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The recent development of recursion theory has turned in part toward studying
notions of computability on domains other than the natural numbers. Without any
attempt for completeness, we mention the theories of Takeuti [23] (and others),
Machover [15], Kripke [10], Kreisel-Sacks [9] and Platek [20] on classes or sets of
ordinals, Kleene's theory of recursive functionals on objects of arbitrary finite type
over the integers [6], [7] (and others) and the theories of computability on arbitrary
structures of Fraïssé [1], Lacombe [11], [12], Kreisel [8] (and others) and more
recently Platek [20], Montague [16] and Lambert [13]. (Levy's development of a
hierarchy of set-theoretic predicates in [14] is also relevant.) Some of these theories
attempt to abstract the computational (or combinatorial) aspects of recursion
theory while others (notably Kreisel's and Montague's) conceive of recursion
theory as a branch of definability theory.

Here we study computability theory on abstract (unordered) domains primarily
as a tool for hierarchy theory. The term "first order" in the title indicates that we
restrict ourselves to computabilities relative to given functions (i.e. objects of type-1)
rather than functionals (i.e. objects of higher finite type); however the main
contribution of this work is the abstraction of the theory of hyperarithmetic
functions to arbitrary domains, which can be viewed as a second order computa-
bility theory.

In part I of the paper (§ 1 —§9) we study two computabilities, one (prime computa-
bility) in general stronger than the other (search computability), and we formulate
a weak version of Church's thesis : every prime computable function is intuitively
effectively computable and every intuitively effectively computable function is
search computable. The technical results of this part include the normal form
and first recursion theorems and the development of the projective hierarchy on a
first order structure, our abstract analog of the arithmetical hierarchy on the
integers.

In the second part of the paper, Abstract first order computability. II we study the
hyperprojective hierarchy on a first order structure, our abstract analog of the
hyperarithmetical hierarchy on the integers.

We were motivated for this work by two discrepancies in the analogy between the
arithmetical hierarchy (of number-theoretic predicates) and the analytic hierarchy
(of function-theoretic predicates). We first added the search operator v (§6) to
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Kleene's schemata in [6] for relative recursiveness for objects of type-2 so that
Post's theorem could be proved for the analytic hierarchy. Later, while working on
[17], we proved that the class of predicates recursively enumerable in 3E is not
closed under existential function quantification. Since these predicates are related
to the hyperanalytic predicates as the U\ predicates are related to the hyperarith-
metic predicates, this was a discrepancy in the analogy hyperarithmetic~ hyper-
analytic. It turned out that if we added the search operator to Kleene's schemata
for recursion relative to 3E, then the resulting hyperprojective hierarchy did not
suffer from this defect. Moreover, all the standard theorems about the hyper-
arithmetic and hyperanalytic hierarchies extended to this larger class of predicates,
even though not trivially. In writing these results up we realized that they did not
depend in any essential way on properties of number-theoretic functions and could
be extended without much difficulty to arbitrary domains.

We have attempted to keep this paper down to a reasonable size by including
only those examples which are directly relevant to the development of the theory.
The important special case of computability on the space of number-theoretic
functions will be treated in [19]. In [18] we give a summary of the results of both
this paper and [19].

Our debt to Stephen C. Kleene and Clifford Spector will be obvious to anyone
familiar with [5], [6], [7], [21] and [22]. In the case of Kleene it goes much deeper
than our adoption of several specific methods from [6] (which are indicated in the
text) and has to do with Kleene's pioneering work in the use and analysis of
inductive definitions. From this point of view the most significant contribution of
[6] is the casting of the definition of partial recursive functionals in the form of a
(transfinite) induction. The main technical contribution of this paper is the intro-
duction and systematic exploitation of existential, nondeterministic clauses in
inductive definitions.

(Added May 1968:1 wish to thank the students in my Recursion Theory Seminar
in the Spring of 1967, and in particular Carl Gordon, Tom McCutcheon, Ben
Freedman and Perry Smith for discovering a host of minor and not-so-minor
errors in the manuscript.)

1. Preliminaries.    Let P be an arbitrary set, let 0 be some object not in P, let

(1.1) P° = Pu{0}.

We define the set B* by the inductive clauses

ifxeB0, thenxeB*,
(1.2) if x,ye B*, then (x, y) e B*.

Here (x, y) is the ordered pair of x and y and we assume that we have chosen a
particular set-theoretic operation to represent the ordered pair so that no object
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in B° is an ordered pair. Thus if z e B*, then either z e B° or z = (x, y) with uniquely
determined x, ye B*.

We identify the natural numbers 0, 1, 2,... with the objects 0, (0, 0), ((0, 0),
0),... ofF*:

0 = 0,

(1.3) «+1=(«,0),
« = {0,1,2,...}.

To each z e B* we assign its components ttz and 8z by the induction

ttO = SO = 0,

(1.4) ttz = 8z = 1        if zeB,

ttz = x, 8z — y   if z = (x, y).

(The difference in defining the components of z for the cases z=0 and ze Bis for
technical reasons; one of its consequences is that the singleton {0} will be a "prim-
itive computable" subset of B* without requiring a special axiom.)

Each element of B* is constructed from a finite number of elements of B°
by a finite number of applications of the pairing operation. We assign inductively
to each ze B* the finite subset Dz of B° (excluding 0) on which z depends :

Do = 0,

(1.5) Dz = {z} ifze B,

D2 = Dxu Dy   if z = (x, y).

For a subset A of B* we put

(1.6) A* = izeB*: Dzcz\jDA.
I xeA        J

Each A* then contains the set 0*={O}*=O* of "pure objects", i.e. elements z of B*
with Dz= 0. Clearly cuco*.

Throughout this paper we let x, y, z, w, u, v, t, s be arbitrary elements of B*
and ¿, /, «, m, i, j arbitrary elements of a>. We use boldface italic letters to denote
finite sequences of elements of B*, e.g. u = ux,.. .,uk, x = xx,..., xn, y=yy, ...,ym,
ut—u'i,..., u'k.,... etc.

Our concern is with functions f (u) of k variables from B* into B*. Although we
are ultimately interested in single-valued totally defined functions of the usual kind
it will be convenient at the outset to allow f («) to be undefined or multiple-valued.
A partial multiple-valued (p.m.v.) function of k variables is a mapping f which
assigns to each ¿-tuple u of elements of B* a subset f («) of B*, possibly empty,
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possibly with more than one element. In connection with p.m.v. functions we use
the following notation conventions :

f («) -*• z for z e f(u) (f(u) yields z),
f («) | for f («) / 0 (f («) ij defined),
f (■) c g(u) for (z)[f («) -> z => g(«) -> z],

(1.7) f («) = g(«) for f («) c g(„) & g(«) c f („),
f c g for t»[f («) c g(„)],
f = g forfcg&gcf,
f (■) = z for f 0) = {z},

i.e. f («) -> z & (w)[f (h) -» w => w = z].

Substitution of p.m.v. functions is defined in the natural way:

(1.8) f(x, g(x, y), y)^zo (Eu)[g(x, y)->u& f(x, u, y) -> z].

We always interpret simultaneous substitution by successive substitution. In
particular

%(*), g(*)) -> z o (Eu)(Ev)[g(x) -+U& g(x) ->v& f(u, v) -> z],

so that (in effect) a multiple-valued term that occurs more than once in a formula
may have different denotations in its several occurrences.

Most of these conventions are self-explanatory, but we list them to liberate the
reader from any prejudices he may have against the use of multiple-valued func-
tions.

Put

(1.9) s0(x) = (x, 0),       sn+1(x0,..., xn+1) = (x0, sn(Xi,..., xn+1)),

(1.10) (x)o = 7TX,       (x)i+1 = (8x)i.

One easily sees by induction on « that

(1.11) i/x = sn(x0,..., xn), then for i = 0,...,n, (x)¡ = x¡.

Put

(1.12) Seq(0, x) o 8x = O&x ± 0,       Seq (« +1, x) o Seq («, 8x);

then

(1.13) Seq («, x) o x = s„(x0,..., xn)for suitable x0,..., xn.

Finally we put

(1.14) <Xj., . . . , Xn>   =  Jn(«, Xy,..., xn),

(1.15) Seq ix) o TTX e w & Seq (wx, x)
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nx,

and observe that

(1.16) Seq (x) 0 7TX £ cu &x = <Xj,..., xnx) for suitable x1;..., x;

(1.17) ifx = (xy,..., xn>, then for i = 1,..., n, (x)t = x¡.

We need an analog of the familiar course of values function of ordinary recursion
theory. To each p.m.v. function f(y, x) we assign the p.m.v. function f(v, x) defined
inductively by:

f(j, x) = 1    if y e P°,
(1.18) _ -f((j, i), x) = <f(j, x), fit, x), f(j, x), fit, *)>.

2. Primitive computable functions. Let <p=cp1,..., <p, be a finite (possibly
empty) list of p.m.v. functions on P* to B*, <pt of «¡ arguments. (We sometimes call
the sequence /,«,,..., «, the characteristic of cp.) In the schemata C0-C10 below
x=Xy,..., xn, y- v1;..., ym are arbitrary tuples of elements of P* (empty if «=0
or m=0), the projections n and 8 are those defined by (1.4) and composition of
p.m.v. functions is to be understood as in (1.8). The expressions to the right will be
explained shortly. In this section we are only interested in schemata C0-C7 but
we list the rest for future reference.

CO. f(i!,..., tni, x) = <Piity,..., tn) <0, nt+n, />
Cl. fix) = y <l,«,j>
C2. fiy,x) = y <2,«+l>
C3. (is, t, x) - is, t) <3,«+2>
C40. fiy,x) = ?ry <4,«+l,0>
C4i. fiy,x) = 8y <4,«+l, 1>
C5. fix) = g(h(x), x) <5,n,g,h}

f( v, x) = g(j, x)   ifyeB0,
f((j, I), ^ = h(f(j, x), fit, x), s, t, x)

Cl.     fix) = g(x; + 1, Xy,..., Xj, xj+2, ...,xn) <7, «,/ g>

C8.     f(e,x,^) = {e}(x) <8,« + «i+l,«>
C9.     f(x) = Me(y,x)->0] <9,«,g>
C10.    f(x)= E(Xyg(y,x)) <10, n, g>

Schemata C0-C7 are the obvious analogs of the schemata for primitive re-
cursive functions in ordinary recursion theory. Instead of defining the class of
functions primitive computable in cp by imitating the primitive recursive derivations
of the usual sort, we prefer to introduce indices for these functions at this early
stage.

The expressions to the right of schemata C0-C7 indicate the clauses for an
inductive definition of the set PRI of indices of primitive computable functions.
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Notice that each index / is a sequence element (i.e. Seq (/)), that (f)x gives the
number of the schema involved and that (f)2 is the number of arguments of the
function in question. We use a notation convention to which we shall adhere: if a
function has been named f, g, h, etc., then an index for it will be/ g, h, etc.

The definition of the set PRI of indices is by course of values induction on
fe B* and has the following eight clauses.

