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ABSTRACT PARABOLIC PROBLEMS
WITH CRITICAL NONLINEARITIES AND APPLICATIONS

TO NAVIER-STOKES AND HEAT EQUATIONS

JOSÉ M. ARRIETA AND ALEXANDRE N. CARVALHO

Abstract. We prove a local existence and uniqueness theorem for abstract
parabolic problems of the type ẋ = Ax+f(t, x) when the nonlinearity f satisfies
certain critical conditions. We apply this abstract result to the Navier-Stokes
and heat equations.

1. Introduction

In this paper we consider problems of the type

ẋ = Ax+ f(t, x), t > t0,

x(t0) = x0,
(1)

where the linear operator A : D(A) ⊂ X0 → X0 satisfies that −A is a sectorial
operator in the Banach space X0. We will denote by Xα, α ≥ 0, the fractional
power spaces associated to the operator A (see [HE, AM1, AM2, AM3]) and by eAt

the analytic semigroup generated by A. Without loss of generality we can assume
that eAt is uniformly bounded, that is,

‖eAtx‖Xα ≤M‖x‖Xα , α ≥ 0,

‖eAtx‖Xα ≤Mt−α‖x‖X0 , α ≥ 0.
(2)

In order to initiate the discussion let us assume for a moment that the map f is
time independent and t0 = 0. Therefore the problem above reads

ẋ = Ax+ f(x), t > 0,

x(0) = x0.
(3)

It is well known now that if the map f : X1 → Xα, for some α > 0, and is
Lipschitz on bounded sets of X1, that is, ‖f(x) − f(y)‖Xα ≤ C(R)‖x − y‖X1 , for
‖x‖X1 , ‖y‖X1 ≤ R, then the problem (3) is locally well posed in X1. For each
x0 ∈ X1 one seeks fixed points of the map T in the space K(τ, µ) = {x(t) ∈
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C([0, τ ], X1); x(0) = x0, ‖x(t)‖L∞(0,τ,X1) ≤ ‖x0‖X1 + µ}, where T is given by

(Tx)(t) = eAtx0 +
∫ t

0

eA(t−s)f(x(s))ds.(4)

The simple computations,

‖(Tx)(t)− (Ty)(t)‖X1 ≤M
∫ t

0

(t− s)−1+α‖f(x(s))− f(y(s))‖Xαds

≤ CM
∫ t

0

(t− s)−1+α‖x(s)− y(s)‖X1ds

≤ (CM
∫ t

0

(t− s)−1+αds) sup
0≤s≤t

{‖x(s)− y(s)‖X1}

and

‖(Tx)(t)‖X1 ≤ ‖eAtx0‖X1 +M

∫ t

0

(t− s)−1+α‖f(x(s))‖Xαds

≤ ‖eAtx0‖X1 + CM

∫ t

0

(t− s)−1+αds

+ (CM
∫ t

0

(t− s)−1+αds) sup
0≤s≤t

{‖x(s)‖X1}

together with the fact that ‖eAtx0‖X1 → ‖x0‖X1 and
∫ t
0
(t − s)−1+αds =

tα
∫ 1

0 (1 − s)−1+αds → 0 as t → 0+, suggest that for µ > 0 fixed we can choose
τ > 0 small enough so that T : K(τ, µ)→ K(τ, µ) and T is a strict contraction in
K(τ, µ). Once this is accomplished, the Banach fixed point theorem takes care of
the existence and uniqueness of solutions of the integral equation. With some extra
effort one can show that the solution found is a solution of (3).

In the analysis above, the convergence of the improper integral
∫ 1

0 (1−s)−1+αds,
which is equivalent to the fact that α > 0, is essential, and the whole argument
breaks down when α = 0. In other words, since A : X1 → X0, the fact that
f : X1 → Xα with α > 0 means that the solutions of problem (3) can be obtained
as perturbations of the solutions of the linear problem ẋ = Ax.

