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1. Introduction. Let "^ be a category and let Sf be the category of sets and set

maps. If X and Y are objects in <€, \X, Y~] will denote the set of morphisms from

X to Y. Let H : %> -> £f be a contravariant functor. In the case where # is the cat-

egory of CW complexes with base point and homotopy classes of maps, conditions

on H were given in [1] which implied that H was naturally equivalent to [ ,Y¿\

for some CW complex YH. Furthermore, the proof of this result used, for the most

part, abstract category arguments. The aim of this paper is to formalize this latter

fact. That is, we wish to give conditions on an abstract category <€ and conditions

on H from which we can deduce that there is a natural equivalence T: [ , Y¡¡]-*H.

Furthermore, we want the category of CW complexes and homotopy classes of

maps to satisfy our conditions on c€.

In §2 we state and prove our main results. §3 contains some examples of cate-

gories and functors satisfying our conditions on <€ and H.

2. Homotopy categories and functors. A pair i&^o), where % is a category

and "íífo is a subcategory, will be called a homotopy category if it satisfies conditions

(2.1)-(2.4) below (f€Q plays the role of finite CW complexes):

(2.1) ^o is a small, full subcategory of #, i.e. ^0 -s a set ar-d [_X, 7]0 = \X, Y~\

if X and fe^.

(2.2) Wo nas finite sums and # has infinite sums.

(2.3) If f¡: A -* X¡, i = 1,2, are in <&, there are maps g¡: X¡ -> Z in ^ such

that gyfy = g2f2 and such that if g\: Xx -* Z' satisfy g[fy = g'2f2 , then g¡= hg¡

for some h : Z -> Z'. (h is not necessarily unique.) Furthermore, if A and X¡ e #0 ,

Z may be chosen in ^0 . (Z plays the role of Xy \j X2 where Xy n X2 = A)

(2.4) If /„: Xn -* X„+y, n = 1,2,3, ••-, are in # there is an XeV and maps

gn: X„ -» X such that:

(i) dir lim gnt : dir lim [Z, Z ] « [Z, A"] for Ze íf0.   g„,    denotes  the  map

g„. (h) = &,/».
(ii) inv lim g* : [X, Z] ->invlim[.Y*, Z]   is an epimorphism  for  ail  Ze^.

*?(*)-ÄÄ.»
Let "f? be the category of CW complexes and homotopy classes of maps. Let
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#o be the full subcategory of ^ whose objects are the finite subcomplexes of some

standard countably infinite dimensional simplicial complex.

Theorem 2.5. Ç#,1>o) is a homotopy category.

Proof. (2.1) and (2.2) are immediate. For (2.3) we construct g( and Z as follows:

Z = A x / U Xy UlX2

where (a,0) is identified to fy(a) and (alt 1) is identified to f2(a) for all aeA.

gt is the homotopy class of the inclusion map of X¡ into Z. (2.4) (i) follows from

the fact that a compact subset of a CW complex is contained in a finite subcomplex.

(2.4) (ii) follows from the homotopy extension theorem.

If C^'.'^o) is a homotopy category and H: %> -* y is a contravariant functor,

H will be called a homotopy functor if it satisfies conditions (2.6) and (2.7)

below:

(2.6) If hx : X„ -* HXß axe the injections,

nH(fta):tf(Zxa) «n #(*«)•

(2.7) tt ft:A-*X, and g,:X¡-*Z, i = 1,2, are as in (2.3) and u¡eH(X,)

satisfy H(fy)uy — H(f2)u2 , then there is a veH(Z) such that H(g¡)v = u¡.

Remark. It is immediate that [   ,X], Xe'ë, is a homotopy functor.

If {*&, ^o) is a homotopy category, #0 will denote the set of objects Ye # such

that /: Y -*■ Y' is an equivalence if /, : [X, 7] » [X, Y'] for all X e V0 ■ For

example, if ^ is the category of CW complexes with base point and homotopy

classes of maps and ^0 is the subcategory of finite simplicial complexes as above,

then ^0 is the set of all connected CW complexes.

