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Abstract. In this paper, we first investigate abstract convexity of non-negative increasing and radiant (IR)
functions over a topological vector space X. We also characterize the essential results of abstract convexity
such as support set, subdifferential set and polarity of this class of functions. Finally, we examine abstract
convexity, polarity and subdifferential of extended real valued increasing and radiant functions.

1. Introduction

It is well-known that every proper and lower semi-continuous convex function can be expressed as a
point-wise supremum of a family of affine functions majorized by it (see [13]). It is natural to see what
happens if we replace affine functions by a certain class of functions which is so-called elementary functions.
This gave rise to the subject of Abstract Convexity (for more details see [12, 14, 15]). It is well-known that
some classes of increasing functions are abstract convex, for example, the class of increasing and positively
homogeneous (IPH) functions and the class of increasing and convex-along-rays (ICAR) functions are
abstract convex. The first studies of these functions were carried out over the cones in topological vector
spaces (see [2, 3]). Some suitable extensions for these functions defined over the whole of a topological
vector space were obtained in [7–9].

The class of increasing and co-radiant (ICR) functions is another class of increasing functions which
is abstract convex. The theory of ICR functions can be applied in mathematical economics (see, e.g., [5]),
where quasi-concave ICR functions have been studied. The first characterization of these functions has
been shown in [13] over the cone Rn

+. This was generalized in [4], where ICR functions defined over cones
in a topological vector space. A generalization of ICR functions defined on the whole of a topological vector
space has been given in [1].

Recently, abstract convexity of lower semi-continuous and radiant functions have been characterized in
[17]. In [18] it has given a characterization for abstract convexity of evenly radiant functions defined on real
normed linear spaces. Also, abstract convexity of non-positive increasing and radiant functions defined on
a topological vector space has been characterized in [6]. In this paper, we are going to extend the results
obtained in [6] for extended real valued IR functions defined on a topological vector space.
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The layout of the paper is as follows. In Section 2, we collect definitions, notations and preliminary
results related to IR functions and abstract convexity. In Sections 3 and 4, we obtain some results of abstract
convexity of non-negative IR functions and characterize their subdifferential and support sets. We study
polarity of non-negative IR functions in Section 5. The relation between non-negative IR and DPH (see
Definition 2.2) functions will be given in Section 6. Finally, characterizations of extended real valued IR
functions and abstract convexity of this class of functions are given in section 7.

2. Preliminaries

Let X be a topological vector space. We assume that X is equipped with a closed convex pointed cone S
(the latter means that S ∩ (−S) = {0}). We say x ≤ y or y ≥ x if and only if y − x ∈ S.

A function f : X −→ [−∞,+∞] is called radiant if f (λx) ≤ λ f (x) for all x ∈ X and all λ ∈ (0, 1]. It is easy
to see that f is radiant if f (λx) ≥ λ f (x) for all x ∈ X and all λ ≥ 1. The function f is called increasing if
x ≥ y =⇒ f (x) ≥ f (y). A function f : X −→ [−∞,+∞] is called positively homogeneous if f (λx) = λ f (x)
for all x ∈ X and all λ > 0.

Definition 2.1. A function f : X→ [−∞,+∞] is called IR if f is increasing and radiant.

Definition 2.2. A function f : X→ [−∞,+∞] is called DPH if f is decreasing and positively homogeneous.

Definition 2.3. A function f : X → [−∞,+∞] is called convex-along-rays, if for each x ∈ X the function
fx(α) := f (αx) (α ∈ (0,+∞)) is convex.

In this paper, we study IR (increasing and radiant) functions f such that

0 ∈ dom f := { x ∈ X : −∞ < f (x) < +∞}.

Remark 2.1. Let f : X −→ [0,+∞] be an IR function. Then it is clear that f (x) = 0 for all x ∈ −S.

The following definitions are well-known (see [14]).
i) A non-empty subset A of X is called downward, if x ∈ A, x′ ∈ X and x′ ≤ x imply x′ ∈ A.
ii) A non-empty subset B of X is called upward, if x ∈ B, x′ ∈ X and x ≤ x′ imply x′ ∈ B.
iii) A non-empty subset A of X is called radiant, if x ∈ A and 0 < λ ≤ 1 imply λx ∈ A. Also, a subset B of

X is called co-radiant, if x ∈ B and λ ≥ 1 imply λx ∈ B.
Now, let X be a set and ∆ be a non-empty set of extended real valued functions l : X −→ [−∞,+∞]

defined on X. Recall (see [14]) that a function f : X −→ [−∞,+∞] is called abstract convex with respect to
∆ (or ∆-convex) if

f (x) = sup{l(x) : l ∈ supp ( f ,∆)}, ∀ x ∈ X,

where

supp ( f ,∆) := {l ∈ ∆ : ł ≤ f }

is called the support set of the function f , and l ≤ f if and only if l(x) ≤ f (x) for all x ∈ X. The set ∆ will be
referred to as a set of elementary functions.

Also, the ∆-subdifferential of a function f : X −→ [−∞,+∞] at a point x0 ∈ X is defined by:

∂∆ f (x0) := {l ∈ ∆ : f (x) − f (x0) ≥ l(x) − l(x0) ∀ x ∈ X}.

Now, consider the function u : X × X × (−∞, 0) −→ [−∞, 0] defined by:

u(x, y, β) := sup{λ ≤ β : λy ≥ −x}, (x, y ∈ X; β ∈ (−∞, 0)), (1)

(we use the convention sup ∅ = −∞).



H. Mohebi, S. Mirzadeh / Filomat 26:5 (2012), 1005–1022 1007

This function was introduced and examined in [6]. The following properties of the function u have been
proved in ([6], Proposition 3.1). In fact, for every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; µ, β, β′ ∈ (−∞, 0), one has

u(−µx, y, β) = −µu(x, y,
β

−µ ), (2)

u(x,−µy, β) =
1
−µu(x, y,−µβ), (3)

x ≤ x′ =⇒ u(x, y, β) ≤ u(x′, y, β), (4)
y ≤ y′ =⇒ u(x, y′, β) ≤ u(x, y, β), (5)
β ≤ β′ =⇒ u(x, y, β) ≤ u(x, y, β′), (6)
u(γx, y, β) ≤ γu(x, y, β), (7)

u(x, γy, β) ≥ 1
γ

u(x, y, β), (8)

u(x, y, β) = β ⇔ βy ≥ −x. (9)

The following results for non-positive IR functions which will be used later were given in [6]. For each
(y, β) ∈ X × (−∞, 0), define the function u(y,β) : X −→ [−∞, 0] by u(y,β)(x) := u(x, y, β) for all x ∈ X. Let

L := {u(y,β) : y ∈ X, β ∈ (−∞, 0)}.

Note that each u(y,β) ∈ L is a non-positive IR function. L is called the set of elementary functions defined on
X.

