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Although the individual ergodic theorem of G. D. Birkhoff is sharper
than the mean ergodic theorem of J. von Neumann, it was soon evident that
the measure-theoretic formulation obscured the greater generality of the
latter result. Thus various authors—notably F. Riesz [28] and Yosida and
Kakutani [33]—extended the mean ergodic theorem to an abstract theorem
asserting the convergence to a fix point of the means Tnx = (n + l)~122oT'x,
where T is a linear transformation of a Banach space E into itself. Alaoglu
and Birkhoff [l] then replaced the iterates (T'~) by a semi-group G of linear
transformations and showed that convergence of certain general means of
transforms of an element x of E is equivalent to the existence and unique-
ness of a fix point y in the closed convex hull of the orbit of x under G. The
persistence of the customary countability and uniform boundedness restric-
tions on G in their work, however, severely limits the generality. A fresh
abstraction is thus required, not only to subsume present results in a sharper
and more transparent form, but to extend the domain of the ergodicity phe-
nomena.

In Part I we study a semi-group G of linear transformations operating on
a space £, G ordinarily being restricted by an "ergodicity" condition of the
weakest type. We derive criteria for the validity of a mean ergodic theorem
in an arbitrary locally-convex linear topological space £. Specializing £ to a
Banach space E, we obtain not only standard theorems as obvious corollaries
of the general theory, but significantly new results. For example, we obtain a
mean ergodic theorem for an arbitrary bounded Abelian semi-group G on the
one hand, and Fejér's theorem as an ergodic theorem for an unbounded semi-
group on the other. The role played by weak compactness in E and (weak)
quasi-compactness of the operators F of G is clarified, as well as the relation
of ergodic theory to the mean value problem for generalized almost periodic
functions, the relation being particularly simple in case the underlying group
is Abelian.

In Part II we consider a locally-compact Abelian group G acting as trans-
lations on the Banach algebra C(G) of bounded continuous complex-valued
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functions on G. Calling x(t) in C(G) weakly almost periodic (w.a.p.) if the
set of translates x(t+s) (s(E.G) is (conditionally) weakly compact, we study
the class 2B of w.a.p. functions. The principal results are: (1) the existence
of the mean value as an ergodic theorem ; (2) the closure of 2B under multi-
plication, in contrast to other classes of generalized a.p. functions; (3) the
fact that 3B contains all the bounded functions pertinent to Fourier analysis
on Abelian groups—for example, almost periodic functions, positive definite
functions, and continuous functions vanishing at infinity; (4) the uniform
continuity of w.a.p. functions; (5) the almost periodicity of the convolution
of two w.a.p. functions; (6) the Parseval equation for Fourier expansions in
the characters of G; (7) if G = Rx, that a w.a.p. function is in the Weyl class
Wp for every p = l.

The equivalence of the properties of compactness (=bicompactness),
countable compactness, and sequential compactness for (closed) sets in the
weak topology of a Banach space [13] is vital to the theory, particularly since
we impose no countability restrictions on G.

Terminology. Linearity of an operator denotes continuity and total defini-
tion, as well as linearity in the algebraic sense. A set of operators forms a semi-
group if it is closed under operator multiplication.

Part I. Abstract ergodic theorems
1. Weak topology. We summarize some properties of the weak topology of

linear topological spaces (l.t.s.) that are required later. (For the definition
and elementary properties of l.t.s. see, for example, Hyers [20].)

Given an l.t.s. £ denote by £* the set of all linear functionals defined on
£. In the only case we consider £ is locally convex, whence there exist "suffi-
ciently many" linear functionals—that is, given x¿¿0 in £ there exists an / in
£* such that/(x) 5^0. The elements of £ then form a new l.t.s. (weak topology
of £) under the system of neighborhoods N(x; /i, • • • ,/„, e) = [y\ \fi(x—y)\
<e, i = l, • • ■ , n], where e>0 is arbitrary, and (ft, •••,/„) is an arbitrary
finite set of elements of £*. It follows trivially that the weak closure of a set M
in £ implies the strong closure. When M is convex, the converse is valid and
provides the fundamental connection between the two topologies:

Theorem 1.1 (Mazur-Bourgin [6]). In a locally convex l.t.s. a closed con-
vex set is weakly closed.

The interest of the weak topology is largely due to the vital role played
by weak compactness in the theory of infinite-dimensional linear spaces.
When £ is a Banach space the weak compactness theory is almost metric in
its good behavior, and we shall be interested primarily in this case. The funda-
mental results we need are: (1) that the closed convex hull of a conditionally
weakly compact set is weakly compact [26]; (2) that the various standard
notions of weak compactness are equivalent [13]. For our purposes these facts

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1949] ABSTRACT ERGODIC THEOREMS 219

are conveniently summarized in

Theorem 1.2. Let E denote a Banach space, M a subset of E, and 2 the
closed convex hull of M. In the weak (as well as in the metric) topology of E the
following conditions are equivalent:

(1) 2 is compact (=bicompact);
(2) M is conditionally sequentially compact—that is, every sequence (xn)

in M contains a subsequence (xni) such that limn¡ xni=x for some x in E;
(3) M is conditionally countably compact—that is, every infinite subset of

M possesses at least one limit point x in E.

In the weak topology of a Banach space, therefore, we need distinguish
only conditional compactness and compactness, depending on the closure of
the set involved, and we may employ sequential compactness notions freely.
The crucial role played by sequential weak convergence is apparent in the
case jE = C(fl)=all continuous (real- or complex-valued) functions x(t) on a
compact Hausdorff space ß with ||x|| =sup(g8 |*(0| :

Theorem 1.3. In C(ß), x(t) =limn x„(t) weakly if and only if (1) \\xn\\ is
bounded; (2) limn xn(t) =x(t) for every ¿£ß.

Since the general linear functional f(x) on C( ß) has the form of a Radon
integral

f(x) =  f x(t)dp(t),
J a

where ¡j. is a countably additive regular Borel set function of finite total varia-
tion on ß [22], the nontrivial half of the above theorem essentially amounts
to the Lebesgue convergence theorem. Moreover, not only this proof but the
theorem itself breaks down [29] on replacing the sequence xn by a directed
set Xa.

We note also that the above remarks remain valid for a locally compact
Hausdorff space ß if E = Co( ß) now denotes the continuous functions vanish-
ing at infinity. (*(/) vanishes at infinity if given e>0 there exists a compact
set TCß such that \x(t)\ ^e for ¿Gß-T.)

2. Ergodic semi-groups. Consider now a locally convex l.t.s. £ and a semi-
group G of linear transformations of £ into itself. We denote by G*
= [ 22ai"Lj\ a¡ = 0, ¿2ai = 1, FjGG] the family of transformations T* consisting
of all finite convex combinations of the elements T of G; by O(x)
= [T*x\ T*E.G*] the orbit of x under G*, and by O(x) the closure of 0(x) in
£. G* is clearly a semi-group of operators, and 0(x) and 0(x) are convex sets
invariant under G*. For convenience we shall always assume that G contains
the identity I.

The semi-groups G of chief interest to us are those with the property we
denote as ergodicity.
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Definition 2.1. G is an ergodic semi-group if it possesses at least one system
of almost invariant integrals. By such a system we mean a family of trans-
formations (Ta), indexed by the directed set (a), with the following properties:

I. Ta is a linear transformation of £ into itself for every a.
II. For every x and all a TaxÇzO(x).
III. The transformations Ta are equi-continuous.
IV. For every x in £ and all T in G:
(a) lima(TTax — Tax)=0;
(b) lim„ (TaTx — Tax) =0.
We shall see later that the problem of the existence or construction of a

system of almost invariant integrals for a given semi-group G is a difficult
one. In many cases of interest, however, the system appears naturally, and a
complete solution is possible in the important bounded Abelian case (§5,
Example 3). Moreover, it turns out that any two systems of almost invariant
integrals are equivalent for our purposes, whence ergodicity is a property of
the semi-group G rather than of the particular system exhibited.

