triangle
inequality yields c∗(x, y) ≤ c∗(x, x0) + c∗(x0, x0) + c∗(x0, y) = −∞.)

(d) ⇒ (c) Suppose c∗(x, y) = −∞ for some (x, y) ∈ X×X, then applying
the triangle inequality yields c∗(x, x) ≤ c∗(x, y) + c∗(y, x) = −∞.

(d) ⇔ (e) Obvious.
(b) ⇒ (f) Take a point x0 ∈ X and define ux0(x) := c∗(x, x0). One has

hux0
(x, y) = c∗(x, x0) − c∗(y, x0) ≤ c∗(x, y) = c̄(x, y) for any x 6= y, and

hux0
(x, x) = 0 = c̄(x, x) for all x ∈ X. Thus, hux0

∈ H(c̄) whenever x0 ∈ X.
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Moreover, for x0 = y one gets huy(x, y) = c̄(x, y), and H-convexity of c̄ is
thus established.

(f) ⇒ (a) Obvious. ¤

Remark 3.10 . It is easily seen that Q(c; l∞(X)) = Q(c̄; l∞(X)) and H(c̄) =
{hu : u ∈ Q(c; l∞(X))}.

Remark 3.11 . It follows easily from the proof of Proposition 3.6 that if c∗
is bounded from above then either all the statements (a)− (f) hold true or
c∗(x, y) = −∞ whenever (x, y) ∈ X ×X.

The following proposition is established by similar arguments, and so we
omit its proof.

Proposition 3.7 (cf. [32, 35]). Given a function c : X ×X → IR ∪ {+∞}
such that c∗(x, y) < +∞ whenever x, y ∈ X, the following statements are
equivalent:

(a)Q0(c) := {u ∈ IRX : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X} 6= ∅;
(b) c∗(x, y) > −∞ for all x, y ∈ X;
(c) c∗(x, x) ≥ 0 for every x ∈ X;
(d) for all integers l and all cycles x0, . . . , xl−1, xl = x0 in X, the in-

equality holds
∑l

i=1 c(xi−1, xi) ≥ 0.
(e) the function c̄, as given by (63), is H-convex with respect to H =

{hu(x, y) = u(x)− u(y) : u ∈ IRX}.

Remark 3.12 . It is easily seen that H(c̄) = {hu : u ∈ Q0(c)}.

Remark 3.13 . If X is a domain in IRn and c is a smooth function vanishing
on the diagonal, then either Q0(c) is empty or Q0(c) = {u + const} where
∇u(x) = −∇yc(x, y)|y=x; see [33, 35, 36]. Second-order conditions (necessary
ones and sufficient ones) for Q0(c) to be nonempty are given in [33, 35, 36, 46].

Let E(X) be a closed linear subspace in l∞(X) containing constant func-
tions, separating points of X (that is, for any x, y ∈ X there is a function
u ∈ E(X), u(x) 6= u(y)), and such that u, v ∈ E(X) implies uv ∈ E(X).
Then E(X) is a (commutative) Banach algebra with respect to the uniform
norm ‖u‖ = sup

x∈X
|u(x)| and the natural (pointwise) multiplication. (Also,

E(X) is a Banach lattice; see [43].) As is known from theory of Banach alge-
bras [13, 51], the set κX of all non-zero multiplicative linear functionals on
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E(X) is a weak∗ compact subset in E(X)∗, X is dense in κX 8, and an isom-
etry of Banach algebras (Gelfand's representation), A : E(X) → C(κX),
AE(X) = C(κX), holds as follows:

Au(δ) := 〈u, δ〉, u ∈ E(X), δ ∈ κX.

Let us give three examples of Banach algebras E(X). They are as follows:
1.Cb(X) - the Banach algebra of bounded continuous real-valued func-

tions on a completely regular Hausdorff topological space X. (In this case,
κX = βX is the Stone-�Cech compactification of X.)

2.U(X) - the Banach algebra of bounded universally measurable real-
valued functions on a compact Hausdorff topological space X (we have yet
met it in subsection 3.2).

3.L∞(IRn) - the Banach algebra of bounded Lebesgue measurable real-
valued functions on IRn (Lebesgue equivalent functions are not identified).
This algebra will be of use in section 5.

