
Abstract Interpretation with
Specialized Definitions

Germán Puebla 1 , Elvira Albert2 , and Manuel Hermenegildo 1,3

i

3

School of Computer Science, Technical U. of Madrid, {german,herme}@fi.upm.es
2 School of Computer Science, Complutense U. of Madrid, elvira@sip.ucm.es
Depts. of Comp. Sci. and El. and Comp. Eng., U. of New México, herme@unm.edu

Abstract. The relationship between abstract interpretation and partial
evaluation has received considerable attention and (partial) integrations
have been proposed starting from both the partial evaluation and ab-
stract interpretation perspectives. In this work we present what we ar-
güe is the first generic algorithm for efñcient and precise integration of
abstract interpretation and partial evaluation from an abstract interpre-
tation perspective. Taking as starting point state-of-the-art algorithms
for context-sensitive, polyvariant abstract interpretation and (abstract)
partial evaluation of logic programs, we present an algorithm which com-
bines the best of both worlds. Key ingredients include the accurate suc-
cess propagation inherent to abstract interpretation and the powerful
program transformations achievable by partial deduction. In our algo-
rithm, the calis which appear in the analysis graph are not analyzed
w.r.t. the original definition of the procedure but w.r.t. specialized defi-
nitions of these procedures. Such specialized definitions are obtained by
applying both unfolding and abstract executability. Also, our framework
is parametric w.r.t. different control strategies and abstract domains.
Different combinations of these parameters correspond to existing algo-
rithms for program analysis and specialization. Our approach efficiently
computes strictly more precise results than those achievable by each of
the individual techniques. The algorithm is one of the key components
of CiaoPP, the analysis and specialization system of the Ciao compiler.

1 Introduction and Motivation

The relationship between abstract interpretation [5] and partial evaluation [14]
has received considerable attention. See, for instance, the relationship established
in a general context in [4,13, 6] and the work in the context of partial evaluation
of logic programs (also known as partial deduction [21,11]) of [8,10,18,15,24,26,
9,19, 25,16]). In order t o motívate our proposal, we use the running "challenge"
example of Fig. 1. It is a simple Ciao [3] program which uses Peano's ari thmetic.4

4 Rules are written with a unique subscript attached to the head atom (the rule
number), and a double subscript (rule number, body position) attached to each
body literal for later reference. We sometimes use this notation for denoting calis to
atoms as well.

http://upm.es
mailto:elvira@sip.ucm.es
mailto:herme@unm.edu

:- module (_, [main/2] , [assertions]) .

:- entry main(s(s(s(L))),R) : (ground(L),var(R)).

maim(X,X2) : - f o r m u l a i , i (X , X l) , f ormula i , 2 (XI,X2) , g roundi , 3 (X2) .

f ormula2 (X,W) : -ground2, i (X) ,var2,2 (W) ,two2,3 (T) ,minus2,4(X,T,X2) , twice2,5 (X2,W)

minus4 (X ,0 ,X) .
minus 5 (s (X) , s (Y) ,R) : - minus 5 , i (X,Y,R) .
minus 6 (0 , s (_Y) ,_R) .

twice 7 (X,_Y) : - v a r 7 , i (X) .
tw ice 8 (X ,Y) : - g round 8 j i (X) , t w 8 j 2 (X , Y) .

t w 9 (0 , 0) .
t w M (s (X) , s (s (N X))) : - t w M , i (X,NX) .

F i g . 1. Running Example

The entry declaration is used to inform that all calis to the exported predícate
main/2 will always be of the form <— main(s(s(s(L))),R) with L ground and
R a variable. The predícate main/2 performs two calis to predícate formula/2.
A cali formula(X,W) performs mode tests ground(X) and var(W) on its input
arguments and returns W = (X — 2) x 2. Predícate two/1 returns s (s (0)) , i.e.,
the natural number 2. A cali minus(A,B,C) returns C = A — B. However, if
the result becomes a negative number, C is left as a free variable. This indicates
that the result is not valid. In turn, a cali twice(A,B) returns B = A x 2. Prior
to computing the result, this predícate checks whether A is valid, i.e., not a
variable, and simply returns a variable otherwise. For initial queries satisfying
the entry declaration, all calis to the tests groundi^CX), ground2)i (X), and
var2)2 (W) will deñnitely succeed. Thus, they can be replaced by true, even if we
do not know the concrete valúes of variable L at compile time. Also, the calis to
groundgi (X) will succeed, while the calis to var7 i (X) will fail, and can thus be
replaced by fail. These kinds of optimizations require abstract information from
analysis (e.g., groundness and freeness).

The example illustrates four difficulties and challenges. First, the beneñts of
(1) exploiting abstract information in order to abstractly execute certain atoms.
Furthermore, this may allow unfolding of other atoms. However, the use of an
abstract domain which captures groundness and freeness information will in gen-
eral not be sufficient to determine that in the second execution of formula/2 the
tests ground2)i (X) and var2^ (W) will also succeed. The reason is that on suc-
cess of minus2)4 (X,T,X2), X2 cannot be guaranteed to be ground since minuse/3
succeeds with a free variable in its third argument position. It can be observed,
however, that for all calis to minus/3 in executions described by the entry decla-
ration the third clause for minus/3 is useless. It will never contribute to a success
of minus/3 since this predícate is always called with a valué greater than zero
in its ñrst argument. Unfolding can make this explicit by fully unfolding calis to
minus/3 since they are sufficiently instantiated (and as a result the "dangerous"
third clause is disregarded). This unfolding allows concluding that in our par-
ticular context all calis to minus/3 succeed with a ground third argument. This

illustrates the importance of (2) performing unfolding steps in order to prune
away useless branches, and that this may result in improved, success 'Informa-
tion. By the t ime execution reaches twice2)5 (X2 ,W), we hopefully know tha t X2
is ground. In order to determine tha t upon success of twice2)5 (X2 ,W) (and thus
on success of f o r m u l a i i (X,W)) W is ground, we need to perform a ñxpoint com-
putat ion. Since, for example, the success substi tution for f o r m u l a i i (X , X 1) is
indeed the cali substi tution for f o r m u l a ^ (X1,X2), the success of the second test
g round^ i (X) (i.e., the one reachable from f o r m u l a ^ (XI,X2)) cannot be estab-
lished unless we propágate success substitutions. This illustrates the importance
of (3) propagating (abstract) success information, and performing fixpoint com-
putations when needed, and that this simultaneously may result in an improved
unfolding. Finally, whenever we cali formula(X,W), the argument W is a variable,
a property which cannot be captured if we restrict ourselves to downwards-closed
domains (i.e., domains capturing properties such tha t once a property holds, it
will keep on holding in every state accessible in forwards execution). This indi-
cates (4) the usefulness of having information on non downwards-closed proper-
ties.