Theorem 2.1. ([6, Theorem 3.1]) Let f : X→ [−∞, 0] be a function. Then the following assertions are equivalent:
(i) f is IR.
(ii) f (x) ≥ −λ f (y) for all x, y ∈ X and all λ ≤ −1 such that λy ≥ −x.
(iii) u(x, y, β) f (−βy) ≥ β f (x) for all x, y ∈ X and all β ∈ (−∞, 0) , with the convention 0 × (−∞) = +∞.

Theorem 2.2. ([6, Theorem 3.2]) Let f : X → [−∞, 0] be a function. Then f is an IR function if and only if there
exists a set U ⊆ L such that

f (x) = sup
u(y,β)∈U

u(y,β)(x), (x ∈ X).

In this case, one can take U := {u(y,β) ∈ L : f (−βy) ≥ β}. Hence, f is IR if and only if f is an L-convex function.

3. Abstract convexity of non-negative IR functions

In this section, we discuss on abstract convexity of non-negative IR functions with respect to a certain
class of non-negative IR functions. We also investigate subdifferential and a special kind of polarity of these
functions.

Consider the function k : X × X ×R++ −→ [0,+∞] defined by:

k(x, y, α) := sup{λ ≥ α : λy ≤ x}, (x, y ∈ X; α ∈ R++), (10)

(we use the convention sup ∅ = 0).
In the following, we give some properties of the function k.



H. Mohebi, S. Mirzadeh / Filomat 26:5 (2012), 1005–1022 1008

Proposition 3.1. For every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; µ, α, α′ ∈ R++, one has

k(µx, y, α) = µk(x, y,
α
µ

), (11)

k(x, µy, α) =
1
µ

k(x, y, µα), (12)

x ≤ x′ =⇒ k(x, y, α) ≤ k(x′, y, α), (13)
y ≤ y′ =⇒ k(x, y′, α) ≤ k(x, y, α), (14)
α ≤ α′ =⇒ k(x, y, α′) ≤ k(x, y, α), (15)
k(γx, y, α) ≤ γk(x, y, α), (16)

k(x, γy, α) ≥ 1
γ

k(x, y, α), (17)

k(x, x, 1) = 1 ⇔ x < −S, (18)
x ∈ S, y ∈ −S =⇒ k(x, y, α) = +∞,∀α ∈ R++, (19)
k(x, y, α) = +∞ =⇒ y ∈ −S. (20)

Proof. We only prove parts (11) and (20). For (11) we have:

k(µx, y, α) = sup{λ ≥ α : λy ≤ µx}

= sup{λ ≥ α :
λ
µ

y ≤ x}

= sup{µλ̃ ≥ α : λ̃y ≤ x}
= µk(x, y,

α
µ

).

To prove (20), let k(x, y, α) = +∞, then by (10), there exists a sequence {λn}n≥1 such that λn −→ +∞ and
y ≤ 1

λn
x for all n ≥ 1. Since S is closed, we get y ∈ −S. This proves (20).

Example 3.1. Let X = Rn and S be the cone Rn
+ of all vectors in Rn with non-negative coordinates. Let

I = {1, 2, ..., n}. Each vector x ∈ Rn generates the following sets of indices:

I+(x) = {i ∈ I : xi > 0}, I0(x) = {i ∈ I : xi = 0}, I−(x) = {i ∈ I : xi < 0}.

Let x ∈ Rn and c ∈ R. Denote by c
x the vector with coordinates

(
c
x

)i :=
{ c

xi
, i < I0(x),

0, i ∈ I0(x).

Then, for each x, y ∈ Rn,we have

k(x, y, α) =
{

max{mini∈I+(y)
xi
yi
, 0}, x ∈ K+y,α,

0, x < K+y,α,

where inf ∅ = +∞, sup ∅ = 0, and

K+y,α := {x ∈ Rn : ∀ i ∈ I−(y) ∪ I0(y), xi ≤ 0; max
i∈I−(y)

xi

yi
≤ min

i∈I+(y)

xi

yi
, and α ≤ min

i∈I+(y)

xi

yi
}.

We can also introduce the function t : X × X ×R++ −→ [0,+∞] defined by

t(x, y, β) := inf{0 ≤ λ ≤ β : λy ≥ x}, (x, y ∈ X; β ∈ R++), (21)

(with the convention inf ∅ = +∞).
The following proposition gives us some properties of the function t.
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Proposition 3.2. For every x, y, x′, y′ ∈ X; γ ∈ (0, 1]; µ, β, β′ ∈ R++, one has

t(µx, y, β) = µt(x, y,
β

µ
), (22)

t(x, µy, β) =
1
µ

t(x, y, µβ), (23)

x ≤ x′ =⇒ t(x, y, β) ≤ t(x′, y, β), (24)
y ≤ y′ =⇒ t(x, y′, β) ≤ t(x, y, β), (25)
β ≤ β′ =⇒ t(x, y, β′) ≤ t(x, y, β), (26)
t(γx, y, β) ≤ γt(x, y, β), (27)

t(x, γy, β) ≥ 1
γ

t(x, y, β), (28)

t(x, x, 1) = 1, ∀x ∈ X, (29)
t(x, y, β) = 0 ⇔ x ∈ −S. (30)

In the following proposition we give the relation between the functions k and t.

Proposition 3.3. Let k and t be as the above. Then, for all x, y ∈ X and all µ > 0, we have:

k(x, y, µ)t(y, x,
1
µ

) = 1, (31)

(with the convention 0 × (+∞) = (+∞) × 0 = 1).

Proof. This is an immediate consequence of the definition k and t.

Theorem 3.1. Let f : X→ [0,+∞] be a function. Then the following assertions are equivalent:
(i) f is IR.
(ii) λ f (y) ≤ f (x) for all x, y ∈ X and all λ ≥ 1 such that λy ≤ x.
(iii) k(x, y, α) f (αy) ≤ α f (x) for all x, y ∈ X and all α ∈ R++ with the convention 0 × (+∞) = 0.
(iv) t(x, y, β) f (βy) ≥ β f (x) for all x, y ∈ X and all β ∈ R++ with the convention 0 × (+∞) = +∞.

Proof. (i)⇒ (ii). It is obvious.
(ii)⇒ (iii).Let α > 0 and x, y ∈ X be arbitrary. Notice first that due to (20) k(x, y, α) = +∞ implies that y ∈ −S,
and so f (αy) = 0. Then, by the convention 0 × (+∞) = 0, we have α f (x) ≥ k(x, y, α) f (αy). If k(x, y, α) = 0,
then, since f is non-negative and the convention 0× (+∞) = 0 holds, one has α f (x) ≥ k(x, y, α) f (αy). Finally,
let 0 < k(x, y, α) < +∞. Then in view of (10) and closedness of S, we have k(x, y, α)y ≤ x, and also 1 ≤
k(x,y,α)
α < +∞. Thus, by the hypothesis and the fact that k(x,y,α)

α (αy) ≤ x, we conclude that k(x,y,α)
α f (αy) ≤ f (x).