The following remarks are easy consequences of the above definition:
It is clear that IV remains valid if T is replaced by any element T* of G*.
Ill follows automatically from II when the F in G are assumed equi-continu-
ous. (As we shall see later, however, this restriction on G is unduly stringent.)
When £ is a Banach space E, III and IV take the equivalent forms

III':  There exists M>0 such that \\Ta\\ gild for all a;
IV: For all Tin G, lim (TTa-Ta) =lim (TaT-Ta) =0 "strongly" in B(E),

where B(E) is the Banach algebra of linear transformations of E into itself.
We sometimes consider the case where the limits IV hold in the "uniform"
(=norm) topology of B(E) as well as in the "strong"; and in either case it is
evident that the content of IV is not altered on replacing T by an element
U of G*, where the semi-group G* is the norm closure of G* in B(E). More-
over, it is trivial that Ux(EO(x) for every UG.G*.

3. The mean ergodic theorem. Our definition of an ergodic element of £
is inspired by the following key theorem, valid in any locally convex l.t.s.

Theorem 3.1. If G is ergodic, x an element of £, and (Ta) any system of
element invariant integrals, then the following conditions on an element y in £
are equivalent:

(1) yC_0(x), and Ty=y for all TE.G;
(2) y = lima Tax;
(3) y=lima Tax weakly;
(4) y is a weak cluster point(2) of (Tax).

Definition 3.1. If G is ergodic, x is ergodic with (unique) limit fix point y

(2) y is a cluster point of the directed set (xa) in a T-space if for each ß and each nbd. U of y
there exists an a>ß such that za(7 U. The compactness of the closure of (xa) implies the exist-
ence of at least one cluster point y (cf. Tukey [31 ]).
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if and only if there exists a y = T„ x satisfying any of the conditions (1) to (4)
above.

The justification for this definition rests on the following observations:
Since condition (1) is independent of the particular system (Ta), the validity
of (2), (3), or (4) for any system (Ta) implies—by way of (1)—the validity
for any other system (T^). Hence the property of being an ergodic element is
independent of the particular system of almost-invariant integrals employed,
provided at least one system exists. Moreover, (2) implies that the limiting
fix point y, if it exists, is necessarily unique.

Turning now to the proof of Theorem 3.1, we note that the implications
(2)—*(3)—>(4) are trivial. We complete the proof by establishing (1)—»(2) and
(4)-»(l).

(1)—>(2). Given any nbd. N(0)C.£ we must exhibit a ß such that a>ß
implies y-TaxGN(0). Choose a nbd. F(0) such that V+VCN, and a
nbd. IF(0) such that Ta(W) C F for all a (III). Since y is in 0(x) there exists,
by definition, T*^G* such that y—T*x(EW. Now choose ß such that
(TaT*x — Tax )GFif a>ß (IVb). Recalling that II implies Tay=y for a fix
point y, we can now write

y - Tax = Ta(y - T*x) + (TaT*x - Tax) G Ta(W) + V C F + F C N(0)
for a > ß.

(4)—>(1). Since TaxÇHO(x) for all a (II), the y in (4) is a weak limit point
of 0(x), whence y G 00*0 by the Mazur theorem. To prove that Ty=y for
all FGG note that, since there are sufficiently many linear functionals, it is
sufficient to show that f(Ty — y) =0 for all F in G and all/ in £*. Given then
arbitrary e>0, FGG, and /G £*, we note first that setting g(x) =f(Tx)
defines an element gG £*• Since strong convergence implies weak convergence,
IV(a) implies the existence of an index ß such that

| f(Tax - TTax) | < e/3 (a > ß).

Since y is a weak cluster point of Tax there exists some a>ß such that
y-TaxEN(0;f, g, e/3)—that is,

| f(y - Tax) | < e/3,

| f(TTax - Ty)\=\ g(Tax - y)\ < e/3.

Adding these inequalities we obtain |/(y— Ty)\ <e. Since e>0, TÇE.G, /G £*
were arbitrary, Ty = y for all TÇ_G.

Remark. We note that IV(a) was required only to establish (4)—»(1),
IV(b) only in proving (1)—>(2), and in either case only the validity at the
point x was needed.

4. The ergodic and almost periodic subspaces. Before proceeding to the
applications of our mean ergodic theorem we shall examine the space of
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ergodic elements and its important subspaces. We assume henceforth that 6 is a
Banach space E.

Theorem 4.1. If G is ergodic, the ergodic elements of E constitute a closed
invariant linear subspace T. The transformation Tx x=y = lima Tax is a linear
transformation of T into itself, and || rM||rg M. Moreover, on T we have Tx = Tx
= TXU = UTX if UE.G* or U = some Ta.

Proof. Theorem 3.1 (2) clearly implies that T is linear and ||77*;||:S ilí||:)¡:||
for all xGr. If xGT, IV(b) implies TxTx = \ima TaTx = lima Tax = Txx exists,
whence T is invariant under G. The proof that T is closed involves the equi-
continuity condition III': Assuming (x„)Cr, x=lim x„, y„ = lima Taxn, note
that [|yn — ym\\ **\\T*(xn—*«.|[áM|j*»—Xm\\, whence the sequence is y„ funda-
mental and y = lim yn exists. That y = lima Tax then follows from the in-
equality

||T„x - y\\ á U'r.(« - xN)\\ + \\Tax„ - yN\\ + \\yN- y\\

on choosing N sufficiently large, and then a suitably.
The remaining statements of the theorem can be given the following more

general setting, in which the ergodicity of G is not assumed.

Lemma 4.1. //, for every point x of a closed invariant linear subspace V,
0(x) contains a unique fix point Txx, and if UÇzB(E) has the property Ux
G0(x) for every xÇ^T, then Txx = Ttx = UTKx = TxUx.

To establish these equalities note first that UTxx(E.O(Txx) = Txx. Hence
UTxx = Txx; similarly, T„x = Txx. To prove TxUx = Txx, note that Ux
G0(*OCr, 0(Ux)(ZO(x), whence the fix point TxUx exists, lies in 0(x), and
is necessarily Txx. The proof of the theorem is then complete.

The structure of the ergodic subspace having been established, we now
investigate conditions sufficient to insure that a given element x of E be
ergodic. In this connection we shall find (4) of Theorem 3.1 to be the most
useful criterion for ergodicity, and weak compactness the most useful condi-
tion: For example, the required y exists automatically whenever any of the
sets O(x), (Tax), or [Tx\ TÇE.G] is (conditionally) weakly compact. (Foot-
note 2 and Theorem 1.2.)

This remark and reference to the theory of almost periodic points of
transformation groups suggest consideration of the following subspaces of
the ergodic space T.

Definition 4.1. xG-E is (weakly) almost periodic under G if and only if
the orbit [Tx\ TÇ.G] is conditionally (weakly) compact. 9B and U denote the
set of weak and strong almost periodic points respectively.

The inclusion relations IICSBCrC-E are obvious when G is ergodic. When
G is bounded, but not necessarily ergodic, one can establish
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Theorem 4.2. If || F|| ^ M for all TÇ0.G, the (weak) almost periodic subspace
(SB)U is a closed linear invariant subspace of E.

Proof. The linearity and invariance under G of U and SB are obvious.
Closure of U follows from an obvious application of the diagonal process and
the completeness of E in the norm topology. The incompleteness of E in the
weak topology, however, necessitates modifications in the proof of closure for
SB. Fortunately we can still restrict consideration to sequential compactness
notions (Theorems 1.2).

Assuming x = lim xn, (x„)CSB, and given any sequence (Ti)(T¡C¡:G), we
derive via the diagonal process a subsequence (7Y)C(Fj) and a set of ele-
ments y„ such that lim¡' Ti>xn = yn weakly (n = l, 2, ■ • • ). If we could show
that y = limn yn exists, it would follow readily that y = lim¡< Tyx weakly,
whence xGSB. But the Hahn-Banach theorem [2] implies that | ym— y„||
= supn/n_i |/(ym— y„)| =supn/||=ilimr |/{ Tv(xm— xn)} \ ^M\\xm — xn |. Hence
(y„) is fundamental, and y = lim„ yn exists.