Case CO. Seq (/) & (/)0 = 3 & (/)i = 0 & 1 = (f)3 = /
& {[(/)3 = 1 & C/)a â Hi] V • • • V [(/)3 = / & (/)2 = «,]}•

Case Cl. Seq (/) & (/)0 = 3 «fe (f)x = 1 & (f)2 e co.
Case C2. Seq (/) & (/)„ = 2 & (/)i = 2 & (f)2 = 1.
Case C3. Seq (/) & (/)0 = 2 & (f)x = 3 & (f)2 = 2.
Case C40. Seq (/) & (/)0 = 3 & (/), = 4 & (f)2 ^ 1 & (f)3 = 0.
Case C4l Seq (/) & (/)„ = 3 & (J)i = 4 & (f)2 = 1 & (/)3 - 1.
Case C5. Seq (/) & (f)0 = 4 & (f)y = 5 & (f)2 s a>

& (f)3 e PRI & (/)4 e PRI & (/)4,2 = (/)2 & (/)3>2 = (/)2 +1.
(Here (x)u = ((*),),.)

Case C6. Seq (/) & (/)0 = 4 & (f)y = 6 & (/)2 = 1
& (/)3 e PRI & (/)4 e FF/ & (/)3>2 = (f)2 & (/)4>2 = (f)2 + 3.

Case C7. Seq (/) & (/)0 = 4 & (f)y = 7 & 0 = (/)3 < (/)2
&(/)4eFF/&(/)4>2 = (/)2.

(Whenever x^j or x<j> is a condition in one of the clauses, the conditions
x e w, y e a> are also implied.)

We now assign to each fe PRI, by induction on the definition of PRI and using
the schemata C0-C7, a p.m.v. function {/}pi.(mi, • ■ -,uk) of k variables, where
¿=(/)2. For example, if /=<0, «¡4-«, i>, we put

{/JprUl, • • • > ¿n,> Xi, . . ., Xn)  — <Pi(ty, . . ., tn¡),

if <5, «, g, «>, we put {/}Pr(x) = {g}pr({h}pr(x), x), etc. We call these p.m.v. functions
primitive computable in «p and we put

(2.1)        PR(«p) = set of all functions {/}pr(«), with fe PRI and k = (f)2.

A predicate P(u) is primitive computable in <p, if its characteristic function

Xp(u) = 0   if F(»),
(2.2) = 1    ifF(«)

(which by definition is single-valued and total) is in PR(cp).
If C, E are subsets of B*, we call a ¿-ary p.m.v. function f:C=>E primitive

computable in tp, if f is the restriction to C of a p.m.v. function (on B* to B*)
which is primitive computable in <p. Thus our ultimate concern may be with func-
tions from F to F or from B to co, but the pairing operation makes B* a suitable
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domain for studying these functions. (The same remark will apply to later defini-
tions of larger classes of functions.)

In introducing the constant functions fiu)=y as primitive computable by Cl
without discussion we skirted on a philosophical question of some interest. In what
sense are the arbitrary constant functions on a set B* computable ? If the set B is
uncountable, this procedure yields uncountably many primitive computable
functions, a state of affairs to which many people might object. However each
function {/}Pr(«) depends in its definition on only finitely many applications of Cl,
and all the relevant constants y have been coded into the index/ We are thus led to
the following relativised definition :

Let A be a subset of B*. A p.m.v. function f(«) is primitive computable (with
constants derived) from A in cp, f(») e PR(A, cp), if there exists an fe A* n PRI,
(f)2 = k, such that f(«) = {/}pr(«) (A* is defined in (1.6)). In particular

(2.3) PR(cp) = PRiB, cp).

We set

(2.4) PP(cp) = PP( 0,cp)

and call the functions in PR(<p) absolutely primitive computable in cp.
The definition of {/}pr(«) for eachfe PRI, (f)2 = k depends on the given sequence

cp of p.m.v. functions, so we should really be writing {/}pr(<P, »)• In this paper we
shall reserve the letter "cp" for a fixed sequence of functions (which in fact we shall
often assume to be single-valued and totally defined) so we shall not make explicit
this dependence of {/}pr(«) on cp. However, we may apply the definition to a
sequence cp' = gl5..., gm, cp, where we may think of g<,..., gm as arbitrary func-
tions of ly,..., lm arguments respectively. We shall then write {/)pr(gi,..., gm, «)
for {/}pr(cp', u), exhibiting the dependence of {/}pr(«) on g1;..., gm. Thus each
fe PRI (where PRI is defined for the list cp') defines a functional {f}pr(gy,..., gm, u)
(k = (f)2) which we call primitive computable from A in cp, iffe A*.

The following lemma is very easy to prove by induction on fe PRI.

Lemma I. (a) If each <p¡ is single-valued, then each {/}pr(H) is single-valued.
(b) If each <p¡ is totally defined, then each {/}pr(n) i'j totally defined.
(c) Suppose that for i=l,...,l, (/>,(/».,..., tn) -> z, then Dz <= Dh u • • • u Dtn..

Then for each f,Uy,...,uk, z, if {/}pr(«i,..., uk)-*■ z, then Dzc j)f u• • • u DUk.

Thus, if cp consists of single-valued, total functions, then each function primitive
computable in cp is single-valued and total.

Example 1. The only total function of one variable f(x) from P to P which is
absolutely primitive computable in the empty cp is the identity f(x)=x; because
by the lemma, if f(x)={/}pr(x) wíÜi/eO* and {/}pr(x)->z then we must have
D2 c £>* u Df = Dx and for z, xe B, this means z=x.
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Example 2. Let B—all number-theoretic functions, take «p = ç>i,..., <p, where
«i = 2,

<Pi(x, i) = x(i)   if xe B,ie co,

= 0       otherwise,

and ç>2, ■ • •, 9>¡ are arbitrary. This example has been the initial motivation for much
of the work presented here. We shall treat it in detail in [19].

3. Elementary theory of primitive computable functions. Let us call a p.m.v.
function f(w) combinatorial if it is absolutely primitive computable in the empty cp.
Such functions can be defined through schemata C2-C7; by Lemma 1 they are
single-valued and total and they satisfy

(3.1) f(Mi,...,M,)e(/)ulu---u/)uJ*.

Lemma 2. Ifg(u) is in PR(A, cp), then the function

(3.2) f(*,«,>0 = g(«)
is also in PR(A, <p).

Proof. We first show by induction on an index g of g(n) that the function

(3.3) fi(«,jO= g(«)
is in PR(A, <p). The idea here is that the schemata are not affected by the addition
of extra variables at the end.

From (3.3) it follows that the function

(3.4) f2(u,x,y) = g(u)

is in PR(A, <p), and from this f(x, u, y) can be defined by repeated applications
ofC7.

Remark 1. Lemma 13 is a stronger version of Lemma 2 and asserts that an
index of f can be obtained from an index of g by a combinatorial function. The
details of the proof outlined above can be found in the proof of Lemma 13.

Remark 2. We shall not state explicitly any more results which, like Lemma 2,
pertain to explicit definition, e.g. that a primitive computable function remains
primitive computable if we interchange the order or identify some of its variables.
Such results are immediate from schemata C7 and C5.

Lemma 3. (a) IfyeO*, then the constant function f(x)=y is combinatorial.
(b) Let <f>(u) be a function ofk arguments on co to co which is primitive recursive in

the sense of [4] (or equivalently [6]). There exists a combinatorial f(u) on B* to B*
whose restriction to co is </>(u).

Proof, (a) is immediate from Cl, since {(I, n,y}}vr(x)=y and if jeO*, then
<1,»,V>6 0*.
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We prove (b) by induction on a primitive recursive derivation of </>(u) from
schemata S1-S6 of [6].

Case SI. tb(y, x)=y+1. Set f(y, x) = (y, 0) using C2, (a), C3 and C5.
Case S2. <f>(u)=q e co. Immediate from (a).
Cases S3, S4 and S6 are immediate by C2, C5 and C7.
Case S5. <f>(0, x) = ̂ (x),   <f>(y +1, x) = x(y, <A(j, x), x).

By ind. hyp. there are combinatorial functions g(x) and h(y, u, x) which agree with
>/i(x) and x(.v, "> x) respectively when restricted to co. By Lemma 2 and C7 the
functions

g'(y, x) = g(x),   h'(u, v, s, t, x) = h(s, u, x)

are combinatorial. We set by C6

%y, x) = g'(y, x) = g(x),

f((s, t), x) = h'(f(s, x), f(t, x), s, t, x) = h(i, f(s, x), x),

and then verify by induction on i eco (using the relation i+1 =(/, 0)) that f(/, x)
=(/>(i, x) when i, x are in co.

Remark 3. We shall often define a function "by induction on i ecu" i.e. by the
schema:

(3.5) f(0, x) = g(x),   f(i+1, x) = h(i, f(i, x), x).

It will be always assumed in these cases that we treat the definition as we did in
Case S5 of the proof, using C6 to define a function f(y, x) (y e B*) which agrees
with f(i, x) as defined by (3.5) when y=i e co.

Lemma 4. The sets {0} (singleton 0), B, co, the function (xx,..., x„> defined by
(1.14) and for each fixed i, the function (x\ defined by (1.10) are combinatorial.

Proof. The characteristic function y0(z) of {0} is defined by C4 and C6 :

xo(y) = iry  if y e b°,
(3.6)

Xo((s,t))=l.

For xb(z), the characteristic function of B, we put

xs(y) = sgfry)  ifyeB0,
Xb((s, 0) = I-

(Here sg(x) is the function associated by Lemma 3 to the number-theoretic primitive
recursive function sg(x) = 1 — x.) For x<„(z), the characteristic function of co, we put

xÁy) = *y  ifyeB0
XÁ(s,t)) = sg(xa(s) + xo(t)).

(Again sg and + are the functions associated by Lemma 3 to the number-theoretic
functions sg(x) = 1 — (1 — x) and x+y.)
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We prove that each function <x1;..., xn> is combinatorial by first showing by
induction on « that each s„(x0,..., x„) of (1.9) is combinatorial and then using the
definition (1.14). For each fixed /, (x)¡ is combinatorial by an easy induction on i.

Remark 4. From now on we associate with each primitive recursive number-
theoretic function </>(uy,..., uk) the combinatorial function

(3.9) f(Uy, ...,uk) = f(u)-sg(xo>(uy)).sg(xm(wfc))>

where the f(u) on the right is associated with </>(u) by Lemma 3 and the multiplica-
tion is the combinatorial function associated to ordinary multiplication by Lemma
3. This extends each primitive recursive number-theoretic function to a combina-
torial function on B* which is = 0 if any of the arguments is not a natural number.

Lemma 5. Let cp be empty, let f(«) be a primitive computable function which maps
co into cu. Then the restriction off(u) to co is primitive recursive in the sense of [4].

Proof. We prove the lemma for the case B^ 0, the case B= 0 being similar
and a little easier.

Let b e B be a fixed element of P. We assign to each element x of b*={b}*
= {z e P* : ZX,c{/3}} an integer ex by the induction:

(a)   cO = 1,
(3.10) (b)   c/j = 2,

(c)    c(j, i) = 3cs-5ci.

Let P be the set of integers ex which are assigned to elements x of b*. To each
function f(«) from b* into b* we assign the number-theoretic function cfivy,..., vk)
by

cf(iTj,.. .,vk) = 0 if for some i, ¡' = I,...,k,vt$P,

= C(f(Mj, . . ., Uk))     if Vy  = CUy, ...,Vk = CUk.

Now suppose that f(«) = {/}pr(") is primitive computable from b, i.e. feb*.
Lemma 1 implies that f carries b* into b*, so the corresponding number-theoretic
function cf is well-defined. It is easy to show by induction on fe PRI using ele-
mentary properties of primitive recursive functions, that cf is primitive recursive.
On the other hand, if f maps a> into co, then the restriction of f to to can be obtained
from cf by a simple primitive recursive transformation, hence this restriction is
primitive recursive. This concludes the proof of the lemma for functions primitive
computable from b.

