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ABSTRACT FUNCTIONS WITH CONTINUOUS DIFFERENCES

AND NAMIOKA SPACES

BOLIS BASIT AND HANS GÜNZLER

Abstract. Let G be a semigroup and a topological space. Let X be an
Abelian topological group. The right differences 4hϕ of a function ϕ : G→ X
are defined by 4hϕ(t) = ϕ(th)− ϕ(t) for h, t ∈ G. Let 4hϕ be continuous at
the identity e of G for all h in a neighbourhood U of e. We give conditions on
X or range ϕ under which ϕ is continuous for any topological space G. We
also seek conditions on G under which we conclude that ϕ is continuous at e
for arbitrary X. This led us to introduce new classes of semigroups containing
all complete metric and locally countably compact quasitopological groups.
In this paper we study these classes and explore their relation with Namioka
spaces.

1. Introduction, notation and main definitions

Unless otherwise specified G will stand for a topological space (usually (semi)
group) and X for an Abelian Hausdorff topological group with identity 0. If X is
a locally convex space and p is one of its continuous seminorms, we set Xo = {x ∈
X : p(x) = 0}. It follows that Xp = X/Xo is a normed space. We denote by j the
natural homomorphism of X onto X/Xo. Let C(G,G) be the space of continuous
functions from G to G. We assume that ϕ : G→ X satisfies the following property
at the point to of the open set U ⊂ G:

(i) for each t ∈ U there exists h ∈ C(G,G) such that h(to) = t,

(ii) Thϕ = ϕ ◦ h− ϕ is continuous at to.
(tr-d)

If G is a semigroup and ϕ : G → X , then ∆hϕ(t) := ϕ(th) − ϕ(t) and ∆hϕ(t) :=
ϕ(ht) − ϕ(t) will denote respectively the right and the left difference by h; ρh, λh
will stand for the mappings defined by ρh(t) = th, λh(t) = ht for all h, t ∈ G.

This paper is concerned with the following problems
(P.1) Find conditions on X or range ϕ under which ϕ satisfying (tr-d) is contin-

uous at to for arbitrary space G.
(P.2) Find conditions on G under which ϕ satisfying (tr-d) is continuous at to

for each locally convex space X .
We give a necessary and sufficient condition to solve (P.1) and obtain new results

for differences on semigroups. We investigate (P.2) in the case: G is a semigroup
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4490 BOLIS BASIT AND HANS GÜNZLER

with identity e, X is a locally convex linear space and condition (tr-d) is replaced
by

for each h ∈ U , the right difference 4hϕ is continuous
at e.

(∆)

The study of (P.2) led us to introduce the following classes:

Definition 1.1. Let G be a semigroup with identity e and a topology. Then
(i) G is called of D-type if and only if there exists a sequence (Vn) of neighbour-

hoods of e such that

for any sequence (tn) with tn ∈ Vn for n ∈ N, the
sequence (τm) defined by τm := tmtm−1....t1 for m ∈N,
has a convergent subnet.

(D)

(ii) G is called of ∆-type [respectively weak∆-type] if and only if for each
neighbourhood U of e and each function ϕ : G→ X with X a locally convex space,
ϕ bounded on U and 4hϕ continuous at e for all h ∈ U [ respectively all h ∈ G], ϕ
is continuous at e.

Definition 1.2. A Hausdorff topological space G is called a weak Namioka space if
and only if for each compact Y , each separately continuous function Φ : G×Y → R
and each nonvoid open U ⊂ G, there exists a ∈ U such that Φ is continuous on
{a} × Y .

Similar concepts with game-theoretic interpretations have been introduced by
Choquet [7, p. 106], Christensen [8] and Saint-Raymond [15]. We note that
Namioka spaces (see [15]) are weak Namioka spaces.

Finally, for the convenience of the reader, we recall the following definitions.
Let G be a semigroup and a topological space (see [4, p. 26]). Then G is called

(α) a right (left) semitopological semigroup if the map ρh (λh) is continuous for
all h ∈ G;

(β) a semitopological semigroup if the maps ρh and λh are continuous for all
h ∈ G;

(γ) a topological semigroup if the multiplication (s, t)→ st from G×G to G is
continuous.

(δ) a semitopological (quasitopological) group if G is a group and a semitopo-
logical (topological) semigroup.
Let G be a semitopological group, X be a Hausdorff Abelian group and ϕ : G→ X .
Then ϕ is right (left) uniformly continuous if for each neighbourhood W of 0 of X
there exists a neighbourhood V of e such that ∆vϕ(t) ∈W (∆vϕ(t) ∈W ) for all v ∈
V and t ∈ G. ϕ is uniformly continuous if it is left and right uniformly continuous. If
G is a totally bounded quasitopological group, then ϕ is right uniformly continuous
if and only if it is left uniformly continuous.

