
Abstract Object Types for Databases

H.-D. Ehrich
Informaiik/Datenbanken, Tevhnisehe Universitat, Postfach 3329. D-3300 Braunschweig, FR GERMANY

A. Sernadas C. Sernadas
Departamento de Matematica, Instituto Superior Teeaieo, 1096 Lisboa, PORTUGAL

A b ~ ? ~ - There is a need for exploring the theoretical and methodological foundations of database
design and development with the intention to achieve provably correct systems and higher levels
of reusability. To this end, topics rarely addressed so far in this area must be investigated,
among them full incorporation of dynamic aspects, static and dynamic integrity checking, formal
methods strongly backed by a sound theory, and design-in-the-large issues like modularization
and parameterization. Our approach combines the object-oriented paradigm with experiences in
formal methods in software engineering, especially algebraic data type theory, logical approaches
to systems specification and design, and process algebra. In analogy to algebraic data type theory,
we propose mathematical models for the basic notions of object, object type and abstract object
type.

1. Introduction
What is a database object in the sense of object-oriented databases? How are database objects

put together into object types? What is an abstract object type? What is it that makes an object

or object type complex? How can abstract object types be specified? How can they be

implemented? How can we prove correctness, both of specification and of implementation?

These questions - and many more - have to be answered satisfactorily in order to provide a

rel iable fundament for object-oriented databases. There is a need for exploring the theoretical

and methodological foundations of database design and development with the intention to achieve

provably correct systems and higher levels of reusability.

Object-oriented databases is a rather new field, and the development seems to be somewhat

different from that of object-oriented programming. The lat ter began as early as 1967 with the

simulation language SIMULA (DMN67), but the breakthrough is usually attributed to Small talk-80

(GR83). According to this development, objects are highly dynamic entities, displaying an active

behaviour. In contrast to this, the current emphasis in object-oriented databases is more on

structural aspects, especially complex object structures (Lo85, DD86). Object dynamics is

largely neglected. In fact, there is some confusion about terms: a system with complex objects

is not quite the same as an object-oriented system, although there are some relationships. An

interesting development towards a database system modelling the behaviour, not just the structure

of entities is GemStone (MSOP86, MS87).

Applying object-oriented programming ideas to databases raises a number of problems, mainly

concerned with long-term persistence and large collections of objects (Be87). For instance, the

problem of object identity becomes increasingly important (KC86). Many of these problems are

not well understood, there is a definite lack of theory. To a large extent, this also holds for

HDEhrich
Schreibmaschinentext
K. R. Dittrich, editor, Advances in Object–Oriented Database Systems, LNCS 334, pages 144–149, Berlin, 1988. Springer–Verlag

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

HDEhrich
Schreibmaschinentext

145

object-oriented programming (Am86), but matters are changing. There is, for instance, the

inspiring work of Goguen and Meseguer (GM87) on unifying functional, relational and object-

oriented programming on the basis of logic and algebra. Specific database issues are only

marginally addressed there, but the work is relevant for databases, too. An algebraic approach to

object identity is given in (Eh86, EDG86, SSE87).

We are working on an object-orianted approach to the design of information systems, incorporating

object dynamics, static and dynamic integrity checking, formal methods strongly backed by a sound

theory, and design-in-the-large issues like modularization and parameterization (SSE87, SFSE88).

In SSE87, we propose a formal approach to the specification of societies of interacting objects.

The structure and behaviour of each object is defined using a primitive language that also

provides the means for specifying the interactions between objects through event sharing. An

algebraic semantics for this language is outlined. As a byproduct, the Kripke interpretation

structure for the invisaged logic of object behaviour is established. The specifications are

organized in two layers: (a) the universe of objects, their attributes and data; (b) the space of

the global trajectories and traces of the society of objects. Constraints of several kinds can be

imposed at both layers. The main issue in the construction of the universe is the naming of all

possible objects. With respect to (b), the emphasis is on the definition of the joint behaviour of

objects in terms of the allowed sequences of events that may happen in their lives.

In SFSE88, we discuss the notion of an abstract object type, incorporating in a compact and

precise form all aspects of object structure and dynamic behaviour, including concurrency.

Fundamentally, objects deal with states and processes. Concepts, tools and techniques are

provided for the abstract definition of objects. Each object is described as a temporal entity that

evolves because of the events that happen during its life. Both lifeness and safety requirements

can be stated and verified.