We assign to each element z of P* its projection z* into b* by the induction :

(a)   0# = 0,
(3.12) (b)   y* = b   ifyeB,

(c)    (j, tf = is*, t#).
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It is easy to show by induction on zeB* that

(3.13) tt(z#) = (ttz)#,   S(z#) = (Sz)#.

Using (3.13) then we easily show by induction on/e PRI that for cp empty,

(3.14) i/{/}pr(«) - z, then {/#}pr(«#) -> z#,

where u#=u\,.. .,u*k. Let us associate then with each primitive computable
function f(«)={/}Pr(«) the function f#(w), primitive computable from b, given by

f#(«) = {/%(«)■

Since the function * is the identity on b*, if ux,..., uk, z e b*, and {/}pr(«) -> z, then
{/#}pr(") -*■ z> so that f agrees with f# o« /«are k-tuples from b* which f maps into b*.
Thus if f maps co into co, then f agrees with f# on co, so the restriction of f to co is
primitive recursive.

Lemma 6. (a) Lei cp = cpx,.. . ,<p,, cp'= <pi,.. .,cp'v, assume that for each i=1,...,/
there is a j (1 újíkl') such that cpi = <p'j. Thenfor each A<=B,PR(A, <p)<^PR(A, cp').

(b) If fePR(A, gi,..., gm, cp) and for each i=\,...,m, g¡ e PR(A, cp), then
fePR(A,V).

Both of these statements are proved by easy inductions on an index feA*
of the function in question which we omit.

Lemma 7. There is a functional

(3.15) f(w) = f(gi,..., gm, hi,..., hm, u)

which is absolutely primitive computable and such that if gx,..., gm, hx,..., hm
are completely defined and single-valued and if for each u there is exactly one i
such that h¡(«) = 0, then

f(«) = gi(«)    ifhx(u) = 0,
„,„ =g2(»)    '/h2(«) = 0,
(3.16)

= gm(")      ÍfK(l) = 0.

(Definition by cases.)

Proof. First set by C6 and Lemma 2

Pi(M,}>) = 0   ifjeF0,

Pi(", y) = u   if y $ B°,

and then put p(u, y) = px(u, 1 — xo(y)) so that

p(w, y) = u   if y = 0,
(3.17) = 0   if7#0.
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Similarly the function
q(ii, v) = u   if v = 0,

(3.18) = v    if v 7a 0

is also absolutely primitive computable. We define by induction on k the functions
rk(uy, ...,uk),

(3.19) Ty(Uy)   =   Uy,       Tfc+ y(Uy, ...,Uk+y)   =   q(uk+y, rk(Uy, ■■■, Uk)).

It is immediate by induction on k that ifuj=0,j= 1,..., k, then rk(uy,..., uk)=0
and ifUj=0,j=l,...,k,j^i, and ut + 0, then rkijXy,..., uk)=u¡. The lemma follows
by setting

(3.20) ft» = rm(p(gl(«), h,.!»),..., p(gm(«), ta*))).

Remark 5. It is immediate that for a fixed sequence gls..., gm, blt..,, hm
of functions, the function f(«) defined by cases in (3.14) is in

PP(gl5..., gm, h1;..., hm).

Thus by Lemma 6, if gl5..., gm, h1(..., hm are in PRiA, cp), then f(«) e PRiA, cp).
Clearly we can relax somewhat the hypothesis of Lemma 7, for example by

allowing some of the gt to be multiple-valued. However the lemma fails for arbi-
trary p.m.v. functions and we shall only use it in this form.

Lemma 8. There is an absolutely primitive computable functional

f(y, x) = f(g, y, x)

such that for fully defined single-valued g and all y, x,

(3.21) f(v,x) = g(f(j,x),j,x).

Proof. We first set up an induction for f( v, x),

f(y, x) = I   if ye B°,
(3.22) _ _ _ _f((j, t), x) = <g(f(j, x), s, x), g(f(t, x), t, x), f(j, x), f(t, x)>

and then put

(3.23) f(v, x) = (f((y, 0), *))„

Lemma 9. (a) There is an absolutely primitive computable functional

f(i, x) = f(g, h, p, i, x)

which for completely defined single-valued g, h, p satisfies the nested recursion
over co :

f(i, x) = 0 if i <£ co,
(3.24) = g(x) if i = 0,

= h(ffj, p(j, x)),j, x)   if i =j+le co.

In particular, ifg, h, p are in PR(A, cp), so is f.
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(b) The predicate Seq (x) defined by (1.15) and the function (x)( defined by (1.10)
(=0 if i $ co) are combinatorial.

Proof of (a) is similar to the one for ordinary recursion theory and will be omitted.
To prove (b) we notice that (1.12) gives a nested recursion for the characteristic
function of Seq («, x), hence Seq («, x) and thus Seq (x) are combinatorial. Simi-
larly, (1.10) gives a nested recursion for (x)¡.

Lemma 10. If the predicates P(u) and Q(u) are in PR(A, cp), then so are the
predicates -P(u), P(u) & Q(u), F(«)v Q(u), P(u) => Q(u). IfP(i, x) is in PR(A, cp),
then so are the predicates

(i)iSjP(i, x) o (i)[i e co & i á j => P(i, x)],

(Ei),SjP(i, x) o (Ei)[i e co & i ^ j & P(z, x)],

and similarly with "i<j", "/í^líí/a" etc. in the place o/"/^/"

Proof is easy using Lemmas 3 and 4.

4. Index constructions. It is convenient to develop for primitive computability
some of the theory of " arithmetization " which in ordinary recursion theory is
usually done for partial recursiveness.

Lemma 11. The sets PRI and PRIk,

(4.1) fe PRIk o/e PRI & (f)2 - ¿,

are combinatorial.

Proof. One can easily rewrite the clauses for the definition of PRI which we gave
in §2 to obtain a course of values induction for the characteristic function of PRI
and then use Lemma 8.

Lemma 12. For each m there is a combinatorial function Sm(f, yx,..., vm)
= Sm(f, y) such that

(4.2) ifUy,x) = {S'"(f,y)}pr(x).
(The Sm theorem.)

Proof. We define the functions Sm(f,y) by induction on m, using Kleene's
method in XIII of [6]. Put

s'd, y) = <5, (f)2 - l,/ <i, (f)2 - l, j»,
Sm+1(f,yx,. ..,ym+x) = S^S^fiyu. ..,ym),ym+x).

Lemma 13. (a) There is a combinatorial function ev(fik') such that, with
u = ux, ...,uk,u' = u'x,. ..,uk; iffePRI and(f)2=k, then

(4.3) {ev(/ k')}pr(u, «') = {/}pr(«).
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(b) There is a combinatorial function f\ifk') such that, with u=Uy,.. .,uk,
u'=u'y,..., u'k; iffe PRI and if)2=k, then

4.4) {fv(/ Ac'}pr(«', u) = {/}pr(«).

Proof, (a) We define ev(/ k') by a course of values induction of/ using Lemma
8. The defining function g of Lemma 8 is given by cases, using Lemma 7. We give
(these cases informally, omitting the details of casting them in a formal definition
suitable for an application of Lemma 8.

The case hypotheses are the same C0-C7 which we formulated in the definition
of PRI in §2. Here we do not repeat these combinatorial conditions on / but
simply remind ourselves what the notation is in each case by writing down the
defining condition for {/}pr(«).

Case CO. {/}(i1;..., /„,, x)=«Pi(/1,..., Q. Put ev(/ k') = <0, «¡ + « + Ä:', />.
Case Cl. {/}(x) = v. Put ev(/ #)-<l, n+k',y}.
Case C2. {f}(y, x)=y. Put ev(/ k') = {2, n +1 +/c'>.
Case C3. {f}(s, t, x) = (s, t). Put ev(/ k') = Q, n + 2 + k").
Case C40. {/}(v, x)=try. Put ev(/, tc') = <4, n+l+k', 0>.

Case C4X. {f}(y, x) = S.v. Put ev(/ k') = <4, n +1 + k', 1 >.
Case C5. {/}(x)={g}({«}(x), x). Put ev(/ *') = <5, n+k', ev(g, k'), ev(«, *')>■

Case C6. {/}(v, x)={g}(v, x) = if y e B°,
{f}((s, t), x) = {h}({f}(s, x), {/}(!, x), j, t, x).
Put ev(/, A:') = <6, n + l+k', ev(g, k'), ev(«, &')>•

Case C7. {/}(x)={g}(xi+1, x1;. .., x;-, x/+2,..., xn).
Put ev(/ tV)=<7, « + Ä:',/ ev(g, k')}.

Otherwise. Put ev(/ /c') = 0.
It is now easy to prove (4.3) by course of values induction on fe PRI.
To prove (b) we first define an auxiliary function p(/ i) by the induction :

(4.5) p(/ 0) = /    p(/ i+1) = <7, (f)2, (f)2 - 1, Vif, /)>.

It is easy to show by induction on i, Oikiúk, that if if)2 = k+1 and fe PRI, then

(4.6) {p(/ i)}PAy, «) = {7}pr("fc-i+i, w^-i+2, ..-,uk,y, Uy,..., Mfc-i);

hence

(4.7) {vif, if)2 - l)}Pr(j, «) = {/}pr(«, j),

ifk = ij)2-l.
We define fv(/ /c') by induction on k' as follows :

(4.8) fv(/ 0) = /,   fv(7 Ä:' +1) = p(ev(fv(7 *'), 1), (7)2 + A:')-
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Now (4.4) is immediate for ¿'=0. Assuming it for ¿', we have

{fv(/, k'+ \)}pr(y, «', «) = {ev(fv(/ k'), l)}pr(«', u, y)

= {fv(/, ¿OU«', «)
= {/}pr(«).

Lemma 14. There is a combinatorial function rcpr(/) such that if m=rcpr(f),
then

(4.9) {/}pr(m, h) = {m}pi(u).

(The recursion theorem.)

Proof. Using Lemmas 12, 13 and C7, we can define combinatorial functions
m0(/) and mi(/) such that

(4.10) {m0(f)}Pr(y,u) = S1(y,y),

(4.11) {mi(/)}pr(/,j,«) = {/}pr(i,«),

(pick g so that {g}PT(y) = SKy,y), set m0(f) = ev(g, (/)2-l), m^/) = <7, (/)2
+ 1, l,fv(/, 1)». Put

(4.12) m2(f) = <5, (/)2, mi(/), m0(/)>;

then

{m2(/)}pr(>', «) = {mi(/)}pr({m0(/)}pr(j, h), j, h)

= {mx(f)}pi(S\y, y), y, u) = {f}pr(SKy, y), u).