This paper consists of five sections. In section 2 we show that the conditions
given in [2] in the case (∆) are also necessary and sufficient to solve (P.1) for any
topological space G and ϕ with (tr-d). We also extend and improve recent results
in [16]. In section 3, we prove that D-type quasitopological regular groups are σ-
complete Baire spaces (Theorem 3.2) and a weak Namioka semitopological group
is of weak ∆-type (Proposition 3.4). The main result of section 4 states: D-type
quasitopological regular groups are of ∆-type. In section 5, we refine and extend
several results on uniformly continuous differences [3, 9, 10, 11].
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2. Differences on topological spaces

In this section we study continuity of functions defined on a topological space
G with values in an Abelian Hausdorff topological group X . We assume that
ϕ : G → X satisfies property (tr-d) (see the introduction) at the point to of the
open subset U ⊂ G. Special G satisfying (tr-d) (i) are semitopological groups or
homogeneous topological spaces.

If X is a linear topological space, we write co 6⊂ X if and only if X does not
contain a subspace isomorphic to co (the Banach space of real valued sequences
convergent to 0). We call the subset ϕ(U) of X relatively weakly sequentially
complete if and only if every weak Cauchy sequence from it converges weakly to an
element from X . The spaces X = Cn for some n ∈ N and X weakly sequentially
complete Banach spaces satisfy co 6⊂ X .

Theorem 2.1. Let {ϕ,U,X} satisfy one of the following
(a) X is a Fréchet space (i.e. complete locally convex metric ) and co 6⊂ X.
(b) X is a sequentially complete locally convex space and ϕ(U) is relatively weakly

sequentially complete.
Let ϕ : G → X with arbitrary topological space G be bounded on U and satisfy
(tr-d). Then ϕ is continuous at to.

Proof. First, we prove the case where X is a Banach space. Let ϕ(to) = 0.
Assuming the contrary, there exists εo > 0, a sequence (tn) ⊂ U and a net
(hi)i∈F ⊂ C(G,G), where F is the set of all finite subsets i = {n1, n2, ..., nm}
of N such that n1 < n2 < ... < nm, satisfying the following :

||ϕ(tn)|| ≥ εo and tn ∈ U for all n ∈ N;(2.1)

hn,nm,nm−1,....,n1(to) = hnm,nm−1,....,n1(tn) ∈ U, hn(to) = tn(2.2)

for all 1 ≤ n1 < ... < nm < n,m ∈ N; and ϕ − ϕ ◦ hi is continuous at to, for all
i ∈ F .

||ϕ(hn,nm,nm−1,....,n1(to))− ϕ(tn)ϕ(hnm,nm−1,....,n1(to))|| < εo/2
n(2.3)

for all 1 ≤ n1 < ... < nm < n, n,m ∈N.

Indeed, denote by i(n) = {j∈F : j⊂{1, 2, ..., n}}, Un={t : hi(t)∈U , for all i ∈
i(n)} ∩ U and Wn(ε) = {t : ||∆iϕ(t) − ∆iϕ(to)|| < ε, for all i ∈ i(n)} ∩ U . By
assumptions, there exists εo > 0 and t1 ∈ U such that ||ϕ(t1)|| ≥ εo. Choose
h1 ∈ C(G,G) such that h1(to) = t1 and ϕ−ϕ ◦ h1 is continuous at to. We proceed
by induction. If {t1, t2, ..., tn−1} and {hi : i ∈ i(n− 1)} are chosen satisfying (2.1)-
(2.3), we select tn ∈ Un−1∩Wn−1(εo/2

n−1) such that ||ϕ(tn)|| ≥ εo. Then we choose
hn,nm,nm−1,....,n1 satisfying (2.2). Clearly (2.1)-(2.3) are satisfied. Let π = (nk) with
nk < nk+1 for all k ∈ N. Set sm =

∑m
k=1 ϕ(tnk) and s̃m = ϕ(hnm,nm−1....,n1(to)).

Let σm = sm − s̃m. From the identity

σm − σm+p =ϕ(hnm+p,....,n1(to))− ϕ(tnm+p)− ϕ(hnm+p−1,....,n1(to))

+ ....+ ϕ(hnm+1,....,n1(to))− ϕ(tnm+1)− ϕ(hnm,....,n1(to)),
(2.4)

and (2.3), we conclude that (σm) is a Cauchy sequence. Denote its limit by yπ. We
show that

(sm) and (s̃)m are weakly sequentially Cauchy.(2.5)
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Indeed, from the identity sm = σm + s̃m, we get (sm) is bounded. This means
that for each subseries

∑∞
k=1 ϕ(tnk) the sequence (sm) of partial sums is bounded

and hence
∑∞
n=1 ϕ(tn) is weakly unconditionally convergent (see [5]). This implies

that the sequence s̃m := ϕ(hnm,nm−1,....,n1(to)) is weakly sequentially Cauchy and
under the condition (b), s̃m → xπ ∈ X and sm → yπ + xπ weakly as m → ∞.
Therefore under (a) or (b), by [5] or Orlicz’s Theorem

∑∞
n=1 ϕ(tn) is convergent,

contradicting (2.1). The case X is a Fréchet space can be treated similarly. To
prove (b) when X is locally convex we apply the above arguments to j ◦ ϕ. This
proves that ϕ is continuous at to.