In this paper we address the question of local solvability of problem (1), (3) when
α = 0.

It is clear that if the only requirement on f is that f : X1 → X0 be locally
Lipschitz, it will be impossible to show that problem (3) is well posed. For example,
taking f(x) = −2Ax, which satisfies f : X1 → X0 and is globally Lipschitz, we will
have ẋ = Ax + f(x) = −Ax, which is not locally well posed, in general (if A = ∆
then ẋ = −Ax is the backwards heat equation). Hence, some extra conditions
should be imposed on f to guarantee the existence of solutions of the above problem.

In order to illustrate the main ideas and techniques of this paper, let us consider
the particular example given by the equation

ut = ∆u+ u|u|ρ−1 in Ω,
u = 0 on ∂Ω,

u(0) = u0,

(5)

where Ω is a bounded and smooth domain in R3 and ρ > 1.
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It is well known that the operator ∆ can be regarded as an unbounded operator
in X0 = H−1(Ω) with domain X1 = H1

0 (Ω). Moreover, the fractional power spaces
are given by Xα which satisfy the following embedding properties:

Xα ↪→ H2α−1(Ω), α > 1/2,

X
1
2 = L2(Ω),

Xα ←↩ H2α−1(Ω), α < 1/2

(6)

(see [HE, AM2]).
If f(u) = u|u|ρ−1, then with some Sobolev embeddings and with (6), we can

show that for 1 < ρ ≤ 3 we have f : X1 ≡ H1
0 (Ω) → X

1
2 ≡ L2; for 4 < ρ ≤ 5 we

have f : X1 ≡ H1
0 (Ω) → H

3−ρ
2 ↪→ X

5−ρ
4 . Hence, for 1 < ρ < 5, f : X1 → Xα for

some α > 0. For ρ = 5, f : X1 → X0 and we are in the critical case α = 0. But
observe that for ρ = 5, again with some Sobolev embeddings and (6), we get that
if ε > 0 is small then f : X1+ε → X5ε, while the linear operator A : X1+ε → Xε.
This means that, although A and f can be regarded as of the same order in X1, if
we consider an slightly better space, X1+ε, then the map f regularizes more than
A (X5ε is a better space than Xε). Moreover, it can be seen that f satisfies

‖f(u)− f(v)‖X5ε ≤ c‖u− v‖X1+ε(‖u‖4X1+ε + ‖v‖4X1+ε + 1) ∀u, v ∈ X1+ε,

‖f(u)‖X5ε ≤ c‖u‖5X1+ε.

In particular, this means that we can solve problem (5) with initial data in X1+ε.
Moreover, if we consider now a sequence of initial data un ∈ X1+ε with un →

u0 ∈ X1 in X1, with the computation

tε‖un(t)‖X1+ε ≤ tε‖eAtun‖X1+ε + tε
∫ t

0

(t− s)−1+4ε‖un(s)5‖X5εds

≤ tε‖eAtun‖X1+ε + tε
∫ t

0

(t− s)−1+4εs−5εds sup
0<s<t

{sε‖un(s)‖X1+ε}5

and the fact that tε‖eAtun‖X1+ε
t→0+−→ 0 uniformly on compacts ofX1 (see Lemma 2,

below), it is not difficult to see that if µ > 0 is small enough, we can get a uniform
time τ1 > 0, independent of n, such that tε‖un(t)‖X1+ε ≤ µ for all t ∈ (0, τ1] and
all n.

