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ABSTRACT.   Cohomology groups Ha(X, E) are defined, where X is a
topological space and £ is a sheaf on X with values in Kan's category of
spectra.   These groups generalize the ordinary cohomology groups of X with
coefficients in an abelian sheaf, as well as the generalized cohomology of
X in the usual sense.   The groups are defined by means of the "homotopical
algebra" of Quillen applied to suitable categories of sheaves.   The study of
the homotopy category of sheaves of spectra requires an abstract homotopy
theory more general than Quillen's, and this is developed in Part I of the paper.
Finally, the basic cohomological properties are proved, including a spectral
sequence which generalizes the Atiyah-Hirzebruch spectral sequence (in gen-
eralized cohomology theory) and the "local to global" spectral sequence (in
sheaf cohomology theory).

Introduction.   In this paper we will study the homotopy theory of sheaves of
simplicial sets and sheaves of spectra.   This homotopy theory will be used to
give a derived functor definition of generalized sheaf cohomology groups H^iX, E),
where X is a topological space and E is a sheaf of spectra on X, subject to
certain finiteness conditions.   These groups include as special cases the usual
generalized cohomology of X defined by a spectrum [22] and the cohomology of
X with coefficients in a complex of abelian sheaves.   The cohomology groups
have all the properties one would expect, the most important one being a spectral
sequence

Ep2q = HpiX, n_  E) =■» Hp+*iX, E),

which generalizes the Atiyah-Hirzebruch spectral sequence (in generalized coho-
mology) and the "local to global" spectral sequence (in sheaf cohomology), and
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420 K. S. BROWN

which yields a Leray spectral sequence for a map.
The cohomology theory is developed in Part II of the paper.   The necessary

homotopy theory is done by showing that there are definitions of fibration, co-

fibration, and weak equivalence such that certain categories of sheaves satisfy
Quillen's axioms for homotopy theory [21],  Because of the restrictions on the
categories of sheaves to which this applies, the resulting homotopy theory is
somewhat unsatisfactory.   For this reason we develop in Part I (which is not es-
sential for the main results of Part E) a more general abstract homotopy theory
than that of [21], and we illustrate its application to sheaves in §3.

I wish to thank my thesis advisor D. Quillen, who suggested the problem of
defining generalized sheaf cohomology and who gave me helpful advice on how

to attack the problem.   The motivation for studying generalized sheaf cohomology
was the hope that the theory might apply to (higher)algebraic TC-theory.   This
application, together with some substantial improvements of the theory in case X
is a noetherian space of finite Krull dimension, has been worked out in collabora-
tion with S. Gersten at the algebraic TC-theory conference, at the Battelle Seattle
Research Center (August 1972), and will appear in the proceedings of that con-
ference.

PART I.  ABSTRACT HOMOTOPY THEORY

1.   Categories of fibrant objects.    Let 6 be a category with finite products
and a final object e.  Assume that C has two distinguished classes of maps,
called weak equivalences and fibrations.   A map will be called an aspherical

fibration if it is both a weak equivalence and a fibration.   Following [21], we de-
fine a path space tot an object B to be an object B   together with maps

(dn,d.)
B-^B1      °   *   > BxB,

where s is a weak equivalence, idQ, dj is a fibration, and the composite is the
diagonal map.  We will use"the notation (ß , s, dQ, d.) for a path space.

We will call C a category of fibrant objects for a homotopy theory (or simply
a category of fibrant objects) if the following axioms are   satisfied.

(A) Let / and g be maps such that gf is defined.   If two of /, g, gf ate
weak equivalences then so is the third.   Any isomorphism is a weak equivalence.

(B) The composite of two fibrations is a fibration.  Any isomorphism is a
fibration.

(C) Given a diagram
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HOMOTOPY THEORY AND SHEAF COHOMOLOGY 421

with v a fibration, the fibred product A xc B exists and the projection pr: A xc ß
-* A  is a fibration.    If v is an aspherical fibration then so is pr.  In other
words, fibrations and aspherical fibrations are preserved by base extension.

(D) For any object B there exists at least one path space B   (not neces-
sarily ftinctorial in ß).

(E) For any object B the map B —» e is a fibration.
Examples.   1.  If (£' is a model category [21] and if C is the full subcategory

consisting of the fibrant objects in C (i.e., the objects B for which the map B
—*e is a fibration), then £ is a category of fibrant objects in the sense of the
above definition.

2. Let X be a topological space, let o(X) be the category of sheaves on X
with values in the category of simplicial sets (or, equivalently, o(X) is the cat-
egory of simplicial objects in the category of sheaves of sets), and let S(X)B be
the full subcategory consisting of those sheaves which stalkwise satisfy Kan's
extension condition [ll], [19]. We define a map to be a fibration (or weak equiv-
alence) if it is stalkwise a fibration (or weak equivalence) in the sense of Kan.
Then S(X)g is a category of fibrant objects.

3. If 3 is an abelian category then the category of chain complexes in U
(infinite in both directions) is a category of fibrant objects, where a weak equiv-
alence is defined as a map inducing homology isomorphisms and a fibration is a
surjective map (cf. [13]).

The following lemma will be our basic tool in what follows.

Factorization lemma.   // £ is a category of fibrant objects and u is any map
in C, then u can be factored u = pi, where p is a fibration and i is right in-
verse to an aspherical fibration.  (In particular,  i is a weak equivalence.)

Proof.   We will imitate the standard method in (ordinary) homotopy theory for
converting a map to a fibration.   Let u: A ~* B be the given map, choose a path
space (B', s, dQ, dj, and let C = A xfi B1 (which exists because dQ: Bl -* B
is an (aspherical) fibration-see [21]). Let i: A —» C be the map with components
(id^, su), and let p: C —» B be the composite r/j °pr2.  Then i is right inverse
to prj, which is an aspherical fibration, being a base extension of dQ; and p is
a fibration because it is the composite of

idxd.
A xB B'-» AxB

with the projection AxB -* B.  (Note that id x d^ is the base extension of Bl
—*B xB by k x id: Ax B -* B x B, and A x B —» B is a base extension of

A —» e, so both are fibrations by axiom (C).)  Then u = pi is the required fac-
torization.
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422 K. S. BROWN

Remark.   Notice that axiom (D) can be obtained from a weak form of the fac-
torization lemma (which requires of ¿ only that it be a weak equivalence) applied
to the diagonal map B —» B x B.   In some applications it is just as easy to verify
directly this form of the factorization lemma as to verify axiom (D).

2.  The homotopy category.   Let C be any category with a distinguished
class of maps called weak equivalences.   Then by the homotopy category of C
(denoted Ho C) we mean the category obtained from C by inverting the weak
equivalences (see [ll], [13], [2l]).

In other words, we have a functor y: C —► Ho C such that yis) is an iso-
morphism if s   is a weak equivalence, and y is universal for this property.

The category Ho C being defined by a universal property, it is a nontrivial
matter to explicitly describe the maps in Ho (£.    But in case £ has the additional
structure of a category of fibrant objects, which we now assume, we can obtain
such a description by using an appropriate notion of homotopy, defined as follows.
Two maps f, g: A =ÎB are called homotopic if for some path space ÍB1, s, dQ,
</j) there is a map h: A —» Bl (called a homotopy) such that dQh = / and rfjTj =g.
We will write / ss g.   By piecing together path spaces as in [21] one can prove
that homotopy is an equivalence relation.

As a first indication of the relevance of the concept of homotopy to the study
of Ho C, note that homotopic maps become equal in Ho C.  In fact, since the
two weak equivalences d0, d^: B * ̂ 3 ß have a common cross-section s,

yU0) = y(s)-1 = y(i71),

which implies yif) = yig).
The behavior of the homotopy relation with respect to composition of maps is

described in Proposition 1 below.

Lemma 1.   Any diagram

A->E

•I     \,
X->B

with i a weak equivalence and p a fibration can be imbedded in a diagram

A->X'->E
P

->B
with t an aspherical fibration.

Proof.   Apply the factorization lemma to the map A —» X xß E.
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HOMOTOPY THEORY AND SHEAF COHOMOLOGY 423

Lemma 2.   Let u: B —* C be a
¿j ) be path spaces.   Then we can

ical fibration t: B   —* B , and
gram commutes:

B

B I. B

Wr dj)\

BxB

<4,.«£)
U X u

-+C

w:
-*CxC.

<i>

Proof.   This is an easy consequence of Lemma 1 applied to the square

C
s   o«

(arf0,udj)

(«£. 4)
*C x C.

Proposition 1.   Assume f — g: A —+ B.   Then
(i)  if- u: C —> A is arbitrary then fu =* gu: C —» B;

(ii)   if u: B —* C is arbitrary and C   is any path space for C, then there is
an aspherical fibration t: A —» A such that uft ~ ugt: A —» C by a homotopy
h: A'-* Cl.

Proof,   (i)  is trivial.   For (ii), let h: A -*♦ ß' be a homotopy from / to g,

let Cl be an arbitrary path space for C, and let B1' be as in Lemma 2.  Then we*
can take

A' = Ax   ,b'\
b'

t = pt: A  —* A, and then the composite

i   pr       /'     ¡T       jA ->ß   ->C

is a homotopy from uft to z/gí.    D
We now define, as an approximation to Ho C, a category nc with the same

objects as G and with Homffi, (A, B) equal to the quotient of Hom^ (A B) by the
equivalence relation / ~ g if there is a weak equivalence i: A  —» A such that
ft ~ gt.   [The proof that this relation is transitive makes use of Proposition 2(a)
below as well as Proposition 1.   The same is true of the proof that the relation

is compatible with composition of maps.]  It is clear that Ho C is obtained from
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77C by inverting the weak equivalences, and this localization is easily described
because of the following proposition.

Proposition 2.   The class of weak equivalences in nC admits a calculus of

right fractions in the sense of [ll], i.e.,
(a) ííTry diagram

A^C J-  B

¿72 C with t a weak equivalence can be imbedded in a homotopy commutative

square

A'-*B•1   I-
A->C

with t    a weak equivalence; and
(b) given f, g: A =+ B, if there is a weak equivalence t: B —» C such that

tf sa tg, then there is a weak equivalence t : A  —> A such that ft   m gt :

t' f t
g

The proof is based on the "homotopy-theoretic fibred product":

Lemma 3.   Given a diagram

A i   C £ B,

the projection A xc C  x- B —► A ¿s a fibration.   Furthermore it is aspherical if
v is a weak equivalence.

Proof.   The projection is the base extension by a of a map C1 x- B —» C
which is essentially the same as the fibration p constructed in the proof of the
factorization lemma.   The result is now immediate.