Corollary 2.2. Let G be a right semitopological semigroup with identity e. Let ϕ :
G→ X be bounded on some open neighbourhood U of e and let ∆hϕ be continuous
at e for all h ∈ U [respectively all h ∈ G]. If either (a) or (b) of Theorem 2.1
holds, then ϕ is continuous at e. If in addition,

(i) V t is a neighbourhood of t ∈ G if V is for e, then ϕ is continuous on U
[respectively on G]. In particular, if G is a group, ϕ is continuous on U [respectively
on G].

(ii) G is a totally bounded quasitopological group and ∆hϕ is uniformly continu-
ous for all h ∈ G, ϕ is uniformly continuous on G.

Proof. Since G is a right semitopological semigroup with identity e, ρh ∈ C(G,G)
and ρh(e) = h for all h ∈ G. We have ϕ ◦ ρh − ϕ = ∆hϕ is continuous at e for all
h ∈ U . By Theorem 2.1, ϕ is continuous at e. Using the additional condition (i),
and the continuity of ∆hϕ at e, ϕ is continuous at each point h ∈ U [respectively
h ∈ G]. If G is a group, the proof is obvious.

(ii) By (i), ϕ is continuous on G. Let E be a neighbourhood of 0 ∈ X . Choose
such a neighbourhood E1 of 0 that E1+E1−E1 ⊂ E. There exists a neighbourhood
V of e such that ∆vϕ(e) ∈ E1 for all v ∈ V . Since G is a quasitopological group,
there exists such a neighbourhood V1 of e that V1V1 ⊂ V . Since G is totally
bounded, one can choose {t1, ..., tn} ⊂ G such that G =

⋃n
k=1 V1tk. Set V2 =⋂n

k=1{w : [∆tkϕ(wt) − ∆tkϕ(t)] ∈ E1 for all t ∈ G} ∩ V1. Let t = τtk for some
τ ∈ V1 and 1 ≤ k ≤ n. The identity

ϕ(vt)− ϕ(t) = ϕ(vτtk)− ϕ(τtk)

= [∆tkϕ(vτ) −∆tkϕ(τ)] + [ϕ(vτ) − ϕ(e)]− [ϕ(τ) − ϕ(e)]

shows that ∆vϕ(t) ∈ E for all v ∈ V2 and t ∈ G, proving that ϕ is left uniformly
continuous. Hence it is right uniformly continuous, by a statement above.

Let G be a locally compact group. Recall that a function ϕ : G → X is weakly
Haar measurable if and only if x∗ ◦ ϕ is Haar measurable for all x∗ ∈ X∗. A
weakly Haar measurable function ϕ is called continuous if and only if there is a
continuous function ψ : G→ X such that ϕ = ψ almost everywhere on G. Denote
by L∞w (G,X) the space of all bounded weakly measurable functions.

Corollary 2.3. Let Γ be a dense subgroup of a compact topological group G and let
X be a complete locally convex space. Let ϕ : G → X satisfy one of the following
conditions:

(i) ϕ is bounded and ∆hϕ ∈ C(G,X) for all h ∈ Γ.
(ii) ϕ ∈ L∞w (G,X), the dual space of X has a countable separating set M and

∆hϕ is continuous (in the above sense) for all h ∈ Γ.
If either (a) or (b) of Theorem 2.1 holds, then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABSTRACT FUNCTIONS WITH CONTINUOUS DIFFERENCES 4493

if (i), the restriction ϕ|Γ of ϕ to Γ is uniformly continuous and has a unique con-
tinuous extension Φ ∈ C(G,X). Moreover, ψ(h) := ∆hϕ is uniformly continuous
on Γ.

if (ii), ϕ is continuous in the above sense.

Proof. (i) Since Γ is a dense subgroup of the compact group G, it is a totally
bounded topological group. By Corollary 2.2 (ii), ϕ|Γ is uniformly continuous.
This implies that the range of ϕ|Γ is a relatively compact subset of X . Since X
is complete, there exists a unique extension of ϕ|Γ to a function Φ ∈ C(G,X). It
follows that Ψ(h) := ∆hΦ, h ∈ G, is a continuous function on G. It is easy to verify
that ψ(h) = ∆hΦ, h ∈ Γ. Hence ψ = Ψ|Γ is a uniformly continuous function.