Given a set X, a cost function c : X ×X → IR ∪ {+∞}, and an algebra
E(X), one can define the set

Q(c; E(X)) := {u ∈ E(X) : u(x)− u(y) ≤ c(x, y) ∀x, y ∈ X}

and a class of functions on X ×X,

H := {hu : hu(x, y) = u(x)− u(y), u ∈ E(X)}.

Clearly, H(c) = Q(c; E(X)) and c is H-convex if and only if

c(x, y) = sup{u(x)− u(y) : u ∈ Q(c; E(X))}

whenever x, y ∈ X.
Moreover, Q(c; E(X)) proves to be the constraint set for an abstract

(non-topological) variant of the dual MKP with a given marginal difference,
and H-convexity arguments play important role in the corresponding duality
results; see [37, 38] for details.

Similarly, given a cost function c : X × Y → IR ∪ {+∞}, one can take
two algebras, E1(X) and E2(Y ), and consider the set in their product,

Q′(c; E1(X), E2(Y )) := {(u, v) : u(x)− v(y) ≤ c(x, y) ∀x ∈ X, y ∈ Y },
8A point x ∈ X is identified with the functional δx ∈ κX, 〈u, δx〉 = u(x), u ∈ E(X).
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and a class of functions on X × Y ,

H := {huv : huv(x, y) = u(x)− v(y), (u, v) ∈ E1(X)× E2(Y )}.
Clearly, H(c) = Q′(c; E1(X), E2(Y )) and c is H-convex if and only if

c(x, y) = sup{u(x)− v(y) : (u, v) ∈ Q′(c; E1(X), E2(Y ))}
whenever (x, y) ∈ X × Y .

Moreover, Q′(c; E1(X), E2(Y )) is the constraint set for an abstract vari-
ant of the dual MKP with given marginals, and H-convexity arguments play
important role in the corresponding duality results; see [38].

4 Applications to mathematical economics
In this section, we present briefly several applications to mathematical eco-
nomics. In all the applications, properties of the sets Q(c) and Q0(c) for
various particular cost functions c are considered. The corresponding results
are based on conditions for these sets to be nonempty.

4.1 Utility theory
A preorder on a set X is a binary relation ¹ which is reflexive (x ¹ x for all
x ∈ X) and transitive (for any x, y, z ∈ X, x ¹ y, y ¹ z imply x ¹ z). A
preorder ¹ is called total if any two elements of X, x and y, are compatible,
that is x ¹ y or y ¹ x. A preorder ¹ on a topological space X is called
closed if its graph, gr(¹) := {(x, y) : x ¹ y}, is a closed subset in X ×X.

Any preorder ¹ can be treated as a preference relation, and it determines
two binary relations on X: the strict preference relation ≺,

x ≺ y ⇐⇒ x ¹ y but not y ¹ x,

and the equivalence relation ∼,
x ∼ y ⇐⇒ x ¹ y and y ¹ x.

A real-valued function u on X is said to be an utility function for a
preorder ¹ if for any x, y ∈ X two conditions are satisfied as follows:

x ¹ y ⇒ u(x) ≤ u(y), (64)
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x ≺ y ⇒ u(x) < u(y). (65)
Clearly, it follows from (64) that x ∼ y ⇒ u(x) = u(y).

The pair of conditions (64),(65) is equivalent to the single condition

x ¹ y ⇔ u(x) ≤ u(y)

if and only if the preorder ¹ is total. (Moreover, if ¹ is total, then x ≺ y ⇔
u(x) < u(y) and x ∼ y ⇔ u(x) = u(y), that is, the preference relation is
completely determined by its utility function.)

One of fundamental results in the mathematical utility theory is the fa-
mous theorem due to Debreu [9, 10], which asserts the existence of a continu-
ous utility function for every total closed preorder on a separable metrizable
space. We'll give here (see also [27, 28, 32]) some extensions of that theorem
to the case where the preorder is not assumed to be total. The idea of our
approach is to use a specific cost function c that vanishes on the graph of
the preorder and has appropriate semicontinuity properties. With help of
the duality theorem (Theorem 3.2) we'll obtain a representation

gr(¹) = {(x, y) : u(x) ≤ u(y) ∀u ∈ H} (66)

with H ⊆ Q(c). Moreover, sometimes it is possible to choose a countable
H = {uk : k = 1, 2, . . .}, and in such a case

u0(x) =
∞∑

k=1

2−k uk(x)

1 + |uk(x)|

proves to be a continuous utility function for ¹.
Theorem 4.1 ([22, 27]). Let ¹ be a closed preorder on a compact metriz-
able space X. Then gr(¹) has a representation (66) with a countable H;
hence there is a continuous utility function for ¹.
Proof.9 Consider on X ×X the cost function

c(x, y) =

{
0, if x ¹ y;
+∞, otherwise.