Proof of Proposition 2.   Property (a) follows from the lemma by taking A   =

A xc C xc B and t ' = pr: A' —» A.
To prove (b), let h: A —» C1 be a homotopy from tf to tg, where (C1, s, dQ,

d.) is a path spacer let D = ß xc C  xc B, and observe that we have a map 77:
A —* D whose components are (/, h, g) and a map ¿: B —► D whose components
are (id, st, id).  Now the projections D =5B are weak equivalences by the lemma,
and it follows that ¿ is a weak equivalence.   Thus if we factor ¿ as a composite
B —* D  —» D   as in the factorization lemma, the map D —* D will be an aspher-
ical fibration.   On the other hand, the projection D —> B x B is a fibration, being
a base extension of C' —* C xC, and so the composite D* —» D—»ßxß is a
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HOMOTOPY THEORY AND SHEAF COHOMOLOGY 425

fibration and D' is a path space for B.  We now let A  = A xD D   and t   = pr:
A* —» A, and then pr: A —» D   is a homotopy from ft   to gt , which completes
the proof.

If A and B are objects of £, let

[A, ß]=iiinHom77e(A', B),

where the (filtering) index category for the direct limit is the category in which an
object is a weak equivalence [i]: A —» A in 7r£ and a map from [i]: A   —» A to
[i ']: A* —»A is a commutative triangle in n£

A'-»A"

[A   An
A

From [ll] and Proposition 2 we obtain the following theorem.

Theorem 1.   // £ is a category of fibrant objects and A and B are any two
objects of £,  then there is a canonical isomorphism

HomHo e(A, B) s« [A, B].

7n particular, if y: £ —» Ho £ z's ¿¿e localization functor, then
(i)  any map z« Ho £ can 6e written as a "right fraction" y(/)y(r)_1, where

t is a weak equivalence; and

(ii)  if f, g: A =t B are maps z'w £ Zie» y(/) = y(g) if and only if there is a
weak equivalence t: A  —> A such that ft ca gt.

Remarks.   1.   In many applications of abstract homotopy theory the category
of fibrant objects £ is a full subcategory of a category £ , and it is really
Ho £   that we are interested in.   For an example of how Theorem 1 can be used
to describe Ho £', see §8 below (in particular, Proposition 7 and Corollary 3).

2. It is sometimes convenient to use a slight modification of Theorem 1 ob-
tained by replacing "weak equivalence" by "aspherical fibration".   The proof
remains valid (and even simplifies) with this modification.   [One needs to observe
that the category obtained from £ by inverting the aspherical fibrations coincides
with Ho £, because of the factorization lemma.]

3. An illustration:   Verdier's hypercovering theorem.   This section is in-
tended both to illustrate Theorem 1 by giving an interesting application and to in-
troduce some concepts and results concerning simplicial sheaves which we will
later need in the somewhat less familiar setting of sheaves of spectra.

Let X be a topological space and let S(X)g be as in Example 2 of §1.   We
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426 K. S. BROWN

will also consider the category  S  (X) of simplicial abelian sheaves on X (i.e.,
simplicial objects in the category of sheaves of abelian groups), the category

C(X) of complexes of abelian sheaves (indexed with superscripts, with differential
of degree + 1), and the full subcategory C~(X) of C(X) consisting of the com-
plexes which are zero in positive dimensions.  Note that  vAX) inherits a notion
of weak equivalence from §(X)g and that C(X) and C~(X) have an obvious notion
of weak equivalence (map inducing homology isomorphisms).   Thus (see the begin-
ning of §2) we have categories Ho S(X)E, Ho S^X), Ho C(X), and Ho &~iX).
To avoid cumbersome notation, we will throughout the remainder of this section de-
note these four homotopy categories by 3)„, 2) ,, 3), and 3)~.

Adjoint functor lemma.   Let S: (2, ~"* £    be left adjoint to T: C, —• C.,
where C.  and C, are categories with a notion of weak equivalence.   If S and T
preserve weak equivalences, then the induced functors Ho S: Ho C. —* Ho C,

and Ho T: Ho &2 —» Ho Cj are adjoint.

Proof.   The adjunction maps a; ST —» ldç    and ß: Idç   —* TS induce cor-
responding natural transformations in the homotopy categories (cf. [21, I, top of
p. 4.3]).  Since the composites T^TST ^7 and S^&STS^S are identity
maps in C. and (E2, the analogous maps in the homotopy categories are also
identities, which proves Ho S left adjoint to Ho T.    □

The hypercovering theorem (below) will result from combining the adjoint
functor lemma with Theorem 1, after we make some elementary observations:

(1) The functor £D~ —► £D induced by the inclusion S: £-(X) — £(X) is
fully faithful,   [in fact, S has a right adjoint T which preserves weak equivalences,
so Ho S is left adjoint to Ho T.   Now since   S is fully faithful, the adjunction
map ß: Id —» TS is an isomorphism.   But then the same is true of the analogous
adjunction map in 2)~, and this implies that Ho S is fully faithful.   (See [13]
for another proof, based on a special case of Theorem 1.)]

(2) For any abelian sheaf F and integer q > 0, 77?(X, F) = [Z, F. .]«,
where Z is the complex concentrated in dimension zero consisting of the con-
stant sheaf with stalk equal to the group of integers, and F. . is F concentrated
in dimension - q.  [This follows from Theorem 1 and the derived functor defini-
tion of HqiX, F).   The point is that if we replace F. . by a bounded below com-
plex 7" of injectives, the direct system defining [Z, 7"] in Theorem 1 is constant

(cf. [13] or [21]).]
(3) The normalized chain complex functor TV: §ab(X) —» C'ÍX) is an equiv-

alence of categories which preserves weak equivalences and the usual notions
of homotopy (simplicial (abelian) homotopy and chain homotopy) [9, §3].  We will
denote by KÍF, q) the object of "^(X) corresponding to the complex F. . of (2).
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(4) The forgetful functor S^X) —* S(X)ß is right adjoint to a functor Z:
S(X)E —» S .(X), the "free abelian sheaf" functor, which preserves weak equiv-
alences.   [The fact that Z preserves weak equivalences follows from the rela-
tive Hurewicz theorem, but here is a short proof more in the spirit of this paper:
The question being a stalkwise one, we may assume X is a point.   The two cat-
egories can then be given the structure of closed model category (see [21] and the
remark in §6 below), and by the dual of the factorization lemma (§1), it suffices
to check that Z preserves the injective weak equivalences.  Now these maps can
be characterized by lifting properties [21], and the result follows by "adjoint func-
tor chasing" from the fact that the forgetful functor preserves fibrations.]  If e
denotes the final object of °(X)E (the sheaf which stalkwise has only one sim-
plex in each dimension), then Ze is the simplicial abelian sheaf which corresponds
under the equivalence of (3) to the complex Z of (2).

(5) Theorem 1, applied to the category S(X)ß, remains valid if Hom^i«, •)
is replaced by Á', •), which by definition consists of simplicial homotopy classes
of maps,   [in fact, the definition of simplicial homotopy is based on a particular
choice of path space Bl (see [ll] or [19])» and Proposition 1 (ii) of §2, applied
to id: ß —> B, shows that, as far as the direct limit of Theorem 1 is concerned,
it does not matter which path space we use.] We will use the same symbol vi; •)
in the proof below to denote chain homotopy classes of maps, and we will use
rr^ to denote simplicial abelian homotopy classes.

Theorem 2 (Verdier [2, Expose V, Appendix], [3]).  // F z's an abelian sheaf,
then

Hq(X, F) ä Ut^H^iC'iK, F)),
K

where K ranges over the hypercoverings of X ii.e., the objects of §(X)E such
that the map K —> e is a weak equivalence) and where C'iK, F) is the complex
of abelian groups associated to the cosimplicial abelian group obtained from K
by applying the functor Homfe.       .(•, F) dimension-wise.

Proof.   We first express sheaf cohomology in terms of Eilenberg-Mac Lane
sheaves :

H*(X, F) = [Z, F(4)]9 by (2)

- [Z, F(€)]s- by (1)

- [Ze, KiF, a)]jj       by (3)

= [e, KÍF, q)]^ by (4) and the adjoint functor lemma.
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Now we use (5) to rewrite the last group as limK triK, KiF, q)), and the proof will

be complete once we make the standard indentification of cohomology classes
with maps into Eilenberg-Mac Lane complexes.   In fact,

niK, KÍF, q)) = njZK, KÍF, q))    by (4)
= rriNZK, F(g)) by (3)

= T7«(C'(K, F)) by inspection.

4.   The loop functor and fibration sequences.   Let C be a category of fibrant
objects.   For any object. B of £, let C„ denote the category of fibrations over
B.   If we define fibration and weak equivalence in Cß by means of the forgetful

functor <2„ "~* C, it is trivial to check that Cß is also a category of fibrant ob-
jects.   [Use the factorization lemma (§1) and the remark following it.]

Lemma 1.   If u: B  —> B is a map in C,  then the base change functor a*:
£„ —» c„, preserves fibrations and weak equivalences.

Proof.   According to the factorization lemma of §1 (applied to the category
C„), it is sufficient to prove that a* preserves fibrations and aspherical fibra-
tions.   This is easy once one observes that if E. -* E2 is a fibration of fibre
spaces over B, then

B'xB Ej=(B' XgE^x^Ej.

Lemma 2.   The base extension of a weak equivalence in & by a fibration is

a weak equivalence.

Proof.   Let p: E -» B be the fibration and a: ß' —» B the weak equivalence.
We must prove that pr: B   x„ E —» E is a weak equivalence.   By the factoriza-
tion lemma we may assume that a is right inverse to an aspherical fibration v:
B —* B1.   Let El = B xß, E be the fibred product of v and vp.   Then the map
f = ip, id): E —* E.  is a map in C„ and is a weak equivalence because it is
right inverse to the aspherical fibration (in C) pr: E. —» E.   Thus (using Lemma
1) we see that the horizontal maps in the following diagram are weak equivalences:

B'xBE-i^-,B'xBEj

Pr Pr

El

We are now reduced to proving the lemma for E.  instead of E, i.e., we need only
show that the right hand vertical map is a weak equivalence.   But this is
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immediate, because ß' xß Ej = B   xß (ß xB,E) = E and pr: B   xß Ej —» E    is
right inverse to the aspherical fibration pr: E, —» E.

Lemma 3.   Assume £ z's pointed (i.e., the final object e is also initial) and
let

be a commutative diagram in which p and p   are fibrations and i and i    are the

fibre inclusions (i.e.,  F = e x„ E and F  = e x„i E ).  // / and g are weak equiv-
alences then so is h.

Proof.   Let E  = B   x„ E, so that we have a diagram

The unlabelled arrow is a weak equivalence by Lemma 2, and thus g   is a weak
equivalence.   It now follows from Lemma 1 that the induced map of F   to the
fibre of p   is a weak equivalence.   But the fibre of p" is F and the induced map
F' —» F is h, which completes the proof.

