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Abstract. The relationship between abstract interpretation and partial 
evaluation has received considerable attention and (partial) integrations 
have been proposed starting from both the partial evaluation and ab-
stract interpretation perspectives. In this work we present what we ar-
güe is the first generic algorithm for efñcient and precise integration of 
abstract interpretation and partial evaluation from an abstract interpre-
tation perspective. Taking as starting point state-of-the-art algorithms 
for context-sensitive, polyvariant abstract interpretation and (abstract) 
partial evaluation of logic programs, we present an algorithm which com-
bines the best of both worlds. Key ingredients include the accurate suc-
cess propagation inherent to abstract interpretation and the powerful 
program transformations achievable by partial deduction. In our algo-
rithm, the calis which appear in the analysis graph are not analyzed 
w.r.t. the original definition of the procedure but w.r.t. specialized defi-
nitions of these procedures. Such specialized definitions are obtained by 
applying both unfolding and abstract executability. Also, our framework 
is parametric w.r.t. different control strategies and abstract domains. 
Different combinations of these parameters correspond to existing algo-
rithms for program analysis and specialization. Our approach efficiently 
computes strictly more precise results than those achievable by each of 
the individual techniques. The algorithm is one of the key components 
of CiaoPP, the analysis and specialization system of the Ciao compiler. 

1 Introduction and Motivation 

The relationship between abstract interpretation [5] and partial evaluation [14] 
has received considerable attention. See, for instance, the relationship established 
in a general context in [4,13, 6] and the work in the context of partial evaluation 
of logic programs (also known as partial deduction [21,11]) of [8,10,18,15,24,26, 
9,19, 25,16]). In order t o motívate our proposal, we use the running "challenge" 
example of Fig. 1. It is a simple Ciao [3] program which uses Peano's ari thmetic.4 

4 Rules are written with a unique subscript attached to the head atom (the rule 
number), and a double subscript (rule number, body position) attached to each 
body literal for later reference. We sometimes use this notation for denoting calis to 
atoms as well. 
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:- module (_, [main/2] , [assertions] ) . 

:- entry main(s(s(s(L))),R) : (ground(L),var(R)). 

maim(X,X2) : - f o r m u l a i , i ( X , X l ) , f ormula i , 2 (XI,X2) , g roundi , 3 (X2) . 

f ormula2 (X,W) : -ground2, i (X) ,var2,2 (W) ,two2,3 (T) ,minus2,4(X,T,X2) , twice2,5 (X2,W) 

minus4 (X ,0 ,X) . 
minus 5 ( s (X) , s (Y) ,R) : - minus 5 , i (X,Y,R) . 
minus 6 (0 , s (_Y) ,_R) . 

twice 7 (X,_Y) : - v a r 7 , i ( X ) . 
tw ice 8 (X ,Y) : - g round 8 j i (X) , t w 8 j 2 ( X , Y ) . 

t w 9 ( 0 , 0 ) . 
t w M ( s ( X ) , s ( s ( N X ) ) ) : - t w M , i (X,NX) . 

F i g . 1. Running Example 

The entry declaration is used to inform that all calis to the exported predícate 
main/2 will always be of the form <— main(s(s(s(L))),R) with L ground and 
R a variable. The predícate main/2 performs two calis to predícate formula/2. 
A cali formula(X,W) performs mode tests ground(X) and var(W) on its input 
arguments and returns W = (X — 2) x 2. Predícate two/1 returns s ( s ( 0 ) ) , i.e., 
the natural number 2. A cali minus(A,B,C) returns C = A — B. However, if 
the result becomes a negative number, C is left as a free variable. This indicates 
that the result is not valid. In turn, a cali twice(A,B) returns B = A x 2. Prior 
to computing the result, this predícate checks whether A is valid, i.e., not a 
variable, and simply returns a variable otherwise. For initial queries satisfying 
the entry declaration, all calis to the tests groundi^CX), ground2)i (X), and 
var2)2 (W) will deñnitely succeed. Thus, they can be replaced by true, even if we 
do not know the concrete valúes of variable L at compile time. Also, the calis to 
groundgi (X) will succeed, while the calis to var7 i (X) will fail, and can thus be 
replaced by fail. These kinds of optimizations require abstract information from 
analysis (e.g., groundness and freeness). 

The example illustrates four difficulties and challenges. First, the beneñts of 
(1) exploiting abstract information in order to abstractly execute certain atoms. 
Furthermore, this may allow unfolding of other atoms. However, the use of an 
abstract domain which captures groundness and freeness information will in gen-
eral not be sufficient to determine that in the second execution of formula/2 the 
tests ground2)i (X) and var2^ (W) will also succeed. The reason is that on suc-
cess of minus2)4 (X,T,X2), X2 cannot be guaranteed to be ground since minuse/3 
succeeds with a free variable in its third argument position. It can be observed, 
however, that for all calis to minus/3 in executions described by the entry decla-
ration the third clause for minus/3 is useless. It will never contribute to a success 
of minus/3 since this predícate is always called with a valué greater than zero 
in its ñrst argument. Unfolding can make this explicit by fully unfolding calis to 
minus/3 since they are sufficiently instantiated (and as a result the "dangerous" 
third clause is disregarded). This unfolding allows concluding that in our par-
ticular context all calis to minus/3 succeed with a ground third argument. This 



illustrates the importance of (2) performing unfolding steps in order to prune 
away useless branches, and that this may result in improved, success 'Informa-
tion. By the t ime execution reaches twice2 )5 (X2 ,W), we hopefully know tha t X2 
is ground. In order to determine tha t upon success of twice2 )5 (X2 ,W) (and thus 
on success of f o r m u l a i i (X,W)) W is ground, we need to perform a ñxpoint com-
putat ion. Since, for example, the success substi tution for f o r m u l a i i ( X , X 1 ) is 
indeed the cali substi tution for f o r m u l a ^ (X1,X2), the success of the second test 
g round^ i (X) (i.e., the one reachable from f o r m u l a ^ (XI,X2)) cannot be estab-
lished unless we propágate success substitutions. This illustrates the importance 
of (3) propagating (abstract) success information, and performing fixpoint com-
putations when needed, and that this simultaneously may result in an improved 
unfolding. Finally, whenever we cali formula(X,W), the argument W is a variable, 
a property which cannot be captured if we restrict ourselves to downwards-closed 
domains (i.e., domains capturing properties such tha t once a property holds, it 
will keep on holding in every state accessible in forwards execution). This indi-
cates (4) the usefulness of having information on non downwards-closed proper-
ties. 