Theorem 2.8. If H is a homotopy functor, there is a Ygetf and a natural

transformation T: [ , YH] -* H such that T: [X, YE) « H(X) for all X e ^o-

Furthermore, ifYHe&0,YH is unique up to an equivalence and T: [X, 1^] » H(X)

for all Xe^.

Remark. In applications of (2.8) one can sometimes deduce that YHe%0 fr°m

the properties of H. For example, if # is the category of CW complexes with base

point as above, YHe<^0 if H{S°) contains only one element.

Theorem 2.9. If$o IS a countable set, H :<¡É'0 -* Sf is a contravariant functor

satisfying (2.6) for finite sums and (2.7) and ifH(X) is countable for each X e^f0,

then H can be extended to a homotopy functor H-.'ë -> Sf.

Before proving (2.8) and (2.9) we give some lemmas.

Lemma 2.10. If (2.2) holds, (2.3) is equivalent to the following: Iffy,f2 :A-*X,
there is a g: X -*■ Z such that gfx = gf2 and if g': X -» Z' satisfies g'fy = g'f2,
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then g' = hg for some h:Z-*Z'.   Furthermore if A and Xe1ê0, Z may be

chosen in ^0 •

Proof. If (2.3) holds, take g: X -* Z to be the map given by (2.3) from the pair

fy +f2: A + A -» X and id + id: A + A -* A. If the above condition holds,

take g¡:X¡-*Z to be gk¡, where fcj.Xt —-> Xt + X2 are the injections and

g: Xy + X2 -> Z comes from kyfy, k2f2:A -» Xy + X2.

We will call the map g: X -> Z as in (2.10) an equalizer'2) of fy and f2 .

Lemma 2.11. If H is a homotopy functor, g: X -* Z is an equalizer of

fiih'- A->X and ueH(X) is such that H(ff)u = i/(/2)«, then there is a

veHiZ) such that Hig)v = u.

Proof. This is immediate from (2.6) and the proof of (2.10).

Lemma 2.12. Iff: Xn->Xn+1 and gn: X„^>X are as in (2.4), then

inv lim Hign) : H(X) -» inv lim H'Xn)

is an epimorphism.

Proof. X is an equalizer ofIlidn,?,f„:'LXn-+'EXn. SinceT\HiXJxHi'Exi),

inv lim HiX„) * {a e#( lX„) \ Hi I idn)u = H( I/„)u}.

(2.12) now follows from (2.11).

Proof of Theorem 2.8. Note that if ueH(T), T„: [Z, T]-> H(Z), where

Tuif) = Hif)u, is a natural transformation.

If y is anything and X e cê, (X, y) e & will denote a copy of Z and ty : (X, y) -»■ X

will be an equivalence. In the following we will identify H(1ZXf)and Y[HiXa).

We define, by induction on n, Yne<g, uneHiY„) and /„: Y„ ->■ Yn+1 for

n = 0,1,2, ••». Let Y0 and u0 be arbitrary. Let

Yy = Y0 + lXX,u)

where the sum ranges over Xe^0 and ueHiX). Let Uy = (u0, •••,H(í„)m, --^and

let fy be the injection. Suppose Y„ and «„, n ^ 1, have been defined. Let

/„: Y„ ~* Yn+x be the equalizer of

Zgihm.gi) '   ^htuii) '•  ¿Xx>(gi> s2)) -» y„

where the sum ranges over all X e^0 and pairs gy, g2 : X -» Yn such that g y # g-2

and  Higy)un = Hig2)u„.   By  (2.11)  there   is   a   un+1eH(y„+1)   such   that

#(/>„+1 =«■•

From the way in which the 7,'s were constructed, it follows that

(2) (2.10) and a more complete discussion of equalizers appears in [5].
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dir lim TUn: dir lim [X, F„] « H(X)

for Xe#0.