Put

(4.13) rcpr(/) = S1(m2(/),m2(/));

then, ifm = rcpr(/),

{m}pr(u) = {m2(/)}pr(m2(/), u) = {/UOS^C/), m2(/)), «) = {/}Pr(™, «)•

5. Kleene enumeration and prime computable functions. In 3.2-3.4 of [6] the
point is made that in any theory of computability there must be both "a modicum
of elementary operations of computation" and "a means for reflecting upon
computation procedures already set up." The primitive computable functions here,
as the primitive recursive functions in [6] provide the elementary operations.
Kleene's idea for a reflection principle in [6] is to enumerate the class of computable
(partial) functions by indexing, as we have done here, and then to postulate that the
enumerating function itself is computable. The same procedure applied in our
general case leads to the class of prime computable functions on B*, the smallest
class of functions on B* on which a reasonable theory of computability can be
developed.
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Let us add to schemata C0-C7 the new schema

C8 f(e, x,» = M(x)       <8, n+m + l, «>.
Instead of defining a set of indices for prime computable functions, we shall assign
one prime computable function {/}„(«) of A: variables to each feB*. Our method
(following Kleene in [6]) is to interpret schemata C0-C8 as the clauses of an in-
ductive definition of a predicate {/}p(«) -> z, as follows : (Again we include clauses
C9'-C10' for future reference. We omit the subscript p in writing {/}(«), since
choices of other sets of clauses will lead later to other classes of functions which we
shall name using curly brackets with other subscripts.)

CO'. If tpiih, ■■-, tn) -*■ z, then {<0, «, + «, i>}(fi,..., rB(, x) -> z.
CF. Kl,n,y}}(x)^y.
C2'. {<2,« + 1>}(j,x)^v.
C3'. {<3,« + 2>}(j,i,x)->(j,I).
C40. {<4,«+1,0>}(j,x)^7tj.
C4i. {<4,« + l,l»(j,x)^8^.
C5'. If there exists a u such that {«}(x) -*■ u and {g}(u, x) -> z, then «5, «, g, h}}(x)
—> z.

C6'.    If y £ B° and {g}(y, x) -> z, then «6, « +1, g, h}}(y, x) -*■ z. If there exist u, v
such that «6, «+1, g, «>}(j, x) -> u, {<6, «+1, g, «>}(i, x) -»-1; and{h}(u, v, s, t, x)
-* z, i/ien {<6, «+1, g, «>}((j, i), x) -> z.
C7'.   //{g}(xi+1, Xy,..., Xj, xJ+2,..., xn) -> z, i«e« «7, «,/ g>}(x) -► z.

C8'.   //{e}(x)->z, then {<8, n+m+l, «>}(e, x,>>) ->z.
C9'.   //{g}(j, x) -► 0, iAe« {<9, «, g>}(x) -> y.
C10'.   // (y)(Eu)[{g}(y, x)->u] & (Ey)[{g}(y, x) -> 0], then {<10, «, g>}(x) -► 0.
If(y)(Eu)[u*0 & {g}(y, x) -> u], then {<10, «, g}}(x) -> 1.

We define the predicate {/}p(«)->z by adding to clauses C0-C8' the
Recursion clause for prime computability: {f}p(u) -*■ z only if {/}(«) —> z follows

from C0'-C8'.
Each/E P* now defines for each k a p.m.v. function of k variables

{/}p(«) = {z:{/}p(«)^z}.

For each A^B* we let PC(A, cp) be the class of p.m.v. functions {/}p(«), with
feA*.As before we distinguish the class PC(cp)=PC(0, cp) of functions absolutely
prime computable (in cp) and the class PC(cp) =PC(B, cp) of functions prime com-
putable (in cp).

Again, eachfeB* defines for each list ¡y,..., lm, k a functional {/}p(g!,.. .,gm,u),
where g1; ...,gm are variables for function variables of ly,...,lm, arguments
respectively. We call this functional prime computable from A (in cp), iffeA*,
absolutely prime computable iffeO*, etc.
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It seems clear to us that each absolutely prime computable function is intuitively
computable, if instructions for computing the functions in cp are given. Similarly,
prime computable functions should be accepted as effectively computable by
anyone who considers the constant functions on a set as computable. We shall
discuss Church's Thesis in some detail in the next section.

In this paper we shall not study prime computability, except incidentally. We
prove a few lemmas here which give a general picture of what the classes PC(A, cp)
look like.

Since the primitive computable functions {/}pr(«) were defined by induction on
fe PRI, we could prove results about them by induction on fe PRI. For prime
computability our standard method of proof will be induction on the form of the
definition of the predicate {/}p(h) -*■ z, which we call "induction on C0'-C8'".

Lemma 15. If each function <p¡ in cp is single-valued, then each function in FC(cp)
is single-valued.

Proof. We show by an easy induction on C0-C8' that if {/}p(«)-*■ z and
{/}„(«) ^z', then z=z'.

Notice that FC(cp) always contains partial functions, e.g. those introduced by
C8, even if all functions in cp are totally defined.

Lemma 16. Iff e PRI, then{f}pr(u)={f}p(u). In particular PR(A, <p)^PC(A, cp).

Proof is by induction onfePRI.

Lemma 17. Iffe PR(A, gx,..., gm, cp) and for each i= 1,..., m, g, e PC(A, cp),
then f e PC(A, <p).

Proof is by induction on an index/of f in PR(A, gx,..., gm, cp).

Lemma 18. Let hx,..., hm be totally defined single-valued functions in PC(A, cp),
let gi,..., gm be in PC(A, cp), assume that for each u there is exactly one i so that
hj(») = 0. Then the function

f(«) = gi(«)    if hi(») = 0,
= g2(«)    if h2(«) = 0,

= gm(«)     if hm(«) = 0

is in PC(A, cp). (Definition of partial functions by cases.)

Proof. Let gx,..., gm be indices of gx,..., gm, put

k(tt)=gy     ifhi(«)=0,
= g a   if h2(«) = 0,

= gm   if K(u) = 0;
now k(u) is in PR(A, cp) by Lemmas 7 and 16. Now put f(H)={k(«)}p(«) by C8.
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Remark 6. As a consequence of Lemma 17 the classes PC(A, cp) are closed
under all the primitive computable (from A) operations. For example, if fis defined
from g by course of values induction as in Lemma 8 and g is (totally defined,
single-valued) in PC(A, cp), then fis also in PC(A, cp). (We shall see later in Remark
12 that g need not be totally defined or single-valued for this to be true.)

Some of the lemmas about primitive computability were not stated in a "uni-
form" form in terms of functionals, as the lemmas referred to above,, but in the
form "if fl5..., ePR(- ■ ■), then g1;..., ePR(- ■ •)". Since the statements are
about an arbitrary cp however, the effect is the same. For example suppose f(x, u, y)
=g(u) and g ePC(A, cp). Applying Lemma 2 to cp' = g, cp we have f ePR(A, g, cp),
since certainly g e PR(A, g, cp), hence by Lemma 17 again, f£PCL4, cp). Thus
PC(A, cp) is closed under the operation of introducing new variables, and similarly
the class of predicates in PC(A, cp) is closed under all the logical operations listed
in Lemma 10.

The definition of the predicate {/}p(«) -> z on finite sequences/ u, z of elements
of B* was given by the inductive clauses CO'-C8', much as the definition of the set
O of ordinal notations in [5] was given by the inductive clauses 01-04. Such in-
ductive definitions may be interpreted "from the outside" in the manner of Wang's
computation of an explicit form of O in [24]. Alternatively, they may be understood
as (possibly transfinite) inductions on an initial segment of the ordinals in the
following way: the defined set si is considered as the union IJ? ^ where s/0
consists of the objects which are in si because of the direct clauses in the definition
and s/( consists of those objects whose membership in si follows when we apply the
indirect clauses of the definition to elements in (Jv< ¡¡ sin.

In such an analysis there is associated with each xe si an ordinal, namely
the least £ such that x £ si(. Classically, proof by induction over an inductive
definition is simply proof by (possibly transfinite) induction on Ç. We prefer to give
proofs by induction over a definition rather than by (transfinite) induction on the
relevant ordinals, since the first procedure appeals to us as more "constructive",
in the case where infinite ordinals are involved. However, for some results that we
need we have no such proofs and we are forced to introduce the ordinals.

We assign to each sequence/ u, z such that {/}„(«) -> z the ordinal \fi u, z|p at
which we first recognize that {/}p(«) -> z. The definition is cast in the form of an
induction on C0-C8', by clauses C0"-C8". As before we omit the subscript p and
include clauses C9" and CÍO" for later use.

C0"-C4". //{/}(«) -> z by virtue of clauses C0-C4', then \fi », z\ =0.
C5". If there exists a u such that {«}(x) -»■ u and {g}(u, x) -> z, then

\{5,n,g,K),x,z\

= infimum {max [\h,x,u\ + l, | g, u, x, z\ +1 ] : {h}(x) -> u & {g}(u, x) ->■ z).

C6". If {g}(y, x)->z and ye B° then |<6, n+l,g, «>, y, x, z\ = \g, y, x, z\ + 1.
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If there exist u, v such that {f}(s, x) -> u, {/}(?, x) -* v, {h}(u, v, s, t, x) -»■ z,
then

|/ (s, t), x, z\ = infimum {max [\fi s,x,u\ + \, \f, t,x,v\ + l, \h,u,v,s,t,x,z\ + \]

: {f}(s, x) -» u, {f}(t, x) -> v and {«}(«, v, s, t, x) -> z},

where/=<6, n+\, g, //>.
C7". //{g}(x; + i, Xj,..., x;-, x; + 2,..., x„) -> z, irte«

|<7, «,/g>, x, z| = |g, xJ+1, Xi, ...,xy, x;+2, ...,xn| + l.

C8". //{e}(x)^z, i«e« |<8, «4-w+l, «>, e, x, j>, z\ = \e, x, z| + l.
C9". //{i}(j, x) -> 0, /«e« |<9, «, g}, x, y\ = \g, y, x, 0| + 1.
C10".   // OOO&OKS/O', x) -> u] & (Fy)[{¿r}(>>, x) -> 0], /«e«

|< 10, «, g>, x, 0| = infimum {supremum [\g, y, x, a(y)\ +1 : ally]

• (y)[{g}(y, x) -> a(y)] & (Ey)a(y) = 0};

if(y)(Eu)[{g}(y, x)-+u&u¿0], then

|<10, «, g>, x, 11 = infimum {supremum [\g, y, x, a(y)\ +1 : ally]

•■(y)[{g}(y,x)^a(y)*o]}.

(Here a varies over all one-place total functions on B* to B*.)
In clause C5" our analysis is as follows. We may recognize that {g}({h}(x), x) -> z

because of various possible u's such that {h}(x) -> u and {g}(u, x) —> z. The ordinal
at which we recognize that «5, «, g, «>}(x) -> z for the first time is just one step
after we have first found a u such that both {h}(x) -> u and {g}(u, x) -> z; this is why
the infimum is taken in the definition. The same remark applies to the second part
of clause C6".

Remark 7. It is our use of multiple-valued functions that requires the infimum
operation in the assignment of ordinals when we analyse the definition C0'-C8',
since if all functions were single-valued, then there would be at most one u satis-
fying the conditions above. Multiple-valued functions are not required for the
study of prime computability, because of Lemma 15; however they are necessary
in studying search computability in the next section. The use of existential, non-
deterministic clauses in inductive definitions and the assignment of ordinals by the
infimum operation that they make necessary is the key to the abstract treatment of
the hyperprojective hierarchy in §10—§19.

It is immediate from clauses C0"-C8" that for every/ u, z such that {/}p(«) -> z,
|/, H, z|p<CO.

Lemma 19. The functions Sm(f, ji,..., ym) defined in Lemma 12 satisfy

(5.1) {fW,x)^{S-(f,y)}p(x).
Moreover, if{f}p(y, x) -> z, then \fiy, x,z\p< \Sm(f,y), x, z\p.
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Proof of the first part is immediate, as that of Lemma 12. The assertion about the
ordinals | |p is immediate about S1 and follows in general by an easy induction
on m.