Example 1. CiaoPP, which implements our proposed abstract interpretation with 
specialized deñnitions, produces the following specialized code for the example 
of Fig. 1 (rules are renamed using the preñx sp): 

s p _ m a i n i ( s ( s ( s ( 0 ) ) ) , 0 ) . 
sp_main2 ( s ( s ( s ( s ( B ) ) ) ) , A) : - sp_tW2,i (B,C) , sp_f ormula2,2 (C, A) . 

sp_ tw 2 (0 ,0 ) . 
s p _ t w 3 ( s ( A ) , s ( s ( B ) ) ) : - sp_tw3 ,i (A,B) . 

sp_f o r m u l a 4 ( 0 , s ( s ( s ( s ( 0 ) ) ) ) ) . 
sp_f ormulasCsCA) ,s(s(s(s(s(s(B) )) )) )) :- sp_tW5,i (A,B) . 

Thus, our proposal can indeed eliminate all calis to mode tests g r o u n d / 1 and 
v a r / 1 , and fully unfold predicates t w o / 1 and minus /3 so tha t they no longer 
appear in the residual code. In addition, the algorithm also produces an ac-
curate analysis for such a program. In particular, the success information for 
sp_main(X,X2) guarantees tha t X2 is ground on success. Note tha t this is equiv-
alent to proving VX > 3, main(X,X2) —> X2 > 0. Furthermore, our system 
is able to get to tha t conclusión even if the e n t r y only informs about X being 
any possible ground term and X2 a free variable. This is because, during the 
computation of the specialized deñnitions, the branches corresponding to valúes 
of X smaller than 3 are detected to be failing and the residual code is indeed 
equivalent to the one achieved with the more precise e n t r y declaration. This 
illustrates how our proposal is useful for improving the results of the analysis 
even in cases where there are no initial constants in the query which can be 
propagated through the program. 

The above results cannot be achieved unless all four points mentioned before 
are addressed by a program analysis/specialization system. For example, if we 
use traditional partial deduction (PD) with the corresponding Generalize and 



Unfold rules followed by abstract interpretation and abstract specialization as 
described in [24, 25] we only obtain a comparable program after four iterations 
of the: "PD + abstract interpretation + abstract specialization" cycle. This 
shows the importance of achieving an algorithm which is able to interleave PD 
with abstract interpretation, extended with abstract specialization, in order to 
communicate the accuracy gains achieved from one to the other as soon as 
possible. In any case, iterating over "PD + analysis" is not a good idea from the 
efficiency point of view. 

2 Preliminaries 

This section introduces some preliminary concepts on abstract interpretation [5] 
and partial deduction [21]. We assume some basic knowledge on the terminology 
of logic programming (see for example [20] for details). Very briefly, an atom 
A is a syntactic construction of the form p(t\,..., tn), where p/n, with n > 0, 
is a predicate symbol and t\,... ,tn are terms. A clause is of the form H <— B 
where its head H is an atom and its body B is a conjunction of atoms. A definite 
program is a ñnite set of clauses. A goal (or query) is a conjunction of atoms. 

2.1 The Notions of Unfolding and Resultant 

Let G be a goal of the form <— A\,..., AR, ..., Ak, k > 1. The concept of com-
putation rule, denoted by 1Z, is used to select an atom within a goal for its 
evaluation. If H(G) =AR we say that AR is the selected atom in G. The op-
erational semantics of deñnite programs is based on derivations [20]. Let C = 
H <— I? i , . . . ,Bm be a renamed apart clause in P such that 36 = mgu(AR, H). 
Then, the goal <— 6{A\,... ,AR-\,B\,. .. ,Bm,AR+i,... ,Ak) is derived from G 
and C via 1Z. As customary, given a program P and a goal G, an SLD deriva-
tion for P U {G} consists of a possibly infinite sequence G — Go, Gi, G2, . . . 
of goals, a sequence C\, Ci,... of properly renamed apart clauses of P, and a 
sequence 61,62,. •• of mgus such that each Gi+i is derived from G¿ and Ci+i 
using 6i+i. A derivation step can be non-deterministic when AR unifies with 
several clauses in P, giving rise to several possible SLD derivations for a given 
goal. Such SLD derivations can be organized in SLD trees. A finite deriva-
tion G = Go, G\, G2 , . . . , Gn is called successful if Gn is empty. In that case 
6 = 6\ 62 . . . 6n is called the computed answer for goal G. Such a derivation is 
called failed if Gn is not empty and it is not possible to perform a derivation 
step from it. We will also allow incomplete derivations in which, though possible, 
no further resolution step is performed. 

Given an atom A, an unfolding rule [21,11] computes a set of finite SLD 
derivations Di,..., Dn (Le., a possibly incomplete SLD tree) of the form Di = 
A,... ,Gi with computed answer substitution 6 i for i = 1 , . . . , n whose associ-
ated resultants (or residual rules) are 6i(A) <— G¿. The set of resultants for the 
computed SLD tree is called a partial deduction (PD) for the initial goal. 



2.2 Abs t rac t In te rpre ta t ion 

Abstract interpretation [5] provides a general formal framework for comput-
ing safe approximations of program behaviour. Programs are interpreted using 
abstract valúes instead of concrete valúes. An abstract valué is a finite repre-
sentation of a, possibly infinite, set of concrete valúes in the concrete domain 
D. The set of all possible abstract valúes constitutes the abstract domain, de-
noted Da, which is usually a complete lattice or cpo which is ascending chain 
finite. The subset relation C induces a partial order on sets of concrete valúes. 
The C relation induces the IZ relation on abstract valúes. Valúes in the abstract 
domain (Da,Q) and sets of valúes in the concrete domain (2-°,C) are related 
via a pair of monotonic mappings (a, 7): the abstraction function a : 2D —> Da 

which assigns to each (possibly infinite) set of concrete valúes an abstract valué, 
and the concretization function 7 : Da —> 2D which assigns to each abstract 
valué the (possibly infinite) set of concrete valúes (e.g., program variable valúes) 
it represents, such that Va; <G 2D : j(a(x)) D x and \/y G Da : «(7(3/)) = y. 
Concrete valúes denote typically (but not exclusively) which data structures 
program variables are bound to in actual executions, i.e., the substitutions. Cor-
respondingly, abstract valúes will be often referred to as abstract substitutions. 
The following operations on abstract substitutions are domain-dependent and 
will be used in our algorithms: 

- Arestrict(A,i?) performs the abstract restriction (or projection) of a substi-
tution A to the set of variables in the expression E, denoted vars(E); 

- Aextend(A, E) extends the substitution A to the variables in the set vars(E); 
- Aunif(íi, Í2, A) obtains the description which results from adding the abstrac-

tion of the unification íi = Í2 to the substitution A; 
- Aconj(Ai, A2) performs the abstract conjunction of two substitutions; 
- Alub(Ai,A2) performs the abstract disjunction (U) of two substitutions. 