9This proof follows [27]; a proof in [22] is different.
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It satisfies the triangle inequality and vanishes on the diagonal because ¹ is
transitive and reflexive. Also, it is lsc because ¹ is closed. It follows from
Theorem 3.2 that Q(c) is nonempty and

c(x, y) = sup
u∈Q(c)

(u(x)− u(y));

therefore,
gr(¹) = {(x, y) : u(x) ≤ u(y) ∀u ∈ Q(c)}.

Since C(X) is separable, one can choose a dense countable subset H in Q(c).
Then (66) holds with that H, and the result follows. ¤

The next result is derived from Theorem 4.1.

Corollary 4.1 . ([28, 32]). Theorem 4.1 is extended to X being a separable
metrizable locally compact space.

Theorem 4.2 ([31]). Let ¹ be a preorder on a separable metrizable space
X, the following statements are then equivalent:

(a) a representation (66) holds with a countable family H ⊂ Cb(X);
(b)¹ is a restriction to X of a closed preorder ¹1 on X1, where X1 is a

metrizable compactification of X.
If these equivalent statements hold true, then there is a continuous utility

function for ¹.

We consider now the following question. Given a closed preorder ¹ω de-
pending on a parameter ω, when is there a continuous utility, i.e. a jointly
continuous real-valued function u(ω, x) such that, for every ω, u(ω, ·) is a
utility function for ¹ω? This question arises in various parts of mathematical
economics. In case of total preorders ¹ω, some sufficient conditions for the
existence of a continuous utility were obtained in [8, 48, 50, 52]. The cor-
responding existence results are rather special consequences of the following
general theorem.

Theorem 4.3 ([28, 32]). Suppose that Ω and X are metrizable topological
spaces, and X, in addition, is separable locally compact. Suppose also that
for every ω ∈ Ω a preorder ¹ω is given on X, and that the set {(ω, x, y) :
x ¹ω y} is closed in Ω × X × X. Then there exists a continuous utility
u : Ω×X → [0, 1].
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Proof (the case where Ω is separable locally compact).10 Let us define a
preorder ¹ on Ω×X,

(ω1, x1) ¹ (ω2, x2) ⇐⇒ ω1 = ω2, x1 ¹ω1 x2.

It is obviously closed, and as Ω×X is separable locally compact, the result
follows from Corollary 4.1. ¤

Remark 4.1 . Observe that if all ¹ω are total then the condition that the set
{(ω, x, y) : x ¹ω y} is closed in Ω×X×X is necessary (as well as sufficient)
for the existence of a continuous utility u : Ω×X → [0, 1].

Let P denote the set of all closed preorders on X. By identifying a
preorder ¹∈ P with its graph in X × X, we consider in P the topology t
which is induced by the exponential topology on the space of closed subsets
in the one-point compactification of X×X (for the definition and properties
of the exponential topology, see [23]). Obviously, (P , t) is a metrizable space.
The next result is obtained by applying Theorem 4.3 to Ω = (P , t).

Corollary 4.2 (Universal Utility Theorem [28, 32]). There exists a contin-
uous function u : (P , t)×X → [0, 1] such that u(¹, ·) is a utility function for
¹ whenever ¹∈ P.

4.2 Demand analysis
Given a price set P ⊆ int IRn

+, we mean by a demand function any map
f : P → int IRn

+. We will say that an utility function U : IRn
+ → IR+

rationalizes f if, for every p ∈ P ,

q ∈ IRn
+, p · q ≤ p · f(p) =⇒ U(f(p)) ≥ U(q). (67)

Theorem 4.4 (cf. [46, Corollary 3]). Given a function f : P → int IRn
+, the

following statements are equivalent:
(a) there is a positive homogeneous utility function U : IRn

+ → IR+, which
is strictly positive on f(P ) and rationalizes f ;

(b) there is a positive homogeneous continuous concave utility function
U : IRn

+ → IR+, which is strictly positive on f(P ) and rationalizes f ;
10For the sake of simplicity, we restrict ourselves to the case where Ω is separable and

locally compact. In the general case, the proof makes substantial use of a version of
Michael's continuous selection theorem in a locally convex Fr�echet space.