(ii) Denote by Ψh the continuous representative of ∆hϕ. We have Ψhk(t) =
Ψk(th) + Ψh(t) for all h, k ∈ Γ and all t ∈ G. Define ψ : Γ → X by ψ(h) = Ψh(e)
for all h ∈ Γ. Then ψ is a bounded function satisfying ∆hψ = Ψh|Γ. By (i) ψ is
uniformly continuous on Γ and has a unique continuous extension Ψ ∈ C(G,X).
Moreover, Ψ(t) − ϕ(t) = Ψ(th) − ϕ(th) almost everywhere on G for each fixed
h ∈ Γ. Since Γ is dense in G and ϕ is bounded and weakly Haar measurable,
we conclude x∗ ◦ (Ψ − ϕ) ∗ f = c(x∗, f), where c(x∗, f) ∈ C for each x∗ ∈ X∗

and f ∈ C(G). Since x∗ ◦ (Ψ − ϕ) is integrable, there is (fn) ⊂ C(G) such that
x∗ ◦ (Ψ− ϕ) ∗ fn(t)→ x∗ ◦ (Ψ− ϕ)(t) almost everywhere on G. This implies that
x∗ ◦ (Ψ − ϕ)(t) = c(x∗) almost everywhere. Since the dual of X has a countable
separating set M , Ψ(t) = ϕ(t) +a with a ∈ X almost everywhere. This proves that
ϕ is continuous.

Special X where Corollary 2.3 can be applied are the spaces of test functions
or Schwartz distributions; X separable Fréchet space ; X Fréchet space and ϕ is
strongly measurable (meaning j ◦ϕ is Bochner measurable for each j corresponding
to a countable number of seminorms determining the topology of X).

Example 2.4. (i) Consider the compact multiplicative group T = {eit : 0 ≤ t <
2π}. The function ϕ(eit) = 0 if t ∈ Q, ϕ(eit) = 1 if t ∈ R − Q, shows that under
the assumptions of Corollary 2.3 (i), ϕ itself is not necessarily continuous and the
continuous extension of ϕ|Γ is almost everywhere equal to ϕ− 1.

(ii) Let X = l2(T ), the Hilbert space of all square summable real valued functions
defined on the compact group T . Denote by χt the characteristic function of the
point set {t} of T . Define ψ : G → l2(T ) by ψ(t) = χt. Obviously, x∗ ◦ ψ is a
bounded measurable almost everywhere zero function for each x∗ ∈ (l2(T ))∗, but
ψ 6= 0 almost everywhere. This demonstrates that for our proof the condition of
Corollary 2.3 (ii) that the dual of X has a countable separating subset is necessary.

(iii) There exists a non-measurable function (see [13, p. 87]) χ : R → C such
χ(x + y) = χ(x)χ(y), |χ(x)| = 1 for all x, y ∈ R and χ(x) = 1 for all x ∈ Q.
We have ∆rχ(x) = 0 for all r ∈ Q and x ∈ R. This means that measurability is
necessary in Corollary 2.3 (ii).

We note that Theorem 2.1 extends [2, Theorem 2.1] to a more general setting.
Corollary 2.3 strengthens recent results in [16, Theorem 1, Lemma 1].

3. Properties of D-type groups

In this section we study D-type groups and give the relationship between weak
Namioka groups and those of weak ∆-type.
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Proposition 3.1. (i) If G is a semigroup with identity e, then G is of D-type if
and only if there is a sequence of open neighbourhoods (Wn) of e such that

for any sequences nk, tk with nk < nk+1, tk ∈Wnk for
k ∈ N, (τm) defined by τm := tmtm−1...t1 for m ∈ N,
has a convergent subnet.

(3.1)

(ii) If G is a semigroup with identity e, if (Vn) is a sequence of neighbourhoods
of e such that Vn ⊂ Wn for all n ∈ N and if (Wn) satisfies (D), then (Vn) also
satisfies (D).

(iii) If G is a quasitopological group which either (a) satisfies the first axiom of
countability and is (sequentially) complete, or (b) is locally countably compact, then
G is of D-type.

Proof. (i) ‘if’ is obvious. ‘only if’: First, choose open neighbourhood Un with
e ∈ Un ⊂ Wn; then Vn :=

⋂n
k=1 Uk are open neighbourhoods of e with Vn+1 ⊂

Vn ⊂ Wn. If tk ∈ Vnk , then tk ∈ Vk ⊂ Wk since k ≤ nk for all k ∈ N. By (D), τm
has a convergent subnet.

(ii) Direct verification.
(iii) Choose (Vn) such that

is an open neighbourhood of e and Vn+1Vn+1 ⊂ Vn for
n ∈N.

(3.2)

This is possible since G is a quasitopological group. If G satisfies (a), and (Wn) is
a neighbourhood basis of e, choose additionally the Vn as subsets of Wn, and if G
satisfies (b), choose V1 countably compact. Then (Vn) satisfies (D).

In the following if A ⊂ G, then A will denote the closure of A and A
o

the interior
of A.

