
ABSTRACT DIFFERENTIAL ALGEBRA AND THE
ANALYTIC CASE

A. SEIDENBERG

In Chapter VI, Analytical considerations, of his book Differential

algebra [4], J. F. Ritt states the following theorem:

Theorem. Let Y?'-\-Fi, i=l, ■ ■ • , re, be differential polynomials in

L{ Y\, • • • , Yn) with each p{ a positive integer and each F, either

identically zero or else composed of terms each of which is of total degree

greater than pi in the derivatives of the Yj. Then (0, • • • , 0) is a com-

ponent of the system Y?'-\-Fi = 0, i = l, ■ • ■ , re.

Here the field E is not an arbitrary differential field but is an

ordinary differential field appropriate to the "analytic case."1 While

it lies at hand to conjecture the theorem for an arbitrary (ordinary)

differential field E of characteristic 0, the type of proof given by

Ritt does not place the question beyond doubt.2 The object of the

present note is to establish a rather general principle, analogous to

the well-known "Principle of Lefschetz" [2], whereby it will be seen

that any theorem of the above type, more or less, which holds in the

analytic case also holds in the abstract case. The main point of this

principle is embodied in the Embedding Theorem, which tells us that

any field finite over the rationals is isomorphic to a field of mero-

morphic functions. The principle itself can be precisely formulated as

follows.

Principle. If a theorem E(E) obtains for the field L provided it ob-

tains for the subfields of L finite over the rationals, and if it holds in the

analytic case, then it holds for arbitrary L.

To illustrate, consider the theorem above. The conclusion can be for-

mulated as follows: there exists a polynomial G(F)GE{ Fi, • • • , Yn}

with G(0) = 1 and an integer r such that YTiGiY)=0[Yl1-\-F1, ■ ■■ ,

Yln-\-Fn], *=1, • • • , n. The theorem is thus seen really to refer to

the field K which is obtained by adjoining to the rationals the coeffi-

Received by the editors June 10, 1957.

1 Consider all the functions defined in an open region A, each of which can be

expanded into a convergent power-series in a neighborhood of each point of A. Be-

cause of the connectedness of A, these functions form an integral domain. Any subfield

of its quotient-field is a field of meromorphic functions. The "analytic case" refers

to the case that the base field is a field of meromorphic functions.

2 The theorem has been established by a direct, algebraic argument in [3; p. 553].

Incidentally, we have verified that the theorem also holds in the partial differential

case.
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cients of the Fi. Identifying K with a field of meromorphic functions

and applying the analytic case, we obtain a polynomial G(Y) of the

desired form, with, moreover, G(Y)EK{ Y).

The notation is the standard notation of Ritt's book, and all page

references are to that book.

Embedding Theorem. Let R be the rational number-field, K a finite

partial differential extension-field of R with m types of differentiation.

Then K is isomorphic to afield F of meromorphic functions of m complex

variables.

The following lemma, though nothing but a simple computational

rule, will prove useful in the given formulation.

Lemma. Let R be the rational number-field, K = R(ui, • • • , un) a

finite ordinary differential extension-field of R. Let a: Uij-^ca be an

arbitrary abstract-field isomorphism of K onto a field Ki. Let the field of

formal power-series Ki((z)) be converted into a differential field by plac-

ing (^ajZ'/jl)' =^2ajz'~1/(j—i)\. Then the assignment Ui—*ut

= ^CijZ'/jl defines a differential-field isomorphism of K onto

R(ui, ■ ■ ■ , un). A similar statement holds for partial differential fields.

Proof. Let H(U)ER{ Ui, • • • , £/„}, where the £/,• are indetermi-

nates. Then H(u) = ^/ErU)(c)z>/j\, where 77<>> is the jth derivative of

77 and EE>">(c)=Hu>(u) evaluated at 2 = 0; or, what comes to the

same thing, H^(c)=Hj(cki), where H^(U)=Hj(Uki). Hence 77(w)

= 0 if and only if 77(m) =0. This completes the proof in the ordinary

case, and the proof for the partial case follows similarly.

Proof of the Theorem. The proof merely applies the lemma in

such a way that the power-series converge. For the sake of exposition,

we consider first the ordinary case (m = 1). We may assume that the

differential degree of transcendency of K/R is = 1, for we may always

adjoin a transcendental quantity to K. Using the theorem of the

primitive element,3 we may therefore assume that K is of the form

R(ui, • • • , un), where «i, • • • , w„_i form a transcendency basis of

K/R. Let un satisfy an equation of order r, but no less, over

7?(wi, • • • , m„-i): say G(Ui, ■ ■ ■ , Un) =0 is an equation of the type

specified, with G£7?{ Tj) and G irreducible. Let complex numbers c{,-

algebraically independent over 7? be assigned to the £/*,- occurring in

G with the exception of Unr, and let c„r be determined from the condi-

tion G(c)=0. We then have 5(c) ^0, where S = dG/dUnr. Hence we

3 For a simple proof of this theorem, which also holds for arbitrary m, see [S];

see also [l]. The use here of the primitive element is, however, merely a matter of

convenience in exposition; the theorem is not used in the proof below for m>\.
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can solve G(E)=0 formally for Unr to obtain