Lemma 4.   Assume £ is pointed.   Let p.: E. —» B and p2: E2—*Cbe
fibrations with fibres F., F2, let u: B —» C be a map, let f, g: E. ^3 E    be
maps such that pJ = p2g = up., and let t: E, —• E.  be a weak equivalence suG-h
that ft =gt:

e: f

pi

2

P2

-*c

Then the maps F. ^ F    induced by f and g coincide in Ho £.

Proof.   The hypotheses and conclusion remain unchanged if we replace p2
by pr: B xc E, —» B, so we may assume C = B and a = id.   Let (X, s, fl"., d.)
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be a path space for E2 in £„.   By applying Lemma 1 of §2 to the'square

E\ s ft

(/. g) ♦E2xß

W0. «V

we obtain a square
E" ■cl -»X

(/.g)
(rf0'dl>

»E2 xß E2

where /    is an aspherical fibration.  Then Ej is a fibre space over B and this
square can be regarded as a square in £ß.   It is clear from this that / and g be-
come   equal in Ho £ß, and the result now follows from the fact that (by Lemma
1) there is a commutative diagram of categories and functors (induced by the fibre
functor £ß~* £)

Ho £B -^ Ho £.

Theorem 3.   Let £ be a pointed category of fibrant objects.   Then there is
a functor fi: Ho £ —» Ho £ such that for any object B and any path space B ,

ÇIB can be canonically identified with the fibre of B  —♦ ß x B. Furthermore,

flß has a natural group structure.

Proof.   For any path space ß' let 0(/)B be the fibre of ß'-Bxß.  I
claim that if ß'   is another path space, Q'"ß and £i(   'B ate canonically iso-
morphic in Ho £.   In fact, if there is a map B   —» B    compatible with all the
maps occurring in the definition of path space, any such map induces a weak
equivalence il'^'B —» ir'  'B (by Lemma 1), and any two such maps of path spaces

induce the same map Q^B ~* 0^' ^B in Ho £ by Lemma 4 applied to the diagram

»I-►B'

BxB

IB'

id BxB.

This proves the assertion in a special case, and the general case follows from
the fact that for any two path spaces there is a third which maps to both of them
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(Lemma 2 of §2).  We can now write ßß instead of ß(i'B, where we regard ßß
as an object of Ho £ well-defined up to canonical isomorphism.   By arguments
similar to those just given, we can associate to a map B —>C in C a map ßß —»ßC
in Ho (2, so that we have a functor ß: £ —» Ho C  By Lemma 3 and the fact that
products preserve weak equivalences (which is essentially a special case of
Lemma 1), this functor preserves weak equivalences and so can be regarded as a
functor ß: Ho C —» Ho C.

To give ßB a group structure, let ß' and B    be any two path spaces and let
B1*1' = B1 xB B1'.  Then there is an obvious map ß(/)ß x ß(/,)ß -» ß(i+/' >B which
gives us a product 772: ßß x ßB —» ßB in Ho C   The product is easily seen to be
well defined and associative.   The fact that e is an identity for this multiplication
is immediate from the definitions and from the fact that isdQ, id): B1 —» Bf xß  ß'
and   (id, sdy):  B1 —*  B1 xß Bl ate maps of path spaces.   Finally, the inverse
ßB — ßB is induced by id: ß(,)B -» ß^B, where ß(/)B corresponds to (ß',
s, d0, ¿j) and ß(' 'B corresponds to (ß', s, dy dQ).   To see that this is actually
a (right) inverse, it is clear from the definitions that we need only show that the
two maps ß(i)B =5 ß(,+'*)B induced by

B' -$*-* B> xB B>
(sdQ,sd0)

coincide in Ho C, where Bl xß Bl = B,+I    is the fibred productif d^ with itself.
This follows from Lemma 4 applied to

B->Bf =t Bl xB B'

(d^dj dQxd0
diag oprj

B X B -► BxB.

Proposition 3.   Let C be a pointed category of fibrant objects and let p: E
—»B be a fibration with fibre F.   Then there is a natural map a: F x ßß —*F ¿77
Ho £ which defines a right action of the group ßß 072 F.

Proof.   As in [21, I, §3] we construct path spaces El, B1 related by a fibra-
tion El —» E xß Bl xß E, and we then deduce an aspherical fibration E1 — E xß B1.
By base extension we get an aspherical fibration t: F xß E'  x- F —» F x ßB,
and the desired map is then pr,i     .   It is straightforward, using the techniques we

have developed, to verify that this is well defined and has the desired properties. D
We now compute this action in a special case.  Let A —» B be a map in £,

and let A —* E —* B be a factorization as constructed in the proof of the factoriza-
tion lemma of §1, i.e., E = A xß B1 .   Let B21 = Bl xß B1 and let E' = A xß B21.
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Notice that we have a map of path spaces

(id.sáj)
ß'-—*BlxB B'=B2'

which induces by base extension a weak equivalence w: E —» E . Regarding E
and E as fibre spaces over B with fibres F, F , we obtain a weak equivalence
tu: F —» F .  On the other hand, we have an obvious map (in fact, an isomorphism)

f:ExBBl-*E',

which we regard as a map of a fibre space over BxB to a fibre space over B,
lying over pr2 : B xB —* B.  The induced map on the fibres is a map f : F x flß
—♦ F', and I claim that the composite w~   ° / in Ho £ is the action F x Qß —» F.
We prove this as follows.   Construct a path space E   as in the proof of Proposi-
tion 3 and consider the two maps E   =t E   obtained by going around the square

d.

(*)
E'-:->E

I ,   I:
ExBB

f
in the two possible ways.   By.applying Lemma 4 to the diagram

E-?-^E1=tE'

pr2
BxB->B,

we deduce from (*) a commutative square in Ho £

i pr3
F xE E' xE F —^-»F

FxQB
/

which, in view of the proof of Proposition 3, is exactly what is needed to prove
our assertion.

Following [21], we now define a fibration sequence to be a diagram F -* E
~' B in Ho £ together with an action F x Qß —> F in Ho £ which are isomorphic
to the diagram and action obtained from a fibration in £.

Proposition 4   Given a fibration sequence

p ±> E-L B,      FxQB F,
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let i    be the composite

ÜB   (e,/).Fxßß  -^ F

where j: ßß —' ßß is the group inverse, and let a   be the composite

ÜBxtiE   idxQp.ßBxßß  -^ ßß.

Then

ßB  -i-»  F -^ E,      ßB x ßE  -^»   ßß

¿s a fibration sequence.

Proof.   We may assume that p is a fibration in C with fibre F and that a is

the action constructed in the proof of Proposition 3.  If we convert i into a fibra-
tion p   as in the proof of the factorization lemma, the fibre of that fibration,
F xp E xE e, admits an aspherical fibration to ßß, namely the base extension of
El -^B'xBE by

ßB   (*'e)»Bf xß E,

where k is the inclusion of ßB into B1.  We thus identify this fibre with ßß in
Ho C, and, using the aspherical fibration pr: F xß E   —♦ F to identify F with
the total space of p , it is immediate that the fibre inclusion becomes identified
with i .  The fact that the action is given by a   follows from the discussion fol-
lowing Proposition 3.

Corollary 1.   Under the hypotheses of Proposition 4, there is an exact se-
quence in Ho C

-► ßE -» ßß -*F ->E -*B,

where exactness is interpreted as in [21, I, p. 3-8].

The proof is straightforward, using Theorem 1 (§2).  Note that the homotopy
lifting property which one usually uses in this context still holds when one passes
to the direct limit, in view of the fact that E' —> E xB B   is an aspherical
fibration.

Corollary 2.   Let £ be a pointed category of fibrant objects and let P —* B

be a fibration with fibre F, where P is weakly equivalent to e.   Then F is
canonically isomorphic to ßß in Ho £.

Proof.   Exactness of c —» ßß —> F —► e means that the group ßß acts
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"transitively and without fixed points" on F, so QB —♦ F is an isomorphism.
Remark.   If we apply the discussion following Proposition 3 to the diagonal

map of B, then we see easily that the natural action of QB x Qß on Qß induced
by any path fibration B  —* B x B is given by two-sided translation (i.e.,

g . ig', g") = g'~ gg").   This is useful in the following situation. Given two maps from
A to B, we form the "equalizer"

ri = AxßxßB'

arid we have a fibration sequence in Ho £

-» QK -» QA -£ QB -» K — A,

where, because of the above description of the action of QB x QB on QB, we
can identify ß as the "difference" of the two maps from QA to Qß.

5.  A theorem on inverse limits.   The purpose of this section is to prove, in
our abstract setting, a well-known theorem on the inverse limit of a tower of fibra-
tions.   The theorem will not be needed in Part II of this paper.   We introduce, for
any category of fibrant objects £, the category Tow (£) of diagrams

... —A.  -*♦ A.  ,— •••,i i-1

where each p{ is a fibration in £ and where A. = e for sufficiently small i, A
map of towers \A .} —• (ß.} will be called a weak equivalence if each map A . —»

ß. is a weak equivalence in £; the map will be called a fibration if each map

A . —» A .   . x„        B.
J— 1

is a fibration in £.  It is easy to verify that with these definitions Tow (£) is a
category of fibrant objects.   For example, to verify the first part of axiom (C),
given

ÍAJ i ÍC¡ £ ÍB,.¡

with v a fibration, let

D. = A.xr  B.,

and we must show that pr: \D.} —» {A .| is a fibration (which will also imply that
the maps D. —» D._ j are fibrations, so that {D.} is an object of Tow(£)).   In
other words, the maps

(*) D.~*Di,lxA^ i-l
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must be fibrations in £.   But

D.  , xA       A.-A.xr      B.  ,=A.xr iC.xr      B.  .),t-1     A .    ,      i t    C.    ,      i—I i    C.       i    C.    .      i-li-1 I— I t i-I

and so the map (*) is obtained from the fibration

B. -*C.xr       B.   .
i ,   C._t    «-1

by applying «*, and is therefore a fibration by Lemma 1 of §4.   □
In order to obtain results on inverse limits we will need another axiom.
(I) Every tower of fibrations in £ has an inverse limit, and the functor

inv lim: Tow (£) —» £ preserves fibrations and aspherical fibrations (and hence
weak equivalences by the factorization lemma (§1)).

Remarks.   1.   If £ consists of the fibrant objects of some larger category
£ , i.e., of those objects B such that B —* e is a fibration, and if fibrations and
aspherical fibrations in £' are characterized by lifting properties as in closed
model categories [21], then (I) holds (provided that the inverse limits exist in £').
This fact is what motivated the above definition of fibration in Tow (£).