Theorem 3.2. If G is a quasitopological group of D-type, then
(i) G is a Baire space if additionally G is regular.
(ii) G is σ-complete; i.e Cauchy sequences are convergent.

Proof. (i) By contradiction: Assume that U is a non-empty open subset of G and

U =
⋃∞
n=1En with En

o ∩ U = ∅ for n ∈ N. One has U =
⋃∞
n=1 Fn ∩ U with

Fn = En − En
o

closed in G, F on = ∅. Since for closed sets A,B with empty
interior also A ∪ B has empty interior, one can assume Fn ⊂ Fn+1. Since for M
open respectively closed subset of G also tM and Mt are open respectively closed
subsets, one can further assume e ∈ U . By Proposition 3.1 and regularity of G, we
can choose (Vn) satisfying (3.1) and VnVn ⊂ Vn−1 ⊂ V1V1 ⊂ U , n > 1. Inductively
construct sequences (Mn), (tn), (Un), (Sn), (Wn) with : M1 = F1, t1 ∈ V1 −M1, U1

and S1 open with e ∈ U1 ⊂ V1 and M1 ⊂ S1, S1 ∩U1t1 = ∅, W1 open with e ∈W1,
W1W1 ⊂ U1. If n > 1 and Mj, ...,Wj are constructed for all 1 ≤ j ≤ n − 1, then

Mn := Fnt
−1
1 ...t−1

n−1, tn ∈Wn−1 ∩ Vn −Mn, Un, Sn,Wn open with e ∈ Un ⊂Wn−1,
Mn ⊂ Sn, Untn ∩ Sn = ∅, WnWn ⊂ Un. Such tn, ...,Wn exist, since by the above
Mn is closed with empty interior and G is a regular topological semigroup. If
τm := tmtm−1....t1 = tmtm−1....tk+1τk, 1 ≤ k < m, then tm...tk+1 ∈ Unk (proof by
induction on p, m = k + p, since Wn ⊂ Un ⊂ Wn−1 ⊂ Un−1, tk+1 ∈ Wk). Thus if
1 ≤ k < m,

τm ∈ Ukτk, Ukτk disjoint with Sktk−1...t1 ⊃ Fk.(3.3)
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By Proposition 3.1 (i) there is a subnet (τm(i)) converging to some τ ∈ G; since

τm ∈ U1τ1 ⊂ V1t1 ⊂ V1V1 ⊂ V1V1 ⊂ U , τ ∈ U . Thus there is n0 with τn0 ∈ Fn0 ;
furthermore there is i0 with m(i) > n0 if i ≥ i0. Since τ belongs to the open subset
Sn0tn0−1...t1, there is i ≥ i0 with τm(i) ∈ Sn0tn0−1...t1 and m(i) > n0, contradicting
(3.3). This proves (i).

(ii) Let (Vn) be a sequence of open sets with (D). Let (an) be a Cauchy sequence
of G, that is ana

−1
m → e as n,m → ∞. One chooses inductively nk < nk+1 such

that ana
−1
m ∈ Vk for n,m ≥ nk. Indeed, choose n1 ∈ N such that ana

−1
m ∈ V1 for

n,m ≥ n1. Choose n2 such that ana
−1
m ∈ V2 for n,m ≥ n2 > n1. We can proceed

by induction. If tk = ank+1
a−1
nk , then tk ∈ Vk for k ∈ N and τm = tmtm−1...t1 =

anma
−1
n1

. It follows by Proposition 3.1 (i), the sequence (ank) has a convergent
subnet. Hence (an) is convergent for (an) is Cauchy.

Corollary 3.3. Let G be a quasitopological group satisfying the first axiom of
countability. Then G is of D-type if and only if it is complete.

Proof. For sufficiency, choose a basis system of neighbourhoods (Vn) of e satisfying
(3.2). Let (tk) ⊂ G, tk ∈ Vnk and nk < nk+1. Let τm = tmtm−1...t1. Then (τm) is
a Cauchy sequence from G and therefore it is convergent, for G is complete. Hence
(Vn) satisfies (D), by Proposition 3.1 (i). Necessity follows from Theorem 3.2.

Proposition 3.4. If G is a weak Namioka semitopological group then G is of weak
∆-type.

Proof. First, assume that X is a real normed space. Let Y = B∗ with B∗ the
unit ball of the dual Banach space X∗ of X . Let Φ : G × B∗ → R be defined by
Φ(t, x∗) = x∗ ◦ ϕ(t). If ϕ is as assumed in the definition of weak ∆-type, then by
Corollary 2.2 (i) x∗◦ϕ is continuous on G. Since x∗◦ϕ(t) is continuous for each fixed
t ∈ G, it follows that Φ(t, x∗) is separately continuous on G×B∗. As G is a weak
Namioka space, Φ is continuous on {a}×B∗ with a ∈ G. Using the compactness of
B∗, ϕ is continuous at a. By the identity ϕ(th) = ∆hϕ(t)−∆aϕ(t)+ϕ(ta), a, h, t ∈
G, ϕ is continuous on G. Now, let X be locally convex space. Let p be a seminorm
of X . The above argument can be applied to j ◦ϕ. This proves that ϕ is continuous
on G and implies that G is of weak ∆-type.