5. Examples and applications. We now justify our description of Theorem
3.1 as a mean ergodic theorem by deriving from it in elementary fashion essen-
tially all standard mean ergodic theorems. We further obtain important ap-
plications to Fourier analysis. The derivation consists of (1) verifying the
ergodicity (Definition 2.1) of the particular semi-group G considered, and (2)
verifying the ergodicity of the particular element x (Definition 3.1) by pro-
ducing the required y—usually by a weak compactness argument.

The following examples are all of the Abelian type, whence (a) and (b) of
IV coalesce. The more difficult noncommutative case will be discussed in §8.

Example 1. Standard Case. Let G consist of the iterates (Tn)
(n = 0, 1, • • • ) of a linear transformation T, and let the Ta be the Cesàro
means

Tn= (n+iy^T*
0

under the natural ordering. I and II are trivially satisfied, and the validity of
IV hinges on the identity

/ n+m m—1        \

T™Tn - Tn = (n + 1)-M  22^-22 T') (m ̂  1).
\ n+l 0 /

The usual condition that ||F"[| ¿ M for all n then insures the validity of III,
and of IV in the uniform sense. However, as pointed out in examples by
Dunford [10] and Hille [19], uniform boundedness of the T" is too restric-
tive^): all one needs is a bound on the ||F„|| and limn T"/n = 0 in an appro-
priate sense.

(3) If E = Hilbert space and ||r"||âlf (n—0, ±1, ±2, • • • ), T is effectively no more gen-
eral than a unitary transformation (cf. de Sz. Nagy [30]).
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Theorem 3.1 then specializes to

Theorem 5.1. Let T^B(E) be such that || F„|| is bounded and lim„ Tnx/n=0
for every x. If the set (Tnx) is conditionally weakly compact, then y = lim„ Tnx
exists and Ty=y.

For the sake of completeness we note some special cases of interest: When
E is reflexive every (metrically) bounded set is conditionally weakly compact
[13], whence every x in E is ergodic. This remark covers Hubert space and,
more generally, the spaces 2> and /* (p> 1). In the spaces L and / Riesz [28],
Birkhoff [l], Kakutani [33] and others observed that a lattice-theoretically
bounded set of functions—that is, [x|a(0 Sx(t) =b(t) identically, a, b(E.L or
/]—is conditionally weakly compact. In a Lebesgue space L(S) a general
criterion for weak compactness (Riesz [28], Dunford and Pettis [12]) yields
the conditional weak compactness of Tnx if T is of the classical form Tx(t)
= x(<pt), where 0 is a one-to-one measure-preserving transformation of 5 into
itself (4).

The next example illustrates the fact that our definition of ergodicity sub-
sumes continuous as well as discrete means.

Example 2. Almost periodic functions. Let E denote the Banach space of
complex-valued bounded uniformly continuous functions x(t) (— » <t< «)
with ||x|| =sup( |x(0|. Let G be the group of translations Uax(t) =x(t+a),
whose only fix points are the constant functions. One may take as the system
(Ta) the Bohr means

1   r"
Tax(t) = — \     x(t+ s)ds (a > 0)

a J o

under the natural ordering. It is obvious that Ta is linear (I) and that
||Fa|| =1 (III'). That IV holds in the uniform sense follows from the in-
equality

1    /» a+a *% a

\\Ua.Tax— Tax\\ =—■    I x(t + s)ds —  I     x(t + s)ds
a  \\J a Jo

The proof of II requires uniform continuity to assure the uniform (in t) ap-
proximation of Tax(t) by Riemann sums.

Since an almost periodic function is uniformly continuous, and the set of
translates x(t+a) (— <x> <a< oo) is conditionally compact by definition, the
ergodic theorem now yields the existence of the mean value:

Theorem 5.2(6). If x(t) (—oo<¿<oo) is almost periodic, the limit TKx

(4) Dunford and Miller [ll] show that the conditions on <j> can be weakened if m(S) < °°
and derive the individual ergodic theorem from the mean ergodic theorem.

(5) It is readily verified that our methods will yield Kawada's [22] extension of this
formula to a locally compact Abelian connected group.

gj 2 | o | •||ne||/a.
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= M = lima.0O (l/a)/ô x(t+s)ds = lima^„ (l/a)/"+l x(s)ds exists uniformly in t
and is a constant.

The fact that this conclusion actually requires only the weak conditional
compactness of the translates of x(t) provides the motivation for the study
(in Part II) of "weak" almost periodic functions defined on locally compact
Abelian groups. That the corresponding group of translations in this general
case is ergodic is implicit in our next example.

Example 3. Bounded Abelian semi-group. Consider an arbitrary semi-
group G that is Abelian and bounded—that is, \\t\\ ^M for all T in G. This
hypothesis clearly includes Example 2 and the bounded case of Example 1.
We now exhibit a system of almost invariant integrals for G.

Order the elements of G* as follows : LO F if and only if there exists IF
in G* such that U=WV. That this ordering has the composition property
follows from the fact that UV= VU is a common successor of U and F.
Regarding each element of G* as its own index, we find that the elements of
G* under this ordering form a (uniform) system of almost-invariant integrals:
For the conditions I, II, and III are trivially satisfied. To establish IV we
must show that given F in G and e>0 there exists U in G* such that F*D U
implies || FF* — F*|| <e. Simply take U as the TN of Example 1, N being
chosen so large that || FjvF — F¿v|| <e/M. If T*= VTN is any successor of Tjf,
then

||FF* - F*|| = ||T*T - T*\\ - ||V(TNT - TN)\\ £ M\\TNT - TN\\ < e.

We have therefore established

Lemma 5.1. If G is bounded and Abelian, then G is ergodic.

For purposes of reference we now summarize the main features of the
bounded Abelian case:

Theorem 5.3. // G is bounded and Abelian, x is ergodic if and only if there
exists a fix point y in 0(x). y, if it exists, is unique. The conditional weak com-
pactness of 0(x) or [Tx\ TÇzG] implies the existence of a fix point y in 0(x)(6).

Remark. When E=Li (— <*>, oo) and G is the group of translations
x(t)—*x(t+a), the situation is degenerate: (1) The space of fix points and the
almost periodic subspaces U and SB reduce to the null function; (2) the ergodic
subspace consists [l] of the functions x(t) such that /"„ x(t)dt = 0. (That the
null function is the only function with a conditionally weakly compact set
of translates is an easy consequence of that part of the weak compactness
criterion [12 ] peculiar to a (r-finite measure space.)

(6) The existence of a fix point in a weakly compact 0(x) in the Abelian case also follows
from a fix point theorem of Markoff [21 ]. The special case of our theorem in which E is re-
flexive is due to Day [9].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



226 W. F. EBERLEIN [September

Example 4. Summability of Fourier series. The significance of requiring a
bound on the Ta (III') rather than on all the F in G will now be clarified.
This apparently technical generalization is actually the heart of the summa-
bility theory of Fourier series. In fact, we shall exhibit Fejér's theorem as an
ergodic theorem for an unbounded semi-group.

Let C denote the space of continuous real-valued functions of period 27r
with ||x|| =sup( |x(0|- Denote by Sn the transformations Snx = sn(t), where
sn(t) is the »th partial sum of the Fourier trigonometrical series corresponding
to x. Let G consist of the identity I and the transformations Un = I — Sn. The
transformations Sn, Un are clearly linear; and the identity U„Um= Uv, where
s = max (m, n), implies that G is an Abelian semi-group. That the only fix
point of G is the null function follows from the completeness of the trigono-
metrical system.

The semi-group G is unbounded. Although the Un themselves trivially
satisfy conditions I, II, and IV of a system of almost-invariant integrals for
G, the || Z7„|| are unbounded. In fact, the Dirichlet representation

Ifsjjt) = — I     x(t + u)Dn(u)du
ir J -t

implies that ||SB|| =Ln = (i/ir2) log n+0(l), where

1   r". . 2   rr   | sin (» + 1/2)m |
Ln = — I     | Dn(u) | du = ■— I      -du

tr J -t, ir J o 2 sin (u/2)

are the Lebesgue constants [34, p. 172].
However, the (C, 1) means Fn = (« + l)_1 22ö U¡ form a (uniform) system

of almost invariant integrals: I and II are again obvious, and IV follows
from the identity UmTn-Tn = (n + l)~1 22o (Um-Uf) (n>m). To establish
III' we employ the familiar expression  [34, p. 44]

If«Tnx = x(t) — (Tn(t) = x(t) — — I    x(t + u)Kn(u)du,
IT   J -T

where
sin (n + l)u/2~]2
--J—\ ^ 0,sin (u/2)     A

and (l/ir)fl„ Kn(u)du = l. It then follows trivially from the positiveness of
the Fejér kernel Kn(u) and the crudest of inequalities that ||F„|| ^2 for all n.