2.  If (I) holds then we easily deduce from Theorem 1 and Remark 2 of §2

that the localization functor y: £ —» Ho £ preserves countable products.

Assume now that (I) holds, let [A.] be an object of Tow(£), and consider
the two maps f, g: ITA . ^» IL4f, where / = id and g is the map defined "point-
wise" by gi\a.]) = [p. j(«; j)K  We form a homotopy equalizer of / and g as in
the remark at the end of §4, and we observe that there is an obvious map h:
lim A . — K.
4- I

Lemma.   The map h is a weak equivalence.

Proof.   Let [A1.] be a path space for \A{],  Then we may take UA1. as path

space   for 1TA¿, and it is immediate from the definitions that K = lim K., where

K.mA[xA   ■••xA      A1.1   Ai Ai-i    '

(assuming, for simplicity of notation, that A . = e fot i < 0), and that h is induced
by a map of towers \h.]: \A .] —* \K.], where

b. = isp2 • • • Pp • -•, sp., s).

By axiom (I) it is sufficient to prove that each h. is a weak equivalence, and
this follows from the fact that h. is right inverse to the aspherical fibration
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d. °pr.: K. —» A. (which can be factored as a composite of base extensions of

maps dx: A^ —*Ak).    □
In order to state our theorem, we recall that a map z': K —» A in an arbitrary

category is called a weak equalizer of two maps /, g: A ^ B if (a) fi = gi and

(b) for any map i : K —» A such that /z   = gz    there is a map j: K  —* K (not

necessarily unique) such that ij = i .   The construction in the remark of §4 (to-
gether with Theorem 1) shows that weak equalizers exist in Ho £.

Theorem 4.   Let £ be a pointed category of fibrant objects and assume £
satisfies axiom (I).   Then for any tower of fibrations [A .i and any group valued
functor T on Ho £ which preserves countable products and weak equalizers,
there is a natural exact sequence

0 — Rl ¿im T(OA t) — TiAj -, lim TÍA .) -» 1,

where Am = lim A ..00     «—    i

Proof.   In view of the remark of §4 and the lemma above, we have an exact
sequence in Ho £

iiqa, -£ hqa.—a^—tia. ^tla,
g

The sequence remains exact when T is applied, and the result now follows from
the standard computation of R   lim (cf. [20], for  example).

Remark.   The first theorem of this type seems to be due to Milnor [20].  We
recover his theorem by taking for £ the dual of the category of pointed topological
spaces and for T a cohomology functor.

6.   A remark on Quillen's axioms.   In considering the relation between the
axioms of §1 and Quillen's axioms for abstract homotopy theory [21] it is natural
to ask to what extent the present axioms need to be strengthened in order to be-
come equivalent to Quillen's, or, more generally, to ask for a set of axioms equiv-
alent to Quillen's, but with the emphasis on fibrations and weak equivalences.
In order to make the question more precise we will recall some terminology from
[21].

Let £ be a category with two distinguished classes of maps, called weak
equivalences and fibrations.  As usual, a fibration which is also a weak equiva-
lence will be called an aspherical fibration.   A map z: A —»X will be said to
have the LLP (left lifting property) with respect to a map p: E —» B, and p will
be said to have the RLP (right lifting property) with respect to i, if for any solid
arrow diagram
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A->EAy v
X  -rß,

the dotted arrow exists.  We call i a cofibration if it has the LLP with respect to

all aspherical fibrations.
Consider now the following axioms.
(F) Any map a    can be factored a = sj where / is a cofibration and s is a

weak equivalence.
(G) Any map a can be factored a = p¿, where p is a fibration, i is a weak

equivalence, and i has the LLP with respect to all fibrations.

Proposition 5.   Let £ be as above, and assume further that a retract of a
weak equivalence (or fibration) is again a weak equivalence (or fibration).   If £
satisfies axioms (A), (B), (C), (F), and (G), then £ also satisfies all of Quillen's
axioms for a closed model category [21], except possibly for the existence of

limits.

Proof.   By applying (G) to the maps s in axiom (F), we see that s can be
assumed to be an aspherical fibration, so both factorization axioms of [21] are
satisfied.   By applying (G) to any cofibration a which is also a weak equivalence,

we easily deduce (cf. the proof of (i) =» (iii) in II, §3, Lemma 4 of [21]) that such
a map is a retract of a map which has the LLP with respect to all fibrations, so
a also has this property.   Thus the lifting axioms are satisfied, and the other
axioms present no difficulty.

Remark.  This proposition applies in particular to simplicial sets, with weak
equivalence defined by means of the geometric realization functor, and it yields
a simple proof of [21, Chapter II, §3, Theorem 3].

PART H.  SHEAVES OF SPECTRA AND GENERALIZED
SHEAF COHOMOLOGY

7.   Spectra.   In this section we will recall Kan's definition of spectrum and
we will outline that portion of the homotopy theory of spectra which will be needed
in the rest of this paper.  Standard results and definitions from simplicial homo-
topy theory ([ll], [18], [19]; see also [21] and the remark of §6 of the present
paper) will be used freely, but we will refer to the literature on the homotopy
theory of spectra ([14], [17, Appendix], [6]) only for relatively easy results.

A spectrum is a sequence E = ÍEn!nSZ of sets with basepoint *, together
with (basepoint preserving) face operators d.: E   —» E     .  and degeneracy opera-

tors s.: En —»E    ! (¿ = 0, 1, 2, •••), such that (a) the usual simplicial iden-
tities hold idd = d.yi.   for i < j, etc.) and (b) each simplex of E has only
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finitely many faces different from *.  We define bispectrum similarly, except that
the face and degeneracy operators are now indexed by all integers i.  Bispectra
will not be mentioned again until we deal with smash products (Appendix A), but
it is to be understood that the definitions and results given for spectra apply with
minor modifications to bispectra.

Examples.   1.  For each pair of integers n, k with k > 1, there is a spectrum
generated by an n simplex x, subject to the relations dx = * for i > k.  We will
generically denote sucha spectrum by A, we will let A   be the subspectrum gen-
erated by the faces dx, and we will denote by A any subspectrum of A gener-
ated by all faces dx except one.

2.  The same definition as in (1) but with k = 0 defines the n-sphere S".
The category of spectra will be denoted Sp.   Its relations with the category

o# of pointed simplicial sets are as follows.   There is a functor Sp: S. —» op
which "freely adds" the extra degeneracies to a pointed simplicial set.   In the
terminology of [14], Sp(X) is the spectrum associated to the prespectrum \K, SK,
S2K, •••}, SK being the suspension of K.   For any spectrum E, we will let
\E. A ez denote the associated prespectrum, as defined in [14], and with this
notation the functor E i-»E,0. is right adjoint to Sp.   It is also convenient to ob-
serve that E. . = iSgE).(jy where S is the functor on spectra which raises dimen-
sions by one, i.e., (SE)n+J = E^.   One should also observe that E. . = Q(E.      .),
where Q is the ordinary simplicial loop space functor (denoted "cû" in [14]).
(Warning:  Q does not preserve weak equivalences and it therefore coincides with
the homotopy theoretical loop space functor only on Kan complexes.)

Homotopy groups of spectra are defined in [14] (see also the next paragraph),
and a map of spectra is called a weak equivalence if it induces isomorphisms of
all homotopy groups.   The associated homotopy category will be called the stable
homotopy category and will be denoted ola Ha.   A map of spectra will be called

a fibration if it has the RLP (§6) with respect to all inclusions of the form A c,
A (see Example 1 above).   (This is equivalent to Kan's definition [14].)  Finally,
we will say that E satisfies Kan's extension condition if the map E —» * is a

fibration.
If E satisfies Kan's extension condition, then n E admits the following de-

scription:  An element of  n E is an equivalence class [x], where x is a spherical
a-simplex of E (i.e., dx = * for all i), and [x] = [x] ii and only if there is a
(q + l)-simplex h such that dJi = x, dji = x , and d h = * for z > 1.   In view of
the existence of the free group functor F [14] with natural weak equivalence E
—* FÍE), and in view of the fact that group spectra satisfy the extension condition,
this suffices, in principle, to define n E for arbitrary E.  We also have the fol-
lowing description of rtgE.
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Proposition 6.   For any spectrum E,  rr E = ÍSq, E], where Sq is the q-sphere
defined in Example 2 and where [•, •] denotes maps in oka Ka.

Proof.   The functor Sp preserves weak equivalences and induces a functor

(still to be denoted Sp) Ko. ~* Sta Ka, where Ka = Ho S. is the ordinary (pointed)
homotopy category.   On the other hand, the functor E i-» FiE).Q. from Sp to S.
preserves weak equivalences and induces a functor ota Ka ~* Ka which I claim
is right adjoint to Sp.   To prove this, one proceeds as in the proof of the adjoint
functor lemma of §3, with the following slight modification:  If a; Sp(E.Q.) —»E
and ß: K —► (Sp 70,,.. are the adjunction maps for the original pair of functors
Sp ** §_, then the adjunction maps for the "derived" functors ota Ka == Ka are
the composites (in ota Ka and Ka)

(*) Sp(F(E)(0)) -i FÍE) — E

and

(**) K Á (Sp K)(0) ̂ (F(Sp TC))(0),

where the second map in (*) is the inverse of the natural map ¿: E —» FiE) and
that in (**) is induced by ¿: Sp K —» F(Sp K).  It is a straightforward exercise in
general nonsense to verify that (*) and (**) are adjunction maps, and this proves
our assertion.   The proposition is now obvious:   By dimension shifting we may
assume q = 0, and then, since the spectrum S    is obtained from the simplicial
zero-sphere (also denoted S ) by applying Sp, we have [S , E] = [Sp(S°), E] =

Remarks.   1.   In the above proof we defined a functor RT: Sta Ko ~♦ Ka which
we referred to as a "derived" functor of T, where TiE) = E.g..   This terminology
is motivated by the fact that 7?T is defined by applying T to a "resolution" of
E by a spectrum FiE) which satisfies the extension condition.   (The point is that
T preserves weak equivalences between such spectra.)  This terminology also
agrees with the technical definition of "right derived functor" introduced in [21].

2.  The above proof contains an outline of a proof of a variant of the adjoint
functor lemma.  We have avoided a precise categorical statement of the variant
because there are other variants which we will have occasion to use (some of
which require abstract homotopy theory-cf. Theorem 3 of I, §4, of [21]), and we
do not wish to list them all.  In the sequel we will refer to any such variant as the
"generalized adjoint functor lemma", and leave the details to the reader.