34



(c) for a cost function ξ on P × P , as given by

ξ(p, p′) := ln(p′ · f(p))− ln(p′ · f(p′)),

the set Q0(ξ) is nonempty;
(d) for every cycle p1, . . . , pl, pl+1 = p1 in P , the inequality holds true

l∏

k=1

pk+1 · f(pk) ≥
l∏

k=1

pk · f(pk);

(e) there is a strictly positive solution to the system

u(p) ≥ p · f(p)

p · f(p′)
u(p′) for all p, p′ ∈ P. (68)

Proof. (b) ⇒ (a) Obvious.
(a) ⇒ (e) Define u(p) := U(f(p)), p ∈ P . Since for every q ∈ IRn

+,

p · p · f(p)

p · q q = p · f(p),

it follows from (67) that

p · f(p)

p · q U(q) = U

(
p · f(p)

p · q q

)
≤ U(f(p)),

which implies (68) for q = f(p′).
(e) ⇒ (c) Since a solution u(p) to (68) is strictly positive, it follows that

v(p) := ln u(p) makes sense and belongs to Q0(ξ).
(c) ⇔ (d) This is an easy consequence of Proposition 3.7.
(c) ⇒ (e) Suppose v ∈ Q0(ξ), then u(p) = ev(p) is strictly positive and

satisfies (68).
(e) ⇒ (b) Let us define

U(q) := inf
p′∈P

u(p′)
p′ · f(p′)

p′ · q.

It follows easily from (68) that U(f(p)) = u(p) whenever p ∈ P , hence U is
strictly positive on f(P ). If now p · q ≤ p · f(p), then

U(q) ≤ u(p)

p · f(p)
p · q ≤ u(p) = U(f(p)),
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that is U rationalizes f . Since U is clearly upper semi-continuous concave
(hence continuous; see [57, Theorem 10.2]) and positive homogeneous, the
implication is completely established. ¤

Remark 4.2 . Statement (d) can be considered as a particular (strengthened)
version of the strong revealed preference axiom, and (e) generalizes the cor-
responding variant of the Afriat�Varian theory (see [1, 2, 66, 67]) to the
case of infinite set of `observed data'. Further results on conditions for ratio-
nalizing demand functions by concave utility functions with nice additional
properties in terms of non-emptiness of sets Q0(ϕ) for various price sets P
and some specific cost functions ϕ on P × P may be found in [46].

4.3 Dynamics models
In this subsection (see also [35, 36, 37]), we consider an abstract dynamic op-
timization problem resembling, in some respects, models of economic system
development.

Suppose X is an arbitrary set and a : X → X is a multifunction with
nonempty values. Its graph, gr(a) = {(x, y) : y ∈ a(x)}, may be considered
as a continual net with vertices x ∈ X and arcs (x, y) ∈ gr(a), respectively.
A finite sequence of elements of X, χ = (χ(t))T

t=0 (where T = T (χ) < +∞
depends on χ), satisfying

χ(t) ∈ a(χ(t− 1)), t = 1, . . . , T,

is called a (finite) trajectory. We assume that the connectivity hypothesis is
satisfied: for any x, y ∈ X, there is a trajectory χ that starts at x (χ(0) = x)
and finishes at y (χ(T ) = y).

Given a terminal function l : X ×X → IR ∪ {+∞} with dom l 6= ∅ and
a cost function c : X × X → IR ∪ {+∞} with dom c = gr(a), the payment
for moving along the trajectory χ equals

g(χ) := l(χ(0), χ(T )) +
T∑

t=1

c(χ(t− 1), χ(t)).