Hence G is ergodic, and Fejér's theorem takes the form:

Theorem 5.4. Every element of C is ergodic under G—for example lim„ T„x
= 0 for every x in C.

The following proof, although not elementary, is in keeping with our ap-

Kn(u)
1

2(n + 1)
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proach: The integral representation above implies that the Tnx(t) are uni-
formly bounded and equi-continuous, hence form a conditionally compact set.
A strong limit point y then exists, whence y = lim„ Tnx by Theorem 3.1, and
y = 0 since the null function is the only fix point.

In conclusion, we emphasize once again that ergodicity is a property of the
semi-group G, rather than of the particular system Ta exhibited.

6. Quasi-compact operators. Conditions on the operators F of G sufficient
to insure the ergodicity of every x in E are of interest. Yosida and Kakutani
[33] found the special (bounded) case of Example 1 in which F is quasi-
compact fundamental in their abstract treatment of Markoff processes.

Definition 6.1. A linear transformation T is (weakly) compact^) if the
transform T(S) of the unit sphere S is conditionally (weakly) compact. T is
(weakly) quasi-compact if there exists an integer m and a (weakly) compact
linear transformation V such that ||Fm— F|| <1.

Theorem 6.1. If G is ergodic and if some T in G* is (weakly) quasi-compact,
then every x in E is ergodic. The projection Tx is (weakly) compact, and the set
TX(E) of fix points is a (reflexive) finite-dimensional subspace of E. If T is
quasi-compact and the limits IV hold uniformly for the system Ta, then Tx
= Urn a Ta uniformly.

The generality of this theorem in comparison with the theorems of Yosida
and Kakutani demands a corresponding simplification in proof. The basic tool
is the identity

(A) Ta= (I - D)-WTa + (I - D)-\Ta - TmTa)

where D = Tm-V. Since ||Z?||<1 by hypothesis, (I-D)~x= 22o* D' exists,
and (A) is readily verified. Recall also that the (weakly) compact operators
form a two-sided ideal in the operator ring B(E).

Given now any x in E we must produce a weak cluster point y of Tax.
Since lima (Ta—TmTa)x = 0 (IVa), we need exhibit only a weak cluster point
y of the directed set (I—D)~1VTax. That such a y exists follows from the
(weak) compactness of the operator (I — D)~1V and the boundedness of the
set Tax. Hence every x is ergodic, and FM = lim„ Ta strongly. Multiplying
(A) on the right by T„ and utilizing the equalities of Theorem 4.1, we obtain
Tx = TaTx = (I — D)~1VTx, whence Tx is (weakly) compact.

We now show that if F is quasi-compact and the limits IV hold uniformly
for the system Ta, then FM = lima Ta uniformly. Setting U= V(I — D)~l and
Ra = (Ta-TaTm)(I-D)-\ note first an identity dual to (A)

(B) Ta = TaU + Ra.

C) We prefer Dunford's terminology [lO] to the usual term (weakly) completely continu-
ous. Of particular interest in applications is the Dunford-Pettis [12] result: If U, Fin B(L) are
weakly compact, then UV is compact.
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Similarly, we obtain Tx = TxTa = TxU. Since limai?a = 0 uniformly, it is suffi-
cient to show that Tx=lima TaU uniformly—that is, lim„ (Tx — TaU)x
= lim„ (Tx — Ta)Ux = 0 uniformly on 5 or, equivalently, lima (Tx—Ta)x = 0
uniformly on U(S). But the last assertion follows by standard techniques from
the pointwise convergence of the equi-continuous Ta on the (conditionally)
metrically compact set U(S): Given e>0, cover U(S) with a finite number of
spheres S(yj; e/3M) with centers y¡ (j = l, • • • , n) and radii e/3M. Choose
an index ß such that a>ß implies || Txy¡— F„yy|| <e/3 for all 7 = 1, • • • , n.
That a>ß implies HF^x — Tax\\ <e for every x in U(S) then follows from the
inequality

||FMx - Fax|| g \\Tm(x - yj)\\ + \\Txyj - Tayj\\ + \\Ta(yj - x)\\

on proper choice of yj.
Since the set of fix points of G is a closed linear subspace of E equal to

TX(E), the remaining assertions of the theorem are included in the following
lemma, which is of independent interest.

Lemma 6.1. Let T be a (weakly) compact linear transformation of a Banach
space E into itself. Then every closed linear subspace T contained in T(E) is
(reflexive) finite dimensional^).

Proof. Write E= 22" S¡, where S¡= [x\ \\x\\ £$. Then T(E) = 22? T(Sj)
= ]C" T(Sj), the bar ( —) denoting the closure operation; and F =Ti^T(E)
= 22i T^ F(Sj). Since T is of the second category in itself and the Tf~*\ T(Sj)
are closed, one of the latter must contain a sphere of V. Since the T(~\T(Sj)
are all (weakly) compact, the unit sphere of T is (weakly) compact; and T is
respectively ([13], [2]) reflexive or finite dimensional.

7. The uniform ergodic theorem. The results of the last section suggest
consideration of "uniform" ergodic theorems. Since G(ZB(E) and every ele-
ment of the Banach algebra B(E) may be considered as an operator on B(E),
the norm as element and operator being the same, we may term G "uniformly
ergodic" if it is ergodic as a semi-group of operators on B(E). It is clear that
the characteristic properties of a "uniform system" of almost-invariant
integrals then become: I: Ta(E.B(E) for all a; II: F„GG* for all a: III:
||Fa||gMforalla;IV:foreveryFinG,lim«||FFa-F„||=lima||F„F-FÍI||=0.
Moreover, it is apparent that the ergodicity of the element I implies the
ergodicity of every other element of B(E). Hence the "uniform" ergodic
theorem asserts that lima Ta=Tx(E.B(E) exists uniformly under certain
conditions.

Theorem 3.1 may now be formally translated into the terminology of the
space 6 = B(E). We note, however, that the weak topology of B(E) as a
Banach space differs from what is commonly termed the "weak operator

(8) Calkin [7, p. 401] has shown that this property characterizes compact operators in
Hubert space.
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topology." Unfortunately, the latter topology appears more natural: The
regularity of £ is equivalent to the compactness of the unit sphere Lti of B(E)
in the weak topology as operators [8], while even in the case E= Hubert
space Ui is not well-behaved in the weak topology as elements.

The inherent peculiarities of the uniform ergodic theorem noted by Dun-
ford [lO] may be regarded as stemming from this distinction. It thus ap-
pears that the uniform ergodic theorem directly involves the algebraic struc-
ture of B(E) and G as well as topological properties of E and the operators
F(9). This fact is apparent even in the proof of Theorem 6.1.

8. Ergodicity and its generalizations. We now consider briefly the prob-
lem of determining the ergodicity of a given semi-group G. That every
bounded Abelian G is (uniformly) ergodic appears to be the most general
result available. Dropping the Abelian condition, one can find [l] a bounded
G such that some 0(x) contains two fix points, whence G is not ergodic. Tak-
ing E as the real numbers, one can construct trivial examples of a non-ergodic
unbounded Abelian G. The complexity of the question is finally apparent on
extending Example 4 (§5) to general Fourier expansions.

In the general non-Abelian case the existence of a system of almost-
invariant integrals and the definition itself of an ergodic element are thus
obscure. If G is bounded, however, the ordering of G* in Example 3, although
no longer necessarily of Moore-Smith type, suggests the following definition
of ergodicity, introduced by Alaoglu and Birkhoff [l ] :

Definition 8.1. If G is bounded, an element x of E is ergodic if and only
if the means T*x(T*ÇLG*) converge to a fix point y.