Therefore, (iii) holds.
(iii)⇒ (i). Now, let y ≤ x. Then, by (10), k(x, y, 1) ≥ 1. Then (iii) yields that f (y) ≤ f (y)k(x, y, 1) ≤ f (x). So, f
is increasing. Moreover, according to (19), we have λk(x, x, 1) ≤ k(λx, x, 1) for all λ ≥ 1 and all x ∈ X, Thus

λ f (x) ≤ λk(x, x, 1) f (x) ≤ k(λx, x, 1) f (x) ≤ f (λx).

Hence, f is IR.
(i)⇒ (iv). Let t(x, y, β) = 0. It follows from (30) that x ∈ −S, and so f (x) = 0. Thus, β f (x) = 0 ≤ t(x, y, β) f (βy).
We now assume that 0 < t(x, y, β) < +∞. Then, in view of (21) and closedness of S, we get t(x, y, β)y ≥ x,
and also 0 < t(x,y,β)

β ≤ 1. Therefore, t(x,y,β)
β (βy) ≥ x. Since f is an IR function, it follows that

t(x, y, β)
β

f (βy) ≥ f (
t(x, y, β)
β

(βy)) ≥ f (x).

Also, (iv) holds if t(x, y, β) = +∞ because of the convention 0 × (+∞) = +∞ holds.
Finally, the proof of the implication (iv)⇒ (i) can be done in a similar manner as the proof of the implication
(iii)⇒ (i).
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Now, we are going to show that each non-negative IR function is supremally generated by a certain
class of IR functions.

Assume that y ∈ X and α ∈ R++ are arbitrary. Consider the function k(y,α) : X → [0,+∞] defined by
k(y,α)(x) = k(x, y, α) for all x ∈ X. Let

L̃ := {k(y,α) : y ∈ X, α ∈ R++}. (32)

L̃ is called the set of elementary functions defined on X.

Remark 3.1. By (13) and (16), the function k(y,α) is an IR function.

Proposition 3.4. Let f : X→ [0,+∞] be an IR function and x0 ∈ X be such that f (x0) , 0,+∞. Then, y := x0
f (x0) <

−S.

Proof. Assume if possible that y ∈ −S. Since 0 < f (x0) < +∞ and S is a cone, it follows that x0 ∈ −S. So, since
f is an IR function, in view of Remark 2.1 we have f (x0) ≤ f (0) = 0. This is a contradiction.

Theorem 3.2. Let f : X→ [0,+∞] be a function. Then, f is IR if and only if there exists a set A ⊆ L̃ such that

f (x) = sup
k(y,α)∈A

k(y,α)(x), (x ∈ X).

In this case, one can take A := {k(y,α) ∈ L̃ : f (αy) ≥ α}. Hence, f is IR if and only if f is L̃-convex.

Proof. We only prove that each IR function f : X→ [0,+∞] satisfies

f (x) = sup
k(y,α)∈A

k(y,α)(x), (x ∈ X).

For this end, according to Theorem 3.1 (the implication (i) ⇒ (iii)), we have k(y,α)(x) f (αy) ≤ α f (x) for all
x, y ∈ X and all α ∈ R++. So, if x ∈ X and k(y,α) ∈ A are arbitrary, then k(y,α)(x) ≤ f (x). Let 0 < f (x) < +∞.
Therefore, one has k( x

f (x) , f (x)) ∈ A, and in view of Proposition 3.4 we have x
f (x) < −S. This implies that x < −S.

Thus, by (11) and (18) we have k( x
f (x) , f (x))(x) = f (x)k(x, x, 1) = f (x), it follows that

f (x) = max
k(y,α)∈A

k(y,α)(x).

Now, suppose that f (x) = 0. Assume if possible that there exists k(y,α) ∈ A such that k(y,α)(x) , 0.
According to Theorem 3.1 (the implication (i)⇒ (iii)),we have k(y,α)(x) f (αy) ≤ α f (x) = 0,which implies that
f (αy) = 0. But, 0 = f (αy) ≥ α. This is a contradiction. So, k(y,α)(x) = 0 for all k(y,α) ∈ A. Hence,

f (x) = 0 = sup
k(y,α)∈A

k(y,α)(x).

Finally, assume that f (x) = +∞. For each α > 1, put yα := x
α . Trivially, we get f (αyα) = f (x) = +∞ ≥ α,

and thus k(yα,α) ∈ A for all α > 1. Also, in view of (12) one has k(yα,α)(x) = αk(x, x, 1) ≥ α for all α > 1.
Therefore, we have

f (x) = +∞ = sup
α>1

k(yα,α)(x) ≤ sup
k(y,α)∈A

k(y,α)(x) ≤ f (x).

Hence, the proof is complete.

As the above, we can also show that each non-negative IR function f : X → [0,+∞] is infimally
generated by a certain class of IR functions. Let y ∈ X and β ∈ R++ be arbitrary. Consider the function
t(y,β) : X→ [0,+∞] defined by t(y,β)(x) = t(x, y, β) for all x ∈ X. Also, let

T := {t(y,β) : y ∈ X, β ∈ R++}. (33)

Then, T is called the set of elementary functions defined on X.
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Remark 3.2. By (24) and (27), the function t(y,β) is an IR function.

The proof of the following theorem is similar to the one of Theorem 3.2, and therefore we omit it.

Theorem 3.3. Let f : X→ [0,+∞] be a function. Then, f is IR if and only if there exists a set B ⊆ T such that

f (x) = inf
t(y,β)∈B

t(y,β)(x), (x ∈ X).

In this case, one can take B := {t(y,β) ∈ T : f (βy) ≤ β}. Hence, f is IR if and only if f is T-concave.

Recall that a function f is inf-abstract-convex if f (x) = infα fα(x) such that each fα is abstract-convex.

Corollary 3.1. If f : X→ [0,+∞] is an IR function, then f is inf-abstract-convex.

Proof. This is an immediate consequence of Theorem 3.2 and Theorem 3.3.

4. Subdifferential and support set of non-negative IR functions

In this section, we present a description of support set and L̃-subdifferential of a non-negative IR function
f defined on a topological vector space X (for properties and definition of support set and subdifferential
see [10, 11]), and we also investigate some properties of support set. Let L̃ and T be as defined by (32) and
(33), respectively.

The proof of the following proposition is similar to the one of Proposition 4.1 in [6], and therefore we
omit it.

Proposition 4.1. Let f : X→ [0,+∞] be an IR function. Then,

supp( f , L̃) = {k(y,α) ∈ L̃ : f (αy) ≥ α}.

Proposition 4.2. Let f : X→ [0,+∞] be an IR function and x0 ∈ X be such that f (x0) , 0,+∞. Then

{k(y,α) ∈ L̃ : f (αy) ≥ α, k(y,α)(x0) = f (x0)} ⊂ ∂L̃ f (x0).

Proof. This is an immediate consequence of Proposition 4.1 .

Corollary 4.1. Let f : X → [0,+∞] be an IR function and x0 ∈ X be such that f (x0) , 0,+∞. Let y := x0
f (x0) ,

α := f (x0). Then, k(y,α) ∈ ∂L̃ f (x0), and hence ∂L̃ f (x0) is non-empty.