Lemma 20. (a) There is a combinatorial function EV(/ k') such that, with
u=Uy,..., uk, u' = u'y,..., u'k; we have

(5-2) {EV(/ k'Mu, «') = {/}„(„).

Moreover, if{f}p(u) -> z, then \f, u, z|p< |EV(/ k'), », «', z|p.
(b) There is a combinatorial function FV(/ A:') such that, with

u = «».,..., uk, »' = u'y,... ,u'k; we have

(5.3) {FV(/*')}„(«', «) = {/}p(«).

Moreover if {/}„(«) -> z, iiie« \f, u, z\p < |FV(/ k'), u', u, z|p.

Proof. To prove (a) we notice that

{<8, (f)2 + k'+l, (f)2»p(e, u, «') = {e}p(«),

{<L(/)2 + A:',/>}pr(H,«')=7

so that it is sufficient to set

(5.4) EV(/ k') = <5, ij)2 + k', <8, if)2 + k' + l, ij)2y, <1, if)2 + k',f>y.

The assertion about ordinals is immediate.
To prove (b) we use the function p(/ i) defined by (4.5) in the proof of Lemma 13.

We set

FV(/ 0) = <5, if)2, <2, if)2+1>,/>,
FV(/ k' +1) = p(EV(FV(/ k'), 1), if)2 + k'),

and prove (5.3) in the same way that we proved (4.4), noticing that the basic property
(4.7) of p(/ i) holds with the subscript p rather than pr. The assertion about ordinals
is again immediate because of our definition of FV(/ 0).

Lemma 21. There is a combinatorial function rc(/) such that for eachfi if m = rc(/),
then

(5.6) {f)p(m, u) = {t«}p(«).

(The recursion theorem.)

Proof is similar to that of Lemma 14, using Lemmas 19, 20 instead of 12, 13.

Lemma 22. There is a combinatorial function trp(/ c) such that if x(u') = {c}p(u')
and f(«) = {/}p(v, «), then f(u) = {trp(f c)}p(u). Thus, iffePC(A, gl,..., gm, cp) and
gi» • • • » gm e PC(A, cp), then f e PC(A, cp). (Transitivity lemma.)
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Proof. We first define an absolutely prime computable function g(p,f, c), then
choose an element trp of 0* such that g(trp,f, c)={trp}p(f, c) by Lemma 21 and set

(5.7) trp(fic) = {trp}p(f,c);

once trp is chosen it will be obvious from the definition of g(p,f, c) that g(trp,fi c)
is in fact combinatorial.

The definition of g(p,f, c) is by ten cases corresponding to the nine forms C0-C8
that/may have as an index of a prime computable function and an Otherwise case
by Lemma 18. We identify the cases C0-C8 by writing the form of definition of
{/}p(x> «) according to C0-C8 each time rather than the combinatorial condition
that/must satisfy.

In the definition we avoid the notation "g(p,/, c)" and the variable "/»";
instead we write "trp(/ c)" and "<rp" from the beginning as if the recursion
theorem had already been applied. In effect we are defining a function trp(/ c)
of the variables trp,fi c, and then we fix the variable trp to be an index of trp(/ c)
by Lemma 21.

Case CO. Subcase (a). {/}(*, «', x) = x(u').

Puttrp(/c) = EV(c,(/)2-(c)2).

Case CO. Subcase (b). {/}(y, ty,..., tn¡, x) = <pi(tx,..., tn).

Put trp(/,c) = <0, «, + «,/>.

(Remark. The case hypothesis for Case CO, Subcase (a) is /= <0, ¿' + «, 1>,
where x=Xi,..., x„, u' = u'x,..., u'w, and the case hypothesis for Case CO, Subcase
(b) is/=<0, «, + «, i+1>, since ç>, is the (i+ l)th function in the list x, <P-)

Case Cl. {/}(v, x)=y. Put trp(/ c)=f
Case C2. {/}(v, y, x)=y. Put trp(/ c)=/.
Case C3. {/}(x, s, t, x) = (s, t). Put trp(/, c)=f.
Case C40. {/}&, y, x) = rry. Put trp(/ c)=/

Case C4i. {f}(x, y, x)=8y. Put trp(f, c)=f.
Case C5. {/}(x, x) = {s}(x, {«}(*, x), x).

Put trp(f, c) = <5, «, trp(g, c), trp(«, c)>.
Case C6. {/}(*, j, x) = {g}(y, j, x) if y e B°,

{f}(x, (s, t), x) = {h}(x, {f}(x, s, x), {/}(y, t, x), s, t, x).
Put trp(/ c) = <6, «+1, trp(g, c), trp(«, c)>.

Case C7. {/}(x, x)={g}(x, xj+x, xx,.. .,x¡, xi+2,..., x„).
Put trp(/ c) = <7, n,j, trp(g, c)>.

Case C8. {f}(j, e, x,y) = {e}(x). Using Lemmas 19 and 20 it is easy to define
a combinatorial function d(/) such that

(5.8) {d(f)}P(trp,f, c, e, x, y) = {{trp}p(e, c)}p(x)
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and such that, if {{trp}Pie, c)}p(x) -> z, then

(5.9) \{trP}Pie, c), x, z\p < \d(J), trp,f c, e, x, y, z\p,

(take d(/) = <5, n+m + 4, dy(f), d2(/)> where dy(f) and d2(/) are chosen by
Lemma 20 and C7 so that {dy(J)}Pie', trp,f, c, e, x,y)={e'}p(x) and

{d2(/)}P(irP,/, c, e, x, y) = {trp}vie, c)).

Put

(5.10) trp(/ c) = S3(d(/), trp,f c).

Otherwise. Put trp(/ c) = 0.
It is clear that the function trp(/ c) thus defined is absolutely prime computable,

so Lemma 21 applies and we may assume that trp is an index of trp(/ c). Now
once trp is chosen, the definition is clearly a course of values induction on/ hence
trp(/ c) is combinatorial. To prove the lemma it then suffices to show the following
two propositions.

(5.11) IfifUx, «) -* z, then {trp(/ c)}p(u) -* z,

(5.12) if{f'Uu) -* z andf = trp(/ c), then {/}„(*, u) -> z.
Now (5.11) follows easily by an induction on C0-C8' of the usual sort.
The converse implication (5.12) is proved by induction on the ordinal \f, u, z\p.

Here we consider the nine cases C0-C8 by which it is possible to have/'=trp(/ c)
and {/'}P(«) -*■ z, and in all of them except C8 the result is immediate. In case C8
we have f = S3(d(f), trp,f c) and by the form of/ {/}p(x, e, x, y) = {e}p(x, x).
Since {/'}p(e, x, y) -> z, we know {d(f)}p(trp,f c, e, x,y)^z and

|d(/), trp,f, c, e, x, y, z\p < \f, e, x, y, z|p

by Lemma 19. By (5.9) we have \{trp}p(e, c), x, z\v< \d(f), trp,f c, e, x,y, z|p,
hence the ind. hyp. applies to {trp}p(e, c), x, z and we have {e}p(x, x) -> z. Hence
{7}p(x> e, x,y)-^z by C8.

Lemma 23. Suppose that g(i, x) is defined and single-valued, for each i e w, put

(5.13) f(x) = pi[g(i, x) = 0] = least i [g(i, x) = 0].

Ifg(i, x) is in PC(A, cp), then f(x) is in PC(A, cp).
Hence (by Lemma 3) if</>(u) is a partial number-theoretic function which is partial

recursive in the sense of [4], then c/>(u) is the restriction to w of an absolutely prime
computable function.

Proof is after the proof of XVI in [6]. Choose

h(i,x) = 0 ifg(/,x) = 0,
= h(i + l,x) + l    ifg(i,x)^0

using Lemmas 18 and 21 and set f(x) = h(0, x).
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To each subset C of B* we assign the set [C]v generated from C by the functions
in cp and the operations (x, y), ttx, 8x, by the following inductive definition :

(a) If x e C, then x e [C]v.
(5A4) (b) If x, y e [C]v, then ttx, Sx and (x, y) e [C]v.

(c) If ti,..., ?„, e [C]v and <pt(tx,..., tn) -+ z, then z e [C]v.

Lemma 24. If{f}p(ux, ...,«*)-► z, then ze[fiux,..., uk]v.

Proof is easy by induction on C0'-C8'.
Example 3. Suppose F is a group and cp consists of group multiplication x-y,

inversion x_1 and the constant function e (the identity in B). For each ux,..., uk in
B, it is easy to verify that [ux,..., uk]v n B is simply the subgroup of B generated
by ux,..., uk (prove by induction on (5.13) that if z e [ux,..., uk]v, then Dz is a
subset of the subgroup of B generated by ux,..., uk). Thus if f(«) is single-valued,
totally defined from B to B and absolutely prime computable (i.e. the restriction
to B of an absolutely prime computable function), then for each u, f(u) is in the
subgroup of B generated by u; in particular f(e) = e if f is one-place. Thus prime
computable functions are related quite intimately to the algebraic structure of the
group, and there are always functions on F to F which are not absolutely prime
computable, if B has more than one element. If we include in cp the characteristic
function of equality x=y on B, an example of a nontrivial absolutely prime
computable function on F to co is f(x)—p.i[xi = e].

Example 4. Suppose that cp contains only functions whose range lies in co, e.g.
characteristic functions of predicates. It is easy to verify then that for ux,..., uk e B,
[uy,..., uk]v n B={uy,..., uk}. Thus by Lemma 24, if f is absolutely prime
computable and carries B into B, then f is the identity on B.

6. The v-operator. In the definition of /¿-recursive functions on the natural
numbers we postulate that if the function g(i, x) is computable, then so is

p.i[g(i, x) = 0}

(as a partial function). On an arbitrary set B and its derived set F* there is in general
no natural well-ordering along which one might perform an indefinite search. The
analog of the it-operator is then an unordered search operator v,

vy[g(y> x) -* 0] = some y such that g(y, x) -> 0.

This operator may lead to a multiple-valued function even if g(.y, x) is single-valued,
just as the /x-operator may lead to partial functions even when applied to totally
defined functions. The formal definition of v is

(6.1) vy[g(y, x)^0]->zo g(z, x) -> 0.

In applying the search operator v we may imagine that the search is performed by
an oracle which, though unable to search in a finite amount of time through all of
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B* and determine whether (Ey)[g(y, x) ->- 0], may nevertheless search through
arbitrarily large parts of B* and eventually find all /s such that g(y, x) -> 0. The
role of that oracle relative to an arbitrary P seems to us not much different from the
role of a human computer when he searches for pi[g(i, x) = 0]. It is natural to
expect that for a reasonable computability theory over an arbitrary set B an oracle
more powerful than the human computer will be needed.

Those who cannot comprehend an unordered search, may imagine that this
oracle is searching through B* along a well-ordering which he knows, even though
we may not know it. Such well-orderings of B* always exist by the axiom of choice,
though they need not be definable in terms of any concepts which the human
computer will understand.