But also, for 0 < t ≤ τ1, we have

tε‖un(t)− um(t)‖X1+ε ≤ tε‖eAt(un − um)‖X1+ε

+ tε
∫ t

0

(t− s)−1+4ε‖un(s)− um(s)‖X1+ε(1 + ‖un(s)‖4X1+ε + ‖um(s)‖4X1+ε)ds

≤ ‖un − vn‖X1 + (tε
∫ t

0

(t− s)−1+4εs−εds) sup
0<s≤t

{sε‖un(s)− um(s)‖X1+ε}

+ (2µ4tε
∫ t

0

(t− s)−1+4εs−5εds) sup
0<s≤t

{sε‖un(s)− um(s)‖X1+ε}

which implies that for some 0 < t ≤ τ0 ≤ τ1 we get

tε‖un(t)− um(t)‖X1+ε ≤ C‖un − um‖X1 .
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A similar argument will show that

‖un(t)− um(t)‖X1 ≤ C1 sup
0<s≤t

{sε‖un(s)− um(s)‖X1+ε}+ C2‖un − um‖X1

≤ C‖un − um‖X1 .

This will allow us to go to the limit as n → ∞ and obtain solutions in the space
C([0τ0], X1) ∩C((0, τ0], X1+ε) with initial conditions in X1.

From the discussion above, it seems reasonable to give the following definitions:

Definition 1. We say that x : [t0, τ ]→ X1 is an ε−regular mild solution (ε−solu-
tion for short) to (1) if x ∈ C([t0, τ ], X1) ∩ C((t0, τ ], X1+ε), and x(t) satisfies

x(t) = eA (t−t0)x0 +
∫ t

t0

eA(t−s)f(s, x(s))ds.(7)

Definition 2. For ε ≥ 0, we will say that a map g is an ε−regular map relative to
the pair (X1, X0) if there exist ρ > 1, γ(ε) with ρε ≤ γ(ε) < 1, and a constant c,
such that g : X1+ε → Xγ(ε) and

‖g(x)− g(y)‖Xγ(ε) ≤ c‖x− y‖X1+ε(‖x‖ρ−1
X1+ε + ‖y‖ρ−1

X1+ε + 1) ∀x, y ∈ X1+ε.

(8)

The main results of this paper are contained in Section 2. They basically say
that if f(t, ·) is an ε–regular map for some ε > 0, then we will have existence and
uniqueness of ε–regular mild solutions for problem (1) (see Theorem 1 or Corollary 1
for the autonomous case). This means that, in dealing with the problem of existence
and uniqueness for a particular equation with critical nonlinearities, we need to do
two things:

(i). Understand the scale of fractional power spaces associated to the linear
operator A, especially the embeddings into known spaces like Lp spaces.

(ii). Study the ε−regularity properties of the nonlinearity f in this scale of spaces.
This is usually done using the Hölder inequality and Sobolev type embeddings.

Once (i) and (ii) are done, we can apply Theorem 1 and obtain existence and
uniqueness results.

Moreover, it seems clear that the criticality of a particular nonlinearity f is
related to the ε−regularity properties of f , and therefore we could classify the
nonlinearities according to their ε−regularity properties. This is done at the end
of Section 2.

It is reasonable to think that the agenda explained above ((i),(ii) and Theorem 1)
can be applied to many concrete problems—in particular, to the Navier-Stokes
equations, the heat equation, systems of parabolic equations, strongly damped hy-
perbolic equations, etc. As examples we chose to study the Navier-Stokes equation
in the Hilbert setting, and the heat equation in the Lq and W 1,q setting . This is
done in Section 3. We recover several known results on existence and uniqueness
of solutions for these equations, including those from the paper by Kato and Fujita
[KF] for the Navier-Stokes equation and from the papers by Weissler [W1, W2] and
Brezis and Cazenáve [BC]. All these very good papers were very inspiring for us,
especially the last one.

The last section includes several comments about the uniqueness result obtained
in Theorem 1 and its relation with other uniqueness and non-uniqueness results
found in the literature ([BC], [NS], [LR]). Also, several open questions on the
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uniqueness problem are posed which we believe are very important for a full un-
derstanding of the subject.