The class of Namioka spaces contains all separable Baire spaces [6], [15] and
all strongly countably complete regular spaces (see [8], [14]). The latter spaces
are contained in the class of σ-well α-favorable spaces defined in [8]. This implies
that semitopological groups of weak ∆-type include all Namioka semitopological
groups; in particular all separable Baire semitopological groups, all strongly count-
ably complete regular semitopological groups, all σ-well α-favorable and all σ − β
defavorable semitopological groups (see [15]).

Example 3.5. (i) Let J be a linear rational basis of R (see [13, Satz 3]) and ξ ∈ J .
Let G be the subgroup of R consisting of all rational linear combinations with
elements from J \ {ξ}. Then G is a metric topological group, it is Baire separable
and thus a Namioka space, thus of a weak∆-type. Since G is not sequentially
complete it is not of D-type, by Theorem 3.2 (ii).

(ii) Denote by Rs the additive group of reals endowed with the topology gener-
ated by the basis neighbourhood system {[0, x[: x > 0} of 0. Then Rs is a normal
quasitopological group which is not a topological group. It is of weak ∆-type but
not of D-type.
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Problem 1. Is every semitopological group of weak ∆-type a weak Namioka
space?

Problem 2. Does the class of semitopological groups of weak ∆-type properly
contain ∆-type semitopological groups?

4. Differences on D-type topological groups

In this section, we study the relation between groups of D-type and those of
∆-type. Also, we discuss differences on weak Namioka semitopological groups and
underline some possible extensions to the case where X is a separable linear metric
space with separating dual space and the case where G is an Abelian group endowed
with two topologies.

Theorem 4.1. Let G be a D-type regular quasitopological group and X be a locally
convex space. Assume that the function ϕ : G → X is bounded on an open set U ,
e ∈ U and its difference ∆hϕ is continuous at e for all h ∈ U . Then ϕ is continuous
at e. In short, a D-type regular quasitopological group is of ∆-type.

Proof. First we give the proof in the case where X is a normed space. Let x∗ be
an element of the dual Banach space X∗. Consider x∗ ◦ ϕ. By Corollary 2.2 (i),
x∗ ◦ ϕ is continuous on U . This means that

ϕ is weakly continuous on U.(4.1)

Since G is a regular quasitopological group, by Proposition 3.1 (i), (iii) we can select
V0 and (Vn) all open neighbourhoods of e satisfying (3.1) and VnVn ⊂ Vn−1 ⊂ U .
We also can assume that X is a Banach space and that ϕ(e) = 0. Assuming that
ϕ is not continuous at e there exists εo > 0 and a sequence {tn} satisfying

||ϕ(tn)|| ≥ εo and tn ∈ Vn for all n ∈ N;(4.2)

tntnmtnm−1 ....tn1 ∈ V0 for all 1 ≤ n1 < ... < nm ≤ n− 1, n > 1,m ∈N;
(4.3)

||ϕ(tntnmtnm−1 ....tn1)− ϕ(tn)− ϕ(tnmtnm−1 ....tn1)|| < εo/2
n

for all 1 ≤ n1 < ... < nm ≤ n− 1, n > 1,m ∈ N.
(4.4)

Indeed, by our assumptions we can find εo > 0 and t1 ∈ V1 such that ||ϕ(t1)|| ≥ εo.
Put Eτ (ε) = {t : ||∆τϕ(t) − ∆τϕ(e)|| < ε}. From the continuity of ∆t1ϕ at e it
follows that the set Et1(εo/2) ∩ V1t

−1
1 ∩ V2 ⊂ U is a neighbourhood of e. Hence

there exists t2 ∈ Et1(εo/2) ∩ V1t
−1
1 ∩ V2 such that ||ϕ(t2)|| ≥ εo. The construction

can proceed by induction. If t1, t2..., tn−1 are found, then tn can be selected such
that ||ϕ(tn)|| ≥ εo and tn ∈ Etnm tnm−1

....tn1
(εo/2

n) ∩ V1t
−1
n1
....t−1

nm ∩ Vn for all 1 ≤
n1 < ... < nm ≤ n − 1, n > 1,m ∈ N. Clearly, (4.2)-(4.4) are satisfied. By
Proposition 3.1 (i), for any subsequence π = (tnm) with nk < nk+1 the sequence
(τm) defined by τm = tnmtnm−1 ....tn1 has a subnet, say (τ)i∈Λ which converges to
τπ ∈ G. It follows from the choice of (Vn) that τ ∈ U . Set sm =

∑m
k=1 ϕ(tnk) and

s̃m = ϕ(tnmtnm−1 ....tn1). Using (4.1), we get

(s̃)i∈Λ weakly converges to ϕ(τπ).(4.5)