Theorem 5.   With the above definitions of fibration and weak equivalence, and
with the cofibrations defined to be the injective maps, the category of spectra
forms a closed model category in the sense of [21].
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Proof.   We will use the criterion of §6.   By definition, the fibrations are char-
acterized by the RLP with respect to all A c, A, and it is easy to see (using the
corresponding result for simplicial sets) that "the aspherical fibrations are charac-
terized by the RLP with respect to all Ac, A.   The factorizations required by
axioms (F) and (G) can thus be constructed by the small object argument as in [21,
H, p. 3.4].   We need only verify that a map obtained by cobase extension from a
sum of maps of the form A -c* A is a weak equivalence.  For this we observe that
the spectra A can be obtained, up to dimension shift, by applying the functor Sp
to the pointed simplicial set obtained from an ordinary simplex by collapsing its
last face to a point.  We obtain A by a similar process, and the desired result now
follows from the fact that the cobase extension can be carried out in the category
of prespectra [14], where the result can be deduced from the homotopy theory of
simplicial sets.   Finally, to see that every inclusion is a cofibration in the sense
of §6, we factor an inclusion E c» E as E' c_, E* U Sp(E._.) C-» E'u S-1Sp(E.j.)
C-» • • • <-* E, and we observe that each of these inclusions (up to dimension shift)
is a cobase extension of a map obtained by applying Sp to a cofibration of sim-
plicial sets, and is therefore a cofibration by an adjoint functor argument.

8. Sheaves of spectra: Local theory. If X is a topological space, a sheaf
E on X with values in the category of spectra (or sheaf of spectra) is a contra-
variant functor

V H» TW, E)

from the category of open sets of X to the category of spectra, such that for any
open set U and any open cover {l/;| of U, the sequence

nv, e) -» n nuf e) =¡ nni/¿ n u., e)i i. i
is exact.   QNarning:  Because of the finiteness condition in the definition of
spectrum, the infinite product of spectra is defined as an appropriate subobject
of the dimensionwise product.) We will often write T(E) instead of IXX, E).  We
refer to [12], [5] for standard terminology and results concerning sheaves.

If E is a sheaf of spectra, we can regard E as a sequence of sheaves of
pointed sets E , with face maps d.: E   —»E _, and degeneracy maps s.: E
—» E     ,, such that the usual simplicial identities hold and such that for each n,

00

E„=   (J    Piker*-,
N=0   i>N

this union and intersection being taken in the category of sheaves.  This condition
can be restated as:   Every section of E    over any open set  U locally has only
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finitely many nontrivial faces.  Another reformulation:   For every element a of
E       (the stalk of E    at x) one can find a neighborhood U oí x and a section s
of E    over 77 such that six) = a and s has only finitely many nontrivial faces.

The correspondence between our two definitions is as follows.   If E is a
sheaf of spectra as in our first definition, we let E    be the sheaf associated to
the presheaf 77 ■-» YiU, E)^.  Conversely, given E^ as in the preceding paragraph,
we let r(77, E) be the spectrum whose 77-simplices are those sections of E    over
77 with only finitely many nontrivial faces.

Examples.   1.  If E is any spectrum and 77 is an open set of X, there is a
sheaf of spectra Eu which is constant with stalk E on 77 and whose stalk at any
point not in U is the trivial spectrum *.

2.   The category of sheaves of abelian group spectra is equivalent (via the
normalization functor) to the category of complexes of abelian sheaves (cf. state-
ment (3) of §3 for the unstable analogue).  In particular, corresponding to any
abelian sheaf F and any integer q there is a stable Eilenberg-Mac Lane sheaf of
spectra 7<(F, q), which by definition is the sheaf of abelian group spectra whose
normalization consists of F concentrated in dimension - q.  (See §3 for notational
conventions regarding complexes.)

A map between sheaves of spectra will be called a weak equivalence if it
induces stalkwise weak equivalences in Sp.   Equivalently, if we define the homo-
topy sheaf v E to be the sheaf (of abelian groups) associated to the presheaf
77 *-» ff r(77, E), then a map is a weak equivalence if and only if it induces iso-
morphisms on all homotopy sheaves.  We will denote the category of sheaves of
spectra by Sp(X) and the associated homotopy category by Sta Ka (X).

A map in Sp (X) will be called a 7oca7 fibration it stalkwise it is a fibration
in the sense of Kan (§7).  We will denote by Sp(X)g the full subcategory of
Sp(X) consisting of the sheaves of spectra which stalkwise satisfy Kan's exten-
sion condition.

Proposition 7.  The category Sp(X)g, with weak equivalence as defined
above and with "fibration" defined as "local fibration", satisfies the axioms of
§1 for a category of fibrant objects. Furthermore, the associated homotopy category
is equivalent to oka Ka (X).

Proof. The only axiom which is not trivial to verify is axiom (D). We omit
the proof at this point because the result follows from the proof of Proposition 9
of the next section, where the analogous statement is proved with a stronger no-
tion of fibration. (A direct construction of path spaces is possible using a suit-
able definition of function spectra, but this involves some unpleasant technical
complications.) For the second assertion, we need only note that the free group
function F used in §7 extends without difficulty to sheaves and induces a functor
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ola Ka(X) —> Ho(Sp(X)ß) quasi-inverse to the obvious functor in the opposite
direction.

Proposition 8. The category Sp (X) satisfies the duals of the axioms of §1,
with "weak equivalence" being self-dual and with the injective maps playing the
role of the class of maps dual to the fibrations.

Proof.   Axioms (A), (B), (C), and (E) need only be checked stalkwise, and
they are satisfied because of Theorem 5 (§7).   It remains to verify the weak fac-
torization lemma (see the end of §1).   Thus given a: E —» E', let z: E —♦ CE be
the inclusion of E into its cone (the sheafification of the cone of [16, 6.2]).   Then
u can be factored as

E-^Ue'xCE^^E'.

Corollary 1.   The following are equivalent for a map f in ota Ka(X):

(1) / is an isomorphism;
(2) / induces stalkwise isomorphisms in ota Ka;

(3) / induces isomorphisms on all homotopy sheaves.

Proof.   This is immediate from the fact (§2) that any map in Sta Ka(X) is of
the form gf     , where g and / are maps in Sp(X).

Corollary 2.   The localization functor Sp (X) —* eta Ka (X) preserves arbitrary

sums and finite products.   Sta Ka (X) is an additive category.

Proof.   We will need  the following two facts, which need only be checked
when X is a point:   (a) an arbitrary sum or a finite product of weak equivalences
is again a weak equivalence; and (b) the category of injective weak equivalences
under a fixed object has arbitrary sums.   [Both assertions about sums follow from

the characterization of injective weak equivalences in terms of lifting properties
(Theorem 5), and the assertion about products follows from a computation of homo-
topy groups (which is valid even without the extension condition because geometric
realization preserves products).]

Using (a) and (b), the first assertion of the corollary is clear from Theorem 1
and its dual (§2).   The additivity of Sta Ka(X) is most easily proved by observing
that every object can be given a natural group structure (by means of the free
group functor, for example), which must then be abelian because by naturality the

multiplication map E x E —» E is a group homomorphism.   Alternatively, one can
show that E V E —» E x E   is a weak equivalence, which need only be checked
when X is a point, in which case it can be proved by a stable range argument.

(See [14, proof of 5.3] for an example of a stable range argument.) This shows
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that every object has a commutative monoid structure, and the existence of inverses
can be proved exactly as in the proof that every connected 77-space has a homo-
topy inverse [8, Satz 8.2].

We end this section by examining in detail what Theorem 1 (§2) says about
maps in Sta Ka (X). We have already mentioned the difficulty of explicitly con-
structing path spaces in Sp (X) and thereby getting an explicit definition of homo-
topy, but as long as we are mapping into a group it is sufficient to have a defini-
tion of null homotopy, and for this we can use the standard contractible fibre space
AG —» G [15, §2].   Thus we will say that a map /: E —» G is null-homotopic if
it lifts to AG.   An inspection of the definition of AG shows that / is null-homo-
topic if and only if there is a degree one map h: E   —♦ G    , such that d^h = /,
dp = hd¡_ j   for  i > 0,   and   sJ} = hs{_ j    for ¿ > 0.   In order to relate this to the
definition of homotopy given in §2, suppose / is homotopic to * in the sense of
§2.  Then by the homotopy lifting property for the fibration AG —»G (cf. the proof
of Corollary 1 of Theorem 3 (§4)) there is an aspherical fibration t: E' —• E such
that ft lifts to AG and so is null-homotopic.

Corollary 3.   Let E, G be sheaves of spectra, with G a group.   Then
(i)   the natural map

Hom5p(X)(E' G) — HomStaHo(X)(E' G)

is a group homomorphism whose kernel consists of those maps f such that ft is
null-homotopic for some weak equivalence t; and

(ii) «72y 772flp />0772 E to G in Sta Ka(X) c«72 be written in the form ft    ,
where t: E  —' B is a weak equivalence and f: E1 —» G is a map in Sp(X).

Proof. The fact that the map is a group homomorphism follows from Corollary
2 by the usual general nonsense. To identify the kernel, suppose /: E —» G be-
comes the zero map in Sta Ka iX). If E locally satisfies the extension condition,
then the result is immediate from the above remarks, Proposition 7 and Theorem 1.
For arbitrary E, we apply Theorem 1 (and Remark 2 following it) to Fif): FiE) —»
FiG), and we find that there is an aspherical fibration r,: Z —» FÍE) such that
Fif) °ij is homotopic to *. The base extension of i. by ¿: E —» FÍE) is then an
aspherical fibration f2: E —* E such that the composite

E'   S   e X G -L FÍG)
is homotopic to * and by applying the proof of Proposition 2(b) of §2 to the dia-
gram

. T"<2E==3G -U FÍG),
*
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we deduce that there is a weak equivalence t'. e   —» E   such that fi2t, is homo-
topic to *.  It is now immediate from the above remarks on null homotopy that /
satisfies the condition of (i).  Conversely, if / satisfies that condition, then /
clearly becomes the zero map in Sta Ha (X) because AC is isomorphic to * in
StaKa (X).  The proof of (ii) is an even easier application of Theorem 1 and will
be omitted.

9.  Sheaves of spectra:   Global theory.   A map E —► B of sheaves of spectra
will be called a global fibration if for each inclusion U C V of open sets of X,
the obvious map

T(V, E) ->riU, E) xnuj}) TÏV. B)

is a fibration of spectra.  We call E flabby (flasque) if the map E —, * is a

global fibration, i.e., if each restriction map FiV, E) —» FÍU, E) is a fibration.
Note that the global fibrations are the maps with the RLP (§6) with respect to
all maps of the form

Av UA(/A(/-*V

(See Example 1 of §7 and Example 1 of §8 for notation.)
Examples.   1.  A sheaf of group spectra G is flabby if and only if its norm-

alization (= il.>0 ker d.) is dimensionwise flabby in the usual sense [12].   (This
follows from the fact that a homomorphism of group spectra is a fibration if and

only if the induced map on normalizations is surjective—see, for example, [21,
II, p. 3.8].)   In particular, a sheaf of abelian group spectra is flabby if and only

if its normalized chain complex is flabby in the usual sense.   (Cf. Example 2 of

§8.)
2.   Using the above characterization of fibrations of group spectra one can

imitate the proof of [12, 3-1.2] and prove that a homomorphism of sheaves of group
spectra is a global fibration if and only if it is (stalkwise) surjective and its
kernel is flabby.