Example 1. CiaoPP, which implements our proposed abstract interpretation with
specialized deñnitions, produces the following specialized code for the example
of Fig. 1 (rules are renamed using the preñx sp):

s p _ m a i n i (s (s (s (0))) , 0) .
sp_main2 (s (s (s (s (B)))) , A) : - sp_tW2,i (B,C) , sp_f ormula2,2 (C, A) .

sp_ tw 2 (0 ,0) .
s p _ t w 3 (s (A) , s (s (B))) : - sp_tw3 ,i (A,B) .

sp_f o r m u l a 4 (0 , s (s (s (s (0))))) .
sp_f ormulasCsCA) ,s(s(s(s(s(s(B))))))) :- sp_tW5,i (A,B) .

Thus, our proposal can indeed eliminate all calis to mode tests g r o u n d / 1 and
v a r / 1 , and fully unfold predicates t w o / 1 and minus /3 so tha t they no longer
appear in the residual code. In addition, the algorithm also produces an ac-
curate analysis for such a program. In particular, the success information for
sp_main(X,X2) guarantees tha t X2 is ground on success. Note tha t this is equiv-
alent to proving VX > 3, main(X,X2) —> X2 > 0. Furthermore, our system
is able to get to tha t conclusión even if the e n t r y only informs about X being
any possible ground term and X2 a free variable. This is because, during the
computation of the specialized deñnitions, the branches corresponding to valúes
of X smaller than 3 are detected to be failing and the residual code is indeed
equivalent to the one achieved with the more precise e n t r y declaration. This
illustrates how our proposal is useful for improving the results of the analysis
even in cases where there are no initial constants in the query which can be
propagated through the program.

The above results cannot be achieved unless all four points mentioned before
are addressed by a program analysis/specialization system. For example, if we
use traditional partial deduction (PD) with the corresponding Generalize and

Unfold rules followed by abstract interpretation and abstract specialization as
described in [24, 25] we only obtain a comparable program after four iterations
of the: "PD + abstract interpretation + abstract specialization" cycle. This
shows the importance of achieving an algorithm which is able to interleave PD
with abstract interpretation, extended with abstract specialization, in order to
communicate the accuracy gains achieved from one to the other as soon as
possible. In any case, iterating over "PD + analysis" is not a good idea from the
efficiency point of view.

2 Preliminaries

This section introduces some preliminary concepts on abstract interpretation [5]
and partial deduction [21]. We assume some basic knowledge on the terminology
of logic programming (see for example [20] for details). Very briefly, an atom
A is a syntactic construction of the form p(t\,..., tn), where p/n, with n > 0,
is a predicate symbol and t\,... ,tn are terms. A clause is of the form H <— B
where its head H is an atom and its body B is a conjunction of atoms. A definite
program is a ñnite set of clauses. A goal (or query) is a conjunction of atoms.

2.1 The Notions of Unfolding and Resultant

Let G be a goal of the form <— A\,..., AR, ..., Ak, k > 1. The concept of com-
putation rule, denoted by 1Z, is used to select an atom within a goal for its
evaluation. If H(G) =AR we say that AR is the selected atom in G. The op-
erational semantics of deñnite programs is based on derivations [20]. Let C =
H <— I? i , . . . ,Bm be a renamed apart clause in P such that 36 = mgu(AR, H).
Then, the goal <— 6{A\,... ,AR-\,B\,. .. ,Bm,AR+i,... ,Ak) is derived from G
and C via 1Z. As customary, given a program P and a goal G, an SLD deriva-
tion for P U {G} consists of a possibly infinite sequence G — Go, Gi, G2, . . .
of goals, a sequence C\, Ci,... of properly renamed apart clauses of P, and a
sequence 61,62,. •• of mgus such that each Gi+i is derived from G¿ and Ci+i
using 6i+i. A derivation step can be non-deterministic when AR unifies with
several clauses in P, giving rise to several possible SLD derivations for a given
goal. Such SLD derivations can be organized in SLD trees. A finite deriva-
tion G = Go, G\, G2 , . . . , Gn is called successful if Gn is empty. In that case
6 = 6\ 62 . . . 6n is called the computed answer for goal G. Such a derivation is
called failed if Gn is not empty and it is not possible to perform a derivation
step from it. We will also allow incomplete derivations in which, though possible,
no further resolution step is performed.

Given an atom A, an unfolding rule [21,11] computes a set of finite SLD
derivations Di,..., Dn (Le., a possibly incomplete SLD tree) of the form Di =
A,... ,Gi with computed answer substitution 6 i for i = 1 , . . . , n whose associ-
ated resultants (or residual rules) are 6i(A) <— G¿. The set of resultants for the
computed SLD tree is called a partial deduction (PD) for the initial goal.

2.2 Abs t rac t In te rpre ta t ion

Abstract interpretation [5] provides a general formal framework for comput-
ing safe approximations of program behaviour. Programs are interpreted using
abstract valúes instead of concrete valúes. An abstract valué is a finite repre-
sentation of a, possibly infinite, set of concrete valúes in the concrete domain
D. The set of all possible abstract valúes constitutes the abstract domain, de-
noted Da, which is usually a complete lattice or cpo which is ascending chain
finite. The subset relation C induces a partial order on sets of concrete valúes.
The C relation induces the IZ relation on abstract valúes. Valúes in the abstract
domain (Da,Q) and sets of valúes in the concrete domain (2-°,C) are related
via a pair of monotonic mappings (a, 7): the abstraction function a : 2D —> Da

which assigns to each (possibly infinite) set of concrete valúes an abstract valué,
and the concretization function 7 : Da —> 2D which assigns to each abstract
valué the (possibly infinite) set of concrete valúes (e.g., program variable valúes)
it represents, such that Va; <G 2D : j(a(x)) D x and \/y G Da : «(7(3/)) = y.
Concrete valúes denote typically (but not exclusively) which data structures
program variables are bound to in actual executions, i.e., the substitutions. Cor-
respondingly, abstract valúes will be often referred to as abstract substitutions.
The following operations on abstract substitutions are domain-dependent and
will be used in our algorithms:

- Arestrict(A,i?) performs the abstract restriction (or projection) of a substi-
tution A to the set of variables in the expression E, denoted vars(E);

- Aextend(A, E) extends the substitution A to the variables in the set vars(E);
- Aunif(íi, Í2, A) obtains the description which results from adding the abstrac-

tion of the unification íi = Í2 to the substitution A;
- Aconj(Ai, A2) performs the abstract conjunction of two substitutions;
- Alub(Ai,A2) performs the abstract disjunction (U) of two substitutions.

An abstract atora of the form A : CP is a concrete atom A which comes
equipped with an abstract substitution CP which is defined over vars(A) and
provides additional information on the context in which the atom will be ex-
ecuted at run-time. We write A : CP C A' : CP' to denote that {6{A)\0 G
7(C-P)} C {0'(A')\0' G J(CP')}. In our algorithms, we also use Atranslate(A :
CP, H <— B) which adapts and projects the information in an abstract atom
A : CP to the variables in the clause C = H <— B. This operation can be
defined in terms of the operations above as: Atranslate(A : CP,H <— B) =
Arestrict(Aun¡f(A, H, Aextend(CP, C)), C). As customary, the most general ab-
stract substitution is represented as T, and the least general (empty) abstract
substitution as ±.