The problem is to minimize g(χ) over the set τ of all trajectories.
Observe that the connectivity hypothesis can be rewritten as

c∗(x, y) < +∞ for all x, y ∈ X,
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and the optimality of a trajectory χ̄ means exactly
g(χ̄) = min{l(x, y) + c∗(x, y) : x, y ∈ X}. (69)

Theorem 4.5 ([35, Theorem 7.1]). Suppose X is a compact topological
space, both functions on X × X, l and c, are lsc, and c(x, y) > 0 for all
x, y ∈ X. Then there exists an optimal trajectory.

An important particular case of the above problem is to minimize the
functional

g1(χ) :=

T (χ)∑
t=1

c(χ(t− 1), χ(t))

over the set τ(X1, X2) of trajectories that start in X1 and finish in X2 (i.e.,
χ(0) ∈ X1, χ(T ) ∈ X2), where X1 and X2 are given subsets of X. This
problem is reduced to minimizing g(χ) over τ if one takes l to be the indicator
function of X1 ×X2 (i.e., l(x, y) = 0 for (x, y) ∈ X1 ×X2 and l(x, y) = +∞
otherwise).

The next result is a direct consequence of Theorem 4.5.
Corollary 4.3 ([35, Corollary 7.1]). Let X and c be as in Theorem 4.5,
and suppose that X1 and X2 are closed in X. Then there exists a trajectory
χ̄ ∈ τ(X1, X2) minimizing g1 over τ(X1, X2).

We now return to the general (non-topological) version of the problem.
Theorem 4.6 ([35, Theorem 7.2]). A trajectory χ̄ = (χ̄(t))T

t=0 is optimal in
τ if and only if: (a) the equality holds

l(χ̄(0), χ̄(T )) + c∗(χ̄(0), χ̄(T )) = min{l(x, y) + c∗(x, y) : x, y ∈ X}, (70)
and (b) there is a function u ∈ Q0(c) satisfying

u(χ̄(t− 1))− u(χ̄(t)) = c(χ̄(t− 1), χ̄(t)), t = 1, . . . , T. (71)

An infinite sequence of elements of X, χ = (χ(t))∞t=0, satisfying
χ(t) ∈ a(χ(t− 1)), t = 1, 2, . . . ,

is called an infinite trajectory. Say an infinite trajectory χ = (χ(t))∞t=0 is
efficient if there exists T1 = T1(χ) < +∞ such that, for every T ≥ T1, the
finite trajectory χT := (χ(t))T

t=0 is optimal in τ .
The next result is derived from Theorem 4.6 with help of the Banach

limit technique; see [35, Theorem 7.4] for details.
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Theorem 4.7 An infinite trajectory χ = (χ(t))∞t=0 is efficient if and only if:
(a) (70) holds for all T ≥ T1 and (b) there is a function u ∈ Q0(c) satisfying
(71) for all t.

4.4 Economics of corruption
Following [7] (see also [36, 56]), we briefly outline here some kind of principal-
agents models relating to economics of corruption and dealing with distorting
substantial economic information. Suppose there is a population of agents,
each of them is characterized by his state (a variable of economic informa-
tion), which is an element of some set X, and there is yet one agent called the
principal (State, monopoly, social planner, insurance company and so on).
The principal pays to an agent some amount of money u(x) which depends
on information x about agent's state. It is assumed that the actual state of
the agent, y, cannot be observed directly by the principal; therefore, agents
have a possibility to misrepresent at some cost11 the relevant information to
the principal. Thus, we assume that an agent can at the cost c(x, y) to mis-
represent his real state y into the state x without being detected. In such a
case, his income equals u(x)−c(x, y). The cost function c may take the value
+∞, which occurs when x is too far from y for falsifying y into x be possible
without being detected. Also, it is assumed that c(y, y) = 0; therefore, if
an agent gives true information to the principal, then his income equals the
payoff u(y). If now there is an x ∈ X such that u(x)− c(x, y) > u(y), then,
for an agent with the actual state y, it proves to be profitable to falsify his
state information. Say, in a model of collusion with a third party, an agent
with the actual state y and a supervisor may agree to report the state x
maximizing their total income u(x)−c(x, y) and then to share between them
the surplus u(x)− c(x, y)−u(y) > 0. Similar situations arise in other models
(insurance fraud, corruption in taxation); see [7] for details.