We will now prove that there exist plenty of global fibrations.

Proposition 9.   The category of flabby sheaves of spectra, with the notions
of weak equivalence and global fibration, is a category of fibrant objects in the
sense of §1.   Furthermore, axiom (G) of §6 holds in Sp(X) relative to the notion
of global fibration.

Proof.   Axioms (A) and (E) are obvious, (B) and (C) follow by general non-
sense from the characterization of global fibrations in terms of lifting properties,
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and (G) (which implies (D)) can be proved using this characterization and a transfinite
analogue of the "small object argument" [21, E, p. 3.4]. The point here is that if X is
a cardinal such that any open cover of any open set of X has a subcover of cardinality
< K, and if a is the first infinite ordinal bigger than K, then the functors YÍU, -) pre-
serve well-ordered direct limits indexed by a, so that the objects Ay and Ay are small
relative to a.   a

In order to state our main result we need one more definition.  A sheaf of
spectra E is said to be trivial in dimensions greater than TV if for each open set
77 and any two distinct 72-simplices a, v of r(77, E) in > TV), one has d.u4 dv
for at least one ¿.   We say that E is bounded below if it is trivial in dimensions
greater than TV for some TV.   (Note that a group spectrum is bounded below if and
only if its normalization consists of the trivial group in sufficiently high dimen-
sions.)

Theorem 6.   The global section functor Y: Sp (X) —* Sp preserves weak
equivalences of sheaves which are flabby and bounded below.

Proof.   Let E —* E' be such a weak equivalence, and let F be the "homo-
topy fibre", i.e., F = E Xg» AE , where AE   is the standard contractible fibre
space over E' [15]-  Then from the homotopy exact sequence of the (local) fibra-
tion F —* E (with fibre ßE ) we deduce that n^F = 0.  Now F is easily checked
to be flabby and bounded below, and since YF is clearly the homotopy fibre of
YE —» YE , it is sufficient to prove Tr^rF = 0.  We will, in fact, prove by de-
scending induction on q  that rrYÍU,. F) = 0 for all open 77.   This is certainly
true for large q because F is bounded below and 1X77, F) satisfies the exten--
sion condition (see the description of the homotopy groups in  §7).  Assuming it
now for î + l, we will prove it for q.  Let s be a spherical section of F    over
77.   By Zorn's lemma we can find a section / of F    , defined over some open
T7n C 77, where it, UQ) is maximal for the property dQt = s, dt = * for ¿ > 0.  If
77n = 77 then [s] = 0 in irqYÍU, F) and we are done.  If not, let x be any point of
77 not in U Q.  Since n-(F) = 0, there is a section t' over some neighborhood 77.
of x such that dQt' =s and di' = * for  i > 0.  Since n   jHí/q O Uv F)= 0 by
the induction hypothesis, the sections t | 77. O 77   and t    | 77. D 77. are homo-
topic as simplices of YiUQ n Uy F), i.e., there is a section a of F    2 over
7T0 n 77j such that dQu = t, dyU = t', and du = * for i > 1.  (To see this, let
A be the spectrum generated by a simplex a of dimension q + 2 with relations
dxj= * for i > 1.  Since A is equivalent in Sta Koto S9+1 (Appendix A), the
obvious map A —» YÍUQ O Uy F) is null-homotopic and therefore extends to A,
A —* A being a cofibration—see Theorem 5.) Now let A be the subspectrum of
A generated by d.o.  We have a square
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A-»Hl/,, F)

f 1
a—1-*rw0 n Uy F),

where the unlabelled horizontal arrow takes d^o to f .   From the definition of
fibration we deduce that there is an extension of the homotopy a to a homotopy
¿7 over (/,, with d.ü~ = t .  Then d^u agrees with t on fn n l/j, d0dQû~ = s,
and d.dJl = * for z > 0, so f can be extended to UQ U(/., contradicting its
maximality.   This completes the proof.

Remarks.   1.   The above proof is a homotopy theoretic analogue of the proof of
[12, II, 3.1.3].   It is more complicated than that in [12] because we must take a
"homotopy difference" of f and f    instead of an actual difference.  This com-
plication disappears if we work with sheaves of group spectra, in which case the
proof in [12] applies without change, using Example 1 above.

2. The boundedness assumption can be removed if X is a noetherian space
of finite Krull dimension. The proof of this will appear in the paper cited in the
last sentence of the introduction.

3. We can also define a homotopy theoretic analogue of the soft (mou) sheaves
of [12], and the analogue of Theorem 6 remains true, provided X is paracompact.

We will end this section with some further results on bounded below flabby

sheaves, which will be needed in §§10 and 11.  We first define the Postnikov de-

composition of a spectrum.  If E is a spectrum and N is any integer, we will de-
note by E[- », Ai] the target of a universal map of E to a spectrum which is
trivial in dimensions greater than N.  (If E satisfies Kan's extension condition,
E[- oo, A/] is usually called the Nth Postnikov approximation to E.) We obtain
E[- oo, AJ] from E by identifying two simplices of E with the same N-dimensional
faces.   This construction extends to sheaves easily»

Proposition 10.   Let §i Sp" (X) be the category of sheaves of group spectra
which are trivial in dimensions greater than N.   Then §* SpN (X), together with

the notions of global fibration and weak equivalence (and cofibration as defined
in §6) is a closed model category in the sense of [21].

Proof.   The existence of limits in §n SpN(X) presents no difficulties:   Pro-
jective limits are computed as in Sp (X) and inductive limits are computed by
first computing them in the category of sheaves of group spectra and then applying
[- », AJ].  From the fact that the inclusion §i SPN (X) c-t Sp(X) has a left adjoint
we see that fibrations in §« Sp   (X) can be characterized by a lifting property,
and thus axiom (G) of §6 can be verified by the transfinite small object argument
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as in the proof of Proposition 9.   (One needs to use here the well-known homotopy

theoretic interpretation of the Postnikov functor.)  If we use the criterion of §6,
the proof will be complete once we verify axiom (F).   This can again be done by
the transfinite small object argument, since it is clear from the following lemma
(and the proof of Theorem 5) that aspherical global fibrations in §i Sp"(X) are
characterized by a lifting property analogous to that for global fibrations.

Lemma.   Lef E —> B be an aspherical global fibration in Sp (X) whose fibre
F is bounded below.   Then for each inclusion of open sets U C V, the map

r(v, E) — r(i7, e) xrw B) nv, B)

is an aspherical fibration of spectra.

Proof.   The fibre of the above map is the same as the fibre of T(K, F) —•
Î\U, F), which is aspherical since both of these spectra are aspherical by Theo-
rem 6.

Remark.. The analogue of Proposition 10 for spectra without group structure
is false, even if X is a point.  The proof breaks down because the functor El-»
E[- oo, A/] does not preserve arbitrary weak equivalences.   The analogue for the
category §i Sp    of all bounded below spectra also seems false, because the
"cell attaching" process required in the proof takes us out of the category §* Sp
But the analogue for the category of bounded below sheaves of abelian group
spectra is true, as we see by working in the equivalent category of bounded below
complexes of abelian sheaves.

10.  Definition of the cohomology groups.  We define a full subcategory of
Sp(X) (resp., StaKa(X)), tobe denoted Sp   (X) (resp., Sta Ha   (X)), by the con-
dition rr E = 0 for q sufficiently large.  The theory of local fibrations developed
in §8 for Sp(X) applies without change to Sp   (X), and from the resulting descrip-
tion of maps in Ho Sp   (x), we see that Ho Sp+(X) is isomorphic.to Sta Ka+(X).

Theorem 7.   There is a functor RY: StaHa + (X) -> Sta Ha. such that RYÍE)
can be canonically identified with FÍE1), where E —» E* z's a weak equivalence
and E   is flabby and bounded below.   ÍRV is the right derived functor of T:
Sp  (X) —> Sp, cf. [21, I, §4].)  Furthermore,  RT commutes with Q (§4) and pre-
serves fibration sequences coming from local fibrations.

Definition.   The generalized sheaf cohomology group Hq(X, E) fot E in
Sp   (X) is defined by

HqiX, E) = n    RYÍE).
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Proof of Theorem 7.   This is more or less clear from the results of §9.   The
details are most easily carried out as follows.

Proposition 10 (in conjuction with Theorem 6 and an easy argument given in

[21, I, §4]) yields the existence of RY on Ho §* SpN(X).  We now let SpN(X) be
defined by n E = 0 for q > TV, and we extend RI-1 to Ho SpN (x) by means of the
functor E H» F(E)[- <», TV] from SpN(X) to §i SpN(X).  Letting TV go to °° (and
using the universal property which defines Sta Ko- (X)), we obtain a functor 7?r:
Sta Ko- (X) —* Sta Ka.  If E —* E' is as in the statement of the theorem and
F(E')[- o», N]—> G is a weak equivalence with G flabby and in §* SpN (X), then
it is clear from the construction of RY (cf. [21]) that (for sufficiently large TV)
7?r(E) & Y(G).  We can now apply Theorem 6 to the weak equivalence E' —• G,
and we find T(G) « T(E') in Sta Ko, s0 7?T(E) « YÍE'),. as required.   Finally,
T preserves global fibrations and path spaces of flabby bounded below sheaves,
and the last assertion of the theorem follows from this together with the fact that
using §9 we can convert a local fibration in Sp  (X) to a global fibration of flabby,
bounded below sheaves, without changing the weak homotopy type of the fibre.