Unr  —  C„r  =   T{Uij  —  df,   U„o  ~  Cn0,   '   ■   "  ,   Um-1  ~   Cnr-l)  ii   <  n),

where T is a formal power-series (over the rationals) in the differences

indicated. Moreover it is known that T converges in some neighbor-

hood of the specified values of the Uij. For each i, i = 1, • • • , re"— 1, we

now construct a power-series ^.CnZ'/il. where we use the c,y already

considered and fill in the other ca with arbitrary values subject to

the following conditions: first we want all the c,y, *=1, •••,« — 1,

/ = 0, 1, ■ • • and c„o, • ■ ■ , c„r-i to be algebraically independent over

the rationals—this condition can certainly be met since the degree of

transcendency of the complexes over the rationals is the cardinal num-

ber of the complexes; and second, we want the power-series to be con-

vergent in some neighborhood of z = 0—this is easily accomplished,

say by making the c,-,- approach 1. These power-series are then substi-

tuted into T (with Un being replaced by the /th derivative of Ui) to

obtain a function E(z; U„o — c„0, • • • , Unr-i — Cm—i), which will be

analytic in some neighborhood of z = 0, Uno = cno, • • • , Unr-i = cnr-i.

We now regard U„r — cnr=E(z; E„0 — c„o, ■ • • , U„r-i— cnr-i) as a dif-

ferential equation with specified initial conditions. It is well-known

that there exists a solution ^,cnjZ'/j\, where cn0, ■ • • , cnr are as

assigned. Let Vi= /.Caz'/il. Since a: Uij-+Ci,- clearly determines

an abstract-field isomorphism, the assignment W;—>z\ determines,

by the lemma, a differential isomorphism of R(ui, • • • , re„) onto

R(vi, • • • , »n). This completes the proof (for m = l).

Remark. The above argument has points of contact with the argu-

ment of Ritt on pp. 28-29.

The proof for the partial differential case proceeds on the same

lines as for the ordinary case, but is more complicated due to the in-

volved character of the necessary existence theorem for partial differ-

ential equations. Here we rely on Ritt's exposition of Riquier's exist-

ence theorem (Chapter VIII), and on the argument of pp. 172-174,

which can be easily adapted to our purpose.

Let K = R(ui, ■ • • , «»), let ui, • ■ • , un determine the prime ideal

P in E{ Ei, • • • , Un], and let Gi, • • ■ , G„ be a characteristic set for

P. Let pi be the leader and Si the separant of G,-. Consider the Un

(where j abbreviates ji • • ■ jm) which actually occur in the Gk. Assign

complex numbers dj algebraically independent over R to the Un

with exception of the pk. Then for these ij, R( • ■ ■ , u^, • • • )

=R( ■ ■ • , Cij, • ■ • ); and this isomorphism can be extended to in-

clude all the ij. In this way we have complex numbers ctj which satisfy
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the system Gi = 0, • • • , Gs = 0, irSt^O. Solving for the pi successively

from Gi = 0, • • • , Gs = 0 in the neighborhood of the Cy, we get

Pi = gi(Ujk — Cjk), where on the right occur only parametric deriva-

tives. Then essentially by Riquier's existence theorem (see, however,

also the argument of Ritt on pp. 172-174), the system pi = gt, con-

sidered as a system of differential equations, has a unique solution

for any given initial determinations. The initial determination of Ui

is a power-series in which the terms Ciil...jinz1^ ■ ■ ■ zf™/ji! • • • jm\

correspond to the parametric derivatives, and in which the cy are

arbitrary subject to the condition that the series converge in a neigh-

borhood of 2i = • • • = zm = 0. We take the cy subject to this condition

and in such way that they are algebraically independent over 7?. For

the corresponding solution Vj= /£u,...t_Sn ■ ■ ■ zfc/jil • • • jm\, one

finds (as for m = i) that R{ui, ■ ■ • , u„\ is isomorphic to 7?{Vi, ■ ■ ■ ,

v„}. This completes the proof.

Let K* be a field of meromorphic functions with domain A, and

let B be an open sub-region of A ; then the functions of K* restricted

to B form a field K* isomorphic to K*. The two fields K*, K* are

frequently tacitly identified; and, in fact, this is so in the following

corollary.