An abstract atora of the form A : CP is a concrete atom A which comes 
equipped with an abstract substitution CP which is defined over vars(A) and 
provides additional information on the context in which the atom will be ex-
ecuted at run-time. We write A : CP C A' : CP' to denote that {6{A)\0 G 
7(C-P)} C {0'(A')\0' G J(CP')}. In our algorithms, we also use Atranslate(A : 
CP, H <— B) which adapts and projects the information in an abstract atom 
A : CP to the variables in the clause C = H <— B. This operation can be 
defined in terms of the operations above as: Atranslate(A : CP,H <— B) = 
Arestrict(Aun¡f(A, H, Aextend(CP, C)), C). As customary, the most general ab-
stract substitution is represented as T, and the least general (empty) abstract 
substitution as ±. 

The following standard operations are used in order to handle keyed-tables: 
Create_Table(T) initializes a table T. lnsert(T, Key, Info) adds Info associated to 
Key to T and deletes previous information associated to Key, if any. lsln(T, Key) 
returns true iff Key is currently stored in the table T. Finally, Look_up(T, Key) 
returns the information associated to Key in T. For simplicity, we sometimes 
consider tables as sets and we use the notation {Key ~-> Info) G T to denote that 
there is an entry in the table T with the corresponding Key and associated Info. 



3 Unfolding with Abstract Substitutions 

We now present our notion of abstract unfolding —based on an extensión of 
the SLD semantics which exploits abstract information— which is used later to 
genérate specialized deñnitions. This will pave the way to overcoming difficulties 
(1) and (2) posed in Section 1. 

3.1 S L D w i t h A b s t r a c t S u b s t i t u t i o n s 

Our extended semantics handles abstract goals of the form G : CP, Le., a con-
crete goal G equipped with an abstract substitution CP. The ñrst deñnition 
captures derivation steps. 

Def in i t ion 1 (der ivat ion s t e p ) . Let G : CP be an abstract goal where G =<— 
Ai,..., AR, ..., Ak and CP is an abstract substitution defined over vars(G). 
Let 1Z be a computation rule and let 1Z(G) =AR. Let C = H •*— B\,... ,Bm be 
a renamed apart clause in P. Then the abstract goal G' : CP' is derived from 
G : CP and C via 1Z if there exist 0 = mgu(AR, H) and CPU ^ _L, where: 

CPU = Aun\f(AR,e(H),Aextend(CP,Ce)) 

G = 9(A\,... ,AR-I,BI, ... ,Bm,AR+i,... ,Ak) 

CP' = Arestr¡ct(CPu, vars(G')) 

An important difference between the above deñnition and the s tandard deriva-
tion step is tha t the use of abstract (cali) substitutions allows imposing further 
conditions for performing derivation steps, in particular, CPU cannot be ± . This 
is because if CP ^ ± and CPU = ± then the head of the clause C is incom-
patible with CP and the uniñcation AR = H will deñnitely fail at run-time. 
Thus, abstract information allows us to remove useless clauses from the residual 
program. This produces more efficient resultants and increases the accuracy of 
analysis for the residual code. 

Example 2. Consider the goal: formula(s
4
(X),X2) : {X/G,X2/V} which appears 

during the analysis of our running example (c.f. Fig. 2). We abbreviate as sn(X) 
the successive application of n symbols s to variable X. We have used sharing-
freeness as abstract domain in the analysis though, for simplicity, we will repre-
sent the results using traditional "modes": the notation X/G (resp. X/V) indicates 
tha t variable X is ground (resp. free). After applying a derivation step using the 
only rule for formula, we derive: 
ground(s

4
(X)),var(X2),two(T),minus(T,s

4
(X),X2'),twice(X2',X2) : 

{X/G,X2/V,T/V,X2'/V} 

where the abstract description has been extended with updated information 
about the freeness of the newly introduced variables, Le., both T and X2' are V. 

The second extensión we present makes use of the availability of abstract sub-
stitutions to perform abstract executability [24] during resolution. This allows 



replacing some atoms with simpler ones, and, in particular, with the predeñned 
atoms true and false, provided certain conditions hold. We assume the existence 
of a predeñned abstract executability table which contains entries of the form 
T : CP ~-> T' which specify the behaviour of external procedures: builtins, li-
brarles, and other user modules. For instance, for predicate ground the abstract 
execution table contains the information ground(X) : {X/G} ~-> t rue . For var, it 
contains var(X) : {X/V} ~-> t rue .

5 

Def in i t ion 2 (abstract e x e c u t i o n ) . Let G : CP be an abstract goal where 
G =•*— A\,... ,AR, ..., Ak- Let 1Z be a computation rule and let 1Z(G) =AR. 
Let (T : CPT ~-> T') be a renamed apart entry in the abstract executability table. 
Then, the goal G' : CP' is abstractly executed from G : CP and (T : CPT ~-> T') 
via 1Z if AR = 0(T) and CPA E CPT, where 

G' = Aí,...,AR-í,0(T'),AR+í,...,Ak 

CP1 = Arestr¡ct(CP, G") 

CPA = Atranslate(Añ : CP,T <- true) 

Example 3. From the derived goal in Ex. 2, we can apply twice the above defi-
nition to abstractly execute the calis t o ground and var and obtain: 

two(T),minus(T, s
4
(X),X2'),twice(X2',X2) : {X/G,X2/V, T/V,X2'/V} 

since both calis succeed by using the abstract executability table described above. 

3.2 A b s t r a c t Unfo ld ing 

In our framework, resultants for abstract atoms will be obtained using abstract 
unfolding in a similar way as it is done in the concrete setting using unfolding 
(see Sect. 2.1). 

Def in i t ion 3 (AUnfold). Let A : CP be an abstract atom and P a program. We 
define AUnfold(P, A : CP) as the set of resultants associated to a finite (possibly 
incomplete) SLD tree computed by applying definitions 1 and 2 to A : CP. 

The so-called local control of P D ensures the termination of the above process. 
For this purpose, the unfolding rule must incorpórate some mechanism to stop 
the construction of SLD derivations (we refer to [17] for details). 