Remark 1. After the paper was submitted for publication, it was pointed out to us
by H. Amann that other scales of Banach spaces, different from the scale of frac-
tional power spaces, could be used to deal with such problems. In connection with
this, it is important to mention that for the abstract results presented in Section
2 the only requirements on the operator A and the scale of spaces {Xα}0≤α≤2 are
that −A is a sectorial operator and that (9) is satisfied. The proofs go through
unchanged.

For the applications, and in order to solve critical problems, the scale must
satisfy sharp embedding relations of the type (25). In the case of Dirichlet boundary
conditions and C2 domains these embedding relations are well known for the scale
of fractional power spaces, thanks to [Tri, PS]. For other boundary conditions and
more general operators the scale of fractional power spaces is not so well understood,
so it may be better to use a different scale of Banach spaces for which these sharp
embeddings are known. Some possibilities can be found in [AM2, AM3].
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2. Abstract results

With respect to the linear operator A : D(A) ⊂ X0 → X0 we will assume that
−A is a sectorial operator in the Banach space X0. We will denote by Xα, α ≥ 0,
the fractional power spaces associated to the operator A and by eAt the analytic
semigroup generated by A. Without loss of generality we can assume that eAt is
uniformly bounded. Let M be such that

t1+α−β‖eAtx‖X1+α ≤M‖x‖Xβ , 0 ≤ β ≤ 1 + α ≤ 2(9)

(see [HE]).
With respect to the nonlinearities, let us consider the following class: with ε, ρ,

γ(ε) and c positive constants, and ν(t) with 0 ≤ ν(t) ≤ δ, limt→0+ ν(t) = 0, define
F := F(ε, ρ, γ(ε), c, ν(·)) as the family of functions f such that, for t > 0, f(t, ·) is
an ε–regular map relative to the pair (X1, X0), satisfying

‖f(t, x)− f(t, y)‖Xγ(ε) ≤ c‖x− y‖X1+ε(‖x‖ρ−1
X1+ε + ‖y‖ρ−1

X1+ε + ν(t)t−γ(ε)+ε),
(10)

‖f(t, x)‖Xγ(ε) ≤ c(‖x‖ρX1+ε + ν(t)t−γ(ε))(11)

for all x, y ∈ X1+ε.
Without loss of generality we can assume that the function ν(t) is non-decreasing.
In most cases in the argument below we will fix the parameters ε, ρ, γ(ε) and c,

and we will denote the class F defined above by F(ν(·)).
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With these definitions we can now state the main result of this paper.

Theorem 1. Let f ∈ F(ε, ρ, γ(ε), c, ν(·)). If y0 ∈ X1, there exist r > 0 and τ0 > 0
with the property that for any x0 ∈ BX1(y0, r) there exists a continuous function
x(·, x0) : [0, τ0]→ X1, with x(0) = x0, which is the unique ε−regular mild solution
starting at x0 of the problem

ẋ = Ax+ f(t, x), t > 0,

x(0) = x0.
(12)

This solution satisfies

x ∈ C((0, τ0], X1+θ), 0 ≤ θ < γ(ε),

tθ‖x(t, x0)‖X1+θ
t→0+

−→ 0, 0 < θ < γ(ε).

Moreover, if x0, z0 ∈ BX1(y0, r), then

tθ‖x(t, x0)− x(t, z0)‖X1+θ ≤ C‖x0 − z0‖X1 , ∀t ∈ [0, τ0], 0 ≤ θ ≤ θ0 < γ(ε).

Also, if γ(ε) > ρε, then r can be chosen arbitrarily large. That is, the time of
existence is uniform on bounded sets of X1.

If t → f(t, x), as a map from (0,∞) to Xγ(ε), is locally Hölder continuous,
uniformly on bounded sets of x ∈ X1+γ(ε), then

x ∈ C1((0, τ0], Xγ(ε)) ∩ C((0, τ0], X1+γ(ε)),

and x(·, x0) is an strict solution of (12).
The constants above depend on the following: τ0 = τ0(y0, A, ν(·), ε, ρ, γ(ε), c,M),

r = r(y0, ε, ρ, γ(ε), c,M), C = C(θ0, ε, ρ, γ(ε),M).