By (2.4) and (2.12), there is a YHe^, maps g„: Y„-> YH and ueH(vB) such

that H(g„)u = u„ and

dir lim g„, : dir lim [X, Fj « [X, yH]

for X e^o ■ One may easily check that dir lim T„ = Tu dir lim gn,. Hence

Tu : [X, FH] « H(X)

for all Xe if0.

Suppose YBe^0.V/e wish to show that T„: [X, yH] « H(X) for all Xe«'.

Suppose fy,f2: X^YH axe such that T^/j) = Tu(f2). Then #(/> = H(f2)u.

Let g: yH -* Z be the equalizer of/! and/2 and let v e H(Z) be such that H(g)v — u.

Recall that in the construction of Y„ and u„ above Y0 and u0 were arbitrary.

Repeat the above construction of Y„ and u„ starting with Y0 = Z, u0 = v to obtain

Y'B, u' and b: Z -» Y¿ such that H(h)u'= v and T„,: [X, F¿] « H(X) for

for Ief0. Then H(hg)u' = u and hence Tu,(hg)* = Tu. Therefore

(hg)ç. [X, FH] » [X, y¿] for Xe^o- Since yHe«\, bg is an equivalence.

But hgfy = hgf2 . Therefore /, =/2 .

Suppose weH(X), Xe^. Let it and i2 be the injections of X and YH into

X + yH. Repeat the above construction starting with Y0 = X + YH and u0 = (w,u)

to obtain Y¿, h: X + YH-* YH and iFe//^) such that #(b)u' = (w,u). Then,

as above, hi2 is an equivalence. Let/ = (hi2) "^Alj. Then

TJJ)  = H(/)u

= H(iy)H(h)H(hi2f1u

= H(iy)H(h)u'

= w.

Therefore Tu : [X, FH] « H(X) for all X e if.

The uniqueness of FH up to an equivalence is immediate.

Proof of Theorem 2.10. To prove (2.10) we construct aYHe *£ and a natural

equivalence T: [X, FH] « #(X) which is defined for all Xe ^0 ■ [ > TH] then

extends H to cê. To construct Yh we alter the construction of Yn and u„ in the proof

of (2.9) so that Yn e^0 for all n. Let X¡ and b,-, i, j = 1,2, •••, be the objects and

maps in *&0 . Let H(X¡) = {u¡j}. Let Y0 e^Q and u0 e H(Y0) be arbitrary. Suppose

Yk, ukeH(Yk) andfk-yi Yk_y -* Yk have been defined for k í¡ n. If k ^ Î, let

Ai  - fi-ifi-2—fk,     i <K

= id, l = k.
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Let

YUx =  Yn+    I   iXl,ulJ),
i.JSl

"»+i = K»—,#(*„(,)«y».—)»

and let r: Yn -> y„'+1 be the injection. Let g: Yn'+1 -♦ Yn+1 be the equalizer of

Esi'íír, i-2)'  ^S2t(gl,g2): Z(X,igx, g2))-> Y„'+x

where ref0 and (g, , g2) ranges over all pairs of the form gx = rfnkh¡ and

Si = ¡"/nA such that i, j ^ n and i/(g,X+1 = Hig2)u'n+1. Let /„ = gr. By

(2.11) there is a wn+1 6//(yn+1) such that Hif„)un+1 = u„. One may easily check

that

dir lim Tu : dir lim [Z, Y„] « #(Z)

for ail X e ^0 . By (2.4) there is a >}. e "% and maps g„: YB -♦ YH such that

dir lim T„.: dir lim [Z, Y„] « [Z, YH~\

for Z e^o . Let T: [Z, yfl] -> H(Z) be defined by T =(dir lim TJ (dir lim g,,)"1.

It is trivial to check that T is a natural transformation for Z e "if0 .

Remark. Suppose 'if is the category of CW complexes with base point and

homotopy classes of maps. In this case the construction of the Y„'s for the proofs

of (2.9) and (2.10) could have been carried out using only spheres, instead of all

the objects in ^0. The procedure would then be the usual process of building

a CW complex by attaching cells.