We define the class SC(cp) of search computable (or v-computable) functions on
P* to B* by adding to C0-C8 the v schema,

C9.   fix) = vy\giy,x)-*0]   <9,n,g>
and the corresponding clause

C9'. if{g}(y, x) -> 0, then {<9, «, *>}(x) -> y.
Clauses C0'-C9' then, together with a recursion clause of the usual type define a
predicate {/}v(«) ->zon finite sequences of elements of B*. Each/E P* defines a
search computable function {f}v(u) = {z; {/}v(«) ->-z}, and again we let SC(A, cp)
be the class of search computable functions with indices/E A*, SC(cp) = SC(B, cp).
The functions in SC(cp) = SC( 0, cp) we call absolutely search computable. For each
list gi,..., gm of variables over functions of lu..., lm arguments, each/£ B* defines
a search computable functional {/}v(gi,..., gm, «), as before. To each/ u, z such
that {/}v(«) -► z we assign an ordinal |/ u, z|v by adding to C0"-C8" clause

C9".    if{g}(y, x) ->0, then |<9, «, g>, x,y\ = \g, y, x, 0| + 1.
It is easy to verify by induction on C0'-C9' that, if {/}v(») -*■ z, then |/ u, z|» < co.

It appears to us that Church's thesis cannot be stated for abstract domains with
the precision with which it is stated for the natural numbers. By this we mean that
in the absence of more specific information about P and cp, one cannot define a
class of functions on B* which is so intrinsic that one can assert without reserva-
tions that it is the class of all functions on P* intuitively computable from cp.
Instead we would suggest that the classes of prime computable and search com-
putable functions form natural bounds for effective computability. We state this
precisely as our (weak) abstract version of Church's thesis, for single-valued
absolutely computable functions; people who believe in the computability of
arbitrary constants on an arbitrary set would wish to omit the word "absolutely",
but we have our reservations on this.

Let C, E be subsets of B*. Every single-valued, totally defined function on C to E
which is the restriction to C of an absolutely prime computable function is intuitively
effectively computable (from cp). Every single-valued totally defined function on C to
E which is intuitively effectively computable (from cp) is the restriction to C of an
absolutely search computable function.
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The most interesting cases here are of course when C=F and E=B or F=co.
There are many ways in which classes intermediate between PC(A, cp) and

SC(A, cp) can be introduced, e.g. by restricted search operators

f(*) = vyLveC&gCv,x)->0],

where C<=B*. In this paper however we shall confine attention from now on to
studying the classes SC(A, cp), leaving aside the more general theory of prime and
intermediate computabilities. We shall also restrict attention to functions and
predicates on B*, although we suspect that the more interesting aspects of the
theory will develop in studying functions and predicates on B.

Example 5. Let B={a, b} consist of exactly two elements, let cp consist of
functions with range in co, say characteristic functions of predicates, including
the characteristic function of x=y. The function

f(x) = vy[y =¡¿ x] = b   if x = a,
= a   ifx = b

is absolutely search computable on B, but not absolutely prime computable,
because of Example 4.

7. Elementary theory of search computable functions. In this section we shall
omit the proofs of lemmas which are identical with or parallel to results in §5.

Lemma 25. IffePRI, then{f}pr(u)={f}v(u). In particular PR(A, <p)^SC(A, cp).

Lemma 26. Iffe PR(A, gx,..., gm, cp) and for i= 1,..., m, g, e SC(A, cp), then
feSC(A,tp).

Lemma 27. The functions Sm(f, yx,.. .,ym) of Lemma 12 satisfy

(7.1) {fh(y,x) = {Sm(f,y)}v(x).

Moreover, if{f}v(y, x) -> z, then \f, y, x,z\v< \Sm(fiy), x, z|v.

Lemma 28. (a) The function EV(/ ¿') of Lemma 20 satisfies

(7.2) {EV(/, k'Mu, «') = {/},(«)•

Moreover, if{f}v(u) -> z, then \fi u, z|v< |(EV/ ¿'), u, u', z|v.
(b) The function FV(/ ¿') of Lemma 20 satisfies

(7.3) [FV(J, k')W, u) = {/}v(a).

Moreover, if{f}y(u) -> z, then \fi u, z|v< |FV(/, ¿'), «', «, z|v.

Lemma 29. Ifrc(f) is the function of Lemma 21 and m = rc(f), then

(7.4) {fUm, u) = {m}v(u).

(The recursion theorem.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



452 Y. N. MOSCHOVAKIS [April

Lemma 30. Consider the multiple-valued definition by cases

f(«) = gl(«)      Ífhy(u)^0,

(7.5)
= gm(«)     ifK(») -> 0,

i.e.

(7.6) f(«) -+ z o {[hy(u) -> 0 & gl(«) -> z] V ■ • • V [hm(«) -+ 0 & gm(«) -> z]}.

Fne« the functional

f(gi. • • •, gm, hi,..., hra, «) = f(n)

/"j absolutely search computable.

Proof. The functional

k(j1; I»,..., jm, tm) = vz[(sy = 0 & z = I,) v • • • V (jm = 0 & z = tm)]
is clearly absolutely search computable ; put

f(n) = k(hj.(K), gy(u),. ..,hm(u), gm(»)).

For the next two lemmas we need the method of Lemma 22.

Lemma 31. There is a combinatorial function p(/) such that for eachf,

(7.7) {f}P(u) = {p(f)Uu).

In particular, for each A^B, PC(A, cp) <= SC(A, cp).

Proof. We shall define p(/) as a search computable function from an index p,
then apply the recursion theorem, Lemma 29, and choose/? to be an index of p(/).
After p is chosen it will be obvious from the form of the definition that p(/) is
combinatorial. The definition is by Cases C0-C8 (on the form of/as an index of a
prime computable function) using Lemma 30.

Cases C0-C4. Put p(/)=/
Case C5. {/}(x) = {g}({h}(x), x). Put p(/) = <5, n, p(g), p(«)>.
Case C6. {f}(y, x)={g}(y, x) if y e P°,

{/}((j, t), x)={«}({/}(j, x), {f}(t, x), s, t, x).
Putp(/) = <6,«+l,pGr),p(«)>.
Case C7. {f}(x)={g}(xj+1, x1;..., x¡, xj+2,..., xn). Put p(/) = <7, n,j, v(g)>-
Case C8. {/}(e, x, y)={e}(x). Using Lemmas 27 and 28, choose a combinatorial

d(/) such that {d(f)},(p,f, e, x, y)={{p}v(e)}y(x) and if {{/>}v(e)}v(x) -^ z, then

|{/?}v(e), x, z\v < \d(f), p,f e, x, y, z\v,

andputp(/) = S2(d(7),Jp,/).
Otherwise. Putp(/)=0.
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To prove the lemma we show by induction on C0-C8' that

(7.8) TOp(«) -* z, then {p(/)}v(«) -> z,

and by induction on \f, u, z|v that

(7.9) ifif'Uu) -> z andf = p(/), then {/}p(«) -* z.

The first implication (7.8) is routine. Under the hypothesis of (7.9) it is impossible
that the Otherwise case applies in the definition of vif), smce {0}v(«) ¡s undefined.
Treatment of Cases C0-C7 is routine, and for Case C8 the method is that of Lemma
22: if {p(/)}v(t?, x, y) -> z, then {d(f)}v(p,f, e, x,y)-*z and by Lemma 27

|d(7)»P»7, e> x,y, z|» < |p(/), e, x,y, z|v,

hence {{/?}v(e)}v(x)-> z and |{/?}v(e), x, z|v< \d(J),p,f, e, x,y, z|v, hence by in-
duction hypothesis {e}p(x) -> z, hence by C8 {/}p(e, x, y) -> z.

Lemma 32. There is a combinatorial function trv(/ c), such that if x(u') — {c}v(u')
and f(«) = {/}v(x, «), ?«e« f(«) = {trv(/ c)}v(«). F«kj i/f e SC(A, gl,..., gm, cp) and
gi,..., gm e SC(A, cp), l«e« f e SC(A, cp). (Transitivity lemma.)

Proof. The function trv(/ c) is defined exactly like the function trp(/ c) of
Lemma 22, through the recursion theorem (Lemma 29 in this case) from an index
try of itself. There are now eleven cases in the definition, Case C9 added to Cases
C0-C8 and the Otherwise case. The definition is the same as that of trp(/ c) in
Cases C0-C8 and Otherwise.

Case C9. {/}(x, x) = vy[{g}ix, y, x) -+ 0]. Put trv(/ c) = <9, «, trv(g, c)>.
Proof of the assertion is again exactly like that of Lemma 22, Case C9 being treated
just like Cases C0-C7.

8. Normal form and recursion theorems. We seek an abstract analog to the
normal form theorem of ordinary recursion theory,

{/}(x)= UipyTnifx,y))

(t/ and Tn primitive recursive, [4, Theorem XIX]). Here we would expect that the
¿¿-operator is replaced by the v-operator, but on first thought no other serious
difficulty should arise. In setting up an induction for the analog of the T predicate
however, we meet clauses of the type "y is a computation for..."; in expressing
such clauses formally we need the equality predicate x=v, which up till now we
have not admitted to be necessarily computable. Of course, we could make the
blanket assumption that cp contains the representing function of x = v; this however
would exclude some natural applications (e.g. the case of absolute computability
on the continuum, see Example 2 and [19]) and seems unnatural to us on aesthetic
grounds. With a little extra work we shall obtain essentially the same theorem with
no such assumption on cp.
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Our idea is to notice that whether (our analog for) T(f x, y) holds or not depends
only on the "finitely generated" part [/, x, y]v of B*; this part can be indexed by
elements of co, on which equality is a combinatorial predicate by Lemma 3.

For simplicity we shall confine ourselves to single-valued totally defined cp's, so
that primitive computable functions are single-valued totally defined.

Theorem 1. Let each cp, in cp be single-valued and total. For each k there is a
function U(f, u, y) and a predicate T(fi u, y), both absolutely primitive computable
in cp, such that

(8.1) {/}v(«)= U(f,u,vyT(fiu,y)).

Similarly with function arguments, for fully defined single-valued gx,..., gm,

(8.2) {/}v(gi,.. •, gm, «) = U(gy,..., gm,/ u, vyT(gy, ...,gm,f u, y)).

(Normal form theorem.)

Proof. We define the predicate {/}v(«) -+w z on finite sequences / u, w, z of
elements of B* by restricting the existential quantifiers in clauses C0-C9' to [w]v
and adding to each clause the condition

(8.3) fiuy,...,uk,ze[w]v.

Thus C0-C4' are unchanged, except for condition (8.3), and C5', C8', for example
become:

C5'(w). If there exists a ue [w]v such that {h}(x) ->-„, u and {g}(u, x) ->„ z, then
{/}(x)->wz.

C8'(w). If ee [w]v and {e}(x) -^w z, then {/}(<?, x, y) -+w z.
One easily proves by induction on C0'(w)-C9'(w) and C0-C9' that:

(8.4) //{/}v(«) ->„ z and [w]v c [w']v, then {/}(«) -►„. z.

(8.5) IfWM -*» z, then {/}v(«) -* z.

(8.6) If{f}M) -* z> then there exists a w such that {f}v(u) ->w z.

For this proof we shall use the notations

(8.7) <u'y,...,u'k}a =piï,..-,ptiy   Q>o = 2,/>i = 3,/>2 = 5,...),

(8.8) (u')f = largest j such that pi divides u'.

As indicated in these definitions we shall also use accented italic letters as variables
over co.

The set I <^ co of indices of elements in [w]$, for an arbitrary w, is defined by the
following inductive clauses:

(a) <0,0>" = le/,<0, l>" = 3e/,
(8.9) (b) if x', y' e I, then <1, x', />ffl e /, <2, x'}a e I and <3, x'>ra e /,

(c) if ti./; e /, then <4+/, tí,..., ?;>" e l-
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It is obvious that / is primitive recursive in the sense of [4], hence combinatorial
in our sense. We define a function val (/, w) which assigns to each i e I an element
of [w]tp by the following course of values induction on i.