The following standard operations are used in order to handle keyed-tables:
Create_Table(T) initializes a table T. lnsert(T, Key, Info) adds Info associated to
Key to T and deletes previous information associated to Key, if any. lsln(T, Key)
returns true iff Key is currently stored in the table T. Finally, Look_up(T, Key)
returns the information associated to Key in T. For simplicity, we sometimes
consider tables as sets and we use the notation {Key ~-> Info) G T to denote that
there is an entry in the table T with the corresponding Key and associated Info.

3 Unfolding with Abstract Substitutions

We now present our notion of abstract unfolding —based on an extensión of
the SLD semantics which exploits abstract information— which is used later to
genérate specialized deñnitions. This will pave the way to overcoming difficulties
(1) and (2) posed in Section 1.

3.1 S L D w i t h A b s t r a c t S u b s t i t u t i o n s

Our extended semantics handles abstract goals of the form G : CP, Le., a con-
crete goal G equipped with an abstract substitution CP. The ñrst deñnition
captures derivation steps.

Def in i t ion 1 (der ivat ion s t e p) . Let G : CP be an abstract goal where G =<—
Ai,..., AR, ..., Ak and CP is an abstract substitution defined over vars(G).
Let 1Z be a computation rule and let 1Z(G) =AR. Let C = H •*— B\,... ,Bm be
a renamed apart clause in P. Then the abstract goal G' : CP' is derived from
G : CP and C via 1Z if there exist 0 = mgu(AR, H) and CPU ^ _L, where:

CPU = Aun\f(AR,e(H),Aextend(CP,Ce))

G = 9(A\,... ,AR-I,BI, ... ,Bm,AR+i,... ,Ak)

CP' = Arestr¡ct(CPu, vars(G'))

An important difference between the above deñnition and the s tandard deriva-
tion step is tha t the use of abstract (cali) substitutions allows imposing further
conditions for performing derivation steps, in particular, CPU cannot be ± . This
is because if CP ^ ± and CPU = ± then the head of the clause C is incom-
patible with CP and the uniñcation AR = H will deñnitely fail at run-time.
Thus, abstract information allows us to remove useless clauses from the residual
program. This produces more efficient resultants and increases the accuracy of
analysis for the residual code.

Example 2. Consider the goal: formula(s
4
(X),X2) : {X/G,X2/V} which appears

during the analysis of our running example (c.f. Fig. 2). We abbreviate as sn(X)
the successive application of n symbols s to variable X. We have used sharing-
freeness as abstract domain in the analysis though, for simplicity, we will repre-
sent the results using traditional "modes": the notation X/G (resp. X/V) indicates
tha t variable X is ground (resp. free). After applying a derivation step using the
only rule for formula, we derive:
ground(s

4
(X)),var(X2),two(T),minus(T,s

4
(X),X2'),twice(X2',X2) :

{X/G,X2/V,T/V,X2'/V}

where the abstract description has been extended with updated information
about the freeness of the newly introduced variables, Le., both T and X2' are V.

The second extensión we present makes use of the availability of abstract sub-
stitutions to perform abstract executability [24] during resolution. This allows

replacing some atoms with simpler ones, and, in particular, with the predeñned
atoms true and false, provided certain conditions hold. We assume the existence
of a predeñned abstract executability table which contains entries of the form
T : CP ~-> T' which specify the behaviour of external procedures: builtins, li-
brarles, and other user modules. For instance, for predicate ground the abstract
execution table contains the information ground(X) : {X/G} ~-> t rue . For var, it
contains var(X) : {X/V} ~-> t rue .

5

Def in i t ion 2 (abstract e x e c u t i o n) . Let G : CP be an abstract goal where
G =•*— A\,... ,AR, ..., Ak- Let 1Z be a computation rule and let 1Z(G) =AR.
Let (T : CPT ~-> T') be a renamed apart entry in the abstract executability table.
Then, the goal G' : CP' is abstractly executed from G : CP and (T : CPT ~-> T')
via 1Z if AR = 0(T) and CPA E CPT, where

G' = Aí,...,AR-í,0(T'),AR+í,...,Ak

CP1 = Arestr¡ct(CP, G")

CPA = Atranslate(Añ : CP,T <- true)

Example 3. From the derived goal in Ex. 2, we can apply twice the above defi-
nition to abstractly execute the calis t o ground and var and obtain:

two(T),minus(T, s
4
(X),X2'),twice(X2',X2) : {X/G,X2/V, T/V,X2'/V}

since both calis succeed by using the abstract executability table described above.

3.2 A b s t r a c t Unfo ld ing

In our framework, resultants for abstract atoms will be obtained using abstract
unfolding in a similar way as it is done in the concrete setting using unfolding
(see Sect. 2.1).

Def in i t ion 3 (AUnfold). Let A : CP be an abstract atom and P a program. We
define AUnfold(P, A : CP) as the set of resultants associated to a finite (possibly
incomplete) SLD tree computed by applying definitions 1 and 2 to A : CP.

The so-called local control of P D ensures the termination of the above process.
For this purpose, the unfolding rule must incorpórate some mechanism to stop
the construction of SLD derivations (we refer to [17] for details).

Example 4- Consider an unfolding rule AUnfold based on homeomorphic em-
bedding [17] to ensure termination and the initial goal in Ex. 2. The derivation
continuing from Ex. 3 performs several additional derivation steps and abstract
executions and branches (we do not include them due to space limitations and
also because it is well understood). The following resultants are obtained from
the resulting tree:

6 In CiaoPP assertions express such information in a domain-independent manner.

f o r m u l a (s (s (s (s (0) , s (s (s (s (0))))) .

f o r m u l a (s (s (s (s (s (A))))) , s (s (s (s (s (s (B))))))) :- tw(A,B).

which will later be ñltered and renamed as they appear in rules 5 and 6 of Ex. 1.

It is important to note that SLD resolution with abstract substitutions is not
restricted to the left-to-right computation rule. For the case of derivation steps
(Def. 1), it is well-known that non-leftmost steps can produce incorrect results
if the goal contains impure atoms to the left of AR. More details can be found,
e.g., in [1] and its references. For the case of abstract execution (Def. 2), the
execution of non-leftmost atoms can be incorrect if the abstract domain used
captures properties which are not downwards closed. A simple solution in this
case is to allow only leftmost abstract execution steps for non-downwards closed
domains.

4 Specialized Deñnitions

Typically, PD is presented as an iterative process in which partial evaluations
are computed for the new generated atoms until they cover all calis which can
appear in the execution of the residual program. This is formally known as the
closedness condition of PD [21]. In order to ensure termination of this global
process, the so-called global control defines a Generalize operator (see, e.g., [17])
which guarantees that the number of SLD trees computed is kept finite, i.e., it
ensures the finiteness of the set of atoms for which partial deduction is produced.
However, the residual program is not generated until such iterative process ter-
minates.

We now define an Abstract Partial Deduction (APD) algorithm whose exe-
cution can later be interleaved in a seamless way with a state-of-the-art abstract
interpreter. For this, it is essential that the APD process be able to genérate
residual code for each cali pattern as soon as we finish processing it. This will
make it possible for the analysis algorithm to have access to the improved def-
inition. As a consequence, the accuracy of the analyzer may be increased and
difficulty (2) described in Sect. 1 overeóme.