Example 4- Consider an unfolding rule AUnfold based on homeomorphic em-
bedding [17] to ensure termination and the initial goal in Ex. 2. The derivation 
continuing from Ex. 3 performs several additional derivation steps and abstract 
executions and branches (we do not include them due to space limitations and 
also because it is well understood). The following resultants are obtained from 
the resulting tree: 

6 In CiaoPP assertions express such information in a domain-independent manner. 



f o r m u l a ( s ( s ( s ( s ( 0 ) , s ( s ( s ( s ( 0 ) ) ) ) ) . 

f o r m u l a ( s ( s ( s ( s ( s ( A ) ) ) ) ) , s ( s ( s ( s ( s ( s ( B ) ) ) ) ) ) ) :- tw(A,B). 

which will later be ñltered and renamed as they appear in rules 5 and 6 of Ex. 1. 

It is important to note that SLD resolution with abstract substitutions is not 
restricted to the left-to-right computation rule. For the case of derivation steps 
(Def. 1), it is well-known that non-leftmost steps can produce incorrect results 
if the goal contains impure atoms to the left of AR. More details can be found, 
e.g., in [1] and its references. For the case of abstract execution (Def. 2), the 
execution of non-leftmost atoms can be incorrect if the abstract domain used 
captures properties which are not downwards closed. A simple solution in this 
case is to allow only leftmost abstract execution steps for non-downwards closed 
domains. 

4 Specialized Deñnitions 

Typically, PD is presented as an iterative process in which partial evaluations 
are computed for the new generated atoms until they cover all calis which can 
appear in the execution of the residual program. This is formally known as the 
closedness condition of PD [21]. In order to ensure termination of this global 
process, the so-called global control defines a Generalize operator (see, e.g., [17]) 
which guarantees that the number of SLD trees computed is kept finite, i.e., it 
ensures the finiteness of the set of atoms for which partial deduction is produced. 
However, the residual program is not generated until such iterative process ter-
minates. 

We now define an Abstract Partial Deduction (APD) algorithm whose exe-
cution can later be interleaved in a seamless way with a state-of-the-art abstract 
interpreter. For this, it is essential that the APD process be able to genérate 
residual code for each cali pattern as soon as we finish processing it. This will 
make it possible for the analysis algorithm to have access to the improved def-
inition. As a consequence, the accuracy of the analyzer may be increased and 
difficulty (2) described in Sect. 1 overeóme. 

4.1 Abstract Partial Deduction 

Algorithm 1 presents an APD algorithm. The main difference with standard 
algorithms for APD is that the resultants computed by AUnfold (L23) are added 
to the program during execution of the algorithm (L27) rather than in a later 
code generation phase. In order to avoid confliets among the new clauses and 
the original ones, clauses for specialized deñnitions are renamed with a fresh 
predicate ñame (L26) prior to adding them to the program (L27). The algorithm 
uses two global data structures. The specialization table contains entries of the 
form A : CP ~-> A'. The atom A' provides the link with the clauses of the 
specialized deñnition for A : CP. The generalization table stores the results of the 



A l g o r i t h m 1 Abstract Partial Deduction with Specialized Deñnitions 

1: procedure PARTIAL_EVALUATION_WITH_SPEC_DEFS(P, {Ai : CPi, ...,An : CPn}) 
2: Create_Table(£T); Create.Table(ST) 
3: for j = í..n do 
4: PROCESS_CALL_PATTERN(Aj : CPj) 

5: procedure PROCESS_CALL_PATTERN(A : CP) 
6: if not \s\n(QT, A : CP) t h e n 
7: (Ai, Ai) <— SPECIALIZED_DEFINITION(P, A : CP) 
8: Ai : CPi <- Look_up(gT, A : CP) 
9: for all renamed apart clause C'k = Hu <— Pfc G P s.t. Pfc unifies with A[ 

do 
10: CPk <- Atranslate(Ai : CPi, Cfc) 
11: PROCESS_CLAUSE(CPfc, Pfc) 
12: procedure PROCESS_CLAUSE(CP, B) 
13: if B = [L\R] t h e n 
14: CPL <- Arestrict(CP, L) 
15: PROCESS_CALL_PATTERN(L : CPL) 
16: PROCESS_CLAUSE(CP, P) 

17: function SPECIALIZED_DEFINITION(P, A : CP) 
18: A' : CP' <- AGeneralize(ST, A : CP) 
19: Insert^T, A : CP, A' : CP ' ) 
20: if lsln(ST, A' : CP ' ) then 

21: A" ^Look_up(ST, A' : CP') 
22' else 
23: Def <- A Unfold(P, A' : CP') 
24: A" <- new_filter(A') 

25: lnsert(5T, A' : CP', A") 
26: P e / ' <- {{H' <- B) \ {H <- B) G P e / A H' = ren{H, {A'/A"})} 
27: P<-P\JDef 

28: return (A', A") 

AGeneralize function and contains entries A : CP ~-> A' : CP' where A' : CP' is 
a generalization of A : CP, in the sense tha t A = A'0 and (A : CP) E (A' : C P ' ) . 

Let us briefly discuss some AGeneralize functions which can be used within 
our algorithms when using it as a specializer. In both of them, the decisión on 
whether to lose information in a cali AGeneralize(ST, A : CP) is based on the 
concrete part of the atom, A. This allows easily deñning AGeneralize operators 
in terms of existing Generalize operators. Let Generalize be a (concrete) general-
ization function. Then we deñne AGeneralizea(ST, A : CP) = (A',CPr) where 
A' = Generalize{ST, A) and CP' = Atranslate(A : CP,A' <- true). Function 
AGeneralizea only assigns the same specialized deñnition for different abstract 
atoms when we know tha t after adapting the analysis info of both Ai : CP\ and 
A2 : CP2 t o the new atom A' the same entry substitution CP' will be obtained 
in either case. Similarly, we deñne AGeneralize7(ST, A : CP) = (A',CPr) where 
A' = Generalize(ST, A) and CP' = T . The function AGeneralize^ assigns gener-
alizations taking into account the concrete part of the abstract atom only, which 
is the same for all OR-nodes which correspond to a literal k,i. These functions 
are in fact two extremes. In AGeneralizea we t ry t o keep as much abstract in-



formation as possible, whereas in AGeneralize7 we lose all abstract information. 
The latter is useful when we do not have an unfolding system which can exploit 
abstract information or when we do not want the specialized program to have 
different implemented specialized deñnitions for atoms with the same concrete 
part but different abstract substitution. 