(a) val (1, w) = 0, val (3, w) = w.
(b) val «1, x', />-, w) = (val (x', w), val (/, w)),

val «2, x'ya, w) = tr val (x', w),
(8.10) val «3, x'y°, w) = 8 val (x', w).

(c) val «4+1, t¡,..., i;>, w) = cp((val it[, w),..., val (i;, w)),
i= 1,...,/.

(d) val (i, w) = 0 if i $ I.

It is clear that val (/, w) is absolutely primitive computable in cp.
We define a predicate Piw,f, u', a, b) on finite sequences

w,f, u', a,b = w,f, u'y, ...,u'k,a,b

where w e B* and/', u[,..., u'k, a,bea>, which will mean approximately "a is a
computation of length á¿> which proves that {/}v(k) ->-„, z", where/= val if', w),
«¡=val iu'i, w) (/= 1,..., k) and z=val ((a)o, w). The definition is by nested induc-
tion on b, and is such that if P(w,/', u, a, b) holds, then/', wi,..., u'k, a < b, so that
P(w>,/', «', a, 0) is false. The definition of Piw,f u', a, b+l) is by eleven cases,
namely Cases C0-C9, an Accumulation case which asserts that

Piw,f, «', a, b) => Piw,f, u', a, b+l)
and an Otherwise case.

In stating the case hypotheses for Cases C0-C9 we follow the practice established
in Lemma 12, of writing down the defining condition for {/}(«) rather than the
condition that/must satisfy: here

/ = val if', w),
(8.11) ,

w, = val (m¡, w),       i = 1,..., k

and in general, if the letters c, c' appear in a case, the convention is that

(8.12) c'eoj,   c = val (c', w).

To recall the notation conventions established in §2 which help understand the
definition in each case, we include in the case hypothesis not only the defining
condition for {/}(«), but also the special notation adopted for u in schemata
C0-C8, e.g. in CO, u=ty,..., tnt, x,u' = t[,..., t'M, x', where by (8.12)

ty = val it'y, w),..., tnt = val (/;,, w), Xy = val (xi, w),..., xn = val (x;, w).

The implied conditions on w,f, u', for each case hypothesis are absolutely
primitive computable, since by (8.12)/« are absolutely primitive computable
functions of w,f, u'.
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Accumulation Case. IfP(w,f, u, a, b), then P(w,f, u', a, b+l).
Case CO. u' = t'y,..., t'ni, x', {/}(«) = cpi(/1,..., Q, i=\,...,l.

P(w,f, u',a,b+\) of, u',aèb& « = <4, i, t'y,..., Q».

Case Cl. h' = x', {/}(«)=j.

P(w,f, «', a, b+ 1) of, u',aèb& « = <2, <3, O,/')»)")"-

CaseC2. «'=/, x', {/}(«) =j.

P(w,f, u', a, b+l) of, u',a ^ b& (0)$ = y'.

Case C3. u'=s', t', x', {f}(u) = (s, t).

P(w,f, u', a, b+l) of, u',a^b& (a)$ = <1, s', f>".

CaseC40. u' =/, x', {/}(«) = Try.

P(w,f, u', a, b+l) of, u',aúb& « = <2, />•

CaseC4i. u'=y, x',{f}(u) = 8y.

P(w,f, u', a, b+l) of, u',a¿b& « - <3, />*.

Case C5. u' = x', {/}(«)={^}({«}(x), x).

F(w,/', «', c7, è+1) o/V, a Ú b & F(w, «*, x', (a)?, è) &
P(w, g*, ((«)S% *', («)£, 6) & ((a)?)? = (o)ff,

where g* = <2, <3, <3,/'>™>M>w, and «* = <2, <3, <3, <3,/T>T>w.
Case C6. Subcase (a). «'=/, x' and j=val (/, w) e F0, {f}(u) = {g}(y, x).

P(w,f, u', a, b+l) of, u',aíb &P(w, g*, u', (a)f, b) & « = ((a)^.

Subcase (b). «' —y'', x' and y = val (/, w) $ B°,
{f}(u) = {h}({f}(Try, x), {/}(Sj, x), Try, Sy, x).

P(w,f, «', a, b+l) of, u',aúb&. P(w,f <2, />•, x', (a)?, è)
& Fíw,/, <3,/>», *',(<,)»,*)
&F(>v, «*, ((a)?)£, ((a)|)c?, <2, />«, <3, / >«,

x, «, è)
&((« = (<,

where in both subcases, g* and «* are defined as in Case C5.
Case C7. w' = x', {/}(«)={g}(x;+1, xl5..., xy, xi+2,..., xn).

P(w,f,u',a,b+ 1) of,u',a g b&P(w,g**,x'j+x,x'x,.. .,x'j,x'j+2,.. .,x'n,a,b),

where g** = <2, <3, <3, <3, g>co><u>û,>0,.
Case C8. «' = e', x', y', {/}(«) = {e}(x).

P(w,f, u', a, b+l) of, u',aSb &P(w, e', x', a, b).
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Case C9. u' = x', {/}(«) = vy[{g}iy, x) ->0].

Piw,f, «', a, b+l) of, u',aúb&. P(w, g*, «, x', (a)?, b) & val ((a)?)?, w)=0,

where g* is as in Case C5.
Otherwise. P(vf,/', «', a, b) is false.
It is now tedious but straightforward to prove by induction on b that

ifPiwJ', u', a, b), then {/}v(«) ->„, z,
(8.13)

wheref = val (/', w), u¡ = val («i, w), i = I,..., k, z = val ((a)o, w),

and by induction on the definition of {/}v(«) -+w z that

if {/}»(") ->» z a«c// = val (/', w), »! = val (u'y, w),..., uk = val (u'k, w),
(8.14)

i//e« I«ere exist an a and a b such that P(w,f, u', a, b) and z = val ((a)o, b).

Now (8.4)-(8.6) imply that

(8.15)        {/}v(«) -». z o (Ew)[{f}v(u) -*„ z] o (Ew)[{fUu) -+<„,,,„> z]

(where (w,f u) = (w,fi «ls..., uk}), hence by (8.13) and (8.14) we have

(8 16\       {/}v(a) ̂  Z ** (Ew)(Eb)(Ea)[P«w,f u),f°, u\,..., u°k, a, b)
K "   ' &z = val((c7)g,,<w,/«»],

where/0, u\,.. .,uk are fixed integers, depending on k and chosen by (8.9) so that

(817) val (A <",/,«»=/,
val (u°, <w,f •»>=«„       i = 1, • • •, k.

Thus relation (8.1) holds if we set

(8.18) T(f u, y) oP«(y)0,f, «>,/°, u\, ...,u°k, (v)1; (y)2),

(8.19) ViJ, u, y) = val ((QOOí?, <(j)o,/ «»•

To complete the proof we must still show that the predicate F(/ «, y) is absolutely
primitive computable in cp, since t/(/, u, y) is clearly absolutely primitive comput-
able in cp. For this purpose we condense all the variables in P except b into one,

(8.20) Qiv, b) o Seq (t>) & (F)0 ä 1 & P((»)l5 (»)a,..., (»)(e)o.ls (i>)<„,0, Ä).

It is now easy to see that the induction for P becomes a nested induction for the
characteristic function of Q of the type covered by Lemma 9, so that Q, hence
P and T are absolutely primitive computable in cp.

Relation (8.2) follows immediately, since cp is arbitrary in (8.1).
Remark 8. Theorem 1 shows that the enumeration schema C8 is superfluous in

the definition of search computability. This is not the case in higher order theories,
where one studies computability in given objects of higher type over B*.
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Remark 9. Suppose that cp is empty, B^ 0, be B, let {/}»(») be single-valued
on b* and mapping b* into b*. Using the notation of the proof of Lemma 5 and the
result proved there, that if f(«) is primitive computable from b, then f(uf,.. .,u()
= (f(ux,.. .,uk)Y, we have

(8.21) uy,...,ukeb*& T(f u, y) => [F(/#, u,y#) & U(f, u,y#) = (U(fi », j))#].
Conversely,

(8.22) «!,..., uk 6 b* & T(f, », y*) => /(/ », y);

because if /(/ », y), then F(/#, », j^). Thus if {/}v(») maps ¿>* into Z>* and is
single-valued on b*, then

(8.23) Ui,..., uk 6 b* => {/},(«) = £/(/#, », ^Lv e b* & /(/#, », y)]).

Then, using the technique of the first part of the proof of Lemma 5, it is easy to
see that every function which is. search computable in the empty cp, which is single-
valued on co and maps co into co, coincides on co with a partial recursive function in the
sense of [4]. By Lemma 31 this covers the case of prime computable functions as
well. The proof is similar (and a little easier) if B= 0.

Remark 10. Let us define {/}p(») ->■„ z for prime computability by the clauses
C0'(w)-C8'(iv), just as we defined {/}»(») ->w z for search computability. It is easy
to show by induction on C0'-C8' (using Lemma 24) that

(8.24) {/}„(«) -► z => {/}„(«) ^<f,u> z.

From this and an analysis of the proof of Theorem 1 we see that if cp consists
of totally defined single-valued functions, then there exist absolutely primitive
computable U(f, », y) and T(f, », y) such that

{/}P(«)= U(f,u,viecoT(fi «,/)).

Since prime computable functions are single-valued, this is equivalent to

(8.25) {/}„(«) = U(f, », p.iT(fi », i)).
Thus for prime computability the enumeration schema C8 is superfluous if we allow
the /x-operator, exactly as in the case in ordinary recursion theory over co.

In addition to the analog of (8.1), there are normal forms for partial recursive
functionals which make explicit the dependence of each value of the functional on
only finitely many values of the argument (see Lemma 34 below). Such normal
forms are quite messy here and we shall try to avoid using them. We need one weak
result of this type in proving Post's theorem in the next section.

Let a vary over fully defined single-valued one-place functions from B* to B*
and let us write val (a, i, w) and P(a, w,f, »', a, b) for the function val and the
predicate F of the proof of Theorem 1 relative to the list cp' = a, cp. We define
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a new function val (v, i, w) and a new predicate P(v, w,f, «', a, b) by altering
clause (c) of (8.9) to

«„ val(v,(4+l,tyr,w) = (v)ti + y,
(8.26) val (v, <4+/+ l, t'y,..., O", w) = ç»,(fi,. ..,Q,       ; = 1,..., /

and substituting val (v, i, w) for val (a, i, w) in the definition of P(a, w,f, u', a, b)
throughout.

Put

(8.27) &(w, i) = <a(val (a, 0, w)),..., a(val (a, i- I, w))}.

It is easy to prove by finite induction on j that

(8.28) j < i &v = à(w, i) => [val (a,j, w) = val (v,j, w)].

From this it follows by induction on b, using the fact that P(a, w,f, u', a, b)
=>f',u'y,. ..,u'k,a<b, that

(8.29) b í i & v = «O, i) => [Pia, w,f, «', a, b) o P(v, w,f, «', a, b)].

Finally we show that

(8.30) v = àiw, i) o Seq (o) & (i>)0 = / & (JW(c)/+1 = «(val (»,/, w))].