Proof. It follows from Proposition 3.4 and (18) that k(x0, x0, 1) = 1. Therefore, k(y,α)(x0) = f (x0) and f (αy) = α.
Hence, in view of Proposition 4.2, we conclude that k(y,α) ∈ ∂L̃ f (x0).

Theorem 4.1. Let f : X→ [0,+∞] be an IR function and x0 ∈ X be such that f (x0) , +∞. Then

{k(y,α) ∈ L̃ : k(y,α)(x0) ≤ f (x0), α − k(y,α)(x0) ≤ f (αy) − f (x0)} ⊂ ∂L̃ f (x0).

Proof. Let D := {k(y,α) ∈ L̃ : k(y,α)(x0) ≤ f (x0), α − k(y,α)(x0) ≤ f (αy) − f (x0)} and k(y,α) ∈ D be arbitrary. Since
k(y,α)(x)
α ≥ 1 and 0 ≤ f (x0) − k(y,α)(x0), it follows that

k(y,α)(x)
α

( f (αy) − α) ≥
k(y,α)(x)
α

( f (x0) − k(y,α)(x0)) ≥ f (x0) − k(y,α)(x0), (34)

for all x ∈ X. According to Theorem 3.1 (the implication (i) ⇒ (iii)) one has k(y,α)(x)
α f (αy) ≤ f (x) for all x ∈ X.

This, together with (34) implies that

f (x) − k(y,α)(x) ≥
k(y,α)(x)
α

( f (αy) − α) ≥ f (x0) − k(y,α)(x0),

for all x ∈ X. Hence, k(y,α) ∈ ∂L̃ f (x0).
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In the sequel, we introduce X × R++-support sets for a non-negative IR function which are essential to
characterize polar sets.

Let f : X→ [0,+∞] be a function. The lower (X ×R++)-support set of f (with respect to L̃), suppl( f ,X ×
R++), is defined by:

supp l( f ,X ×R++) := {(y, α) ∈ X ×R++ : k( y
α ,α) ≤ f }. (35)

Also, we define the upper (X ×R++)-support set of f (with respect to T), supp u( f ,X ×R++), by:

supp u( f ,X ×R++) := {(y, β) ∈ X ×R++ : t( y
β ,β)
≥ f }. (36)

Let W ⊆ X ×R++; recall that the α-section of W (Wα) is defined by Wα := {y ∈ X : (y, α) ∈W}. Also, the
y-section of W (Wy) is defined by Wy := {α ∈ R++ : (y, α) ∈W}.

Remark 4.1. Let f : X→ [0,+∞] be a function. According to (12), (14), (15) and (35), supp l( f ,X ×R++) is a
co-radiant set and has upward α-section, also the y-section of supp l( f ,X ×R++) is a downward and closed
set in R++.

Remark 4.2. Let f : X→ [0,+∞] be a function. According to (24), (26) and (36), supp u( f ,X ×R++) is a radiant
set and has downward β-section, also the y-section of supp u( f ,X ×R++) is an upward and closed set in R++.

The proof of the following proposition is similar to the one of Propositions 4.3 in [6], and therefore we
omit it.

Proposition 4.3. Let W ⊆ X ×R++ and W , ∅. Then the following assertions are equivalent:
(i) W is co-radiant, the α-section Wα is upward for all α > 0, and for all y ∈ X the y-section Wy is downward and
closed in R++.
(ii) There is a unique IR function f : X→ [0,+∞] such that supp l( f ,X ×R++) =W.
(iii) There is a unique function f : X→ [0,+∞] such that supp l( f ,X ×R++) =W.
Furthermore, the function f of (ii) is defined by f (y) := sup{α > 0 : (y, α) ∈ W} for all y ∈ X (with the convention
sup ∅ = 0).

The proof of the following proposition is similar to the one of Proposition 4.3, and therefore we omit it.

Proposition 4.4. Let U ⊆ X ×R++ and U , ∅. Then the following assertions are equivalent:
(i) U is radiant, the β-section Uβ is downward for all β > 0, and for all y ∈ X the y-section Uy is upward and closed
in R++.
(ii) There is a unique IR function f : X→ [0,+∞] such that supp u( f ,X ×R++) = U.
(iii) There is a unique function f : X→ [0,+∞] such that supp u( f ,X ×R++) = U.
Furthermore, the function f of (ii) is defined by f (x) := inf{β > 0 : (x, β) ∈ U} for all x ∈ X (with the convention
inf ∅ = 0).

5. Polarity of non-negative IR functions and radiant sets

In the this section, we introduce the polarity of non-negative IR functions and some radiant sets. Also,
we present a separation theorem for these sets. Throughout this section, we assume that L̃ and T are as
defined by (32) and (33), respectively.

Definition 5.1. The lower polar function of f : X→ [0,+∞] is the function f 0
l : L̃→ [0,+∞] defined by

f 0
l (k(y,α)) := sup

x∈X

k(y,α)(x)
f (x)

∀ k(y,α) ∈ L̃, (37)

(with the conventions 0
0 =

+∞
+∞ = 0).
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Proposition 5.1. Let f : X→ [0,+∞] be a function. Then

f 0
l (k(y,α)) ≥

α
f (αy)

∀ k(y,α) ∈ L̃.

Moreover, f is an IR function if and only if

f 0
l (k(y,α)) =

α
f (αy)

∀ k(y,α) ∈ L̃. (38)

Proof. By (37), it follows that f 0
l (k(y,α)) ≥

k(y,α)(x)
f (x) for all x ∈ X and all k(y,α) ∈ L̃. This, together with (11) implies

that α
f (αy) ≤

k(y,α)(αy)
f (αy) ≤ f 0

l (k(y,α)). Now, suppose that f is an IR function and x, y ∈ X, α > 0 are arbitrary.
According to Theorem 3.1 (the implication (i) ⇒ (iii)), we have k(y,α)(x) f (αy) ≤ α f (x) for all x ∈ X. This,
together with the convention 0

0 =
+∞
+∞ = 0 implies that

f 0
l (k(y,α)) ≤

α
f (αy)

∀ k(y,α) ∈ L̃.

Hence, we get (38). Now, assume that (38) holds. Then, in view of (37) and Theorem 3.1 (the implication
(iii)⇒ (i)), one has f is an IR function.

Corollary 5.1. Let f : X→ [0,+∞] be an IR function. Then

supp ( f , L̃) = {ky,α) ∈ L̃ : f 0
l (k(y,α)) ≤ 1 }.

Proof. This is an immediate consequence of (38).

We can also define the upper polar functions which are defined by the elementary functions t(y,β) ∈ T.

Definition 5.2. The upper polar function of f : X→ [0,+∞] is the function f 0
u : T→ [0,+∞] defined by

f 0
u (t(y,β)) := inf

x∈X

t(y,β)(x)
f (x)

∀ t(y,β) ∈ T,

(with the conventions 0
0 =

+∞
+∞ = +∞).

The proof of the following proposition is similar to the one of Proposition 5.1, and therefore we omit it.

Proposition 5.2. Let f : X→ [0,+∞] be a function. Then

f 0
u (t(y,β)) ≤

β

f (βy)
∀ t(y,β) ∈ T.