Procedure PARTlAL_EVALUATlON_WlTH_SPEC_DEFS (Ll-4) initiates the com-
putation. It ñrst initializes the tables and then calis PROCESS_CALL_PATTERN 
for each abstract atom Aj : CPj in the initial set to be partially evaluated. The 
task of PROCESS_CALL_PATTERN is, if the atom has not been processed yet (L6), 
to compute a specialized deñnition for it (L7) and then process all clauses in its 
specialized deñnition by means of calis to PROCESS_CLAUSE (L9-11). For sim-
plicity of the presentation, we assume that clause bodies returned by SPECIAL-
IZED_DEFINITI0N are represented as lists rather than conjunctions. Procedure 
PROCESS_CLAUSE traverses clause bodies, processing their corresponding atoms 
by means of calis to PROCESS_CALL_PATTERN, in a depth-ñrst, left-to-right fash-
ion. In contrast, the order in which pending cali patterns (atoms) are handled is 
usually not ñxed in APD algorithms. They are often all put together in a set. The 
purpose of the two procedures PROCESS_CLAUSE and PROCESS_CALL_PATTERN 
is to traverse the clauses in the left-to-right order and add the corresponding cali 
patterns. In principie, this does not have additional advantages w.r.t. existing 
APD algorithms because success propagation has not been integrated yet. How-
ever, the reason for our presentation is to be as cióse as possible to our analysis 
algorithm with success propagation, which enforces a depth-ñrst, left-to-right 
traversal of program clauses. Correctness of Algorithm 1 can be established us-
ing the framework for APD in [16]. 

4.2 Integration with an Abstract Interpreter 

For the integration we propose, the most relevant part of the algorithm comprises 
L17-28, as it is the code fragment which is directly executed from our abstract 
interpreter. The remaining procedures (L1-L16) will be overridden by more ac-
curate ones later on. The procedure of interest is SPECIALIZED_DEFINITI0N. It 
performs (L18) a generalization of the cali A : CP using the abstract counter-
part of the Generalize operator, denoted by AGeneralize, and which is in charge 
of ensuring termination at the global level. The result of the generalization, 
A' : CP', is inserted (L19) in the generalization table QT. It is required that 
(A : CP) C (A' : CP'). If A' : CP' has been previously treated (L20), then its 
specialized deñnition A" is looked up in ST (L21) and returned. Otherwise, a 
specialized deñnition Def is computed by using the AUnfold operator (L23). 

As already mentioned, the specialized deñnition Def for the abstract atom 
A : CP is used to extend the original program P. First, the atom A' is renamed 
by using new_filter which returns an atom with a fresh predicate ñame, A", and 
optionally ñlters constants out (L24). Then, function ren is applied to rename the 
clause heads using atom A' (L26). The function rer\(A,{B/B'}) returns O(B') 
where 9 = mgu(A, B). Finally, the program P is extended with the new, renamed 
specialized deñnition, Def'. 



Example 5. Three calis to SPECIALIZED-DEFINITION appear (within an oval box) 
during the analysis of our running example in Fig. 2 from the following abstract 
atoms, ñrst main(s3(X),X2) : {X/G,X2/V}, then tw(B,C) : {B/G, C/V} and ñnally 
formula(C, A) : {C/G, A/V}. The output of such executions is used later (with the 
proper renaming) to produce the resultants in Ex. 1. For instance, the second 
clause obtained from the ñrst cali to SPECIALIZED_DEFINITI0N is 

s p j i a i n 2 ( s ( s ( s ( s ( B ) ) ) ) ,A) : - tw2)i (B,C) ,formula2)2 (C,A) . 

where only the head is renamed. The renaming of the body literals is done in a 
later code-generation phase. 

It is important to note that Algorithm 1 does not perform success propagation 
yet (difficulty 3). In L16, it becomes apparent that all atom(s) in R will be 
analyzed with the same cali pattern CP as L, which is to their left in the clause. 
This may clearly lead to substantial precisión loss. In the above example, Alg. 1 
is not able to obtain the three abstract atoms above due to the absence of success 
propagation. For instance, the abstract pattern f ormula(C, A) : {C/G, A/V} which 
is necessary in order to obtain the last two resultants of Ex. 1 cannot be obtained 
with this algorithm. In particular, we cannot infer the groundness of C which, 
in turn, prevenís us from abstractly executing the next cali to ground and, 
thus, from obtaining this optimal specialization. In addition, this lack of success 
propagation makes it difficult or even impossible to work with non downwards 
closed domains (difficulty 4), since CP may contain information which holds 
before execution of the leftmost atom L but which can no longer hold after 
that. In fact, in our example CP contains the info C/V, which becomes false 
after execution of tw(B, C), since now C is ground. This problem is solved in the 
algorithm we present in the next section, where analysis information flows from 
left to right, adding more precise information and eliminating information which 
is no longer safe or even definitely wrong. 

5 Abstract Interpretation with Specialized Deñnitions 

The main idea in abstract interpretation with specialized, definitions is that a 
generic abstract interpreter is equipped with a generator of specialized defini-
tions. Such generator provides, upon request, the specialized definitions to be 
analyzed by the interpreter. Certain data structures, which take the form of 
tables in the algorithms (Le., the specialization, generalization, answer and de-
pendency are tables) will be used to communicate between the two processes 
and achieve a smooth interleaving. The input to the whole process is a program 
together with a set of calling patterns for it. The output is a specialized program 
together with the analysis results inferred for it. The scheme can be parameter-
ized with different (abstract) unfolding rules, generalization operators, abstract 
domains and widenings. The different instances give rise to interesting analysis 
and specialization methods, some of which are well known and others are novel 
(see Section 7). 



{ X / G , X 2 / V } m a i n ( s 3 ( x ) ; X 2 ) { X / G , X 2 / G } 

SPEC_DEF(main(s3(X),X2) : {X/G, X2/V}) 

main(s 3 (d) ,0 ) : main(s4(B), A): 

D {B/=,c/v}tw(B;C){B/G,c/G} >{c/G 'A/v>formula(C,A){c/G 'A/G> 

I SPEC_DEF(tw(B, C) : {B/G, C ^ t ó ) | ^~~H~aEEC_DEF(f o rmula (C , A) : { C / G , A / V } ) | 

ftw(0,'$} : tw(s(B)\2(C):f ormula^O, s4(0)))))-<Eormula(s(A), s6(B)l 

G {B/G,C/V} t w ( - B > c - ) {B/G,C/G} G {A /G ,B /V} t w ( - A ) B \ {A /G ,B /G} 

F i g . 2 . Analysis Graph computed by ABSJNT.WITH.SPEC.DEF 

Algorithm 2 presents our final algorithm for abstract interpretation with spe-
cialized definitions. This algorithm extends both the APD Algorithm 1 and the 
abstract interpretation algorithms in [23,12]. The main improvement w.r.t. Al-
gorithm 1 is the addition of success propagation, which requires computing a 
global fixpoint. It is an important objective for us to be able to compute an ac-
curate fixpoint in an efficient way. The main improvements w.r.t the algorithms 
in [23,12] are the following. (1) It interleaves program analysis and specialization 
in a way that is efficient, accurate, and practical. (2) Algorithm 2 deals directly 
with non-normalized programs. This point, which does not seem very relevant 
in a puré analysis system, becomes crucial when combined with a specializa-
tion system in order to profit from constants propagated by unfolding. (3) It 
incorporates a hardwired efficient graph traversal strategy which eliminates the 
need for maintaining priority queues explicitly [12]. (4) The algorithm includes 
a widening operation for calis, Widen_Call, which limits the amount of multi-
variance in order to keep the number of cali patterns analyzed finite. This is 
required in order to be able to use abstract domains with an infinite number of 
elements, such as regular types. (5) It also includes a number of simplifications 
to facilítate understanding, such as the use of the keyed-table ADT, which we 
assume encapsulates proper renaming apart of variables and the application of 
renaming transformations when needed. 