In many applications the map f is independent of time. For the shake of com-
pleteness and clarity we include in the following corollary the statement of Theo-
rem 1 adapted to time-independent maps:

Corollary 1. Assume that f is independent of time and that it is an ε−regular
map, for some ε > 0, relative to the pair (X1, X0). Then, if y0 ∈ X1, there exist
r = r(y0) > 0 and τ0 = τ0(y0) > 0 such that for x0 ∈ X1 with ‖x0 − y0‖X1 < r
there exists a continuous function x : [0, τ0] → X1, with x(0) = x0, which is the
unique ε−regular mild solution to (3) starting at x0. This solution satisfies

x ∈ C((0, τ0], X1+θ), 0 ≤ θ < γ(ε),

tθ‖x(t, x0)‖X1+θ
t→0+−→ 0, 0 < θ < γ(ε).

Moreover, if x0, z0 ∈ BX1(y0, r), then

tθ‖x(t, x0)− x(t, z0)‖X1+θ ≤ C(θ0)‖x0 − z0‖X1 , ∀t ∈ [0, τ0], 0 ≤ θ ≤ θ0 < γ(ε).

Also, if γ(ε) > ρε, then r can be chosen arbitrarily large. That is, the time of
existence can be chosen uniformly on bounded sets of X1.

Furthermore, x ∈ C1((0, τ0], Xγ(ε)) ∩ C((0, τ0], X1+γ(ε)), that is, x(·, x0) is an
strict solution of (3).

The constants above depend on the following: τ0 = τ0(y0, A, ε, ρ, γ(ε), c,M), r =
r(y0, ε, ρ, γ(ε), c,M), C = C(θ0, ε, ρ, γ(ε),M).

The proof of this corollary is straightforward once we have proved Theorem 1.
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Remark 2. Notice that we do not assume that f is a well defined map on X1. The
only requirement on f is that it is an ε−regular map relative to (X1, X0), for some
ε > 0. In particular we can obtain an existence and uniqueness theorem in X1

without the nonlinearity being defined on X1.

Before we prove Theorem 1 we will need some lemmas.

Lemma 1. The operators tαe−At : X1 → X1+α, t > 0, are bounded linear op-
erators satisfying ‖tαe−At‖L(X1,X1+α) ≤ M , with M independent of t. Moreover,
given a compact subset J of X1, we have

lim
t→0+

sup
x∈J
‖tαe−Atx‖X1+α = 0.

Proof. The fact that ‖tαe−At‖L(X1,X1+α) ≤M comes from statement (9).
For the remaining part we just have to realize that the operators tαe−At : X1 →

X1+α are bounded, uniformly in t, that ‖tαe−Atx‖X1+α
t→0+−→ 0, for x ∈ X1+α, and

that X1+α is a dense subset of X1.

Let us recall the definition of the beta function B(·, ·) : (0,∞)×(0,∞)→ (0,∞),
which is

B(a, b) =
∫ 1

0

(1− x)a−1xb−1 dx.

Define
Bθ
ε = max

0≤ξ≤θ
{B(γ(ε)− ξ, 1− γ(ε)),B(γ(ε)− ξ, 1− ρε)}.