Let σm = sm− s̃m. By σm−σm+p = ϕ(tnm+p ....tn1)−ϕ(tnm+p)−ϕ(tnm+p−1 ....tn1)+
.... + ϕ(tnm+1 ....tn1) − ϕ(tnm+1) − ϕ(tnm ....tn1), and (4.4), we conclude that (σm)
is a Cauchy sequence. Denote its limit by yπ. Arguing as in the proof of (2.5),
we get (sm) and (s̃)m are weakly sequentially Cauchy. From (4.5), we conclude
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k=1 ϕ(tnk) = yπ +ϕ(τ) weakly. By Orlicz’s Theorem, it follows that

∑∞
n=1 ϕ(tn)

is convergent, contradicting (4.2).
Now, let X be locally convex space. Let p be a continuous seminorm of X . The

above arguments can be applied to j ◦ϕ. This proves that ϕ is continuous at e.

Remark 4.2. (i) Theorem 4.1 holds true for separable linear metric spaces X with
separating dual space. In this case we apply a Theorem of Kalton [12, corollary of
Theorem 3] which extends Orlicz’s Theorem.

(ii) Theorem 4.1 holds correspondingly if only ϕ : U → X is given, U neighbour-
hood of e (with V V ⊂ U , ∆hϕ|V continuous at e).

Also, using [12, Theorems 3 and 7] and the same method of the proof of Theorem
4.1, one can obtain:

Theorem 4.3. Let G be a D-type regular quasitopological group and X an Abelian
group endowed with two Hausdorff topologies ρ and τ such that ρ ≤ τ , (X, τ) is a
separable topological group and one of the following two conditions is satisfied:

(K1) (X, ρ) is separable and τ is complete and metrizable;
(K2) τ has a base of ρ-closed neighbourhoods of 0.

Let ϕ : G → X be ρ-continuous on an open U with e ∈ U and for each h ∈ U the
difference ∆hϕ is τ-continuous at e. Then ϕ is τ-continuous on U .

5. Uniformly continuous differences

Let G be a semitopological group and X a Hausdorff topological Abelian group.
Denote by Cru(G,X) the space of all right uniformly continuous functions (see
section 1) endowed with the topology of uniform convergence on G. If X is locally
convex, Crub(G,X) will stand for the subspace of bounded functions of Cru(G,X).

In this section ϕ : G→ X will denote a function satisfying the following:

∆hϕ ∈ Cru(G,X) for all h ∈ U , where U is some neigh-
bourhood of e.

(5.1)

Let ψ, ψ̃ be defined respectively by ψ(h) = ∆hϕ for h ∈ G and ψ̃(h) = ∆hϕ for

h ∈ U and ψ̃(h) = 0 for all h ∈ G \ U . We give the following

Lemma 5.1. Let ϕ : G→ X and ψ, ψ̃ be as above. Then
(i) ϕ ∈ Cru(G,X) if and only if (5.1) holds and ψ|U : U → Cru(G,X) is

continuous at e.
(ii) (5.1) implies ∆kψ ∈ Cru(G,Cru(G,X)) for all k ∈ U .

(iii) (5.1) implies ∆kψ̃ is continuous at e for all k ∈ V , where V is a neighbour-
hood of e satisfying V V ⊂ U .

Proof. (i) If ϕ ∈ Cru(G,X), not only left, but also right translates Rhϕ(t) := ϕ(th)
are right uniformly continuous on G (h−1sh is continuous at s = e), so (5.1) holds
for U = G; ∆vψ(e) = ∆vϕ gives (i).

(ii) follows from ∆kψ(h) = ∆hkϕ−∆hϕ = Rh∆kϕ if h, k ∈ G, and the proof of
(i).

(iii) follows from ∆kψ̃(h) = ∆hkϕ−∆hϕ = Rh∆kϕ if h, k ∈ V .

Theorem 5.2. Let G be a ∆-type quasitopological group, X locally convex and
ϕ : G→ X. If ϕ satisfies (5.1) and if ψ̃, defined as above, is bounded in Cru(G,X)

on some neighbourhood Ũ of e, then ϕ is right uniformly continuous.
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Proof. Choose a neighbourhood V of e such that V V ⊂ U ∩ Ũ . By assumption on
ψ̃|Ũ , one has now ψ̃ : G → Crub(G,X), and ψ̃|V is bounded in Crub(G,X). By

Lemma 5.1 (iii), ∆kψ̃ : G→ Cru(G,X) is continuous at e for each fixed k ∈ V , this
also as a function from G to Crub(G,X). Since Crub(G,X) is locally convex, by

definition of ∆-type, ψ̃ is continuous at e, this also as a function: V → Cru(G,X).
Therefore, ϕ is right uniformly continuous, by Lemma 5.1.