5.1 The Program Analysis Graph: Answer and Dependency Tables 

In order to compute and propágate success substitutions, Algorithm 2 computes 
a program analysis graph in a similar fashion as state of the art analyzers such 
as the CiaoPP analyzer [23,12]. For instance, the analysis graph computed by 
Algorithm 2 for our running example is depicted in Fig. 2. The graph has two 



sorts of nodes. Those which correspond to atoms are called "OR-nodes". An OR-
node of the form CPAAP is interpreted as the answer (success) pattern for the 
abstract atom A : CP is AP. The OR-node {x/G>X2/v>main(s3(X),X2){x/G>X2/G> in 
the example indicates that when the atom main(s3(X),X2) is called with descrip-
tion {X/G,X2/V} the answer (or success) substitution computed is {X/G,X2/G}. 
Those nodes which correspond to rules are called "AND-nodes". In Fig. 2, they 
appear within a dashed box and contain the head of the corresponding clause. 
Each AND-node has as children as many OR-nodes as literals there are in its 
body. If a child OR-node is already in the tree, it is not expanded any further 
and the currently available answer is used. We show within an oval box the calis 
to SPECIALIZED-DEFINITION which appear during the execution of the running 
example (see the details in Sect. 4). The heads of the clauses in the specialized 
deñnition are linked to the box with a dotted are. For instance, the analysis graph 
in Figure 2 contains three oceurrences of the abstract atom tw(B,C) : {B/G,C/V} 
(modulo renaming), but only one of them has been expanded. This is depicted 
by arrows from the two non-expanded oceurrences of tw(B,C) : {B/G,C/V} to 
the expanded one. More information on the efficient construction of the analysis 
graph can be found in [23,12, 2]. 

The program analysis graph is implicitly represented in the algorithm by 
means of two data structures, the answer table (AT) and the dependency table 
(VT). The answer table contains entries of the form A : CP ~-> AP which are 
interpreted as the answer (success) pattern for A : CP is AP. For instance, 
there exists an entry of the form main(s3(X),X2) : {X/G,X2/V} ~-> {X/G,X2/G} 
associated to the OR-node discussed above. 

Dependencies indicate direct relations among OR-nodes. An OR-node Ap : 
CPp depends on another OR-node Ap : CPp iff in the body of some clause 
for Ap : CPp there appears the OR-node Ap : CPp. The intuition is that 
in computing the answer for Ap : CPp we have used the answer pattern for 
Ap : CPp. In our algorithm we store backwards dependencies, Le., for each 
OR-node Ap : CPp we keep track of the set of OR-nodes which depend on 
it. I. e., the keys in the dependency table are OR-nodes and the information 
associated to each node is the set of other nodes which depend on it, together 
with some additional information required to itérate when an answer is modiñed 
(updated). Each element of a dependency set for an atom B : CP2 is of the form 
(H : CP=> [Hk '• CP\] k,i). It should be interpreted as follows: the OR-node 
H : CP through the literal at position k,i depends on the OR-node B : CP2. 
Also, the remaining information [Hk : CP\] encodes the fact that the head of 
this clause is Hk and the substitution (in terms of all variables of clause k) just 
before the cali to B : CP2 is CP\. Such information avoids having to reprocess 
atoms in the clause k to the left of position i. 

Example 6. For instance, the dependency set for formula(C, A) : {A/V,C/G} is 
{(main(s3(X),X2) : {X/G,X2/V} =¿> [ main(s4(B), A) : {B/G, A/V, C/G} ] 2,2)} It 
indicates that the OR-node f ormula(C, A) : {A/V, C/G} is only used in the OR-
node main(s3(X),X2) : {X/G,X2/V} via literal 2,2 (see Example 1). Thus, if the 



A l g o r i t h m 2 Abstract Interpretation with Specialized Deñnitions 

1: p rocedure ABS_INT_WITH_SPEC_DEFS(P, {Ai : CPi, ...,An : CPn}) 
2: Create_Table(AT); Create_Table(PT); Create_Table(£T); Create_Table(ST); 

3: for j = í..n do 
4: PROCESS_CALL_PATTERN(Aj : CPj, {Aj : CPj =>• [Aj : CPj],j,entry)) 

5: function PROCESS_CALL_PATTERN(A : CP, Pareraí) 
6: CPÍ <- Widen.C'all(AT, A : CP) 
7: if not lsln(AT, A : CPi) t h e n 
8: lnsert(.4T, A : CPi, _L); lnsert(PT, A : CPi, 0) 
9: (A', A[) <— SPECIALIZED_DEFINITION(P, A : CPi) 

10: A" w e n ( A , { A ' / A i } ) 
11: for all renamed clause Cfc = P& <— Bk G P s.t. P& unifies with A" do 
12: CPk <- Atranslate(A" : CPi, Cfc) 
13: PROCESS_CLAUSE(A : CPi =>• [Hk • CPk] Bk, fe, 1) 
14: Peps <- Look_up(PT, A : CPi) U{Parení}; lnsert(PT, A : CPi, Peps) 
15: r e t u r n Look_up(AT, A : CPi) 

16: p rocedure PROCESS_CLAUSE(P : CP =>• [Pfc : CPi] B, fe, i) 
17: if CPi 7̂  _L t h e n 
18: if P = [L|P] t h e n 
19: CP2 <- Arestr¡ct(CPi, L) 
20: AP0 <- PROCESS_CALL_PATTERN(L : CP2 , (H :CP ^ [Hk : CPi], fe, ¿}) 
21: CP 3 <- Aconj(CPi, Aextend(AP0, CPi)) 
22: PROCESS_CLAUSE(P : CP => [Hk : CP3]R, k,i+l) 
23' else 
24: APi <- Atranslate(Pfc : CP3 , P <- írwe); AP2 <- Look.up(AT, P : CP) 
25: AP3 <-Alub(APi,AP2) 
26: if AP2 ^ AP3 t h e n 
27: lnsert(AT, H : CP, AP3) 
28: Deps <— Look_up(PT, P : CP); PROCESS_UPDATE(Peps) 