4.1 Abstract Partial Deduction

Algorithm 1 presents an APD algorithm. The main difference with standard
algorithms for APD is that the resultants computed by AUnfold (L23) are added
to the program during execution of the algorithm (L27) rather than in a later
code generation phase. In order to avoid confliets among the new clauses and
the original ones, clauses for specialized deñnitions are renamed with a fresh
predicate ñame (L26) prior to adding them to the program (L27). The algorithm
uses two global data structures. The specialization table contains entries of the
form A : CP ~-> A'. The atom A' provides the link with the clauses of the
specialized deñnition for A : CP. The generalization table stores the results of the

A l g o r i t h m 1 Abstract Partial Deduction with Specialized Deñnitions

1: procedure PARTIAL_EVALUATION_WITH_SPEC_DEFS(P, {Ai : CPi, ...,An : CPn})
2: Create_Table(£T); Create.Table(ST)
3: for j = í..n do
4: PROCESS_CALL_PATTERN(Aj : CPj)

5: procedure PROCESS_CALL_PATTERN(A : CP)
6: if not \s\n(QT, A : CP) t h e n
7: (Ai, Ai) <— SPECIALIZED_DEFINITION(P, A : CP)
8: Ai : CPi <- Look_up(gT, A : CP)
9: for all renamed apart clause C'k = Hu <— Pfc G P s.t. Pfc unifies with A[

do
10: CPk <- Atranslate(Ai : CPi, Cfc)
11: PROCESS_CLAUSE(CPfc, Pfc)
12: procedure PROCESS_CLAUSE(CP, B)
13: if B = [L\R] t h e n
14: CPL <- Arestrict(CP, L)
15: PROCESS_CALL_PATTERN(L : CPL)
16: PROCESS_CLAUSE(CP, P)

17: function SPECIALIZED_DEFINITION(P, A : CP)
18: A' : CP' <- AGeneralize(ST, A : CP)
19: Insert^T, A : CP, A' : CP ')
20: if lsln(ST, A' : CP ') then

21: A" ^Look_up(ST, A' : CP')
22' else
23: Def <- A Unfold(P, A' : CP')
24: A" <- new_filter(A')

25: lnsert(5T, A' : CP', A")
26: P e / ' <- {{H' <- B) \ {H <- B) G P e / A H' = ren{H, {A'/A"})}
27: P<-P\JDef

28: return (A', A")

AGeneralize function and contains entries A : CP ~-> A' : CP' where A' : CP' is
a generalization of A : CP, in the sense tha t A = A'0 and (A : CP) E (A' : C P ') .

Let us briefly discuss some AGeneralize functions which can be used within
our algorithms when using it as a specializer. In both of them, the decisión on
whether to lose information in a cali AGeneralize(ST, A : CP) is based on the
concrete part of the atom, A. This allows easily deñning AGeneralize operators
in terms of existing Generalize operators. Let Generalize be a (concrete) general-
ization function. Then we deñne AGeneralizea(ST, A : CP) = (A',CPr) where
A' = Generalize{ST, A) and CP' = Atranslate(A : CP,A' <- true). Function
AGeneralizea only assigns the same specialized deñnition for different abstract
atoms when we know tha t after adapting the analysis info of both Ai : CP\ and
A2 : CP2 t o the new atom A' the same entry substitution CP' will be obtained
in either case. Similarly, we deñne AGeneralize7(ST, A : CP) = (A',CPr) where
A' = Generalize(ST, A) and CP' = T . The function AGeneralize^ assigns gener-
alizations taking into account the concrete part of the abstract atom only, which
is the same for all OR-nodes which correspond to a literal k,i. These functions
are in fact two extremes. In AGeneralizea we t ry t o keep as much abstract in-

formation as possible, whereas in AGeneralize7 we lose all abstract information.
The latter is useful when we do not have an unfolding system which can exploit
abstract information or when we do not want the specialized program to have
different implemented specialized deñnitions for atoms with the same concrete
part but different abstract substitution.

Procedure PARTlAL_EVALUATlON_WlTH_SPEC_DEFS (Ll-4) initiates the com-
putation. It ñrst initializes the tables and then calis PROCESS_CALL_PATTERN
for each abstract atom Aj : CPj in the initial set to be partially evaluated. The
task of PROCESS_CALL_PATTERN is, if the atom has not been processed yet (L6),
to compute a specialized deñnition for it (L7) and then process all clauses in its
specialized deñnition by means of calis to PROCESS_CLAUSE (L9-11). For sim-
plicity of the presentation, we assume that clause bodies returned by SPECIAL-
IZED_DEFINITI0N are represented as lists rather than conjunctions. Procedure
PROCESS_CLAUSE traverses clause bodies, processing their corresponding atoms
by means of calis to PROCESS_CALL_PATTERN, in a depth-ñrst, left-to-right fash-
ion. In contrast, the order in which pending cali patterns (atoms) are handled is
usually not ñxed in APD algorithms. They are often all put together in a set. The
purpose of the two procedures PROCESS_CLAUSE and PROCESS_CALL_PATTERN
is to traverse the clauses in the left-to-right order and add the corresponding cali
patterns. In principie, this does not have additional advantages w.r.t. existing
APD algorithms because success propagation has not been integrated yet. How-
ever, the reason for our presentation is to be as cióse as possible to our analysis
algorithm with success propagation, which enforces a depth-ñrst, left-to-right
traversal of program clauses. Correctness of Algorithm 1 can be established us-
ing the framework for APD in [16].

4.2 Integration with an Abstract Interpreter

For the integration we propose, the most relevant part of the algorithm comprises
L17-28, as it is the code fragment which is directly executed from our abstract
interpreter. The remaining procedures (L1-L16) will be overridden by more ac-
curate ones later on. The procedure of interest is SPECIALIZED_DEFINITI0N. It
performs (L18) a generalization of the cali A : CP using the abstract counter-
part of the Generalize operator, denoted by AGeneralize, and which is in charge
of ensuring termination at the global level. The result of the generalization,
A' : CP', is inserted (L19) in the generalization table QT. It is required that
(A : CP) C (A' : CP'). If A' : CP' has been previously treated (L20), then its
specialized deñnition A" is looked up in ST (L21) and returned. Otherwise, a
specialized deñnition Def is computed by using the AUnfold operator (L23).

As already mentioned, the specialized deñnition Def for the abstract atom
A : CP is used to extend the original program P. First, the atom A' is renamed
by using new_filter which returns an atom with a fresh predicate ñame, A", and
optionally ñlters constants out (L24). Then, function ren is applied to rename the
clause heads using atom A' (L26). The function rer\(A,{B/B'}) returns O(B')
where 9 = mgu(A, B). Finally, the program P is extended with the new, renamed
specialized deñnition, Def'.