By convergence of the T*x to y we mean : given e > 0 and any U in G*
there exists FD U such that ||y — IFx|| <e for all WO F. When y is a fix point,
the form IF=F*Fof the general successor of Fand the inequality ||y —IFx||
= || T*(y— Fx|| ^ilf||y— Fx|| imply that it is sufficient to find FDi/such that
||y— Fx|| <e for given e>0 and 27GG*. Clearly, either formulation is equiva-
lent to ordinary convergence of a direct set when the ordering of G* has the
composition property, as in the Abelian case. More generally:

Theorem 8.1. If G is bounded and ergodic, Definitions 3.1 and 8.1 of an
ergodic element are equivalent.

Proof. The implication (8.1)—>(3.1(1)) is trivial. Conversely, given the
x, y of Theorem 3.1, €>0, and U in G*, the invariance of the ergodic subspace
T expressed in the identity y=Txx=TxUx implies the existence of F*GG*
such that \\y-T*Ux\\<e. Now set V=T*UDU. Hence (3.1)—»(8.1).

Remark. The following statements are easy corollaries of Definition 8.1
(cf. [l] and the proof of Lemma 4.1): If the T*x converge to an element y,

(9) Of course, the structure of B(E) characterizes E (Eidelheit's theorem [15]), but simple
properties of B(E) may translate into complex properties of E and conversely.
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then y is unique and automatically a fix point. The ergodic elements again
form a closed invariant subspace T. A necessary condition for ergodicity of
x is that 0(x) contain a unique fix point; that 0(x) contain a unique fix point
for each element x of an invariant set is a sufficient condition.

It turns out that restrictions on the space E [l] or on the semi-group G
may reduce the ergodicity problem to establishing only the existence of a
fix points in 0(x). The requirement that G be Abelian is an instance of the
second type (Theorem 5.3). More generally, the following situation is of
interest:

Theorem 8.2. Let Gx, G2 be bounded semi-groups that commute elementwise,
and let every fix point of Gx be a fix point of G2, and conversely. Then

(1) The fix points of Ox(x) and 02(x) reduce to a unique common fix point.
(2) If both Ox(x) and 02(x) contain a fix point y = Txx for every x in an

invariant set T, then every x of T is ergodic under Gt, G2, and G = GxGi = GiGx
with the limit fix point y.

Proof. We show first that if yiGOi(x) and y2(E02(x) are fix points, then
yi = y2. Set ild = max (Mi, M2) and choose FÍGGi*, F2GG2* such that
||yi-Fi*x||<e/2Af, \\y2-T2*x\\<e/2M, e>0 being arbitrary. Since Fi*F2*
= T*Tx* and yi, y2 are fix points under Gi and G2, we have

||yi - ys|] = II r2 (yi _ Tix) + Tx (T2 x - y)\\ < e.
Hence yi=y2.

Since Oi(x) and 02(x) now contain at most one fix point, the asserted
ergodicity of x in (2) under Gi and G2 follows from the above Remark. It re-
mains to prove the ergodicity of x under G = GiG2 = G2Gi. Given e>0 and
F*= 32' ajUjVjinG* (a^O, Yflj-l, £/,-GGi, FyGG2) we must exhibit aT**
7)F* in G* such that ||y —F**x|| <e.

Since x is ergodic under Gi we can choose in succession T*, ■ ■ ■ , T* in
G* such that

||F*F*_i--- T*xUjX- y\\ <e/M\

Then \\Tf ■ ■ ■ TX*U¡ V¡ x-y\\ =\\ V¡(Tf ■ ■ ■ Tx*U¡x-y)\\ <e/M. Setting F**
= T* ■ ■ ■ Tx*T*Z)T*, we find

\\T**x - y\\ = || 22 "Vi ■ ■ ■ T*+i(T* ■ ■ ■ t\u/V¡x - y)\\
< 22aiM-e/M = e.

9. Almost periodic functions. We conclude our discussion of ergodicity by
sketching a proof of the von Neumann [25] mean value theorem for almost
periodic functions defined on arbitrary groups. Our aim is to subsume the
mean value theorem under the generalized ergodic theory.
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Given an arbitrary group G, denote by ild(G) the space of bounded real- or
complex-valued functions x(0 (tŒG) under the norm ||x|| =sup¡ge |x(0|.G
is then faithfully represented as the group of left translations G¿: Uax(t)
= x(a~H), or as the group of right translations Gr\ Fox(0 =x(ta). Since
|| t7„|| =|| F0|| =1, the only fix points are the constant functions, and the ele-
mentwise commutativity of G¿ and Gr follows from the associativity of group
multiplication, the preliminary conditions of Theorem 8.2 are fulfilled.

By definition x(t) (E.M(G) is left (right) almost periodic if the set of trans-
lates [Ux\ Z7GGl] ([-Fx| VC.Gr]) is conditionally compact. We recall that
Maak [24] has proved the equivalence of left and right almost periodicity,
and that the almost periodic subspace Y is a closed invariant linear subspace
of M(G) (Theorem 4.2). Hence to establish ergodicity we must show that
Ol(x) or Ofl(x)(xGr) contains a fix point.

Given -x(t) in F consider finite decompositions of G¿ into disjoint sets,
Gl= 22? Gj, such that for any Ux, Ui in Gj\\ Uxx— Uíx\\ <e. The existence of
at least one such decomposition follows from the conditional compactness of
[i/x| t/GGi]. Now choose a minimal decomposition—that is, one with the
least number of elements—and set

1       m

Te = -22Tj (TiEGi).
m   x

The Tt thus defined is not unique. If under the same decomposition one sets
1       m

Tí = — 22 T! (T! G G,),
m   x

it is clear that ||F,x —F,'x|| <e. What is crucial, however, is that if one em-
ploys another minimal e-decomposition Gl= 22? G/, a general combinatorial
lemma of Maak [24] asserts that one can pair off the G¡ with the G¡ in such
fashion that corresponding sets have a non-vacuous intersection. It follows
that if Fe, 77 are any two means arising from e-minimal decompositions,
then ||Fex-Fe'||x<2e.

Now order the Fe in the obvious fashion: T,Z)Tt> means e<e'. The di-
rected system thus obtained obviously satisfies I, II, III of Definition 2.1.
Moreover, IV(a) holds: To see this, note that TÇ^Gl implies Gl = TGl
= 22? TGj is again a minimal e-decomposition, and TTt = (l/m) 22? TTj is
the corresponding mean. Hence ||F(x—FFex|| <2e by the above remark.

The validity of I, II, III, and of IV(a) at the point x, plus the metric
compactness of 0¿(x) are sufficient, as noted in §3, to insure the existence of
a fix point in Ol(x). A fix point in Or(x) is similarly obtained, and the
common fix point is a constant function—the mean value of x. All conditions
of Theorem 8.2 are now fulfilled, whence we have:

Theorem 9.1  (Mean Value Theorem). Every almost periodic x(t) in
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M(G) is ergodic under Gl, Gr, and GlGr.

On setting E = T we note that TX<=B(E), \\TX\\ =1, and TX = TTX = TXT
for all TÇ.GlGr. Gl or Gr is then ergodic by hindsight since Tx itself may be
taken as the system Ta.

Since every continuous function on a compact group is almost periodic,
the existence of the invariant integral mean for compact groups is, of course,
a special case. Haar measure can then be obtained from the invariant integral
by standard devices. A characteristic (advantage or disadvantage?) of this
approach is that the measure obtained is automatically normalized—that is,
w(G)=l.

Part II. Weak almost periodic functions
10. Introduction. We consider henceforth a locally compact Abelian topo-

logical group G (Weil [32]) and the space C(G) of bounded complex-valued
continuous functions x(t) on G under the norm ||x|| = sup¡g=e \x(t)\. Since G
is faithfully represented as a bounded Abelian group of translations on
C(G)—Uax(t) =x(t+a)—the considerations of Examples 2 and 3 (§5) sug-
gest a further study of the class of weak almost periodic functions:

Definition 10.1 x(0GC(G) is weakly almost periodic (w.a.p.) if the set
of translates [x(t+s)\sÇiG] is conditionally weakly compact. SB denotes the
class of w.a.p. functions.