Corollary. Let K, Ki be finite extensions of the rational number-

field R, K^Ki, and let r: K^>K* be an isomorphism of K with a field

of meromorphic functions K*. Then t can be extended to an isomorphism

t: Ki-^K* of Ki with afield of meromorphic functions K*.

Proof. One could get a proof by modifying the above proof, let-

ting K take over the role of 7?. The result would resemble consider-

ably Ritt's proof that a polynomial ideal 9^(i), in the analytic case,

has an analytic zero (see pp. 28-29, 172-174, 176). We can do perhaps

a little better as follows. Let r: «,—>«<*, where K = R(uu ■ ■ ■ , un); we

select some point P, which we may assume to be the origin, at which

the u* are analytic (and not merely meromorphic). Continuing now

first for m = i, the power-series u*= ^CuZ'/jl define an (abstract)

isomorphism <r: «;,■—>Cj;- of K into the complex number-field. Let

Ki = K(vh ■ ■ ■ , vm) with Vi, • ■ ■ , vm-i algebraically independent over

K and vm a primitive element of Kx over

R(Ui,   •   ■   ■  , Un-l, Vi,   ■   ■   ■  , Vm-i).

Clearly a can be extended to Ku a: Py—»«iy, with v* = ^dijZ'/jl,

i=i, ■ ■ ■ , m — i, convergent by choice and v*= XX»j0'/i! conver-

gent by the theorem. By the lemma, t': Ui—^uf, Vt—>v? determines an

isomorphism of Ki with R(u*, ■ ■ • , v*n), and clearly r' induces r.
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This completes the proof for m = l. The proof for m> 1 is similar.

The following corollary is, as just mentioned, well-known.

Corollary. A polynomial ideal A 5^(1), in the analytic case, has an

analytic zero.

Proof. We take a finite basis for the ideal A and work over the

field K generated by the coefficients. There exists an abstract zero

Vi, ■ • ■ , vm. By the last corollary we identify Ki = K(vi, • ■ ■ , vm)

with a field of meromorphic functions. Any sub-region B (of the region

for Ei) in which the Vi are analytic together with the Vi define an

analytic zero of A.

Remarks. (1) Essentially on the basis of the above principle, the

following results, established by Ritt in the analytic case, can now be

considered to obtain in the abstract case (characteristic 0):

(a) the result on pp. 129-131,

(b) the result on pp. 144-145,

(c) the results on p. 132, §12, provided we take as definition Ritt's

characterization of a limited manifold as one which is held by a

differential polynomial of the form yp-\-F, where E either is zero or

is of degree less than p.

The application of the principle to these results is not absolutely

automatic, but as there is no essential difficulty, we will retain our

proofs in manuscript form.

(2) It would not be without significance to go over all of Ritt's

results, whether established only in the analytic case or not, in order

to make clear the logical character of the principle, but as the con-

siderations can not be supported with technical difficulties, we omit

them. In this connection, the reader may wish to decide whether

Lefschetz's Principle applies to Liiroth's Theorem. It does apply to

Hilbert's Nullstellensatz, though this point was overlooked in [6;

p. 373].
(3) The above principle is not merely more difficult to establish

than the corresponding principle for Algebraic Geometry, but it

actually has a different character. In Algebraic Geometry, the type of

theorem we have been considering can in principle be decided in a

finite number of steps. That is not so in Differential Algebra: for

example, given a polynomial G in E{ F}, it is not known how to write

down finite sets of equations for the components of G = 0 (see pp. 177—

178).
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SOME NODAL NONCOMMUTATIVE JORDAN ALGEBRAS1

LOUIS A. KOKORIS

1. Introduction. An algebra A over a field F is called a noncom-

mutative Jordan algebra if A is flexible and if the associated algebra

A+ is a Jordan algebra. In a recent study by Schafer [2] of noncom-

mutative Jordan algebras of characteristic p, such an algebra A is

called a nodal algebra if it is finite dimensional, has a unity element 1,

and has the form A =iF-\-N where every element of N is nilpotent

but N is not a subalgebra of A. It is known [l] that nodal non-

commutative Jordan algebras of characteristic zero cannot exist.

Since a noncommutative Jordan algebra is flexible, it satisfies

(1) (x, y, z) + (2, y, x) = 0,

where (x, y, z) = (xy)2 —x(y2). This is the linearized form of the flexible

law (xy)x = x(yx). The associated algebra A+ is obtained from the

algebra A by redefining multiplication by x-y = (xy-r-yx)/2. (When

the characteristic of A is 2 we use x-y = xy-\-yx.)

In this paper we give a construction for a class of nodal noncommu-

tative Jordan algebras for every characteristic p9^2. A subclass of

these algebras consists of simple algebras and a description of ideals

is given for the algebras which are not simple. For the sake of com-

pleteness, we construct a nodal algebra of characteristic 2. These

examples all have the stronger property that A+ is an associative

algebra.
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