Example 5. Three calis to SPECIALIZED-DEFINITION appear (within an oval box)
during the analysis of our running example in Fig. 2 from the following abstract
atoms, ñrst main(s3(X),X2) : {X/G,X2/V}, then tw(B,C) : {B/G, C/V} and ñnally
formula(C, A) : {C/G, A/V}. The output of such executions is used later (with the
proper renaming) to produce the resultants in Ex. 1. For instance, the second
clause obtained from the ñrst cali to SPECIALIZED_DEFINITI0N is

s p j i a i n 2 (s (s (s (s (B)))) ,A) : - tw2)i (B,C) ,formula2)2 (C,A) .

where only the head is renamed. The renaming of the body literals is done in a
later code-generation phase.

It is important to note that Algorithm 1 does not perform success propagation
yet (difficulty 3). In L16, it becomes apparent that all atom(s) in R will be
analyzed with the same cali pattern CP as L, which is to their left in the clause.
This may clearly lead to substantial precisión loss. In the above example, Alg. 1
is not able to obtain the three abstract atoms above due to the absence of success
propagation. For instance, the abstract pattern f ormula(C, A) : {C/G, A/V} which
is necessary in order to obtain the last two resultants of Ex. 1 cannot be obtained
with this algorithm. In particular, we cannot infer the groundness of C which,
in turn, prevenís us from abstractly executing the next cali to ground and,
thus, from obtaining this optimal specialization. In addition, this lack of success
propagation makes it difficult or even impossible to work with non downwards
closed domains (difficulty 4), since CP may contain information which holds
before execution of the leftmost atom L but which can no longer hold after
that. In fact, in our example CP contains the info C/V, which becomes false
after execution of tw(B, C), since now C is ground. This problem is solved in the
algorithm we present in the next section, where analysis information flows from
left to right, adding more precise information and eliminating information which
is no longer safe or even definitely wrong.

5 Abstract Interpretation with Specialized Deñnitions

The main idea in abstract interpretation with specialized, definitions is that a
generic abstract interpreter is equipped with a generator of specialized defini-
tions. Such generator provides, upon request, the specialized definitions to be
analyzed by the interpreter. Certain data structures, which take the form of
tables in the algorithms (Le., the specialization, generalization, answer and de-
pendency are tables) will be used to communicate between the two processes
and achieve a smooth interleaving. The input to the whole process is a program
together with a set of calling patterns for it. The output is a specialized program
together with the analysis results inferred for it. The scheme can be parameter-
ized with different (abstract) unfolding rules, generalization operators, abstract
domains and widenings. The different instances give rise to interesting analysis
and specialization methods, some of which are well known and others are novel
(see Section 7).

{ X / G , X 2 / V } m a i n (s 3 (x) ; X 2) { X / G , X 2 / G }

SPEC_DEF(main(s3(X),X2) : {X/G, X2/V})

main(s 3 (d) ,0) : main(s4(B), A):

D {B/=,c/v}tw(B;C){B/G,c/G} >{c/G 'A/v>formula(C,A){c/G 'A/G>

I SPEC_DEF(tw(B, C) : {B/G, C ^ t ó) | ^~~H~aEEC_DEF(f o rmula (C , A) : { C / G , A / V }) |

ftw(0,'$} : tw(s(B)\2(C):f ormula^O, s4(0)))))-<Eormula(s(A), s6(B)l

G {B/G,C/V} t w (- B > c -) {B/G,C/G} G {A /G ,B /V} t w (- A) B \ {A /G ,B /G}

F i g . 2 . Analysis Graph computed by ABSJNT.WITH.SPEC.DEF

Algorithm 2 presents our final algorithm for abstract interpretation with spe-
cialized definitions. This algorithm extends both the APD Algorithm 1 and the
abstract interpretation algorithms in [23,12]. The main improvement w.r.t. Al-
gorithm 1 is the addition of success propagation, which requires computing a
global fixpoint. It is an important objective for us to be able to compute an ac-
curate fixpoint in an efficient way. The main improvements w.r.t the algorithms
in [23,12] are the following. (1) It interleaves program analysis and specialization
in a way that is efficient, accurate, and practical. (2) Algorithm 2 deals directly
with non-normalized programs. This point, which does not seem very relevant
in a puré analysis system, becomes crucial when combined with a specializa-
tion system in order to profit from constants propagated by unfolding. (3) It
incorporates a hardwired efficient graph traversal strategy which eliminates the
need for maintaining priority queues explicitly [12]. (4) The algorithm includes
a widening operation for calis, Widen_Call, which limits the amount of multi-
variance in order to keep the number of cali patterns analyzed finite. This is
required in order to be able to use abstract domains with an infinite number of
elements, such as regular types. (5) It also includes a number of simplifications
to facilítate understanding, such as the use of the keyed-table ADT, which we
assume encapsulates proper renaming apart of variables and the application of
renaming transformations when needed.

5.1 The Program Analysis Graph: Answer and Dependency Tables

In order to compute and propágate success substitutions, Algorithm 2 computes
a program analysis graph in a similar fashion as state of the art analyzers such
as the CiaoPP analyzer [23,12]. For instance, the analysis graph computed by
Algorithm 2 for our running example is depicted in Fig. 2. The graph has two

sorts of nodes. Those which correspond to atoms are called "OR-nodes". An OR-
node of the form CPAAP is interpreted as the answer (success) pattern for the
abstract atom A : CP is AP. The OR-node {x/G>X2/v>main(s3(X),X2){x/G>X2/G> in
the example indicates that when the atom main(s3(X),X2) is called with descrip-
tion {X/G,X2/V} the answer (or success) substitution computed is {X/G,X2/G}.
Those nodes which correspond to rules are called "AND-nodes". In Fig. 2, they
appear within a dashed box and contain the head of the corresponding clause.
Each AND-node has as children as many OR-nodes as literals there are in its
body. If a child OR-node is already in the tree, it is not expanded any further
and the currently available answer is used. We show within an oval box the calis
to SPECIALIZED-DEFINITION which appear during the execution of the running
example (see the details in Sect. 4). The heads of the clauses in the specialized
deñnition are linked to the box with a dotted are. For instance, the analysis graph
in Figure 2 contains three oceurrences of the abstract atom tw(B,C) : {B/G,C/V}
(modulo renaming), but only one of them has been expanded. This is depicted
by arrows from the two non-expanded oceurrences of tw(B,C) : {B/G,C/V} to
the expanded one. More information on the efficient construction of the analysis
graph can be found in [23,12, 2].

The program analysis graph is implicitly represented in the algorithm by
means of two data structures, the answer table (AT) and the dependency table
(VT). The answer table contains entries of the form A : CP ~-> AP which are
interpreted as the answer (success) pattern for A : CP is AP. For instance,
there exists an entry of the form main(s3(X),X2) : {X/G,X2/V} ~-> {X/G,X2/G}
associated to the OR-node discussed above.