Two factors complicate our discussion of the class SB and distinguish it
from a purely formal generalization of the standard theory of almost periodic
functions. We note first that the operators Uax(t) =x(t+a), although equi-
continuous in the norm topology of C(G), are not equi-continuous in the weak
topology. The Bochner and Bohr definitions [18] of almost periodicity split
apart; and our theory differs from the theory of almost periodic points of
transformation groups based on the latter definition. However, we find that
this lack of equi-continuity is compensated to some extent—for example the
existence of a mean value—by the commutativity of G.

The second and more serious complication lies in the obscure structure of
the weak topology of C(G). Even in the case G = Rx (additive group of the
reals) no simple or convenient representation for the general linear func-
tional is at hand. Determining the weak almost periodicity of a given func-
tion thus involves some special device to circumvent this difficulty. The fact
that we can limit ourselves to sequential weak compactness notions (Theorem
1.2) provides a crucial simplification. Even sequential weak convergence,
however, is refractory: For example, the sequence xn(t) =exp (it/n) does not
converge weakly to 1 in C(Rx), despite the fact that lim„ xn(t) = 1 uniformly
on every finite interval and ||x„|| =1 for all n(10).

11. Examples of w.a.p. functions. It is trivial that every almost periodic

(10) If f{x) denotes some extension of the mean value (of a.p. functions) to a linear func-
tional on C{Rx), then/(x„) =0 for all n, but/(l) = 1.
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function is weakly almost periodic. More interesting examples are continuous
functions vanishing at infinity and positive definite functions (hence Fourier-
Stieltjes transforms). In both cases the fundamental difficulty mentioned
above is bypassed by a special device.

Theorem 11.1. A continuous function x(t) vanishing at infinity is weakly
almost periodic—that is, C0(G)CSB.

Proof. Since Co(G) is a closed linear subspace of C(G), and weak sequential
convergence in Co(G) is equivalent (§1) to pointwise convergence and
boundedness, we must show that given any sequence yn(0 =x(t+sn) of trans-
lates of x(OGCo(G), there exists a subsequence ynj(t) and z(OGCo(G) such
that lim„ ynj(t) —z(t) for all / in G. The boundedness condition is, of course,
trivially satisfied.

Since the y„(0 vanish at infinity we can find compact sets r„,<CG such
that iGG — Tn.i implies |y„(0| <l/i. Setting F — ?J?,-* Tn,i, we obtain
y„(0 =0 for all n if KE.G — T. Since each Tn,i is a compact uniform space and
the yn(t) are uniformly bounded and equi-continuous, we can [18] pick out a
subsequence yni(0 such that yn,(0 converges uniformly on r„,¡. The diagonal
process then yields a final subsequence ynj(t) and a function z(t) such that
lim„ yn(t)=z(t) f°r all ¿GF; and the limit holds for all t on setting 2(0=0,
¿GG-ro1).

It remains to prove that z(t) GCo(G). There are two cases: (1) There exists
a compact set 2 containing an infinite number of the sn¡; (2) no compact set
contains more than a finite number of the s„r In the first case the snj in 2
possess a cluster point s, whence it follows readily that z(t) =x(t+s)ÇzCo(G).
In the second case it is clear that z(t) =0.

Definition 11.1. x(0 is positive definite if it is continuous and if it satisfies

22 et{&jx(sj — si) ^ 0
i,i

for an arbitrary finite set of complex numbers ai and elements 5iGG.

Theorem 11.2. A positive definite function on G is weakly almost periodic.

Proof. For the properties of positive definite functions see Bochner [4],
Weil [32], Raikov [27], and Godement [17]. The only property we use is
the characteristic correspondence [17] between positive definite functions
and strongly continuous unitary representations t—*Ut of G in Hubert space
£>, expressed in the relation

x(t) = (X,UtX) (IG@(1!).

(u) We would effectively omit the argument of this paragraph if we imposed the second
countability axiom on G.

(I2) The equivalence of the theorems of Stone and Bochner [32] is contained in this cor-
respondence.
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More generally, given YÇE.ÎQ consider the linear transformation TX=x
of § into C(G) defined by the relation x(t) = (X, U,Y). Clearly, ||x||g||z||
•||Z7íF|| =||x||-|| F||, whence ||Tjfá|| F||» We now derive the weak almost
periodicity of every x(0 arising in this fashion from the weak compactness of
the unit sphere of ¡Q.

Recalling that the adjoint transformation T*f=F, where F(X)=f(TX),
maps C(G)* into §* = §, consider any sequence of translates

x(t + Sn) = (X, Ut+tnY) = (U7nX, UtY) = TU7!x.
Since || cTTX]! =||X|| for all n, there exists a subsequence sñ such that
lim„ UJnxX = Xo weakly for some Xo in ¿p. Set x0(0 = TXo- That lim„ x(t+sñ )
= xo(0 weakly in C(G) then follows from the above remark—-that is, from the
weak continuity of T. Hence x(0 is w.a.p.

It is apparent that the above proof generalizes to yield

Theorem 11.3. If l—*Ut is a strongly continuous representation of G in a
group of uniformly bounded linear transformations in a Banach space E, if
/G-E*, and if [UtX\t€E.G] is conditionally weakly compact for some XG£,
then x(t) =f( UtX) is weakly almost periodic.

That the general w.a.p. function is of this type follows trivially on setting
£ = SB, X = x(l), UaX = x(t+a), and f(X)=x(0) (Theorems 12.1 and 13.1
infra).

Since the faithful representation of G in LP(G) (p'èl) is strongly continu-
ous  [32, p. 41], we obtain

Corollary 11.3.1. If f(s)eL'(G), g(s)eL'(G), (p>l, p^+q-^1),
then x(t) =fof(t+s)g(s)ds is weakly almost periodic.

12. SB as a Banach *-algebra. We now examine the algebraic structure of
the space SB of w.a.p. functions.

Theorem 12.1. 2B is an invariant B* subalgebra of C(G)—that is,
(1) SB ii a closed linear subspace.
(2) x(0GSB implies x(2+s)GSB.
(3) 1GSB.
(4) x(0GSB implies (a) x(-0GSB; (b) x(0G3B.
(5) If x(t), y(t) are in SB, then x(t)y(t) is in SB.
(6) x(0GSB implies \x(t)\ *GSB (p^O).
Proof. (1) and (2) are a specialization of Theorem 4.2. (3) and (4a) are

trivial, and (4b) follows from the almost obvious fact that limn x„(0=x(0
weakly in C(G) implies limn x„(0 = x(0 weakly. The proof of the seemingly
elementary assertion (5), however, is surprisingly deep: Not only does the
reduction to sequential compactness appear an absolute necessity, rather
than a convenience, but one is forced to go "outside" the space C(G).
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Given x(0, y(0 in SB and any sequence (sn) in G, choose a subsequence
(sñ) and elements X(t), Y(t) in C(G) such that lim„ x(t+sñ)=X(t) weakly,
limn y(t+Sn)=Y(t) weakly. To conclude that lim„ x(t+sñ)y(t+sñ)
= X(t)Y(t) weakly, we must establish

Lemma 12.1. If x = lim„ x„ weakly, y = limn yn weakly in C(G), then
xy = limn x„y„ weakly.

If G were compact, weak sequential convergence would reduce to point-
wise convergence and boundedness (Theorem 1.3), and the lemma would
follow immediately. In the general case we therefore represent C(G) as the
ring C(ß) of all complex-valued continuous functions on a compact Hausdorff
space ß: x(t)*-+X(r) ; ||x|| =||x|| =supTga |X(t)| . Q, may be regarded as the
space of maximal ideals of the B* algebra C(G) produced by the Stone-Gel-
fand-Neumark theory [16], or simply as the Cech compactification of the
completely regular space G. The isomorphism x*-+X being norm preserving,
the validity of the lemma in C(ß) implies the validity in C(G).

Since SB itself may now be regarded as a C(ß'), \x(t)\ = [x(0*(0]1/2 is
defined in C(ß') and hence in SB. | x(t) \ p (p^O) exists similarly, and the proof
is complete.