Moreover, f is an IR function if and only if

f 0
u (t(y,β)) =

β

f (βy)
∀ t(y,β) ∈ T.

Definition 5.3. Let W ⊆ X ×R++. The left polar set of W (Wl) is defined by:

Wl := {(x, β) ∈ X ×R++ : k( y
α ,α)(x) ≤ β, ∀ (y, α) ∈W}. (39)

Proposition 5.3. Let W ⊆ X ×R++. Then

Wl = suppu(hW,X ×R++),

where the function hW : X→ [0,+∞] is defined by:

hW(y) := sup{α > 0 : (y, α) ∈W}, ∀ y ∈ X, (40)

(with the convention sup ∅ = 0).
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Proof. By (39), (22), (23), and (31), we conclude that

Wl = {(x, β) ∈ X ×R++ : k( y
α ,α)(x) ≤ β, ∀ (y, α) ∈W}

= {(x, β) ∈ X ×R++ : βt(x, 1α )(
y
α

) ≥ 1, ∀ (y, α) ∈W}
= {(x, β) ∈ X ×R++ : t( x

β ,β)(y) ≥ α, ∀ (y, α) ∈W}
= {(x, β) ∈ X ×R++ : t( x

β ,β)(y) ≥ h(y), ∀ y ∈ X}
= suppu(hW,X ×R++).

Definition 5.4. Let W ⊆ X ×R++. The right polar set of W (Wr) is defined by:

Wr := {(y, α) ∈ X ×R++ : k( y
α ,α)(x) ≤ β, ∀ (x, β) ∈W}. (41)

The proof of the following proposition is similar to the one of Proposition 5.3, and therefore we omit it.

Proposition 5.4. Let W ⊆ X ×R++. Then

Wr = suppl(eW,X ×R++),

where the function eW : X→ [0,+∞] is defined by:

eW(x) := inf{β > 0 : (x, β) ∈W}, ∀ x ∈ X, (42)

(with the convention inf ∅ = +∞).

Remark 5.1. Let W ⊆ X ×R++ and W , ∅. According to (14), (15) and (41), we have Wr is a co-radiant set,
the α-section (Wr)α is upward for all α > 0, and for all y ∈ X the y-section (Wr)y is a downward and closed
set in R++.
Also, by (13), (16) and (39), we have Wl is a radiant set, the β-section (Wl)β is downward for all β > 0, and
for all x ∈ X the x-section (Wl)x is an upward and closed set in R++.

The sets which are closed under the closure operators W → Wrl and W → Wlr are identified in the
following.

Theorem 5.1. Let W ⊆ X ×R++. Then the following assertions are true:
(i) One has W = Wrl if and only if W is radiant and has the downward β-section and closed upward x-section for all
β > 0 and all x ∈ X.
(ii) One has W =Wlr if and only if W is co-radiant and has the upward α-section and closed downward y-section for
all α > 0 and all y ∈ X.

Proof. We only prove the part (i) and the proof of the part (ii) is similar. Let W = Wrl. By Remark 5.1, one
has W is a radiant set and has the downward β-section and closed upward x-section.

Conversely, let W be a radiant set and has the downward β-section and closed upward x-section. Then,
by Proposition 4.4, there exists a unique IR function f : X −→ [0,+∞] such that W = supp u( f ,X ×R++). In
view of Proposition 4.4(iii) and (42) we conclude that f = eW. Moreover, Proposition 5.4 and the fact that
f = eW implies that Wr = supp l( f ,X × R++). Also, according to Remark 5.1, we have Wr is a co-radiant
set and has the upward α-section and closed downward y-section. Thus, by Proposition 4.3 there exists a
unique function 1 : X −→ [0,+∞] such that supp l(1,X × R++) = Wr. By (40) and Proposition 4.3(iii) we
obtain 1 = hWr . Since 1 is unique and supp l(1,X ×R++) = Wr = supp l( f ,X ×R++), it follows that f = hWr .
Now, by Proposition 5.3, we conclude that

Wrl = supp u(hWr ,X ×R++) = supp u( f ,X ×R++) =W,

which completes the proof.
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Many applications of convexity are based on the separation properties. Some notions of separability of
radiant and co-radiant sets has been introduced and studied in [16]. In the following theorem, we give a
kind of separation property for a certain class of radiant sets by an elementary IR function.

Theorem 5.2. Let W ⊆ X ×R++. Then the following assertions are equivalent:
(i) W is a radiant set and has the downward β-section and closed upward x-section for all β > 0 and all x ∈ X.
(ii) For each (x0, β0) <W, there exists (y, α) ∈ X ×R++ such that

1
β

k(y,α)(x) ≤ 1 <
1
β0

k(y,α)(x0) ∀ (x, β) ∈W. (43)

Proof. (i) ⇒ (ii). Let (x0, β0) < W. It follows from Theorem 5.1(i) that (x0, β0) < Wrl. This, together with the
definition of Wl implies that there exists (ỹ, α) ∈Wr such that k( ỹ

α ,α)(x0) > β0 and k( ỹ
α ,α)(x) ≤ β for all (x, β) ∈W.

Let y := ỹ
α . Thus, k(y,α) satisfies (43).

(ii)⇒ (i). According to Theorem 5.1(i), we only show that Wrl ⊆ W. For this end, assume that (x0, β0) ∈Wrl

and (x0, β0) <W, so by the hypothesis there exists (y, α) ∈ X ×R++ such that

1
β

k(y,α)(x) ≤ 1 <
1
β0

k(y,α)(x0) ∀ (x, β) ∈W. (44)

The left inequality in (44) shows that (αy, α) ∈ Wr. Then, from (x0, β0) ∈ Wrl and (αy, α) ∈ Wr we conclude
that k(y,α)(x0) ≤ β0, and this contradicts the right inequality in (44).

In the following, we present a kind of separation property for a certain class of co-radiant sets by an
elementary IR function. By a similar argument as in the proof of Theorem 5.2 and by using Theorem 5.1(ii)
we have the following result.

Theorem 5.3. Let W ⊆ X ×R++. Then the following assertions are equivalent:
(i) W is a co-radiant set and has the upward α-section and closed downward y-section for all α > 0 and all y ∈ X.
(ii) For each (y0, α0) <W, there exists (x, β) ∈ X ×R++ such that

1
α0

t(x,β)(y0) < 1 ≤ 1
α

t(x,β)(y) ∀ (y, α) ∈W.

6. Non-negative IR functions and DPH functions

Abstract concavity of DPH (decreasing and positively homogeneous) functions on topological vector
spaces has been studied in [9]. In this section, we study non-negative IR functions by means of DPH
functions, which are simpler. For this end, we need the following definition:

Let f : X → [0,+∞] be a function. The positively homogeneous extension function f̂ of f is defined by
f̂ : X ×R++ ∪ {(0, 0)} → [0,+∞]

f̂ (x, λ) := λ f (
−x
λ

), (x ∈ X, λ > 0), f̂ (0, 0) = 0.