Examples.   1.   If E is a spectrum, one can define the singular generalized
cohomology of X with coefficients in E by applying to the Eilenberg singular
complex of X the simplicial analogue of Whitehead's definition [22].  In case X
is paracompact and homologically locally connected, it can be shown that this is

naturally isomorphic to 77*(X, Ex) as defined above, Ex being the constant sheaf
(§8, Example 1).   We omit the proof, since in any case the results of the next sec-

tion show that our cohomology groups have all the usual properties.
2.   If F is an abelian sheaf and KÍF, n) is as in Example 2 of §8, then

HqÍX, KÍF, n)) is the ordinary sheaf cohomology group Hq+niX, F).  More gener-
ally, if K" is a bounded below complex of abelian sheaves and if E is the asso-
ciated spectrum as in Example 2 of §8, then 77?(X, E) = 77*(X, K"), the latter
group being the usual (hyper-) cohomology group (cf. [13])«  This is an immediate
consequence of the fact that a flabby resolution K" —• 7* in the usual sense gives
rise to a weak equivalence E —> E   (E   being the spectrum associated to 7*)
such that E' is flabby and bounded below in the sense of §9- (See §9, Example
1. One also needs to observe that jt YÍE')- HqYil'\)9

Complements. 1. If X has finite cohomological dimension and E is a (pos-
sibly unbounded) sheaf of spectra which stalkwise satisfies Kan's extension con-
dition, then we define

HqiX, E) = HqiX, E[-oo, TV])

for all sufficiently large TV, and (as usual) we extend this to arbitrary E by means
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of the free group functor.   In order to justify this definition we need to prove that
the natural map

HqiX, E[-oo, N + 1])  -2» HqÍX, E[-oo, Ai])

is an isomorphism for large N. Now it follows from the lemma to be proved in the
next section that the fibre of

E[-oo, AJ+1] — E[-oo, A/]

is isomorphic in Sta Ka(X) to KinN ^E, N + l), and thus we have a fibration se-
quence in Sta Ka

RTiKiuN+lE, N + l))-+ Rr(E[-oo, N + l]) -* P.r(E[-oo, N]).

The homotopy exact sequence of this fibration, in conjunction with Example 2
above, shows that a is an isomorphism for AJ >p - q, p being the cohomological
dimension of X.   (Remark.  In case X is a noetherian space of finite Krull di-
mension, the unbounded case can be handled directly by means of a generalization
of Theorem 7.  Cf. Remark 2 after Theorem 6, §9.)

2. Theorems 6 and 7 remain valid if T is replaced by T. (sections with sup-
port in 0), where 0 is any family of closed subsets of X closed under finite
union.  We can thus define //î(X, E) in the obvious way.

3. Theorems 6 and 7 also remain valid if we replace T by the direct image
functor /„,, where f: X —* Y.  We can thus define generalized higher direct image
functors by

R7*(E) = ;r_9R/*(E)

for E in Sta Ka   (X).   One can check that Rqf^iE) is the (abelian) sheaf on Y
associated to the presheaf V (-» Hqif~ 1 V, E).

4. The methods of §3 can be used to prove an analogue for generalized sheaf
cohomology of the hypercovering theorem.   Details will be omitted.

5. There is an alternative approach to the definition of generalized sheaf
cohomology, which avoids the homotopy theory of sheaves of spectra by using

canonical resolutions.  The canonical resolution of E is obtained as follows.  As
in [12] we construct a cosimplicial object in Sp(X), augmented over E., by means
of the triple i%i*, where i: X& —» X is the natural map, X^ being the under-
lying set of X with the discrete topology.  To this cosimplicial object we associ-
ate a "total" sheaf of spectra E' (Appendix B), and we define HqÍX, E) =
n_qI\E').

11.  Long exact sequences and the fundamental spectral sequence.

Proposition 11.   (i) 1/ QE" —* E' —* E —* E" is a fibration sequence in
olajia   (X), then the sequence
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-r Hq- liX, E") - 77«(X, E') - 77«(X, E) - 77«(X, E")

¿s exacZ.
(ii) If U is an open set of X then there is a long exact sequence

... — 77«- liU, E) — HqiX, 77; E) -* 77*(X, E) — 779(77, E) — . • •,

where the relative group is by definition the cohomology of X with supports in
X — 77 (see Complement 2 in §10).

(iii) If 77, V are open sets of X and X = 77 U V, then there is a long exact
Mayer-Vietoris sequence

... _W9-l(fj n V> E) _.//9(x, E)

- HqiU, E) © 779(V, E) — 77*(T7 O V, E) ~» • • •.

Proof,   (i) is clear,   (ii) is the homotopy sequence of the fibration IXX, E) —•
r(77, E), where we have assumed (as we may) that E is flabby and bounded be-
low,   (iii) is the homotopy Mayer-Vietoris sequence associated to the cartesian
square of fibrations

r(77 U V, E)—>YÍU, E)

YÍV, E)-»TiU n V, E),
E again being assumed flabby and bounded below.

Remarks.   1.   If X is paracómpact, then using Remark 3 following Theorem 6
we can obtain long exact sequences analogous to (ii) and (iii) involving closed
subsets of X.

2.  Using the stable Bousfield-Kan spectral sequence (Appendix B) we can
generalize (iii) to a spectral sequence for an open cover (or hypercovering) of X.

We turn now to the construction of a spectral sequence which is a nonadditive
generalization of the hyperhomology spectral sequence and which is a sheaf theo-
retic generalization of the Atiyah-Hirzebruch spectral sequence.

Lemma.   Let E be a sheaf of spectra and suppose that, for some n,  v E =
0 for q 4n.   Then E is canonically isomorphic in StaKa(X) to the stable Eilen-

berg-Mac Lane sheaf KÍn E, n).

Proof.   Using Example 2 of §8 and methods analogous to those of §3, we see
that a map from E to Kin E, n) in Sta Ka (X) is the same as a map from Cj,E)
to 77 E in the homotopy category of chain complexes of abelian sheaves (indexed
here by subscripts, with differential of degree - 1), where 77 E is regarded as a
complex concentrated in dimension ti and where CtÍE) is the normalized chain
complex of E.   Now the group of such maps can be computed by replacing CmiE)
by a complex which is zero in dimensions less than n and replacing n E by a
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complex of injectives which is zero in dimensions greater than n and then com-
puting homotopy classes of chain maps.   It is trivial to check that this group is
Hom(ß CtÍE), n E), and it is clear from the hypothesis on E that a map /:
H C,(£) —► ir E corresponds to an isomorphism E —• Kin E, n) if and only if / is
an isomorphism.   To find such an /, we consider the "Hurewicz map" E —» ZE,
ZE being the (reduced) free abelian sheaf generated by E (so that CÍ.E) is the
normalization of ZE) , and observe that by the ordinary Hurewicz theorem applied
stalkwise, this map induces an isomorphism on rrn.  The existence of an isomorph-
ism H C (E) ta n E now follows from the fact that H C (E) = rr ZE, and this com-n   * n n   * n      *
pletes the proof.

Theorem 8.   For any sheaf of spectra E there is a first and fourth quadrant
spectral sequence of cohomological type with E^q = ß^X, n_ E).  If X has finite
cohomological dimension or if n E = 0 for q sufficiently large, then the spectral
sequence converges to H^^ÍX, E).

Proof.   We may assume that E stalkwise satisfies the extension condition.
It follows from the lemma that we have (local) fibrations KinJB, n) —» E[- ~, «]
—»E[- oo, n - 1]. By Proposition ll(i), these give rise to long exact sequences in cohomo-
logy which fit together to form an exact couple and hence a spectral sequence. The iden-
tification of the E2 term follows from Example 2 of §10 and the convergence assertion is
trivial.

Corollary    (Leray spectral sequence).   Lef /:   Y —» X be a map and let E be
an object of Sta Ka   (V).   Then there is a spectral sequence

Epq = HpiX, R%(E)) =» Hp+qÍY, E).

Proof.   This is the spectral sequence of Theorem 8 applied to Rf*ÍE) (§10,
Complement 3).

Remark.   The spectral sequence of Theorem 8 can also be obtained as the
Bousfield-Kan spectral sequence (Appendix B) of the cosimplicial spectrum ob-
tained by applying T to the Godement resolution of E (§10, Complement 5).

Finally, we mention that it is possible to define a smash product functor in
Sta Ka(X) and to introduce multiplicative structure into generalized sheaf cohomo-
logy and into the spectral sequence of Theorem 8.   The details are given in Appen-
dix A.

Appendix A   Smash products in Sta Ka (X).  We will need the fact that the
spectrum A (Example 1 of §7) is canonically isomorphic in Sta Ka to a sphere.
We can deduce this from the corresponding fact about simplicial sets, as in the
treatment of A and A in the proof of Theorem 5, or we can simply compute that
A has the same homology as a sphere.  Note that we have a canonical cycle
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£(- lYdx generating the nonzero homology group.
Next, we recall from the homotopy theory of simplicial sets (or from [21, I,

§3]) the explicit description of the boundary homomorphism d: ir B —♦ 77 _jF,
where F t-* E — B is a fibration of spectra.  We observe that A/A is a sphere
and we represent an element [si of n B by a map s: A/A —» B, which we lift to
a map t: A —*E.   Then t | A: A —■ F represents d[s].  This description, together
with a suitable version of the homotopy addition theorem (which is proved by ap-
plying the Hurewicz theorem to the wedge of spheres obtained from A by collaps-
ing all ddx to *), yields the following.

Al.   Let F c+ E —> B be a fibration, let s be a spherical 77-simplex in B,
and let t be a lifting of s to E such that all faces d 1 are spherical.   Then

r3ts]=S(-l)'Kil
in 77    ,F.rt — 1

We define now the smash product of spectra.   Our definition is an adaptation
of the definition in  [16].  If E and E   are spectra, we define their (external)
smash product E A E' to be the bispectrum (see beginning of §7) with a p + q
simplex x A x   for each p simplex x of E and q simplex x   of E , subject to
the identification *Ax  = * = x A *, with faces defined by

!(<*„   ,  .x) A x'
x A d._.x

for - 00 < 1 < p
djix A

/¿    x for p < ¿ < 00,

and degeneracies defined similarly.
The smash product functor preserves weak equivalences in both variables

and induces a functor Sta Ko x Sta Ka —» Ho JBiAp (ü¡Ap being the category of bi-

spectra) which can be converted to an internal smash product in Sta Ko using the

equivalence of Sta Ko and Ho SiAp established in [16].
A2.   Letting CÍE) be the unnormalized chain complex of E, i.e., the (reduced)

free abe lian group generated by E, with differential d = £(- l)ld., there is an
isomorphism

(A3) CÍE) ® CÍE') — CÍE A E')

defined by x ®x 1-» ex A x' (p = degree of x), where e    is defined for all in-

tegers p by (0 = 1, (p = i-l)p~1(p_y
A4.   There is a pairing rrpE ®nqE' -» np+qÍE A E') defined by [s] ®[s']r-*

( [s A s ], s and s   being spherical and (   being as in A2.   The sign is used so
that the pairing will be compatible, under the Hurewicz map, with the pairing of
homology classes induced by (A3).
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The definition of smash product can be sheafified, and the pairing of A4 in-
duces a pairing of abelian sheaves

(A5) nß ® 77 E'-» rrHiE A E')

for E and E' in Sta Ka (X).
Suppose, now, that E, E', E" ate objects of Sta Ka- (X) and that we are given

a map a: E A E' —♦ E" in Sta Ka(X).  (Note that E A E' might not be in
Sta Ka  (X).) Then there is a map

(A6) RHE) A RTiE') -RIXE"),

defined as follows:  We may assume that E and E   are flabby and bounded be-
low, and using Proposition 8 (§8) (and the dual of Theorem 1 (§2)), we may as-
sume that a is actually a map in Sp(X). With these assumptions, (A6) is the
composite

T(E) A HE') - T(E A E') -!^-,r(E") - RFÍE"),

the two unlabelled maps being the obvious ones.  Using A4 again we obtain from
(A6) cap products

(A7) HpiX, E) ® ß«(X, E') ^ Hp*qiX, E").