13. Uniform continuity of w.a.p. functions. We have made no explicit-
use, as yet, of the local compactness of G. We now show that the existence
and absolute continuity of Haar measure on G imply the uniform con-
tinuity of w.a.p. functions. Uniform continuity itself will be required later to
establish an analogue of the Fubini theorem for mean values.

Theorem 13.1. A weakly almost periodic function is uniformly continuous.

Proof. We assume x(0GSB is not uniformly continuous and derive a con-
tradiction. By hypothesis, there is an «>0 such that given any (symmetric)
nbd. N(0) in G there exist u, v in G such that u — vGA^O) but | x(u) — x(v) | 2:e.
We can thus obtain in standard fashion a directed set (ua, va)C.GXG such
that (1) lima (ua—Va)=0; (2) \x(ua) — x(va)\ =e ior all a. Set za(t)=x(t+ua)
— x(t+va). Since x(t) is w.a.p., the set of functions za(t) possesses a weak cluster
point w(t). Since |z„(0)| ¡ge for all a by (2), we must have | w(0)| ^e>0. We
now obtain the desired contradiction by establishing w(t) =0.

It is clearly sufficient to prove that /r w(t)dt = 0 for every compact set T
in G. Since w(t) is a weak cluster point of za(t) andf(x) =/r x(t)dt is a linear
functional on C(G), we need only show that lima /r za(0d/ = 0. Now

/Za(t)dt    =|     { X(t +  Ua)   -   X(t + Va) } dt
r I J r

"if       - t      \<t)dt  = ||*||-»(A«),
[ \Jr+Ua      Jr+Va )
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where A„ is the symmetric difference of the sets Y+ua and T+va. The invari-
ance and absolute continuity of Haar measure [27] in conjunction with con-
dition (1) imply that lim« m(Aa) =0; and the proof is complete.

14. The mean value. Since every element x of SB is ergodic under the
group G operating on C(G) (Theorem 5.3), to every xGSB corresponds a fix
point or constant function Txx. The numerical value Msx(s) = Txx is then the
mean value of x(s). Since the characteristic property of Txx is that it can be
approximated arbitrarily closely in C(G) by convex combinations of trans-
lates of x(s), Msx(s) coincides with the von Neumann [25] mean value.
Regarded as a functional on SB, the characteristic properties of Ms are the
following:

Theorem 14.1. If x(s) and y(s) are w.a.p. all the functions x(t+s), x(—s),
x(s), | x(s) |, |x(s)|2, x(s)y(s), ax(s)+by(s) (a, b complex numbers; tÇ^G )are
•w.a.p. (cf. Theorem 12.1). Furthermore:

(1) M3[ax(s)±by(s)]=aMsx(s)±bMay(s).
(2) MA = 1.
(3) x(s) ^ 0 for all sEG implies Msx(s) ^ 0.
(4) \Msx(s)\£Ms\x(s)\ ^||x||.
(5) Msx(s)=Msx(s).
(6) Msx(s+t)=Msx(s).
(7) Msx(-s)=Msx(s).
(8) | Ms{x(s)y(s)} | =g [M.[ \x(s)\2} J1'2- [MB{\y(s)\2}]1'2.

Conversely, the formal properties (l)-(8) determine Msx(s) uniquely—in fact,
any M„x(s) satisfying (l)-(3) and (6) must equal Txx.

Since these assertions are elementary consequences of the above definition
of mean value and the von Neumann [25] derivation for almost periodic
functions requires no modification, we omit the proof. We emphasize at this
point, however, a vital difference between almost periodic and weak almost
periodic functions: If x(0 is almost periodic a stronger form of (3) is valid—
that is, M„|x(s)| è0, the equality holding if and only if x(0—0. This
property fails for weak almost periodic functions. For example, if G = Rx
and xGSBni,(-co, oo) it is clear (§5, Example 2) that ilds|x(s)|
= lima<00 a_1/o x(s)\ds = 0. More generally, if x(0GSB vanishes at infinity,
we find that Mt x(t)\ =0.    '

Following von Neumann we now consider w.a.p. functions on the product
group G2 = GXG and establish a Fubini theorem for the mean value.

Theorem 14.2. 7/x(0GSB(G), x(t) and x(t±s) are in SB(G2). Conversely,
if x(s, 0GSB(G2), x(s, t) is weakly almost periodic as a function of s or t.
Msx(s, 0, Mtx(s, t) then exist and are weakly almost periodic in the remaining
variable, and

M,{Msx(s, t)} = Ms{M,x(s, 0} = Ms,tx(s, t).
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Proof. The first two assertions are obvious. Since s, t appear symmetrically
it is sufficient to consider only M,x(s, t)—as a function of /—where x(s, t)
GSB(G2). The boundedness of Msx(s, t) is evident and continuity follows from
the uniform joint continuity (Theorem 13.1) of x(s, t) : Given e>0 there exists
a (symmetric) nbd. N(0) such that h — t2(E.N(0) implies \x(s, tx)—x(s, h)\
<e for all s, whence | Ms[x(s, tx)—x(s, ¿2)]| <e. Hence Msx(s, t) is in C(G).

That ild„x(s, 0 is w.a.p. in / follows from the fact that the linear mapping
x(s, t)^Msx(s, t) of SB(G2) into C(G) is strongly, and hence weakly, continu-
ous. Since Mt[Msx(s, t)] now exists and clearly has the properties (l)-(3)
and (6) (Theorem 14.1) of the double mean, it must coincide with the latter
by the uniqueness theorem—that is, Mt{Max(s, t)} =Ms,tx(s, t). Inter-
changing j and t we obtain the remaining assertions, and the proof is complete.

15. Fourier expansions of w.a.p. functions. We consider now the Fourier
analysis of w.a.p. functions and obtain the Parseval equation as our final
result, the analogue of the approximation theorem, if any, for w.a.p. functions
remaining open. The procedure combines the methods of von Neumann [25]
and Bochner [4], the crucial fact being that the convolution of two w.a.p.
functions is almost periodic.

Definition 15.1. If x(t) and y(t) are w.a.p., the convolution z = x*y is
defined by z(t) = Ms[x(t — s)y(s)] = M3[x(s)y(t— s)].

The equivalence of the two expressions for z(t) follows from (6) and (7)
of Theorem 14.1 on replacing 5 by t — s, and z(t) is w.a.p. by Theorem 14.2.
One may then show that SB forms a commutative ring under (pointwise)
addition and the new "multiplication" x *y, the associativity of "multiplica-
tion" following from an interchange of mean values justified by Theorem 14.2.
More to the point, however, is

Theorem 15.1. If x(t) and y(t) are weakly almost periodic, then z=x*y
is almost periodic(13).

Proof. Let (un) be any sequence in G. Then z(t + un) = Ms[x(s)y(t+un — s)]
= Ms[x(s+un)y(t — s)], on replacing 5 by s+un. Since x(t) is w.a.p. there exists
a subsequence («„') and XG3B such that limn x(s+Un) =X(s) weakly. We
now show that limn z(t+Un) =M3[X(s)y(t — s)] uniformly in t.

The Schwartz inequality (Theorem 14.1 (8)) implies

\z(t+un') - M,[X(s)y(t- s)]\2

= | M,[{x(s + Un') - X(s)\y(t - s)] |2

Ú M.[\x(s) - x(s + u/)\2]-M,[\ y(t- s)\2]

^ ||y||2-Ms[|X(s) - x(s + u/)\2].

The last expression not involving t, the assertion follows from the remark

(13) Godement [17] obtains an analogous result for a not necessarily Abelian group, but for
more special functions—for example, x(t) =y(t) positive definite.
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that lim„ | X(s) —x(s+u/ ) |2 = 0 weakly (cf. §12), M, being a linear functional
on SB.

We now introduce the characters of G—that is, continuous complex-
valued functions \(t) = (t, X) on G such that (1) (tx+t2, \) = (tx, \)(h, X); (2)
| (/, X)| =1 for all £GG. The characters X form an additive Abelian group G*
on setting (t, 0)«1, (t, Xi+X2) = (t, \x)(t, X2), and (t, -X) =(t, X)~1 = (-t, X)
= X(0- It is trivial that a character is almost periodic and that M,(s, X) =0 if
X?¿0.