Thus, given a cost function c : X ×X → IR+ ∪ {+∞} vanishing on the
diagonal, a question arises, whether the payoff function u : X → IR is non-
manipulable or collusion-proof in the sense that it is in the interest of each
agent to be honest. The answer is affirmative if and only if u ∈ Q0(c).

11For instance, by colluding with a third party (expert, supervisor, tax officer).
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5 An application to approximation theory
In this section, we deal with some best approximation problems.

Let us consider a linear subspace in l∞(X ×X),

H0 := {u(x)− u(y) : u ∈ l∞(X)}. (72)

Given a function f ∈ l∞(X ×X), the problem is to find the value

m(f ; H0) := min
h∈H0

‖f − h‖∞ = min
u∈l∞(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)|. (73)

Note that the minimum in (73) is attained at some h = hu ∈ H0,
hu(x, y) = u(x)− u(y), because closed balls in the dual Banach space l∞(X)
are weak∗ compact and the functional on l∞(X), u 7→ supx,y∈X |f(x, y) −
u(x) + u(y)| is weak∗ lsc. Moreover, (73) can be rewritten as

m(f ; H0) = min{α > 0 : Q(c + α; l∞) 6= ∅}, (74)

where
c(x, y) := min(f(x, y),−f(y, x)), x, y ∈ X, (75)

and there exists a function u in Q(c + m(f ; H0); l
∞).

A topological analog of this problem is as follows. Given a completely
regular Hausdorff topological space X, a subspace H0 in Cb(X ×X),

H0 := {u(x)− u(y) : u ∈ Cb(X)}, (76)

and a function f ∈ Cb(X ×X), one has to find the value

m(f ;H0) := inf
h∈H0

‖f − h‖ = inf
u∈Cb(X)

sup
x,y∈X

|f(x, y)− u(x) + u(y)|. (77)

Recall (see subsection 3.5) that, for every topological space X, Cb(X) denotes
the space of bounded continuous real-valued functions on it with the uniform
norm ‖u‖ = supx∈X |u(x)|. Clearly, (77) is equivalent to

m(f ;H0) = inf{α > 0 : Q(c + α; Cb(X)) 6= ∅}, (78)

where c is given by (75).
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Theorem 5.1 ([37, Theorem 5.1]). For every f ∈ l∞(X ×X),

m(f ; H0) = − inf
1

n

n∑
i=1

c(xi−1, xi), (79)

and if X is a compact space, then for every f ∈ C(X ×X),

m(f ;H0) = − inf
1

n

n∑
i=1

c(xi−1, xi). (80)

Here, both infima, in (79) and (80), are taken over all integers n and all
cycles x0, . . . , xn−1, xn = x0 in X.

Proof. As follows from (74), for every α > m(f ; H0) there is a function
u ∈ Q(c + α; l∞). Then u(xi−1) − u(xi) ≤ c(xi−1, xi), i = 1, . . . , n, and
summing up these inequalities yields

0 =
n∑

i=1

(u(xi−1)− u(xi)) ≤
n∑

i=1

(c(xi−1, xi) + α) =
n∑

i=1

c(xi−1, xi) + nα

(this follows also from implication (a) ⇒ (e) of Proposition 3.6); therefore,
α ≥ − inf 1

n

n∑
i=1

c(xi−1, xi), and

m(f ; H0) = inf{α : Q(c + α; l∞) 6= ∅} ≥ − inf
1

n

n∑
i=1

c(xi−1, xi). (81)

Suppose now that α < m(f ; H0). Then Q(c + α; l∞) = ∅, and taking
into account Remark 3.11, one has (c+α)∗ ≡ −∞; therefore, there is a cycle
x0, . . . , xn−1, xn = x0 such that

∑n
i=1 c(xi−1, xi) + nα < 0. One obtains

α < − 1

n

n∑
i=1

c(xi−1, xi) ≤ − inf
1

n

n∑
i=1

c(xi−1, xi),

and as this holds true whenever α < m(f ; H0), one gets

m(f ; H0) ≤ − inf
1

n

n∑
i=1

c(xi−1, xi), (82)
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and (79) follows from (81),(82).
The proof of (80) is similar if one replaces Q(c + α; l∞) with Q(c + α)

and takes into account that for every c ∈ C(X ×X) and every α ∈ IR either
(c + α)∗ ∈ C(X ×X) or (c + α)∗ ≡ −∞ (see [47, Lemma 2.4], where a more
general result is established). ¤

Corollary 5.1 If X is a compact topological space and f ∈ C(X×X), then
m(f ; H0) = m(f ;H0).