29: p rocedure PROCESS_UPDATE(Ppdaíes) 
30: if Updates = { A i , . . . , A n } with n > 0 t h e n 
31: Ai = (H : CP => [Hk : CPi], fe, ¿} 
32: if i =/= entry t h e n 
33: P <- get_body(P, fe, ¿) 
34: REMOVE_PREVIOUS_DEPS(P : CP =>• [Pfc : CPi] P , fe, ¿) 
35: PROCESS_CLAUSE(P : CP =>• [Pfc : CPi] P , fe, ¿) 
36: PROCESS_UPDATE(Ppdaíes - {Ai}) 

answer pat tern for formula(C, A) : {A/V, C/G} is ever updated, then we must 
reprocess the OR-node main(s3(X),X2) : {X/G,X2/V} from position 2,2. 

5.2 T h e A l g o r i t h m 

Algorithm 2 presents our proposed algorithm. Procedure ABS_INT_WITH_SPEC_DEFS 
initializes the four tables used by the algorithm and calis PROCESS_CALL_PATTERN 
for each abstract atom in the initial set. PROCESS_CALL_PATTERN applies, ñrst 
of all (L6), the Widen_Call function to A : CP taking into account the set of 
entries already in AT. This returns a substi tution CP\ s.t. CP IZ CP\. The 
most precise Wideri-Call function possible is the identity function, but it can 
only be used with abstract domains with a ñnite number of abstract valúes for 



each set of variables. This is the case with sharing-freeness and thus we will 
use the identity function in our example. If the cali pattern A : CP\ has not 
been processed before, it places (L8) ± as initial answer in AT for A : CP and 
sets to empty the set of OR-nodes in the graph which depend on A : CP\. It 
then computes (L9) a specialized deñnition for A : CP\. We do not show in 
Algorithm 2 the deñnition of SPECIALIZED_DEFINITI0N, since it is identical to 
that in Algorithm 1. Then (Lll-13) calis to PROCESS_CLAUSE are launched for 
the clauses in the specialized deñnition w.r.t. which A : CP\ is to be analyzed. 
Then, the Parent OR-node is added (L14) to the dependency set for A : CP\. 

The function PROCESS.CLAUSE performs the success propagation and consti-
tutes the core of the analysis. First, the current answer (APo) for the cali to the 
literal at position k,i of the form B : CP2 is (L21) conjoined (Aconj), after being 
extended (Aextend) to all variables in the clause, with the description CP\ from 
the program point immediately before B in order to obtain the description CP¡ 
for the program point after B. If B is not the last literal, CP¡ is taken as the (im-
proved) calling pattern to process the next literal in the clause in the recursive 
cali (L22). This corresponds to left-to-right success propagation and is marked 
in Fig. 2 with a dashed horizontal arrow. If we are actually processing the last 
literal, CP¡ is (L24) adapted (Atranslate) to the initial cali pattern H : CP which 
started PROCESS.CLAUSE, obtaining AP\. This valué is (L25) disjoined (Alub) 
with the current answer, AP2, for H : CP as given by Look_up. If the answer 
changes, then its dependencies, which are readily available in VT, need to be re-
computed (L28) using PROCESS_UPDATE. This procedure restarts the processing 
of all body postñxes which depend on the calling pattern for which the answer 
has been updated by launching new calis to PROCESS_CLAUSE. There is no need 
of recomputing answers in our example. The procedure REMOVE_PREVlOUS_DEPS 
eliminates (L34) entries in VT for the clause postñx which is about to be re-
computed. We do not present its deñnition here due to lack of space. Note 
that the new calis (L35) to PROCESS_CLAUSE may in turn launch calis to PRO-
CESS_UPDATE. On termination of the algorithm a global ñxpoint is guaranteed 
to have been reached. Note that our algorithm also stores in the dependency sets 
calis from the initial entry points (marked with the valué entry in L4). These do 
not need to be reprocessed (L32) but are useful for determining the specialized 
versión to use for the initial queries after code generation. 

The next theorem presents the correctness of the results of Algorithm 2 in 
terms of analysis. We use 0\{Xl,...,xn} to denote the projection of substitution 9 
onto the set of variables { X i , . . . , Xn}. We denote by success(A : CP, P) the set 
of computed answers for initial queries described by the abstract atom A : CP 
in a program P. 

Theorem 1 (correctness of success). Let P be a program and let S = {Ai : 
CP\,..., An : CPn} be a set of abstract atoms. For all Ai : CPi £ S, after termi-
nation O/ABS_INT_WITH_SPEC_DEFS(P, S), there exists (Ai : CP¡ ~-> AP¿) € AT 
s.t. CPi C CP{ A success(Ai : CPi,P) C 7(AP¿). 

Intuitively, correctness holds since Algorithm 2 computes an abstract and-or 
graph and, thus, we inherit a generic correctness result for success substitutions 



of [12]. However, now we analyze the cali pat terns in S w.r.t. specialized defini-
tions rather than their original deñnition in P. Since the transformation rules in 
Deñnitions 1 and 2 are semantics preserving, then analysis of each specialized 
deñnition is guaranteed to produce a safe approximation of its success set, which 
is also a safe approximation of the success of the original deñnition. 

5.3 T h e Framework as a Special izer 

If we compose a terminating analysis strategy (abstract domain plus widening 
operator) with a terminating P D strategy (local control plus global control), then 
Algorithm 2 also terminates for such strategies. The set of specialized deñnitions 
computed during the execution of the algorithm is a specialization of the program 
w.r.t. the initial entries. 

T h e o r e m 2 (correc tness of spec ia l i za t ion) . Consider the Algorithm 2 pa-
rameterized with terminating operators AUnfold, Widen-Call and AGeneralize. 
Then, for any program P and set of abstract atoms S, ABS_INT_WITH_SPEC-
_DEFS(P, S) terminates and the set of renamed specialized definitions is a corred 
specialization of P w.r.t. S. 

Intuitively, if we have a terminating AUnfold rule and the abstract domain is 
ascending chain ñnite, non-termination can only occur if the set of cali pat terns 
handled by the algorithm is infinite. Since the Wideri-Call function guarantees 
tha t a given concrete atom A can only be analyzed w.r.t. a finite number of 
abstract substitutions CP, non-termination can only occur if the set of atoms has 
an infinite number of elements with different concrete parts . If the AGeneralize 
function guarantees tha t an infinite number of different concrete atoms cannot 
occur, then termination is guaranteed. 