Consider the formal Fourier expansion

x(t) ~  22 a(\)(t, X) (x G SB),

where a(X) = M,[x(s)(s, —X)]. If a(K)?¿0, we call X a "proper exponent" of
x(0- Exactly as in the ordinary case [3] we obtain

Lemma 15.1. If (Xi, • • • , X¿v) is any finite set of proper exponents of x(t)
G3B, then

N |2, N

(A) 0 ^ Me   | x(s) - 22 aCKn)(s, X„)       = M, \ x(s) \2 - 22 I a(X») I2-
LI i 1 J i

Consequently, 22i I ö(X„) |2 = M4|«(s) |2. Hence the set of proper exponents is at
most countable—say (Xn)—and

(B) 22 I g(X») I2 = -W« I «GO I2 < =°     (Bessel's Inequality).
Lemma 15.2. If x(0GSB let z(t)=Ma[x(s)x(s — t)]=x*x, where x(t)

= x( —0- If (t, X) is any character, then

c(X) = iíf,r>(5)(5, - X)] = | M.[x(s)(s, - X]|2 = |a(X)|2.

Proof. c(X) = Jf,[s(j)(5, - X)] = M.[Mu{x(u)x(u — s))(s, — X)]
= Mu[M,[x(u-s)(s, -\)}x(u)]=Mu[x(u)(u, —\)M.\x(—s)(s, -X) j j
= Mu[x(u)(u, —\)]-M,[x(s)(—s, —X)]=a(X)-á(X) = |a(X)|2, the inversion
of mean values being justified by Theorem 14.2, the other operations by
Theorem 14.1 and the definition of characters.

Consider finally the expansion of the almost periodic function z=x*x:
z(0 ~ 22 c(^)(t> ^)- Since c(X) = | a(X) |2, z(0 and x(0 have the same proper ex-
ponents (X„). Moreover, (B) and the uniqueness theorem for almost
periodic functions [32] imply that we can write z(t) = Ms[x(s)x(s — t)]
= 7J|a(^«)| 2(t, X„), the series on the right being absolutely and uniformly
convergent. Setting t = 0, we obtain

Theorem 15.2 (Parseval's Equation). If x(0GSB write formally x(t)
~^_/i(X)(i, X), where a(\) = Me[x(s)(s, —X)]. Then a(X)9¿0 for at most a
countable set of characters (X„)—the proper exponents—and
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M.\ x(s)\2= 22\a(*n)\2.

From this theorem and Lemma 15.1 (A) follows

Corollary 15.2.1 (Mean Convergence).

ri r f~\lim MA \x(s) — 22a(^n)(s,\n)\     = 0.
N-"> LI 1 I J

16. W.a.p. functions on the line. We conclude our discussion of w.a.p.
functions by considering the relation of the class SB to other classes of gen-
eralized almost periodic functions in the special case G = Rx. We recall first
(Example 3, §5) that Mtx(t) =\imL„x (l/L)f¡+lx(t)dt (xGSB), the con-
vergence being uniform in s. Now the Weyl norm is defined [3; 5] as

r 1   r °+L ~l1/p
[|*l|w» =     lim      sup    — I        | x(t) \pdt (p à 1),

[_L—»M      —»<J<eo    L   J s J

the limit existing, in particular, if x(0 is bounded and measurable. If
x(0 is w.a.p., it is obvious that ||x||nr!> = [Mt\ x(t)\ p]1'?. Since the Weyl class
Wp of generalized a.p. functions consists, by definition, of functions x(0
that are limits in the 1FP metric of finite linear combinations of the char-
acters exp (¿XO, the corollary above implies that a w.a.p. function x(0 lies in
the class IF2. Consequently, since x(0 is bounded, x lies in Wp for every
pl*l [cf. 5, p. 62].

The relation of SB to the Stepanoff class Sp (p = l) is implicit in the fol-
lowing theorem of Bochner [3]: A uniformly continuous Sp a.p. function is
almost periodic.

Denoting the (Bohr) class of a.p. functions by U, we summarize these
relations in

Theorem 16.1. If G = RU SBCIF* and 2$,nSp=Ufor every ptl.
Bibliography

Additional references are given in [33].
1. L. Alaoglu and G. Birkhoff, General ergodic theorems. Ann. of Math. (2) vol. 41 (1940)

pp. 293-309.
2. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
3. A. S. Besicovitch, Almost periodic functions, Cambridge, England, 1932.
4. S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
5. H. Bohr and E. F01ner, On some types of functional spaces, Acta Math. vol. 76 (1945)

pp. 31-155.
6. D. G. Bourgin, Linear topological spaces, Amer. J. Math. vol. 65 (1943) pp. 637-659.
7. J. W. Calkin, Abstract symmetric boundary conditions, Trans. Amer. Math. Soc. vol. 45

(1939) pp. 369-442.
8. M. M. Day, Operations in Banach spaces, Trans. Amer. Math. Soc. vol. 51 (1942) pp.

583-608.
9. -, Ergodic theorems for Abelian semi-groups, Trans. Amer. Math. Soc. vol. 51

(1942) pp. 399-412.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



240 W. F. EBERLEIN

10. (a) N. Dunford, Spectral theory. I. Convergence to projections, Trans. Amer. Math. Soc.
vol. 54 (1943) pp. 185-217.

(b) -, Spectral theory, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 637-651.
11. N. Dunford and D. S. Miller, On the ergodic theorem, Trans. Amer. Math. Soc. vol. 60

(1946) pp. 538-549.
12. N. Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer.

Math. Soc. vol. 47 (1940) pp. 323-392.
13. W. F. Eberlein, Weak compactness in Banach spaces I, Proc. Nat. Acad. Sei. U.S.A.

vol. 33 (1947) pp. 51-53.
14. -, Abstract ergodic theorems, Proc. Nat. Acad. Sei. U.S.A. vol. 34 (1948) pp. 43-

47.
15. M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. vol. 9 (1940)

pp. 97-105.
16. I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators

in Hilbert space, Rec. Math. (Math. Sbornik) N.S. vol. 12 (1943) pp. 197-213.
17. R. Gcdement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math.

Soc. vol. 63 (1948) pp. 1-84.
18. W. H. Gottschalk, Almost periodicity, equi-continuity, and total boundedness,  Bull.

Amer. Math. Soc. vol. 52 (1946) pp. 633-636.
19. E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. vol. 57 (1945) pp.

246-269.
20. D. H. Hyers, Linear topological spaces, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 1-21.
21. S. Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp.

Acad. Tokyo vol. 14 (1939) pp. 242-245.
22. -, Concrete representation of abstract (M)-spaces, Ann. of Math.  (2) vol. 42

(1941) pp. 994-1024.
23. Y. Kawada,  Über den Mittelwert der messbaren fastperiodischen Funktionen auf einer

Gruppe, Proc. Imp. Acad. Tokyo vol. 19 (1943) pp. 264-266.
24. W. Maak, Eine neue Definition der fastperiodischen Funktionen, Abh. Math. Sem.

Hamburgischen Univ. vol. 11 (1936) pp. 240-244.
25. J. von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. vol.

36 (1934) pp. 445-492.
26. R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943)

pp. 108-136.
27. D. A. Raikov, Harmonic analysis on commutative groups with the Haar measure and the

theory of characters (Russian), Travaux de l'Institut Mathématique Stekloff vol. 14 (1945).
28. F. Riesz, Some mean ergodic theorems, J. London Math. Soc. vol. 13 (1938) pp. 274—278.
29. V. Smulian, On some problems of the functional analysis, C. R. (Doklady) Acad. Sei.

URSS N.S. vol. 38 (1943) pp. 157-159.
30. B. de Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta

Univ. Szeged, vol. 11 (1947) pp. 152-157.
31. J. W. Tukey, Convergence and uniformity in topology, Princeton, 1940.
32. A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités

Scientifiques et Industrielles, no. 869, Paris, 1940.
33. K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean

ergodic theorem, Ann. of Math. (2) vol. 42 (1941) pp. 188-228.
34. A. Zygmund, Trigonometrical series, Warsaw, 1935.

Institute for Advanced Study,
Princeton, N. J.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