Remark 5.1 . If X is a non-compact completely regular Hausdorff topological
space, one can pass to its Stone-�Cech compactification X ′ = βX. Taking
into account the natural linear isometry Cb(X) = C(X ′), the next result is
an easy consequence of Theorem 5.1.

Corollary 5.2 Theorem 5.1 is extended to X being any completely regular
Hausdorff topological space provided that f ∈ C(X ′ ×X ′), C(X) in (76) is
replaced with Cb(X), and max in (77) is replaced with sup.

Note that C(βX × βX) can be considered as the closure in Cb(X × X)
of the subspace of finite sums f(x, y) =

∑n
1 ak(x)bk(y), ak, bk ∈ Cb(X), k =

1, . . . , n.
Say u ∈ Cb(X) is an exact solution to the approximation problem if the

infimum in the right-hand side of (77) is attained at it, that is m(f ;H0) =
supx,y∈X |f(x, y) − u(x) + u(y)|. It follows from (78) that u ∈ Cb(X) is an
exact solution if and only if it belongs to Q(c + m(f ;H0); C

b(X)); therefore,
exact solutions exist if and only if Q(c + m(f ;H0); C

b(X)) is nonempty.
Let Cn,∞ be the linear space of bounded infinitely differentiable real-

valued functions on IRn, H∞
0 a subspace in C2n,∞,

H∞
0 := {u(x)− u(y) : u ∈ Cn,∞}.

Theorem 5.2 Suppose f(x, y) = g(x− y), where g ∈ Cb(IRn). Then

m(f ;H0) = m(f ;H∞
0 ) := inf

h∈H∞0
‖f − h‖,

and there is a function u ∈ Cn,∞, which is an exact solution to the approxi-
mation problem:

m(f ;H0) = m(f ;H∞
0 ) = ‖f − hu‖, hu(x, y) = u(x)− u(y). (83)
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To prove the theorem, some facts from the lifting theory [16]12 will be
needed. The main of them is the existence of a strong lifting of L∞(IRn).
Recall (see subsection 3.5), that L∞(IRn) is the space (Banach algebra and
Banach lattice) of bounded Lebesgue measurable real-valued functions on
IRn with the uniform norm on it, ‖u‖ = supx∈IRn |u(x)|, u ∈ L∞(IRn). A
homomorphism of Banach algebras (i.e., a multiplicative linear operator)
ρ : L∞(IRn) → L∞(IRn) is said to be a strong lifting of L∞(IRn) if four
conditions are satisfied as follows:

1. ρ is a projector, that is ρ2 = ρ;
2. for every u ∈ L∞(IRn), ρ(u) = u almost everywhere (a.e.), that is the

set {x ∈ IRn : ρ(u)(x) 6= u(x)} is Lebesgue negligible;
3. for every u ∈ L∞(IRn), u = 0 a.e. implies ρ(u) ≡ 0;
4. ρ(u) ≡ u whenever u ∈ Cb(IRn).
It follows from these conditions along with linearity and multiplicativity

of ρ that ρ is also a homomorphism of Banach lattices, i.e. ρ(u ∨ v) =
ρ(u)∨ρ(v) and ρ(u∧v) = ρ(u)∧ρ(v) whenever u, v ∈ L∞(IRn). Furthermore,
u ≥ v a.e. implies ρ(u)(x) ≥ ρ(v)(x) for all x ∈ IRn.

The Lebesgue space L∞(IRn) is a Banach algebra and a Banach lat-
tice, and the operator π : L∞(IRn) → L∞(IRn) mapping every function
u ∈ L∞(IRn) into its Lebesgue equivalence class is a homomorphism both of
Banach algebras and of Banach lattices. Thus, π maps L∞(IRn) onto the fac-
tor space L∞(IRn) = L∞(IRn)/N0 where N0 is the subspace in L∞(IRn) con-
sisting of Lebesgue negligible functions, and the standard norm in L∞(IRn)
is precisely the factor-norm with respect to π. Since ρ(u) = ρ(v) whenever
u−v ∈ N0, ρ generates a homomorphism of Banach algebras (and of Banach
lattices) ρ′ : L∞(IRn) → L∞(IRn) (a strong lifting of L∞(IRn)) such that
π ◦ ρ′ = idL∞(IRn) and ρ′ ◦ π = ρ.