3. Examples of homotopy categories and functors.

Example 3.1. Suppose # is the category of CW complexes with base point

and homotopy classes of maps. Let îf0 be the full subcategory of ^ whose objects

are all finite subcomplexes with base point of some infinite dimensional simplicial

complex. As in the proof of (2.5), one may easily verify that (^,^0) is a homotopy

category. 'Sq is the class of all connected CW complexes with base point. In each

of the examples below H(S°) contains exactly one element so that YHe(ê0-

Let {Hq,ôq} be a cohomology theory on pairs of CW complexes [1], i.e.

Hq and ôq satisfy all the Eilenberg-Steenrod axioms except the dimension axiom.

Furthermore, suppose that if Z = \yJXx is a disjoint union and ia: Za -> Z is the

inclusion map,

T[Hq(Q: H\X) « X[HqiXx).

Then for each q, the following is a homotopy functor:

HiX,x0)  = H?(Z,x0),

Hilf!)   = H%f),

where x0 is the base point of Z and [/] denotes the homotopy class of/.
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Remark. Hq(X, A) can be recovered from H as follows: Let p be a point dis-

joint from X and let Z e <6 be X u (A x I)U {p} with (a, 0) identified to a and

(a, 1) identified to p for each a e A. Let p be the base point of Z. Then

H\X, A) = H(Z).
Let F be a topological space and let G be a topological group which acts

effectively on F. Let 380 be the fibre bundle with fibre F, group G and base

space a point p. We define a bundle over X e ^ to be a pair (Si, i) where J1 is a

bundle over X in the sense of Steenrod [4] and i : 3i0 -* Si is a bundle map which

carries p into the base point of X. Bundles (38', i') and (38, i) over X will be called

equivalent if there is a bundle map A : 38' -* 38 over the identity map of X such

that i = Xi'. For each X e <€, let H(X) be the set of equivalence classes of bundles

over X with fibre F and group G. Iîf:X-+Y let H([f]):H(Y)-+H(X) be

defined by #([/]) {38} = {/* J1}. tf is then a homotopy functor. One can recover

the usual theorem concerning the existence of a universal bundle from Theorem

2.8 by considering H(X+) where X+is X plus a disjoint base point.

Treating the base point as above, the functor which assigns to each X e C the

set of fibre homotopy equivalence classes of fibre spaces over X with fibre F is a

homotopy functor. The proof that this functor satisfies (2.7) is by no means

trivial but it can be proved by the techniques in [3].

Example 3.2. Let # be the following category. The objects of <£ are pairs

{Si, i) where 38 is a bundle over a CW complex with base point with fibre F and

group G and i : 380 -» Si as above. The maps of <€ are homotopy classes of bundle

maps respecting our base point convention. Let <&0 be the subcategory of bundles

over the finite subcomplexes of some infinite dimensional simplicial complex.

Then (#, ^0) is a homotopy category and the following is a homotopy functor:

H((3i,i)) = H%E,iF)

where Fis the total space of Si and Hq is a cohomology group as in (3.1). If F = R"

and G = 0(n), the following is also homotopy functor:

H((S3, i)) = H\T(S8), T(x)(T(380)))

where T is the Thom space functor.

Example 3.3. The following is a homotopy category. The objects of C are

n-tuples (Ay,A2, •■-,A„) where Ax is a CW complex and A„cz A„^x cz • •• cz Ay

axe subcomplexes. The maps of <€ are homotopy classes of maps in the usual

sense. The objects of if0 are «-tuples where Ay is a finite subcomplex of an infiniie-n

dimensional simplicial complex.

Remark. Although Theorem 2.8 cannot be applied to microbundles [2] to prove

the existence of universal microbundles, the techniques used to prove (2.8) can

be applied in a straightforward manner to obtain this result. The complicating

factor is that microbundles are defined only over finite-dimensional base spaces.
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This complication could be introduced into our abstract theory but the result

would be more intricate than the method of proof used in (2.8).
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