Dependencies indicate direct relations among OR-nodes. An OR-node Ap :
CPp depends on another OR-node Ap : CPp iff in the body of some clause
for Ap : CPp there appears the OR-node Ap : CPp. The intuition is that
in computing the answer for Ap : CPp we have used the answer pattern for
Ap : CPp. In our algorithm we store backwards dependencies, Le., for each
OR-node Ap : CPp we keep track of the set of OR-nodes which depend on
it. I. e., the keys in the dependency table are OR-nodes and the information
associated to each node is the set of other nodes which depend on it, together
with some additional information required to itérate when an answer is modiñed
(updated). Each element of a dependency set for an atom B : CP2 is of the form
(H : CP=> [Hk '• CP\] k,i). It should be interpreted as follows: the OR-node
H : CP through the literal at position k,i depends on the OR-node B : CP2.
Also, the remaining information [Hk : CP\] encodes the fact that the head of
this clause is Hk and the substitution (in terms of all variables of clause k) just
before the cali to B : CP2 is CP\. Such information avoids having to reprocess
atoms in the clause k to the left of position i.

Example 6. For instance, the dependency set for formula(C, A) : {A/V,C/G} is
{(main(s3(X),X2) : {X/G,X2/V} =¿> [main(s4(B), A) : {B/G, A/V, C/G}] 2,2)} It
indicates that the OR-node f ormula(C, A) : {A/V, C/G} is only used in the OR-
node main(s3(X),X2) : {X/G,X2/V} via literal 2,2 (see Example 1). Thus, if the

A l g o r i t h m 2 Abstract Interpretation with Specialized Deñnitions

1: p rocedure ABS_INT_WITH_SPEC_DEFS(P, {Ai : CPi, ...,An : CPn})
2: Create_Table(AT); Create_Table(PT); Create_Table(£T); Create_Table(ST);

3: for j = í..n do
4: PROCESS_CALL_PATTERN(Aj : CPj, {Aj : CPj =>• [Aj : CPj],j,entry))

5: function PROCESS_CALL_PATTERN(A : CP, Pareraí)
6: CPÍ <- Widen.C'all(AT, A : CP)
7: if not lsln(AT, A : CPi) t h e n
8: lnsert(.4T, A : CPi, _L); lnsert(PT, A : CPi, 0)
9: (A', A[) <— SPECIALIZED_DEFINITION(P, A : CPi)

10: A" w e n (A , { A ' / A i })
11: for all renamed clause Cfc = P& <— Bk G P s.t. P& unifies with A" do
12: CPk <- Atranslate(A" : CPi, Cfc)
13: PROCESS_CLAUSE(A : CPi =>• [Hk • CPk] Bk, fe, 1)
14: Peps <- Look_up(PT, A : CPi) U{Parení}; lnsert(PT, A : CPi, Peps)
15: r e t u r n Look_up(AT, A : CPi)

16: p rocedure PROCESS_CLAUSE(P : CP =>• [Pfc : CPi] B, fe, i)
17: if CPi 7̂ _L t h e n
18: if P = [L|P] t h e n
19: CP2 <- Arestr¡ct(CPi, L)
20: AP0 <- PROCESS_CALL_PATTERN(L : CP2 , (H :CP ^ [Hk : CPi], fe, ¿})
21: CP 3 <- Aconj(CPi, Aextend(AP0, CPi))
22: PROCESS_CLAUSE(P : CP => [Hk : CP3]R, k,i+l)
23' else
24: APi <- Atranslate(Pfc : CP3 , P <- írwe); AP2 <- Look.up(AT, P : CP)
25: AP3 <-Alub(APi,AP2)
26: if AP2 ^ AP3 t h e n
27: lnsert(AT, H : CP, AP3)
28: Deps <— Look_up(PT, P : CP); PROCESS_UPDATE(Peps)

29: p rocedure PROCESS_UPDATE(Ppdaíes)
30: if Updates = { A i , . . . , A n } with n > 0 t h e n
31: Ai = (H : CP => [Hk : CPi], fe, ¿}
32: if i =/= entry t h e n
33: P <- get_body(P, fe, ¿)
34: REMOVE_PREVIOUS_DEPS(P : CP =>• [Pfc : CPi] P , fe, ¿)
35: PROCESS_CLAUSE(P : CP =>• [Pfc : CPi] P , fe, ¿)
36: PROCESS_UPDATE(Ppdaíes - {Ai})

answer pat tern for formula(C, A) : {A/V, C/G} is ever updated, then we must
reprocess the OR-node main(s3(X),X2) : {X/G,X2/V} from position 2,2.

5.2 T h e A l g o r i t h m

Algorithm 2 presents our proposed algorithm. Procedure ABS_INT_WITH_SPEC_DEFS
initializes the four tables used by the algorithm and calis PROCESS_CALL_PATTERN
for each abstract atom in the initial set. PROCESS_CALL_PATTERN applies, ñrst
of all (L6), the Widen_Call function to A : CP taking into account the set of
entries already in AT. This returns a substi tution CP\ s.t. CP IZ CP\. The
most precise Wideri-Call function possible is the identity function, but it can
only be used with abstract domains with a ñnite number of abstract valúes for

each set of variables. This is the case with sharing-freeness and thus we will
use the identity function in our example. If the cali pattern A : CP\ has not
been processed before, it places (L8) ± as initial answer in AT for A : CP and
sets to empty the set of OR-nodes in the graph which depend on A : CP\. It
then computes (L9) a specialized deñnition for A : CP\. We do not show in
Algorithm 2 the deñnition of SPECIALIZED_DEFINITI0N, since it is identical to
that in Algorithm 1. Then (Lll-13) calis to PROCESS_CLAUSE are launched for
the clauses in the specialized deñnition w.r.t. which A : CP\ is to be analyzed.
Then, the Parent OR-node is added (L14) to the dependency set for A : CP\.

The function PROCESS.CLAUSE performs the success propagation and consti-
tutes the core of the analysis. First, the current answer (APo) for the cali to the
literal at position k,i of the form B : CP2 is (L21) conjoined (Aconj), after being
extended (Aextend) to all variables in the clause, with the description CP\ from
the program point immediately before B in order to obtain the description CP¡
for the program point after B. If B is not the last literal, CP¡ is taken as the (im-
proved) calling pattern to process the next literal in the clause in the recursive
cali (L22). This corresponds to left-to-right success propagation and is marked
in Fig. 2 with a dashed horizontal arrow. If we are actually processing the last
literal, CP¡ is (L24) adapted (Atranslate) to the initial cali pattern H : CP which
started PROCESS.CLAUSE, obtaining AP\. This valué is (L25) disjoined (Alub)
with the current answer, AP2, for H : CP as given by Look_up. If the answer
changes, then its dependencies, which are readily available in VT, need to be re-
computed (L28) using PROCESS_UPDATE. This procedure restarts the processing
of all body postñxes which depend on the calling pattern for which the answer
has been updated by launching new calis to PROCESS_CLAUSE. There is no need
of recomputing answers in our example. The procedure REMOVE_PREVlOUS_DEPS
eliminates (L34) entries in VT for the clause postñx which is about to be re-
computed. We do not present its deñnition here due to lack of space. Note
that the new calis (L35) to PROCESS_CLAUSE may in turn launch calis to PRO-
CESS_UPDATE. On termination of the algorithm a global ñxpoint is guaranteed
to have been reached. Note that our algorithm also stores in the dependency sets
calis from the initial entry points (marked with the valué entry in L4). These do
not need to be reprocessed (L32) but are useful for determining the specialized
versión to use for the initial queries after code generation.