(If X has finite cohomological dimension, we can eliminate the hypothesis that
the sheaves are in Sta Ha  (X) by using Lemma 1 below.)

Example.   Let F and G be abelian sheaves and let E, E , E" be K(F, n),
KÍG, m), and KÍF ® G, n + m), respectively.   It follows from the proof of the
lemma of §11, together with A2 and A4, that there is a unique pairing E À E'—>

E" in Sta Ka(X) such that the corresponding map n (E) ® n (£') —> n      (E")
1 °       *■      n m n +m

(see (A5)) is the identity map of F ® G.   The resulting cup product agrees with
the usual cup product

Hp*n(X, F) ® ß«+m(X, G) — Hp+9+n+mÍX, F ® G)

under the identifications of Example 2 of §10.
In order to introduce products into the spectral sequence of Theorem 8, we

need to observe that the exact couple defined in the proof of that theorem is act-
ually part of a spectral system (i.e., an Hip, q) system as in [7, Chapter XV]).
Thus if we define, for a sheaf E of spectra or bispectra, E[p, oo] = the fibre of
E —♦ E[- oo, p - l], and if we define, for - oo < p < q < oo,

E[p, q] = ÍE[p, o°])[- oo, q],

then the spectral system is given by Hip, q) = ß*(X, E[p, q - l]), where of

course, EÍp, p- l]= *.  The maps Hip, q)->Hip', q) tot ip'. q')<ip, q), which we will
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denote by A, come from the natural maps E[p, q - l] —» E[p , q - l] ; the maps
8: Hip, q) —» Hiq, r) ate the connecting homomorphisms in the long exact cohomo-
logy sequences associated to the fibrations E[q, r - l] C-» E[p, r — 1]t» Efp.^ - l].
Note that the exact couple of the proof of Theorem 8 consists of the exact se-
quences

... _H(9-1, t7)-»77(-~, q) -.77(-~, q- l) — 77(? - 1, q) -. • • •,

but the groups 77(- », ç) will play no role in our construction of pairings.

Lemma 1.   Let E, E   be sheaves of spectra, let p and q be (finite) integers,
and assume 0 < r < ».   Then

(i) E[p, oo] A E'[ q, oo] C (E A E')[p + q, «.].
(ii)  T7>e inclusions of (i) induce, by passage to the quotients, maps

E[p, p + r] A E'U?, 9 + r] -» (E A E')[p + ?, p+ 9 + r}.
Proof.   This is simply a matter of checking the definitions.    D
If we are given a pairing E A E   — * £ , the pairing (A5) induces (via cup

product) a pairing

(A8) E\q ® E*V - Ef+"'W
of the spectral sequences of E, E , and E".

Theorem 9.   Le/ E, E*, E" 7>e sheaves of spectra, and let E , E ', E " be the
spectral sequences of Theorem 8.   T7>e72 given any map E A E —► E" ¿w

Sta Ka (X), i/je pairing (A8) extends to a pairing of spectral sequences E  ® E '
—» E    which on £M ¿s compatible with the cup product (A7).

Proof.   Let 77, 77 , 77" be the three spectral systems.   Lemma 1 gives us cup
products Hip, p + r) ® 77'(?, q + r) —» 77"(p + ?, p + q + r), which will induce a
pairing of spectral sequences provided we verify commutativity of the following

(cf. [10, DA]):

Hip, p + r) ® 77'(i7, q + r)-*H"ip + q, p + q + r)

8®X + 7«®S

A-*H"ip + q + r, p + q + r + l),

where

A = (77(t> + r, p + r + 1) ® H'iq, q + l)) © (77(p, p + l) ® ß'(? + r, q + r + l)).

(Note that according to the sign convention (A ® SXa ® a') = (- VfiXiu) ® S(a )
if a is a cohomology class of dimension p.) This commutativity follows from
Lemma 2 below applied to the fibrations
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E[p + r, p + r]   c*   E[p, p + r]-*E[p, p + r - l],

E'[o + r, q + r] C-»    E'[q, q + r] ->E'[q, q + r - l],

E"[p + q + r, p + o + r]0-» E"[p + q, p + q + r] —» E"[p + a, p + a + r - l].

Note that we have used the dual of Theorem 1 applied to sheaves of bispectra in
order to assume that we have a map E A E   —> E   in 9>i<ip (X).

Lemma 2.   Lef p: E —* B and p : E —» B   be local fibrations of sheaves of
spectra and let p : E —> B   be a local fibration of sheaves of bispectra.   Assume
all of the above sheaves are bounded below and locally satisfy Kan's extension
condition.   Let i: F —» E,  z : F  —» E , and i": F —> E   be the fibre inclusions
and assume given maps a: E A E  —» E", ß: B A B  —► B", y: F A B  —» F",
and 8: B At;' -+ F" sac* f/baf p"a = ß o (p A p'), z"y o (p A p') = a ° (i A E'),
awá" z'"p ° (p A F ) = a o (E A z ).   Letting d denote the connecting homomorphism
in all three cohomology exact sequences, we have (using the cup products obtained
from a, ß, y, 8)

diu u u) = du U u  + i- l)pu u du

in Hp+q+1iX, F"), where u e HPÍX, B) and u  e HqiX, B').

Proof.   We will assume first that all sheaves are flabby and all fibrations are
global fibrations.   An element of HPÍX, B) is represented by a section s of the
spherical - p simplices of B, and an element of HqÍX, B ) is represented by a
section s   of the spherical - q simplices of B .   Let t be a lifting of s to E
such that d.t = * foi z > 0 and let f    be a similar lifting of s .  Then d[s] =
[d0t], where a"0f is regarded as a section of F, and d[s'] = [dQt'] (see Al).   On
the other hand, by definition,  [s] ubl = (_A.s"], where s" is the image in B" of
s A s   and e_0 is as in A2.   The image t ' in E" of f A f ' is a lifting of s" to
E", and its nontrivial faces are d_.      a" = yid^t A s') and d_ t" = Sis A d^t').
Therefore

di[s\ U [s']) = (_pd[s"] = i_p((-l^+1U_(p+1)f"] + i-l)p[d_/])

(Al) = i_/-l>*+,*_,_ia*] U [s']+ e„,(-l)»i_,M U ¿V]

- Asi U [*'] + (-1)*U] ur?[s'].

We will now reduce the general case to the special case just considered by
showing that we can map the given sheaves to sheaves satisfying the conditions
of the above paragraph in a way compatible with all the given data and such that
the maps are weak equivalences.  By applying the free group functor and then an
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appropriate Postnikov functor to p we can imbed it by a weak equivalence into a
map in §» Sp"(x) for some TV, which we can then imbed in a global fibration p~
of flabby sheaves by Proposition 10.  Similarly, we imbed p   by a weak equivalence
into pr.  Next we can replace ß" by

B"   UBAB'  5 A W

and we can therefore assume that ß factors as

BAB'^  b A F -£ B".

The rest of the given maps can be summarized by a diagram

Z->E"

B  A   B'-^— B",

where

Z = (B A F')  u£Af, (E A E') UFAg, (F A B')

and the unlabelled horizontal and vertical maps are, respectively, (¿ 5, a, ¿ y)
and (*, p A p', *).  If we verify that Z^> Z is a stalkwise injective weak equiv-

alence then we can replace E   by E" = Z Uz E   and then convert the resulting
map E"—> B   into a fibration, and this will complete the reduction.  Now one sees
by inspection that the map Z —» Z is injective, and to prove it is a weak equiv-
alence we observe that we have a cocartesian square

(E A F') LW, (F A E')->ÍB A F') V (F A B')

IA, I
E A E'-» Z

and similarly for Z, where the vertical arrows are injective.  But it follows from
[16, 5.5] that these squares give rise to Mayer-Vietoris sequences in homotopy,
which reduces us to proving a weak equivalence of the spectrum in the upper left-
hand corner with its barred analogue, and this again follows from the Mayer-Vietoris

sequence.

Appendix B. The stable Bousfield-Kan spectral sequence. Let X be a co-
simplicial object in the category of spectra, i.e., for each integer p > 0 we have
a spectrum X^, and we have coface maps 8.: Xp~   —* Xp and codegeneracy maps
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o\: Xp+1 —* Xp, i = 0, 1, • • •, p.  We define the total spectrum TÍX) as follows:
An 72-simplex of T(X) is a sequence W^L^n, **+« eXp+n> suc^ tnat

<a> **immWi-v oï^p* ■"•»*/•»<.■-vîS«-°s'*-*»
(where, for p = 0, we set **_« = *); and

(b)   «*?._l has only finitely many nontrivial faces, these being defined by

Replacing "d" by "*" in (Bl), we obtain a definition of degeneracies in T(X),
which then becomes a spectrum.

We can define approximations T, (X) to T(X) by using finite sequences
K+nW andwehave

T(X) = lim Tt(X).

We say X is fibrant if the map of Xp+1 to the product of p + 1 copies of X*
given by the codegeneracies is a fibration of X^*   onto the "possible image".
(The possible image is determined by the cosimplicial identities.)  If X is fibrant
then the maps TAX) —» T, _j(X) are fibrations, and the E1 term of the corres-
ponding spectral sequence is the normalization of the cosimplicial graded abelian
group p I-» jt^X*".   Thus the total spectrum and the spectral sequence provide a
nonadditive generalization of the spectral sequence of a double complex of abelian
groups.

Remark.   The total spectrum construction was discovered in connection with
the study of function spectra.  In fact, if K is a pointed simplicial set and E is
a spectrum, we can define a spectrum K A E by formulas similar to those defining
the smash product of two spectra.   The functor K A - has a right adjoint
Kom.(7<, -), where Kanv(K, E) is defined as the total spectrum associated to the
cosimplicial spectrum p (-► Hom(X , E), the latter "Horn" referring to maps of
pointed sets.   Conversely, the total spectrum T(X) can be defined in terms of
function spectra as in [4, §3], where the unstable analogue is presented.  Note
that the situation is better in the stable case, since in the unstable case there
is no simple explicit description of the n-simplices of the total object analogous
to our definition above.
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