For a function f : X −→ [−∞,+∞], in a manner analogous to the case of ∆-subdifferential, we now
define the ∆̃-supperdifferential (see [10, 11]) of f at x0 ∈ X as follows:

∂+
∆̃

f (x0) := {l ∈ ∆̃ : l(x) − l(x0) ≥ f (x) − f (x0) ∀ x ∈ X},

where ∆̃ is a set of elementary functions defined on X.
We consider the natural order relation with respect to the convex cone S×R++ on the space X×R++ by:

(x1, c1) ≤ (x2, c2)⇔ x2 − x1 ∈ S, c1 ≤ c2.

Now, we have the following result.
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Theorem 6.1. A function f : X→ [0,+∞] is IR if and only if its positively homogeneous extension f̂ is decreasing.

Proof. Suppose that f is an IR function. Let (x1, λ1), (x2, λ2) ∈ X × (0,+∞) with (x1, λ1) ≤ (x2, λ2). It follows
from the definition that x1 ≤ x2 and λ1 ≤ λ2. Then one has

f̂ (x1, λ1) = λ1 f (
−x1

λ1
) ≥ λ1 f (

−x2

λ1
) = λ1 f ((

λ2

λ1
)
−x2

λ2
) ≥ λ2 f (

−x2

λ2
) = f̂ (x2, λ2),

and hence f̂ is a decreasing function. Conversely, assume that f̂ is decreasing. Let x1, x2 ∈ X with x1 ≤ x2.
Then we have

f (x1) = f̂ (−x1, 1) ≤ f̂ (−x2, 1) = f (x2).

That is f is increasing. Now, let 0 < λ ≤ 1 and x ∈ X be arbitrary. Then, (−λx, λ) ≤ (−λx, 1). So, one has

λ f (x) = f̂ (−λx, λ) ≥ f̂ (−λx, 1) = f (λx).

Therefore, f is radiant, and hence f is an IR function.

Remark 6.1. Let f : X → [0,+∞] be an IR function.Then, in view of Theorem 6.1 we conclude that the
positively homogeneous extension f̂ of f is a DPH function.

The following results have been proved in [7].

Theorem 6.2. ([7, Theorem 3.2]) Let p : X → [−∞, 0] be a function. Then, p is IPH if and only if p is Ω-convex,
where Ω := {ky : y ∈ X} and

ky(x) := max{λ ≤ 0 : λy ≥ −x}, (x, y ∈ X). (45)

Theorem 6.3. ([7, Theorem 3.4]) Let p : X → [−∞, 0] be an IPH function and x ∈ X be such that p(x) , −∞, 0.
Then

∂Ωp(x) = {ky ∈ Ω : ky(x) = p(x), p(y) = −1}.

Remark 6.2. Let q : X → [0,+∞] be a DPH function and let p : X → [−∞, 0] be defined by p(x) := −q(x) for
all x ∈ X. It is clear that p is an IPH function. Therefore, in view of Theorem 6.2, one has q is DPH if and
only if q is Ω̃-concave, where Ω̃ := {−ky : ky ∈ Ω, y ∈ X}. Also, by a similar argument as in the proof of
Theorem 6.3, we have if q : X→ [0,+∞] is a DPH function such that q(x) , 0,+∞, then we deduce that

∂+
Ω̃

q(x) = {−ky ∈ Ω̃ : −ky(x) = q(x), q(y) = 1}.

Now, for each (y, β) ∈ X × (0,+∞), define the function k′(y,β) : X × (0,+∞)→ [−∞, 0] as in (45).

Remark 6.3. It is not difficult to show that for each (y, β) ∈ X × (0,+∞), one has

−k′(y,β)(x, c) = t(−y, cβ )(−x), ∀ (x, c) ∈ X × (0,+∞),

where t(y,β) defined by (21).

In the sequel, let

L̄ := {−k′(y,β) : y ∈ X , β ∈ (0,+∞)}.
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Remark 6.4. Let f : X → [0,+∞] be an IR function. Then, f̂ is an L̄-concave function. In this case, Ω̃ in
Theorem 6.2 is exactly L̄. Indeed, let

△ := {−k′
(−y, 1β )

: y ∈ X, β ∈ (0,+∞)} ⊂ L̄.

Then, in view of Theorem 3.3 and Remark 6.3 we conclude that

f̂ (x, c) = c f (
−x
c

)

= c inf
U
{t(y,β)(

−x
c

)}

= inf
U
{ct(y,β)(

−x
c

)}
= inf

U
{t(y,βc)(−x)}

= inf
△
{−k′

(−y, 1β )
(x, c)}, ∀ (x, c) ∈ X × (0,+∞).

This implies that f̂ is an L̄-concave function.

Now, we give a description of supperdifferential ∂+L̄ f̂ of f̂ , where f : X→ [0,+∞] is an IR function. Note
that f (x) = f̂ (−x, 1) for all x ∈ X.

Theorem 6.4. Let f : X→ [0,+∞] be an IR function, and x0 ∈ X be such that f (x0) , 0,+∞. Then

∂+L̄ f̂ (x0) = {−k′(y,β) ∈ L̄ : f (x0) = t(y,β)(x0), f (βy) = β}.

Proof. According to Remark 6.1, Remark 6.2 and Remark 6.4, we have

∂+L̄ f̂ (−x0, 1) = {−k′(y,β) ∈ L̄ : f̂ (−x0, 1) = −k′
(−y, 1β )

(−x0, 1), f̂ (−y,
1
β

) = 1}.

Therefore, the result follows by Remark 6.3 and the definition of the positively homogeneous extension
function f̂ of f .

Example 6.1. Let X = Rn and S be the cone Rn
+ of all vectors in Rn with non-negative coordinates. Let

I = {1, 2, ..., n}. Each vector x ∈ Rn generates the following sets of indices:

I+(x) = {i ∈ I : xi > 0}, I0(x) = {i ∈ I : xi = 0}, I−(x) = {i ∈ I : xi < 0}.

Let x ∈ Rn and c ∈ R. Denote by c
x the vector with coordinates

(
c
x

)i :=
{ c

xi
, i < I0(x),

0, i ∈ I0(x).

Then, for each x, y ∈ Rn, in view of (3.12) we have

t(x, y, β) =
{

max{maxi∈I+(y)
xi
yi
, 0}, x ∈ K+y,β,

+∞, x < K+y,β,

where

K+y,β := {x ∈ Rn : ∀ i ∈ I−(y) ∪ I0(y), xi ≤ 0; max
i∈I+(y)

xi

yi
≤ min

i∈I−(y)

xi

yi
, and β ≥ max

i∈I+(y)

xi

yi
}.

(Note that we use the conventions inf ∅ = +∞ and sup ∅ = 0). Now, assume that f : Rn → [0,+∞] be an
IR function and x0 ∈ Rn be such that f (x0) , 0,+∞. Then

∂+L̄ f̂ (x0) = {−k′(y,β) : f (x0) = max{max
i∈I+(y)

(x0)i

yi
, 0}, f (βy) = β},



H. Mohebi, S. Mirzadeh / Filomat 26:5 (2012), 1005–1022 1018

where

−k′(y,β)(x, c) = t(−y, cβ )(−x) =

 max{maxi∈I+(y)
xi
yi
, 0}, x ∈ K+y, cβ

,

+∞, x < K+y, cβ
,

for all x ∈ Rn and all c > 0.