Theorem 5.3. Let G be a weak Namioka semitopological group, X locally convex.
If ϕ : G→ X is bounded and satisfies (5.1) with U = G, then ϕ is right uniformly
continuous.

Proof. By Proposition 3.4, G is of weak ∆-type. The assumptions imply that ψ,
ψ(v) := ∆vϕ is bounded and by Lemma 5.1, ∆kψ ∈ Crub(G,Crub(G,X)) for all
k ∈ G. By Definition 1.1 (ii), ψ is continuous at e. Therefore, ϕ is right uniformly
continuous, by Lemma 5.1.

Remark 5.4. (i) (5.1) is necessary in Theorem 5.2 by Lemma 5.1; for normed X , ψ
bounded on some neighbourhood is necessary.

(ii) Theorem 5.2 is also true if X is a separable metric linear space with separating
dual and G additionally is separable. (For Remark 4.2, here Crud(G,X) has to be
separable metric, thus G separable; the dual of Crud(G,X) is then automatically
separating; Crud(G,X) is the set of all ϕ ∈ Cru(G,X) with d(ϕ, 0) <∞, d(ϕ,ψ) =
supt∈G dX(ϕ(t), ψ(t)).

The assumptions of uniform boundedness of the ∆hϕ in Theorem 5.2 can be
weakened as follows

Corollary 5.5. Let G be a D-type regular quasitopological group, X locally convex,
∆hϕ right uniformly continuous on G for each h ∈ G, ∆hϕ bounded on G for each
fixed h from some nonempty open set V , and ϕ bounded on some other nonempty
open set W . Then ϕ is right uniformly continuous on G.

Proof. By left translation one can assume ϕ is bounded on some neighbourhood of
e. As in the proof of Theorem 4.1, one can assume X is normed. If ∆hϕ is bounded
for h ∈ V , it is for h ∈ U := V V −1, a neighbourhood of e. By Theorem 4.1, ϕ is
continuous at e, then on G. If Mn := {u ∈ U : ||∆uϕ(s)|| ≤ n, for all s ∈ G}, then
Mn are closed in U and U =

⋃∞
n=1Mn. By Theorem 3.2 (i), some Mn contains a

nonempty open P ; then ||∆uϕ(s)|| ≤ 2n for all s ∈ G, u ∈ PP−1, = neighbourhood
of e and Theorem 5.2 can be applied.

Remark 5.6. (i) None of the conditions of Theorem 5.2 can be omitted. All the
differences of the function ϕ : R→ co; ϕ(t) = (sin(t/n)) are almost periodic. This
means that ∆hϕ is bounded and uniformly continuous on R for h ∈ R endowed
with the Bohr topology, but ϕ is not continuous at any point of R with the Bohr
topology (see [1, p. 54]). This also gives an example of a totally bounded topological
group which is not of D-type or of ∆-type.

(ii) For continuous ϕ and complete metric G, Corollary 5.5 is also true if ∆hϕ ∈
Cru(G,X) for h ∈ P where P is second category in G and V is also only of second
category.

(iii) If G is locally compact, ‘V and W of positive Haar measure ’ also suffices
in Corollary 4.4 ([9] proof of Theorem 2.3 there; V −1V is a neighbourhood of e).
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(iv) With G obviously also G ×K is of D-type if K is countably compact; this
gives examples of topological groups where Theorem 5.2 and Corollary 5.5 hold,
but the groups are neither locally compact nor metrizable.

(v) Because of Proposition 3.1, the above results subsume earlier results of [11,
Lemma 4, p. 266] and [9, section II.4, corollary] for locally compact abelian groups.
Theorem 5.3 also subsumes [3, Theorem 4.1].

(vi) The assumption ψ|U bounded in Cru(G,X) is not necessary, similarly for
the weaker assumption in Corollary 5.5. We give the following example.

Let G = ZN, the topological product of countable many copies of the integers Z
with their discrete topologies. Let X = RN with the topology of pointwise conver-
gence. If ϕ((z)n) := (z2

n)n∈N, then ϕ is uniformly continuous, but no ∆hϕ, h 6= e
is bounded. So, ∆hϕ only belong to Cru(G,X) but do not belong to Crub(G,X).
So condition (5.1) is more applicable as it stands.

The function ϕ(t) = t2, G = X = R shows that the uniform continuity of ∆hϕ
for all h ∈ R alone is not enough for uniform continuity of ϕ.

(vii) The boundedness of ϕ in Theorem 5.3 can be replaced by: To each continu-
ous seminorm p of X there exists an open V = V (p) with e ∈ V and sup{p(∆hϕ(t)) :
h ∈ V, t ∈ G} < ∞. This condition is also necessary. If G is a Baire space, the
boundedness on G only of ∆hϕ for each fixed h from some open V0 (and ϕ bounded
on some open W ) would be enough as in Corollary 5.5. Similarly Theorem 5.2 and
other results of this section can be strengthened.
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