Our current endeavour is to develop an object-oriented specification language for information

systems named OBLOG, combining the object-oriented paradigm with experiences in formal

methods in software engineering, especially algebraic data type theory, logical approaches to

systems specification and design, and process algebra. We take care to provide a mathematical

semantics as well as proof methods consistent with the semantics.

For making progress in object-oriented information systems design, we feel it is essential to base

specification languages and methodologies and implemetatiun methods on a careful study of logic

and semantic fundamentals. In this paper, we concentrate on the latter, giving a brief outline of

what we think is an adequate and useful model for objects, object types, and abstract object types.

2. objects
What is an object? A common view seems to be that it is something like a software module with

an interface of named operations and a hidden local state, employing principles of data abstraction

and encapsulation. But this is not the whole story: objects are organized into object types which

display a sophisticated subtyping structure, together with an appropriate inheritance mechanism

(CV¢85). Moreover, there is the whole world of object dynamics: objects may be created,

changed and destroyed, and they may have an internal activity of their own. And there is some

mechanism of communication or interaction between objects, e.g. by means of messages or event
sharing.

146

Taking a more abstract view, the principle properties of an object are that it has a stale which

can change as a reaction to certain events, and which can be observed, for instance by means of

attributes with varying values, displaying an observable behavlour in time. There have been two

approaches to model this in mathematical terms. (1) objects are state machine (GM87) or

(2) objects are processes (HN87) in the sense of process algebra (Ho85).

Let X be a given set of events. Events arise from calling methods (in the sense of object-oriented

programming) with actual parameters. Thus, in theory, there might be infinitely many events. Let

Y be a set of observations. Observations arise from values of attributes: if A={a 1 a r} is a finite

set of attributes, each with an associated type type(ai), l~i~r, then an observation is a set

y~{ (a 1 :d 1) (ar:dr)} of attribute-value pairs where di~tYpe(ai) for l~i~r (undefined attributes

do not appear in an observation). Thus, in theory, there might be infinitely many observations. By

obs(A) we denote the set of all observations over attributes A.

A state machine M=(S,X,Y,B,~,s 0) consists of (possibly infinite) sets S of states, X of inputs, and

Y of outputs, together with a state transition mapping B:S×X--~S , an output mapping ~:S--->Y, and

an initial state s0~S.

A state machine models an object with events X and observations yc-obs(A). We assume ~ to be

partial and ~ to be total: not every event may happen in every state, but there exists always an

observation (which might, of course, be empty). The initial state s o corresponds to non-existence,

all other states are states of existence. So the first event applied to an object should create it.

The further events applied to the object update it in some way while it exists, and the last event,

if there is one, destroys the object by bringing it out of existence. This way, an object processes

streams X°=X*uX c°, i.e. finite or infinite sequences, of events. A life cycle of an object is a

stream of events that, when starting the machine in s O , never encounters an undefined transition

and ends in s o or goes on forever. Note that finite life cycles can be catenated, giving rise to

several incarnations of the same object. The observations along life cycles, however, do not

depend on previous incarnations.

A process over an alphabet X is a set Ac-X ¢ of streams over X. Thus, the set of life cycles of

an object is a process. Our process model for objects is based on life cycles and observations

along life cycles, abstracting from internal states. To be precise, an object ob=(X,A,A,~) consists

of a set X of events, a finite set A of attributes, a se~ Ac-x c of life cycles, and a total observation

mapping ~:X*---~obs(A) saying which attributes have which values after a finite stream (in particular

after a finite initial segment of a life cycle).

Given an object as a state machine, it is obvious how to derive the process model for the same

object. Not quite so obvious is perhaps that it also goes the other way round (provided we make

a few natural assumptions): given an object ob=(X,A,A,0~) as an observed process, there is a

canonical state machine M "implementing" it in the sense that the life cycles and observations of

the state machine are exactly those of the observed process. M can be constructed using well-

known automata-theoretic techniques.

The process model is more abstract than the machine model, and it does not lose essential

information. By not dealing explicitly wRh states, it is mathematically much simpler. So we adopt

it as a semantic basis for our work.