7. Abstract convexity of extended real valued IR functions

In this section, we are going to extend the results obtained in Sections 3 and 4 for a function f : X →
[−∞,+∞], where f is an IR function. On the other hand, in this section we assume that f (0) = 0 and the
sets {x ∈ X : f (x) ≤ 0} and {x ∈ X : f (x) ≥ 0} are not equal to the whole of the space X.

First, consider two functions f+ : X→ [0,+∞] and f− : X→ [−∞, 0] defined as follows

f+(x) := max{ f (x), 0}, (x ∈ X),

and

f−(x) := min{ f (x), 0}, (x ∈ X).

It is easy to see that f is an IR function if and only if f+ and f− are IR functions.
Now, consider the function T : X × X × X × R++ × (−∞, 0)→ [−∞,+∞] defined by

T(x, y, y′, α, α′) :=
{

k(y,α)(x), x ∈ S,
u(y′,α′)(x), x < S, (46)

for all x, y, y′ ∈ X, all α ∈ R++ and all α′ ∈ (−∞, 0).We also introduce a class of elementary functions such
that the extended real valued IR functions are supremally generated. Let (y, y′, α, α′) ∈ X×X×R++× (−∞, 0)
be arbitrary. Define the function T(y,y′,α,α′) : X→ [−∞,+∞] by

T(y,y′,α,α′)(x) := T(x, y, y′, α, α′), ∀ x ∈ X. (47)

Proposition 7.1. Let (y, y′, α, α′) ∈ X×X×R++×(−∞, 0) be arbitrary. Then the function T(y,y′,α,α′) : X→ [−∞,+∞]
defined by (47) is an IR function.

Proof. Since S is a convex cone in X, it follows that S is also an upward conic subset of X, and hence in view
of (46) and (47) the result follows.

In the sequel, define the set H by

H := {T(y,y′,α,α′) : y ∈ S \ {0}, y′ ∈ X, α ∈ R++, α′ ∈ (−∞, 0)}. (48)

The set H is called a set of elementary functions defined by (47). In view of Proposition 7.1, we have each
element of H is an IR function.

In the following, we show that each extended real valued IR function defined on X0 is an H0-convex
function, where X0 := S ∪ (−S) and

H0 := {T(y,y′,α,α′)|X0 : T(y,y′,α,α′) ∈ H}. (49)

It is clear that X0 is a closed cone in X. Also, we mean by T(y,y′,α,α′)|X0 the restriction of the function
T(y,y′,α,α′) to X0. Notice that each element of H0 is an IR function defined on X0.
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Theorem 7.1. Let f : X0 → [−∞,+∞] be a function and H0 be the set described by (49). Then, f is an IR function
if and only if there exists a set △0 ⊆ H0 such that

f (x) = sup
△0

T(y,y′,α,α′)(x), (x ∈ X0).

In this case, one can take

△0 := {T(y,y′,α,α′) ∈ H0 : f+(αy) ≥ α, f−(−α′y′) ≥ α′}.

Hence, f is an IR function if and only if it is an H0-convex function.

Proof. We only show that every extended real valued IR function f : X0 → [−∞,+∞] satisfies

f (x) = sup
△0

T(y,y′,α,α′)(x), (x ∈ X0). (50)

For this end, let x ∈ X0 be fixed and T(y,y′,α,α′) ∈ △0 be arbitrary. Assume that x ∈ S. Then, f (x) ≥ 0, and so
f+(x) = f (x). Since f+(αy) ≥ α, it follows from (46) and Theorem 3.1(iii) that

T(y,y′,α,α′)(x) = k(y,α)(x) ≤ f+(x) = f (x). (51)

Suppose that x < S. Then, we conclude from (46) that T(y,y′,α,α′)(x) = u(y′,α′)(x). On the other hand, one has
f−(x) ≤ f (x). Therefore, since α′ ≤ f−(−α′y′), by Theorem 2.1(iii),we obtain

T(y,y′,α,α′)(x) = u(y′,α′)(x) ≤ f−(x) ≤ f (x). (52)

Hence, in view of (51) and (52) we get

T(y,y′,α,α′)(x) ≤ f (x), ∀ T(y,y′,α,α′) ∈ △0, (x ∈ X0). (53)

Now, consider six possible cases.
Case (i). If x < S and −∞ < f (x) < 0. Thus, one has f−(x) = f (x). Now, let y′ := x

− f (x) , α
′ := f (x) and

y ∈ S \ {0}, α ∈ R++ be such that f+(αy) ≥ α. This implies that f−(−α′y′) = α′, and hence T(y,y′,α,α′) ∈ △0.
Therefore, in view of (3) and (46) we deduce that

T(y,y′,α,α′)(x) = u( x
− f (x) , f (x))(x) = f (x). (54)

This, together with (53) implies (50).
Case (ii). If x ∈ S and 0 < f (x) < +∞. Then, we have f+(x) = f (x), and moreover; x < −S. By putting
y := x

f (x) , α := f (x) and y′ ∈ X, α′ ∈ (−∞, 0) with f−(−α′y′) ≥ α′, one has y ∈ S \ {0} and f+(αy) = α, and
hence T(y,y′,α,α′) ∈ △0. Thus, in view of (12) and (46) we get

T(y,y′,α,α′)(x) = k( x
f (x) , f (x))(x) = f (x). (55)

This, together with (53) implies (50).
Case (iii). If x < S and f (x) = −∞, then f−(x) = f (x) = −∞. Now, let T(y,y′,α,α′) ∈ △0 be arbitrary. Since
f−(−α′y′) ≥ α′, it follows from Theorem 2.1(iii) that u(y′,α′)(x) = −∞ for all T(y,y′,α,α′) ∈ △0. Therefore, since
x < S, in view of (46) one has

sup
△0

T(y,y′,α,α′)(x) = sup
△0

u(y′,α′)(x) = −∞ = f (x). (56)

Case (iυ). If x < S and f (x) = 0. This implies that f−(x) = f (x) = 0. Let T(y,y′,α,α′) ∈ △0 be arbitrary. Since
x < S, in view of (46) we conclude that

T(y,y′,α,α′)(x) = u(y′,α′)(x) ≤ 0, ∀ T(y,y′,α,α′) ∈ △0,
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and hence

sup
△0

T(y,y′,α,α′)(x) ≤ 0. (57)

On the other hand, we have f−(λ( 1
λx)) = f−(x) = 0 > −λ, for all λ > 0. Therefore, T(y, 1λ x,α,−λ) ∈ △0 for all

λ > 0. So, since x < S, in view of (3) and (46) one has

T(y, 1λ x,α,−λ)(x) = u( 1
λ x,−λ)(x) = −λ, ∀ λ > 0.