The next theorem presents the correctness of the results of Algorithm 2 in
terms of analysis. We use 0\{Xl,...,xn} to denote the projection of substitution 9
onto the set of variables { X i , . . . , Xn}. We denote by success(A : CP, P) the set
of computed answers for initial queries described by the abstract atom A : CP
in a program P.

Theorem 1 (correctness of success). Let P be a program and let S = {Ai :
CP\,..., An : CPn} be a set of abstract atoms. For all Ai : CPi £ S, after termi-
nation O/ABS_INT_WITH_SPEC_DEFS(P, S), there exists (Ai : CP¡ ~-> AP¿) € AT
s.t. CPi C CP{ A success(Ai : CPi,P) C 7(AP¿).

Intuitively, correctness holds since Algorithm 2 computes an abstract and-or
graph and, thus, we inherit a generic correctness result for success substitutions

of [12]. However, now we analyze the cali pat terns in S w.r.t. specialized defini-
tions rather than their original deñnition in P. Since the transformation rules in
Deñnitions 1 and 2 are semantics preserving, then analysis of each specialized
deñnition is guaranteed to produce a safe approximation of its success set, which
is also a safe approximation of the success of the original deñnition.

5.3 T h e Framework as a Special izer

If we compose a terminating analysis strategy (abstract domain plus widening
operator) with a terminating P D strategy (local control plus global control), then
Algorithm 2 also terminates for such strategies. The set of specialized deñnitions
computed during the execution of the algorithm is a specialization of the program
w.r.t. the initial entries.

T h e o r e m 2 (correc tness of spec ia l i za t ion) . Consider the Algorithm 2 pa-
rameterized with terminating operators AUnfold, Widen-Call and AGeneralize.
Then, for any program P and set of abstract atoms S, ABS_INT_WITH_SPEC-
_DEFS(P, S) terminates and the set of renamed specialized definitions is a corred
specialization of P w.r.t. S.

Intuitively, if we have a terminating AUnfold rule and the abstract domain is
ascending chain ñnite, non-termination can only occur if the set of cali pat terns
handled by the algorithm is infinite. Since the Wideri-Call function guarantees
tha t a given concrete atom A can only be analyzed w.r.t. a finite number of
abstract substitutions CP, non-termination can only occur if the set of atoms has
an infinite number of elements with different concrete parts . If the AGeneralize
function guarantees tha t an infinite number of different concrete atoms cannot
occur, then termination is guaranteed.

6 Experiments

In this section we show some experimental results aimed at studying two crucial
points for the practicality of our proposal: the cost associated to computing
specialized definitions and the optimization obtained by the process. We have
implemented the abstract interpreter with specialized definitions as an extensión
of the generic abstract interpretation system of CiaoPP. The whole system is
implemented in Ciao 1.13^5666 [3]. Execution times are given in milliseconds
and measure runtime. They are computed as the arithmetic mean of five runs.
AU of our experiments have been performed on a Pentium M at 1.86GHz and
1GB RAM running Ubuntu Breezy Linux. The Linux kernel used is 2.6.12.

A relatively wide range of programs has been used as benchmarks. The pro-
gram running_ex is tha t in Fig. 1. The rest are the same programs used in [12] as
benchmarks for static analysis.6 Thus, they do not necessarily contain static da ta
which can be exploited by partial evaluation. Interestingly, some (first group of

6 More details on such benchmarks can be found in [12].

tíench

runnmg_ex
g r a m m a r
query
zebra
aiakl
ann
boyer
progeom
warplan
wit t
browse
deriv
fib
hanoiapp
m m a t r i x
occur
serialize
t ak
Overall

Abs

shfr
shfr
shfr
shfr
shfr
shfr
shfr
shfr
shfr
shfr

e terms
e terms
e terms
e terms
e terms
e terms
e terms
e terms

Tradi t ional
A n a

5
24

358
261

13
432
154

9
318
103

33
149

13
61
68
24
68

5

P D

11
4

160
1523

25
159

90
26
63

183
18

5
2
5
4
7

13
3

A n a P D

5
21
15

1
25

452
161

14
311
118

36
151

13
65
69
24
73

5

S D 7

S D 7

13
24

173
1522

44
558
232

37
410
255

50
151

15
73
71
30
85

7

SU

1.20
1.03
1.01
1.00
1.15
1.10
1.08
l . l o
0.91
1.18
1.07
1.03
1.03
0.96
1.04
1.02
1.03
1.21
1.03

SDa-

SL>«-
14
27

187
1604

53
625
271

39
607
288

71
160

17
101

74
49

108
9

SU

1.14
0.92
0.93
0.95
0.95
0.98
0.93
1.03
0.62
1.04
0.75
0.97
0.89
0.70
0.99
0.62
0.81
0.95
0.90

S D a

sua
14
34

453
6476

50
604
241

41
553
276

65
161

17
97
72
44
97

9

SU

1.10
0.72
0.38
0.24
1.01
1.01
1.04
0.98
0.68
1.09
0.83
0.97
0.87
0.73
1.03
0.69
0.89
0.95
0.41

Exec T
SU

1.33
1.59
2.69

1148.08
1.00
1.00
1.00
0.99
1.01
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.03
1.00

Table 1. Some implementations of AI with Specialized Definitions. Cost and efñciency

rows in Table 1) contain static data, while others (second and third groups of
rows in Table 1) contain little or no static data. In zebra all the data is static
and it can be potentially fully evaluated at compile-time.

As the analyzers within CiaoPP it derives from, our abstract interpreter with
specialized deñnitions is parametric w.r.t. the abstract domain. In these experi-
ments we have used mostly the sharing+freeness domain [22] (for the ñrst and
second group of rows in Table 1). We have selected this domain because it is on
one hand well known and on the other orthogonal w.r.t. partial evaluation, in
the sense that it does not contain any concrete information (as, for example, a
depth-k or types domain would). We have also conducted experiments with the
eterms domain [27] which infers regular types (third group of rows in the table).

For each benchmark, the columns under Traditional present the analysis
(Ana) and partial deduction (PD) times using the standard algorithms. Column
Ana PD provides the time taken by analysis of the specialized program (rather
than the original one). Each of the following six columns presents the time
taken by the abstract interpreter with specialized deñnitions, as well as the ratio
(speedup/slowdown, SU) of this time w.r.t. PD + Ana PD. Columns marked SDa

are for the case where AGeneralizea (Section 5) is used, whereas SD7 columns use
AGeneralize7, with SDa— representing the case where we only check for useless
clauses once a derivation is fully computed, rather than at each derivation step.
Finally, the last column represents the speedup in the execution time of the
program after applying SDa—.

The last row summarizes the analysis times for the different benchmarks
using a weighted mean, which places more importance on those benchmarks

with relatively larger analysis times. We believe that this weighted mean is more
informative than the arithmetic mean, as, for example, doubling the speed in
which a large and complex program is analyzed (checked) is more relevant than
achieving this for small, simple programs.