An immediate advantage is that it is easy to express the fundamental and important is relation-

147

ship between (single) objects. For example, a patient is a person at the same time, showing all

attributes that he/she has as a person and being subject to all events that can happen to him/her

as a person. That is, patients inherit attributes and events from persons, and patients can have

additional attributes and events, for instance those having to do with surgery. In the process

model, if obi=(Xi,Ai,Ai,~i), i=1,2 , are objects, then ob 2 is ob 1 iff Xlc-X 2 and AlC-A 2, and the

following compatibility conditions between life cycles and observations hold: (1) A2,~,XlgA1 and

(2) Ul (~4"X1)=u2(~)'t'A1 for al l T~X~. Here, e X 1 corresponds to the hiding (concealment) operator

on processes and the restriction operator on traces (Ho85), and ,~A 1 restricts the observation to

the attributes in A 1.

This is just a small example of the simplicity and mathematical elegance the process view

provides. We only mention that, among others, also the composition of objects to complex

objects as well as object interaction, e.g. by event sharing, can be studied very satisfactorily in

this setting.

3. Object Types
So far, we have dealt with s/ng/e objects. An object type is a set of objects which %elong

together", but in which sense ? An obvious idea might be to type objects by similarity of attribute

and event structure, but this is not general enough: when it comes to generalization, we want to

put objects with quite different attribute and event structures into one type, So what else ? Our

answer is object identity and object instantiation, i.e. a type is determined by a coherent identi-

fication system and by saying which object instance is associated with each identifier.

The importance of object identity is strongly emphasized in KC86. Identity is that property of an

object that distinguishes it from all other objects. An identification system should be able to

distinguish objects regardless of their content, location or addressability, and it should make it

possible to share objects. KC86 advocates identification independent of attribute values and

addressability. Identification by attribute values is common in the database field, and identification

by addressability is common in the programming language field. There are convincing arguments

that both approaches compromise identity. Rather, a surrogate-based identification concept is
suggested.

Our approach is to provide identity by means of (abstract and semantically rich) surrogates and

naming operations: an identification system or object universe U=(U,OP) for an object type consists

of a set U of object surrogates for the objects of that type, and a set OP of naming operations

by which the surrogates can be named uniquely. A simple example is to take the natural numbers

a8 surrogates and operations like 0, successor, addition, subtraction, etc. as naming operations:

each term denotes a natural number. Please note that "aliasing", i.e. different terms denoting the
same e|ement, presents no conceptual problem.

If we want semantically meaningful identification systems, they are not always such simple. For

complex object types, they can be very sophisticated, reflecting the way the type is composed

from other types, maybe even recursively. Very generally speaking, an identification system is a

set equipped with operations, and that is exactly what a data type is in the sense of algebraic data

type theory. This viewpoint is also taken in Eh86, EDG86, showing how database-l ike identification

by keys can be handled in this framework. We adopt the viewpoint that an identification system
is an algebraic data type.

148

An object type OT=(U, co) consists of an object universe U and an object instantiation mapping co,

associating an object with each object surrogate in the carrier U of the universe.

Complex object types can be treated conveniently in this model: we can exploit the algebraic

machinery of data types for building complex universes, using any parameterized data type like

set, list, product, coproduct, etc. We only have to define what happens to instantiation, i.e. how

the object instances are put together. For generalization, e.g., this is quite simple: the universe

is defined by disjoint union of the surrogate sets with the naming operations provided by algebraic

eoproducts, and each surrogate keeps the object instance it had before. For aggregation, also

incorporating interaction between the components of an aggregation, e.g. by event sharing, things

are not much more difficult, but we cannot go into details here.

4. Abstract Object Types
An abstract object type is an object type *'up to unessential details" like specific choice of names,

etc. Mathematically speaking, an abstract object type is a class of object types, for instance an

isomorphism class or an equivalence class with respect to some reasonable equivalence relation,

expressing intuitively that any member of the class is acceptable as a concrete implementation

of that type, Like in algebraic data type theory, abstract object types come about as model

classes of specifications based on some logical calculus. Speaking about abstract object types for

databases, thus, means to speak about logic-based database specification with a precise mathe-

matical semantics in terms of model classes.

The problem with object-oriented database specification is that there is no obvious logical

calculus with a well-known model theory covering all aspects that have to be specified: data

types for providing value domains for attributes as well as object types with their attributes,

events and processes. For data types, there is a welI established theory of equational specification.