Hence

sup
△0

T(y,y′,α,α′)(x) ≥ T(y, 1λ x,α,−λ)(x) = −λ, ∀ λ > 0.

This implies that

sup
△0

T(y,y′,α,α′)(x) ≥ 0. (58)

Thus, in view of (57) and (58) we get

sup
△0

T(y,y′,α,α′)(x) = 0 = f (x). (59)

Case (υ). If x ∈ S and f (x) = 0. Then, f+(x) = f (x) = 0. Now, let T(y,y′,α,α′) ∈ △0 be arbitrary. Since f+(αy) ≥ α,
in view of Theorem 3.1(iii) we obtain k(y,α)(x) = 0 for all T(y,y′,α,α′) ∈ △0. Therefore, since x ∈ S, we conclude
from (46) that

sup
△0

T(y,y′,α,α′)(x) = sup
△0

k(y,α)(x) = 0 = f (x). (60)

Case (υi). Finally, assume that x ∈ S, f (x) = +∞ and T(y,y′,α,α′) ∈ △0 is arbitrary. Thus, one has f+(x) = f (x) =
+∞. This implies that x < −S. Also, we have f+(λ( 1

λx)) = f+(x) = +∞ > λ for all λ > 0. So, T( 1
λ x,y′,λ,α′) ∈ △0

for all λ > 0. Hence, since x ∈ S and x < −S, it follows from (12) and (46) that

T( 1
λ x,y′,λ,α′)(x) = k( 1

λ x,λ)(x) = λ, ∀ λ > 0 (note that
1
λ

x ∈ S \ {0}).

This implies that

sup
△0

T(y,y′,α,α′)(x) ≥ T( 1
λ x,y′,λ,α′)(x) = λ, ∀ λ > 0,

and hence

sup
△0

T(y,y′,α,α′)(x) = +∞ = f (x). (61)

This completes the proof.

Recall that the support set of an abstract convex function accumulates an essential part of global
information about this function in terms of elementary functions. In the following, we characterize the
support set and the H-subdifferential of an extended real valued IR function.

Theorem 7.2. Let f : X→ [−∞,+∞] be an IR function. Then

supp ( f ,H) = △,
where △ is defined as follows

△ := {T(y,y′,α,α′) ∈ H : f+(αy) ≥ α, α′ ≤ f−(−α′y′)}.
Notice that the set H defined by (48).
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Proof. By the definition of the support set for a function, we have

supp ( f ,H) := {T(y,y′,α,α′) ∈ H : T(y,y′,α,α′)(t) ≤ f (t), ∀ t ∈ X}. (62)

Now, let T(y,y′,α,α′) ∈ △ be fixed and t ∈ X be arbitrary. Assume that t ∈ S. Then, f (t) ≥ 0, and so f+(t) = f (t).
Since f+(αy) ≥ α, it follows from (46) and Theorem 3.1(iii) that

T(y,y′,α,α′)(t) = k(y,α)(t) ≤ f+(t) = f (t). (63)

Suppose that t < S. Then, we conclude from (46) that T(y,y′,α,α′)(t) = u(y′,α′)(t). On the other hand, one has
f−(t) ≤ f (t). Therefore, since α′ ≤ f−(−α′y′), by Theorem 2.1(iii),we obtain

T(y,y′,α,α′)(t) = u(y′,α′)(t) ≤ f−(t) ≤ f (t). (64)

Hence, in view of (63) and (64) we get

T(y,y′,α,α′)(t) ≤ f (t), ∀ t ∈ X,

and so △ ⊆ supp ( f ,H). Conversely, we show that supp ( f ,H) ⊆ △. Let T(y,y′,α,α′) ∈ supp ( f ,H) be arbitrary.
Then we have T(y,y′,α,α′) ∈ H and

T(y,y′,α,α′)(t) ≤ f (t), ∀ t ∈ X. (65)

Since, by the definition of H, one has y ∈ S \ {0}, it follows that f (αy) ≥ 0, and so f+(αy) = f (αy). Moreover,
one has y < −S. Therefore, by (11) and (46) we have T(y,y′,α,α′)(αy) = k(y,α)(αy) = α. Thus, in view of (65) we
conclude that

f+(αy) = f (αy) ≥ T(y,y′,α,α′)(αy) = α. (66)

On the other hand, if f (−α′y′) ≥ 0, then one has

f−(−α′y′) = min{ f (−α′y′), 0} = 0 > α′. (67)

Now, suppose that f (−α′y′) < 0. This implies that f−(−α′y′) = f (−α′y′) and −α′y′ < S. Then, by (2), (46)
and (65) one has

α′ = u(y′,α′)(−α′y′) = T(y,y′,α,α′)(−α′y′) ≤ f (−α′y′) = f−(−α′y′). (68)

Therefore, it follows from (66), (67) and (68) that T(y,y′,α,α′) ∈ △, which completes the proof.

In the final part of this section, we present a characterization for the H-subdifferential of an extended real
valued IR function. Notice that, by definition, the H-subdifferential of an extended real valued IR function
f at a point x0 ∈ X is defined as follows

∂H f (x0) := {T(y,y′,α,α′) ∈ H : T(y,y′,α,α′)(x0) ∈ R,
f (t) − f (x0) ≥ T(y,y′,α,α′)(t) − T(y,y′,α,α′)(x0), ∀ t ∈ X}.

Theorem 7.3. Let f : X→ [−∞,+∞] be an IR function and x ∈ X be such that f (x) , −∞, 0,+∞. Then{
{T(y,y′,α,α′) ∈ H : f+(αy) ≥ α, α′ ≤ f−(−α′y′), k(y,α)(x) = f (x)} ⊂ ∂H f (x), i f x ∈ S
{T(y,y′,α,α′) ∈ H : f+(αy) ≥ α, α′ ≤ f−(−α′y′), u(y′,α′)(x) = f (x)} ⊂ ∂H f (x), i f x < S.

Proof. It is easy to see that

{T(y,y′,α,α′) ∈ supp ( f ,H) : f (x) = T(y,y′,α,α′)(x)} ⊂ ∂H f (x), (x ∈ X). (69)

First, suppose that x ∈ S. Then, in view of (46) one has

T(y,y′,α,α′)(x) = k(y,α)(x), ∀ T(y,y′,α,α′) ∈ H. (70)
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Now, consider the set A defined as follows

A := {T(y,y′,α,α′) ∈ H : f+(αy) ≥ α, α′ ≤ f−(−α′y′), k(y,α)(x) = f (x)}.
According to (69), (70) and Theorem 7.2, we conclude that A ⊆ ∂H f (x). Now, assume that x < S. Thus, in
view of (46) we have

T(y,y′,α,α′)(x) = u(y′,α′)(x), ∀ T(y,y′,α,α′) ∈ H. (71)

Consider the set B defined as follows

B := {T(y,y′,α,α′) ∈ H : f+(αy) ≥ α, α′ ≤ f−(−α′y′), u(y′,α′)(x) = f (x)}.
According to (69), (71) and Theorem 7.2, we conclude that B ⊆ ∂H f (x).
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