Overall, we ñrst observe that the time taken by the abstract interpreter
with specialized deñnitions compares well with that taken by a traditional PD
phase followed by a traditional analysis phase (Ana PD). In the case of SD7

there is actually some speedup (1.03), presumably because fewer traversals of
the program are required, whereas in the case of SDa we observe a reasonable
slowdown (0.41), with SDa— representing an interesting tradeoff (0.90). The
execution times of the resulting programs show signiñcant speedups for the ñrst
group (in which concrete information is available for specialization) and (as
expected) only very minor variations for the other programs. This shows that our
system performs well as a specializer. At the same time, the analysis information
obtained (which is of course one of the fundamental objectives of the process)
is always at least as accurate as that obtained when performing analysis after a
standalone specialization pass (Ana PD), and is more accurate for the programs
in the ñrst group, which shows that it also performs well as an analyzer.

7 Discussion and Related Work

The versatility of our approach can be seen by recasting well-known specializa-
tion and analysis frameworks as instances where the parameters unfolding rule,
widen cali rule, abstraction operator, and analysis domain, take different valúes.

From an analysis point of view, our algorithm can behave as the polyvariant
abstract interpretation algorithm described in [12, 23] by deñning an AGeneralize
operator which returns the base form of an expression (Le., it loses all constants)
and an AUnfold operator which performs a single derivation step (Le., it returns
the original deñnition). Also, the specialization power of the multivariant ab-
stract specialization framework described in [25,24] can be obtained by using
the same AGeneralize described in the above point plus an AUnfold operator
which always performs a derive step followed by zero or more abstract execution
steps. However abstract executability is performed now online, during analysis,
instead of offline.

From a partial evaluation perspective, our method can be used to perform
classical partial deduction in the style of [21,11] by using an abstract domain
with the single abstract valué T and the identity function as Widen_Call rule.
This corresponds to the VT> domain of [16] in which an atom with variables
represents all its instances. Let us note that, in spite of the fact that the algo-
rithm follows a left-to-right computation flow at the global control level, the
process of generating specialized deñnitions (as discussed in Section 3) can per-
form non-leftmost unfolding steps at the local control level and achieve the same
optimizations as in PD. Several approaches for abstract partial deduction have
been proposed which extend PD with SLDNF-trees by using abstract substitu-
tions [15, 9,19,16]. In essence, such approaches are very similar to APD with cali

propagation shown in Algorithm 1. Though all those proposals identify the need
of propagating success substitutions, they either fail to do so or propose means
for propagating success information which are not fully integrated within the
APD algorithm and, in our opinión, do not ñt in as nicely as the use of and-or
trees. Also, these proposals are either strongly coupled to a particular (down-
ward closed) abstract domain, Le., regular types, as in [9,19] or do not provide
the exact description of operations on the abstract domain which are needed
by the framework, other than general correctness criteria [15,16]. However, the
latter allow Conjunctive P D [7], which is not available in our framework yet. It
remains as future work to investígate the extensión of our framework in order to
analyze conjunctions of atoms and in order to achieve optimizations like tupling
and deforestation.

Finally, [26] was a very preliminary (and only informally published) step
towards our current framework which identiñed the need for including unfolding
in abstract interpretation frameworks in order to increase their power. Then, four
different alternatives for doing so (Section 5.3) were discussed. The framework
we propose in this work does not correspond to any of those alternatives and is
in fact more powerful than any of them.

References

1. E. Albert, G. Puebla, and J. Gallagher. Non-Leftmost Unfolding in Partial Evalua-
tion of Logic Programs with Impure Predicates. In Proc. of LOPSTR'05. Springer
LNCS 3901, April 2006.

2. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

3. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and G. Puebla.
The Ciao Prolog System. Reference Manual (vi.8). The Ciao System Documenta-
tion Series-TR CLIP4/2002.1, School of Computer Science, Technical University
of Madrid (UPM), May 2002. System and on-line versión of the manual available
at h t t p : / / c l i p . d i a . f i . upm.e s /So f twa re /C iao / .

4. C. Consel and S.C. Koo. Parameterized partial deduction. ACM Transactions on
Programming Languages and Systems, 15(3):463-493, July 1993.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

6. P. Cousot and R. Cousot. Systematic Design of Program Transformation Frame-
works by Abstract Interpretation. In POPL'02, pages 178-190. ACM, 2002.

http://clip.dia.fi.upm.es/Software/Ciao/
http://.upm.es/Software/Ciao/.

7. D. De Schreye, R. Glück, J. J0rgensen, M. Leuschel, B. Martens, and M.H.
S0rensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231-277, 1999.

8. J. Gallagher, M. Codish, and E. Shapiro. Specialisation of Prolog and FCP Pro-
grams Using Abstract Interpretation. NGC, 6(2-3): 159-186, 1988.

9. J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain
in program specialisation. HOSC, 14(2,3):143-172, 2001.

10. J.P. Gallagher. Static Analysis for Logic Program Specialization. In Workshop on
Static Analysis WSA '92, pages 285-294, 1992.

11. J.P. Gallagher. Tutorial on specialisation of logic programs. In Proc. of PEPM'93,
pages 88-98. ACM Press, 1993.

12. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187-223, March 2000.

13. N. D. Jones. Combining Abstract Interpretation and Partial Evaluation. In Static
Analysis Symposium, number 1140 in LNCS, pages 396-405. Springer-Verlag, 1997.

14. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

15. M. Leuschel. Program Specialisation and Abstract Interpretation Reconciled. In
Joint International Conference and Symposium on Logic Programming, June 1998.

16. M. Leuschel. A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM TOPLAS, 26(3):413 - 463, May 2004.

17. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461-
515, July & September 2002.

18. M. Leuschel and D. De Schreye. Logic program specialisation: How to be more
specific. In Proc. of PLILP'96, LNCS 1140, pages 137-151, 1996.

19. M. Leuschel and S. Gruner. Abstract conjunctive partial deduction using regular
types and its application to model checking. In Proc. of LOPSTR, number 2372
in LNCS. Springer, 2001.

20. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

21. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, ll(3-4):217-242, 1991.

22. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

23. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In SAS'96, pages 270-284. Springer LNCS 1145, 1996.

24. G. Puebla and M. Hermenegildo. Abstract Múltiple Specialization and its Appli-
cation to Program Parallelization. JLP, 41(2&3):279-316, November 1999.

25. G. Puebla and M. Hermenegildo. Abstract Specialization and its Applications. In
Proc. of PEPM'03, pages 29-43. ACM Press, 2003. Invited talk.

26. G. Puebla, M. Hermenegildo, and J. Gallagher. An Integration of Partial Eval-
uation in a Generic Abstract Interpretation Framework. In PEPM'99, number
NS-99-1 in BRISC Series, pages 75-85. Univ. of Aarhus, Denmark, 1999.

27. C. Vaucheret and F. Bueno. More precise yet efñcient type inference for logic
programs. In Proc. of SAS'02, pages 102-116. Springer LNCS 2477, 2002.