For attribute structures, general f irst-order predicate logic can be employed with its reasonably

well understood model theory. Aspects of dynamic behaviour in time can be specified in several

ways: axiomatically by using (some variant of) temporal logic or constructively by using process

algebra. It is not clear yet how these - or other - approaches, though well-known and successfully

applied in isolated areas, can be put together to achieve the goals described here.

5. Concluding Rmarks
Object-oriented database specification using formal methods presents many more problems than

we can outline in this position paper. Among the semantic issues only very briefly mentioned here

are all aspects of interaction between objects. We favour event sharing as the only means of

interaction, specifying which event is "the same" as which other event, modelling synchronous and

symmetric communication between objects. On these grounds, the notion of an object society as

a set of interacting objects can be defined and investigated. The mathematics of objects and object

types outlined above allows to treat these problems in a precise and elegant way. We are in a

position to confirm experiences made elsewhere with formal methods in software engineering:

striving for semantic clari ty has a beneficial effect on developing languages and methods.

149

References
Am86

B d 7
CW85

DD86

DMN67

Eh86

EDG86

GM87

GR83

HN87
Ho85

KC86

Lo85

MS87

MSOP86

Pa72

SFSE88

SSE87

SWS7

America,P.: Object-Oriented Programming: A Theoretician's Introduction. EATCS
Bulletin 29 (1986), 69-84
Beech,D.: Groundwork for an Object Database Model. In SW87, 317-354
Cardelli,L.;Wegner,P.: On Understanding Types, Data Abstraction, and Poly-
morphism. ACM Computing Surveys 17 (1985), 471-522
Dayal,U.;Dittrich,K.{eds): Proc. Int. Workshop on Object-Oriented Database
Systems. IEEE Computer Society, Los Angeles 1986

Dahl,O.-J.;Myhrhang,B.;Nygaard,K.: SIMULA 67, Common Base Language, Nor-
wegian Computing Center, Oslo 1967
Ehrich,H.-D.: Key Extensions of Abstract Data Types, Final Algebras, and Data-
base Semantics. Proc, Workshop on Category Theory and Computer Programming
(D. Pitt et al, eds.), LNCS 240, Springer-Verlag, Berlin 1986, 412-433
Ehrich,H.-D.;Drosten,K.;Gogolla,M.: Towards an Algebraic Semantics for Database
Specification. Proc. IFIP WG2.6 Working Conf. DS-2, Albufeira 1986 (final
proceedings to be published by North-Holland)

Goguen,J.A.;Meseguer,J.: Unifying Functional, Object-Oriented and Relational
Programming with Logical Semantics. In SW87, 417-477

Goldberg,A.;Rubson,D.: Smalltalk 80: The Language and its Implementation.
Addison-Wesley, Reading, Mass. 1983

Hailpern,B.;Nguyen,V.: A Model for Object-Based Inheritance. In SW87, 147-164
Hoare,C.A.R.: Communicati~ Sequential Processes. Prentice-Hall, Englewood Cliffs
1985

Khoshafian,S.N.;Copeland,G.P.: Object Identity, Proc. OOPSLA'86, ACM SIGPLAN
Notices 21:11 (1986), 406-416

Lochovski,F.(ed.): Special Issue on Object-Oriented Systems. IEEE Database
Engineering 8:4 (1985)

Maier,D.;Stein,J.: Development and Implementation of an Object-Oriented DBMS,
In SW87, 355-392

Maier,D.;Stein,J.;Otis~A.;Purdy,A.: Development of an Object-Oriented DBMS. Proc.
OOPSLA'86, ACM SIGPLAN Notices 21:11 (1986), 472-482
Parnas,D.L.: A Technique for Software Module Specification with Examples.
Communications of the ACM 15 (1972),330-336

Sernadas,A.;Fiadeiro,J.;Sernadas,C.;Ehrich,H,-D.: Abstract Object Types: A Tempo-
ral Perspective. Proc. Colloquium on Temporal Logic and Specification, A. Pnueli
et al (eds.), Springer-Verlag (to be published)

Sernadas,A.;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Specification of Databases:
An Algebraic Approach. Proc. 13th VLDB, P.M.Stocker, W.Kent (eds.), Morgan-
Kaufmann Publ. Inc., Los Altos 1987, 107-116

Shriver,B.;Wegner,P.(eds.): Research Directions in Object-Oriented Programming.
The MIT Press, Cambridge, Mass. 1987