6 Experiments 

In this section we show some experimental results aimed at studying two crucial 
points for the practicality of our proposal: the cost associated to computing 
specialized definitions and the optimization obtained by the process. We have 
implemented the abstract interpreter with specialized definitions as an extensión 
of the generic abstract interpretation system of CiaoPP. The whole system is 
implemented in Ciao 1.13^5666 [3]. Execution times are given in milliseconds 
and measure runtime. They are computed as the arithmetic mean of five runs. 
AU of our experiments have been performed on a Pentium M at 1.86GHz and 
1GB RAM running Ubuntu Breezy Linux. The Linux kernel used is 2.6.12. 

A relatively wide range of programs has been used as benchmarks. The pro-
gram running_ex is tha t in Fig. 1. The rest are the same programs used in [12] as 
benchmarks for static analysis.6 Thus, they do not necessarily contain static da ta 
which can be exploited by partial evaluation. Interestingly, some (first group of 

6 More details on such benchmarks can be found in [12]. 
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Table 1. Some implementations of AI with Specialized Definitions. Cost and efñciency 

rows in Table 1) contain static data, while others (second and third groups of 
rows in Table 1) contain little or no static data. In zebra all the data is static 
and it can be potentially fully evaluated at compile-time. 

As the analyzers within CiaoPP it derives from, our abstract interpreter with 
specialized deñnitions is parametric w.r.t. the abstract domain. In these experi-
ments we have used mostly the sharing+freeness domain [22] (for the ñrst and 
second group of rows in Table 1). We have selected this domain because it is on 
one hand well known and on the other orthogonal w.r.t. partial evaluation, in 
the sense that it does not contain any concrete information (as, for example, a 
depth-k or types domain would). We have also conducted experiments with the 
eterms domain [27] which infers regular types (third group of rows in the table). 

For each benchmark, the columns under Traditional present the analysis 
(Ana) and partial deduction (PD) times using the standard algorithms. Column 
Ana PD provides the time taken by analysis of the specialized program (rather 
than the original one). Each of the following six columns presents the time 
taken by the abstract interpreter with specialized deñnitions, as well as the ratio 
(speedup/slowdown, SU) of this time w.r.t. PD + Ana PD. Columns marked SDa 

are for the case where AGeneralizea (Section 5) is used, whereas SD7 columns use 
AGeneralize7, with SDa— representing the case where we only check for useless 
clauses once a derivation is fully computed, rather than at each derivation step. 
Finally, the last column represents the speedup in the execution time of the 
program after applying SDa—. 

The last row summarizes the analysis times for the different benchmarks 
using a weighted mean, which places more importance on those benchmarks 



with relatively larger analysis times. We believe that this weighted mean is more 
informative than the arithmetic mean, as, for example, doubling the speed in 
which a large and complex program is analyzed (checked) is more relevant than 
achieving this for small, simple programs. 

Overall, we ñrst observe that the time taken by the abstract interpreter 
with specialized deñnitions compares well with that taken by a traditional PD 
phase followed by a traditional analysis phase (Ana PD). In the case of SD7 

there is actually some speedup (1.03), presumably because fewer traversals of 
the program are required, whereas in the case of SDa we observe a reasonable 
slowdown (0.41), with SDa— representing an interesting tradeoff (0.90). The 
execution times of the resulting programs show signiñcant speedups for the ñrst 
group (in which concrete information is available for specialization) and (as 
expected) only very minor variations for the other programs. This shows that our 
system performs well as a specializer. At the same time, the analysis information 
obtained (which is of course one of the fundamental objectives of the process) 
is always at least as accurate as that obtained when performing analysis after a 
standalone specialization pass (Ana PD), and is more accurate for the programs 
in the ñrst group, which shows that it also performs well as an analyzer. 

7 Discussion and Related Work 

The versatility of our approach can be seen by recasting well-known specializa-
tion and analysis frameworks as instances where the parameters unfolding rule, 
widen cali rule, abstraction operator, and analysis domain, take different valúes. 

From an analysis point of view, our algorithm can behave as the polyvariant 
abstract interpretation algorithm described in [12, 23] by deñning an AGeneralize 
operator which returns the base form of an expression (Le., it loses all constants) 
and an AUnfold operator which performs a single derivation step (Le., it returns 
the original deñnition). Also, the specialization power of the multivariant ab-
stract specialization framework described in [25,24] can be obtained by using 
the same AGeneralize described in the above point plus an AUnfold operator 
which always performs a derive step followed by zero or more abstract execution 
steps. However abstract executability is performed now online, during analysis, 
instead of offline. 

From a partial evaluation perspective, our method can be used to perform 
classical partial deduction in the style of [21,11] by using an abstract domain 
with the single abstract valué T and the identity function as Widen_Call rule. 
This corresponds to the VT> domain of [16] in which an atom with variables 
represents all its instances. Let us note that, in spite of the fact that the algo-
rithm follows a left-to-right computation flow at the global control level, the 
process of generating specialized deñnitions (as discussed in Section 3) can per-
form non-leftmost unfolding steps at the local control level and achieve the same 
optimizations as in PD. Several approaches for abstract partial deduction have 
been proposed which extend PD with SLDNF-trees by using abstract substitu-
tions [15, 9,19,16]. In essence, such approaches are very similar to APD with cali 



propagation shown in Algorithm 1. Though all those proposals identify the need 
of propagating success substitutions, they either fail to do so or propose means 
for propagating success information which are not fully integrated within the 
APD algorithm and, in our opinión, do not ñt in as nicely as the use of and-or 
trees. Also, these proposals are either strongly coupled to a particular (down-
ward closed) abstract domain, Le., regular types, as in [9,19] or do not provide 
the exact description of operations on the abstract domain which are needed 
by the framework, other than general correctness criteria [15,16]. However, the 
latter allow Conjunctive P D [7], which is not available in our framework yet. It 
remains as future work to investígate the extensión of our framework in order to 
analyze conjunctions of atoms and in order to achieve optimizations like tupling 
and deforestation. 

Finally, [26] was a very preliminary (and only informally published) step 
towards our current framework which identiñed the need for including unfolding 
in abstract interpretation frameworks in order to increase their power. Then, four 
different alternatives for doing so (Section 5.3) were discussed. The framework 
we propose in this work does not correspond to any of those alternatives and is 
in fact more powerful than any of them. 
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