To prove (8.30) in the direction =>, simply notice that if v = ä(w, i), then for each
/</, (v)j+1 = a(val(a,j, w)), so by (8.28), (y)y+1 = a(val(t;,/, w)). For the converse
implication we only need show that for each/< 1, (v)i+1 = a(val (a,/ w)), i.e. that
val (<*,/ w) = val (v,j, w). We do this by finite induction on/ The only nontrivial
case is when /=<4, t[ya, when val (a,/ u>) = a(val (a, t'y, vv)) = a(val (v, t[, w)) (by
induction hypothesis) = (f)ii+1 (by assumption) = val (v, tí, w) (by definition). Thus
we have the following

Lemma 33. Assume cp consists of totally defined, single-valued functions, let a
vary over fully defined, single-valued functions. For suitable absolutely primitive
computable val (v,j, w) and P(v, w,f, «', a, b), we have

{/}„(«, u) -+ z o (Ew)(Ev)(Ea)(Eb)[P(v, <w,/ «>,/°, u\,..., u°k, a, b)
(8.31) & z = val (v, (a)%, (w,fi «» & Seq (v) & (v)0 = b

& (0i<6[(f).+i = «(val (v, i, (w,fi «»)]].

For the next lemma we need the notation gcg' introduced by (1.7).

Lemma 34. Let "g", "g"' be variables for functions of n variables.
(a) IfifUg, u)^z and g cg', then {/}v(g', u) -> z.
(b) If{f}v(g, u) -> z, then there exists a finite set x», z1;..., x;, z} of n+l-tuples

such that g(xj) -»■ rls..., g(xy) -^ zy a«c/ whenever g'(xi) -> zi,..., g'(x¿) -* zj>
I«e« {/}v(g', h) -> z.

Proofs of both (a) and (b) are easy by induction on C0-C9.
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Theorem 2. Assume cp consists of totally defined, single-valued functions, let "g"
be a variable over n-place functions, let f(g, x) be a p.m.v. functional in SC(A, cp).
There exists a g(x) in SC(A, cp) such that

(8.32) (x)[f(g, x) . g(x)],
and
(8.33) '/(x)[f(g', x) = g'(x)], then g «= g'.

(The first recursion theorem.)

Proof is by the usual method of iteration. Set

go = 0 (the nowhere defined function),
(8.34) g;+1(x) = ffe,x)

g(x) = limit, g,(x), i.e. g(x) -> z o (Ej)[g¡(x) -> z].

Using Lemma 34 it is easy to prove by induction on/ that

(8.35) g, c gy+1,

(8.36) if(x)[f(g', x) = g'(x)], then g, c g', «e„ce g <z g'.

To prove (8.32) we use (b) of Lemma 34: If f(g, x) -> z, then for some j we must
have f(gy, x)->z, hence gj+x(x)->z, hence g(x)->z. Conversely, if g(x)->z,
then for some/ g,(x) -> z, hence by (8.34) f(g;, x) = gJ+1(x) ->• z, hence by Lemma
34 f(g, x) -> z.

To complete the proof it remains to show that g is in SC(A, cp). If
f(g, x) = {/}v(g, x), Lemma 32 implies that

(8.37) g0(x) - {0}v(x),   gi+1(x) = (/}v(g„ x) = {trv(/ gj)}y(x),

where gj is an index of g¡. Hence indices for the functions g¡ can be found by the
induction

(8.38) g0 = 0,   gi+1 = trv(f,g,)

and using Theorem 1 we can put

h(x) = vy[T(giy)0, x, (y)y)],   g(x) = U((h(x))0, x, (h(x))x).

Remark 11. Using Lemma 22 and Remark 10 one can easily see that the first
recursion theorem holds also for prime computability.

Remark 12. The first recursion theorem implies in the usual way that the classes
PC(A, cp) and SC(A, cp) (for totally defined, single-valued cp) are closed under
inductive definitions. In particular, they are closed under course of values induction
(with the g of (3.22) perhaps partial or multiple-valued) and nested recursion (with
the g, h, p of (3.24) perhaps partial or multiple-valued).

9. The projective hierarchy. We recall that a predicate F(») on B* is search
computable if its characteristic function is search computable, and similarly for the
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other classes of functions that we have introduced. In this section we extend these
classes of predicates by quantification (over P*) to define what we shall call the
projective hierarchy. This is the abstract version of the arithmetical and analytical
hierarchies of ordinary recursion theory and of the projective hierarchy of de-
scriptive set theory.

For this section we make the blanket assumption that cp consists of single-valued
total functions.

Let A be a fixed subset of P. We define the classes of predicates o°(A, cp), n°(A, cp)
by the following induction on n :

(a) P(h) is in oliA, cp), if there is a predicate R(y, u) whose
characteristic function  is  in  SCiA, cp),  such  that P(u)
o(Ey)R(y,u).

K • ; (b) Pirn) is in n°(A, cp), i/P(«) is in o°(A, cp).
(c) P(«) is in <j°+i(A, cp) if there is an R(y, u) in trn(A, cp) such

that P(u) o (Ey)R(y, u).

In using these notations we often suppress the dependence on cp and write trn(A),
cr°iA). We also use the printing conventions we have established:

(9.2) on = oni0),<,n = a°niB),   nn = nn(0),nn = n°n(B).

We put

(9.3) 81(A) = T*iA) n °°n(A),       82 = 82(0),       S°n = 8%B)

and we call a predicate in \Jn 8°(A) projective from A, in \Jn 8° absolutely projective,
in \Jn Sn projective.

We classify sets in the classes trn(A), a°(A), 8°(A) by their representing predicates.

Lemma 35. (a) Each of the classes o°(A), trn(A) and 81(A) is closed under the
operations of conjunction, disjunction, substitution of functions from SC(A) and
bounded number quantification.

(b) o%A) is closed under existential quantification over B*.
(c) TTniA) is closed under universal quantification over B*.
(d) A predicate P(«) /j i« cr°L4) if and only if there exists anfe A* such that

(9.4) P(«)o{/}v(«)^0,

i.e. if and only if the extension ofPiu) coincides with the domain of a p.m.v. function
which is search computable from A.

Proof. Consider the following equivalences :
(i) (Ey)R(y, u) & (Ey)Q(y, u) o (Ey)[R((y)0, u) & Q((y)y, «)],
(ii) (Ey)R(y, u)v(Ey)Q(y, u) o (Ey)[R(y, u)V Q(y, «)],

(iii) (Ey)R(y, u, f(u)) o (Ey)[xB(y, u, f(u))=0],
(iv) iEi)i<¡iEy)Rii, y, u) o (£y)[(j)0 £ o & ( v)0 <j & /?((v)0, (j)1; «)],
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(v) (i)l<j(Ey)R(i, y, u) o (F^)(0,<yF(/, (y\, «),
(vi) (Ez)(Ey)R(z, y, «) o (Ey)R((y)0, (y)x, u).

Using these equivalences it is easy to show (a)-(c) by induction on «, first for a?04),
then assuming them for a°(A), and proving them for tt°(A) and a°+x(A).

To prove (d) in one direction, notice that if (Ey)R(y, u) is in <?X(A), the function
f(u)=0vyR(y, u) is in SC(A). For the other direction we use the normal form
theorem,

f(») -> 0 o (Ey)[T(f », y) & U(f, u, y) = 0]
(the predicate in brackets with/e A* fixed is in SC(A), since Fand t/are absolutely
primitive computable and the constant function/is primitive computable from A).

Lemma 36. If R(u') is in 8%(A) and Q(u) is search computable from A in R(h'), cp,
then Q(u) is in 8°(A).

Proof. The lemma asserts that if

(9.5) Xc(«) - i(Xn, u),

where xq, Xr are the characteristic functions of Q and R and the functional f(x, u) is
search computable from A, and if R(u') is in 8°(A) then Q(u) is in 8°(A).

We may assume that R(u') is a predicate of one variable, since if not, then we can
substitute for it R(u) o R((u)x,..., (u)k). If fe A* is an index of f(x, »), using
Lemma 33 we have

Ö(«) o (Ew)(Ev)(Ea)(Eb){P(v, (w,f u),f, u\, ...,u°k,a, b)
& val (v, (a)$, (w,fi «» = 0 & Seq (v) & (v)0 = b
& (i)i<b{[(v)i+i = 0 o F(val (v, i, (w,fi «»)]

& K»)i+1 = 1 o Ä(val (v, i, <w, f, u»)]}},

which implies that Q(u) is in o°(A). We also have

Q(u) o (w)(v)(a)(b){{P(v, (w,f »>,/°, u\,..., ul, a, b)
& Seq (v) & (v)0 = b
& (i)i<»{[(v)i+i = 0 o F(val (v, i, (w,fi «»)]

& [(v)i+i = 1 o F(val (v, i, < w, fi «»)]}}
=>val(i>,«,<u>,/,H» = 0}

which implies that Q(u) is in tt1(A).

Theorem 3. Consider the double sequence of predicates

,n ^   (£»7;(/' »» y)> (Eyi)(y2)T(f, », yx, y2), (Eyy)(y2)(Ey3)T(fi », ylt y2, y3),...
(9.6) _ _

(y)T(f, », y), (yy)(Ey2)T(fi », ylt y2), (yx)(Ey2)(y3)T(f, », yx, y2, y3),....

Each of these predicates enumerates the class o°(A) or tt°(A) in which it is, as f varies
over A*. (Enumeration theorem.)
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Proof. To prove the theorem for SJL4), let P(u) o (Ey)R(y, u) be given, put
f(u) = vyR(y, u). Then f(«) is in SC(A), say f(«)={/}„(«), hence

P(u)of(u)\ o(Ey)T(f,u,y).

The theorem follows for the other classes by taking negations and quantifying.

Theorem 4. (a) o°(A) u 77°04)CS°+1(/1). (b) o°-it°¿ 0 ; n°n-a°^ 0 ; hence in
particular, for each A, a°iA)-n°iA)^ 0, n°iA)-(j°iA)^ 0 ■ iHierarchy theorem?)

Proof, (a) is immediate. To prove (b), say for «=1, consider the predicate
(£v)F(// v) which is in a\ and assume it were also in it?. Then for some m we
would have

(Ey)T(f,f,y)o(y)T(m,f,y)
which is contradictory when f—m.

Remark 13. Let us define the classes of predicates o°(A; C), nn(A; C) (C^B*)
to consist of those predicates on C which are restrictions of predicates in o°(A),
Tn(A) respectively. The classical diagonal argument above shows that o^(A ; A*)
-TTn(A; A*)+ 0, so we get the usual hierarchy theorem in this "normal" case.
However this argument says nothing about the interesting classes o°( 0 ; B),
tt°(0 ; B), <j°(B; B), tt°ÍB; B). General theorems of the type we treat here cannot be
proved about these classes, since e.g. if P is finite there are clearly only finitely
many distinct an(B; B) classes.

Theorem 5. (a) A predicate P(u) is search computable from A, if and only if
P(u) £ 81(A).

(b) A predicate P(u) is in 8j¡+1(,4) if and only ifP(u) is search computable from A
in predicates in <r°(A) u irn(A). (Post's theorem.)

Proof. That a predicate search computable in predicates in o°(A) u tt°(A) must
be in 8°+1(A) follows immediately from Theorem 4(a) and Lemma 36. Con-
versely, if P(u) is in 8l+1(A), then

P(u) <=> (Ey)R(y, u) o (y)Q(y, u)

and then the characteristic function of P(u) is given by

yp(h) = 0   ifOvyR(y,u)-*0,
= 1    ifO-vyQ(y,u)->0

which shows that P(u) is search computable in R(y, u), Q(y, u).
Proof of (a) is similar, though a little simpler.
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