Proof of Theorem 5.2. It follows from (78) that for every k there is a
function uk ∈ Q(c + m(f ;H0) + 1

k
; Cb(IRn)). Fix an arbitrary point x0 in IRn

and assume without loss of generality that uk(x0) = 0. Then, for all x ∈ IRn,
one has
−c(x0, x)−m(f ;H0)− 1 ≤ uk(x) ≤ c(x, x0) + m(f ;H0) + 1, k = 1, 2, . . . ;

therefore, the sequence (uk) is bounded in Cb(IRn). Now, taking into account
that Cb(IRn) is a closed linear subspace in L∞(IRn) and that L∞(IRn) =

12See also [30, 43], where connections between the lifting theory and abstract convexity
are given.
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L1(IRn)∗ is a dual Banach space, (uk) is bounded hence weak∗ precompact
in L∞(IRn). We shall assume by passing, if needed, to a subsequence13 that
the sequence (uk) converges weakly∗ to an element of L∞(IRn). In other
words, there exists a function v ∈ L∞(IRn) such that uk converges weakly∗
to π(v). It follows that the sequence (uk(x)− uk(y)) ⊂ C(IR2n) ⊂ L∞(IR2n)
converges weakly∗ in L∞(IR2n) to the element of L∞(IR2n), which is the
Lebesgue equivalence class of the function v(x) − v(y). Now, as uk(x) −
uk(y) ≤ c(x, y) + m(f ;H0) + 1

k
, and the positive cone L∞+ (IR2n) is weakly∗

closed, one gets

v(x)− v(y) ≤ c(x, y) + m(f ;H0) a.e. in IR2n. (84)

Let us define

N(y) := {x ∈ IRn : v(x)− v(y) > c(x, y) + m(f ;H0)}, y ∈ IRn.

It follows from (84) that the set

N := {y ∈ IRn : N(y) is not Lebesgue negligible}
is Lebesgue negligible. Consider y as a parameter and observe that, for every
y /∈ N , the inequality

v(x)− v(y) ≤ c(x, y) + m(f ;H0)

holds true for almost all x ∈ IRn. Applying a strong lifting ρ to both sides of
that inequality yields

ρ(v)(x)− v(y) ≤ c(x, y) + m(f ;H0) (85)

for all x ∈ IRn and all y /∈ N . Now, considering x as a parameter and
applying ρ to both sides of (85) yields

ρ(v)(x)− ρ(v)(y) ≤ c(x, y) + m(f ;H0) ∀x, y ∈ IRn, (86)

that is ρ(v) ∈ Q(c + m(f ;H0);L∞(IRn)).
We define u to be the convolution of ρ(v) and η,

u(x) = (ρ(v) ∗ η)(x) :=

∫

IRn

ρ(v)(x− z)η(z) dz, (87)

13Since L1(IRn) is separable, the restriction of the weak∗ topology to any bounded subset
of L∞(IRn) is metrizable.
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where η(z) := π−n/2e−z·z = π−n/2e−(z2
1+...+z2

n), z = (z1, . . . , zn) ∈ IRn. Since
η ∈ Cn,∞ and

∫
IRn ρ(v)(x − z)η(z) dz =

∫
IRn ρ(v)(z)η(x − z) dz, (87) implies

u ∈ Cn,∞.
Now, taking into account the form of the function f , one has c(x, y) =

min(g(x− y),−g(y − x)); hence, c(x− z, y − z) = c(x, y), and (86) implies

ρ(v)(x− z)− ρ(v)(y − z) ≤ c(x, y) + m(f ;H0) ∀x, y ∈ IRn. (88)

Multiplying (88) by η(z), integrating the obtained inequality by dz, and
taking into account that

∫
IRn η(z) dz = 1, one gets u(x) − u(y) ≤ c(x, y) +

m(f ;H0) for all x, y ∈ IRn. Thus, u ∈ Q0(c + m(f ;H0)) ∩ Cn,∞, and the
result follows. ¤
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