Lemma 2. Let f ∈ F(ν(·)). If x ∈ C((0, τ ], X1+ε), then, for all 0 ≤ θ < γ(ε),

tθ‖
∫ t

0

eA(t−s)f(s, x(s))ds‖X1+θ ≤ cMBθ
ε(ν(t) + tγ(ε)−ρε[λ(t)]ρ), 0 < t ≤ τ,

where λ(t) := sups∈(0,t]{sε‖x(s)‖X1+ε}.
Proof. It is not difficult to see that

tθ‖
∫ t

0

eA(t−s)f(s, x(s))ds‖X1+θ ≤Mtθ
∫ t

0

(t− s)−1+γ(ε)−θ‖f(s, x(s))‖Xγ(ε)ds

≤ cMtθ
∫ t

0

(t− s)−1+γ(ε)−θ(ν(s)s−γ(ε) + ‖x(s)‖ρX1+ε)ds

≤ cMtθν(t)
∫ t

0

(t− s)−1+γ(ε)−θs−γ(ε)ds

+ cMtθ
∫ t

0

(t− s)−1+γ(ε)−θs−ρε[sε‖x(s)‖X1+ε ]ρds

≤ cMν(t)
∫ 1

0

(1− s)−1+γ(ε)−θs−γ(ε)ds

+ cMtγ(ε)−ρε[λ(t)]ρ
∫ 1

0

(1 − s)−1+γ(ε)−θs−ρεds

= cMBθ
ε [ν(t) + tγ(ε)−ρε[λ(t)]ρ],

from which the lemma follows.
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Lemma 3. Let f ∈ F(ν(·)) and x, y ∈ C((0, τ ], X1+ε) be such that tε‖x(t)‖X1+ε ≤
µ and tε‖y(t)‖X1+ε ≤ µ, for some µ > 0. Then, for all 0 ≤ θ < γ(ε), we have

tθ‖
∫ t

0

eA(t−s)[f(s, x(s))− f(s, y(s))]ds‖X1+θ ≤ Γθ(t) sup
s∈[0,τ ]

sε‖x(s)− y(s)‖X1+ε

where
Γθ(t) = cMBθ

ε

[
ν(t) + tγ(ε)−ρε2µρ−1

]
.

Proof. Using the ε−regularity property of f , we have

tθ‖
∫ t

0

eA(t−s)[f(s, x(s))− f(s, y(s))]ds‖X1+θ

≤ tθ
∫ t

0

cM(t− s)−1+γ(ε)−θ‖x(s)− y(s)‖X1+ε(ν(t)s−γ(ε)+ε

+ ‖x(s)‖ρ−1
X1+ε + ‖y(s)‖ρ−1

X1+ε)ds

≤ cMtθν(t)
∫ t

0

(t− s)−1+γ(ε)−θs−γ(ε)sε‖x(s)− y(s)‖X1+εds

+ cMtθ
∫ t

0

(t− s)−1+γ(ε)−θs−ρε
[
(sε‖x(s)‖X1+ε)ρ−1 + (sε‖y(s)‖X1+ε)ρ−1

]
× sε‖x(s)− y(s)‖X1+εds

= Γθ(t) sup
t∈[0,τ ]

{sε‖x(s)− y(s)‖X1+ε}.

Proof of Theorem 1. We will divide the proof in two parts, existence and unique-
ness.

Existence. Define µ by

cMBε
εµ
ρ−1 =

1
8
,

and choose r = r(µ,M) > 0 such that

r =
µ

4M
=

1

4M(8cMBεε)
1

ρ−1
(13)

Also, for y0 fixed, choose τ0 = τ0(y0, A, µ, ν(·), ε, ρ, γ(ε), c,M) ∈ (0, 1] such that
ν(t) < δ for t ∈ (0, τ0] and

‖tεe−Aty0‖X1+ε ≤ µ

2
, 0 ≤ t ≤ τ0,

cMδBε
ε = min{µ

8
,
1
4
}.

(14)

Notice that these choices imply that Γε(t) ≤ 1
2 for t ∈ (0, 1).

Since we will be looking for solutions which regularize immediately, we search
for solutions in

K(τ0) = {x ∈ C((0, τ0], X1+ε) : sup
t∈(0,τ0]

tε‖x(t)‖X1+ε ≤ µ}.

with the norm
‖x‖K(τ0) = sup

t∈(0,τ0]

tε‖x(t)‖X1+ε .
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Assume that x0 ∈ X1 with ‖x0 − y0‖X1 < r and on K(τ0) define the map

(Tx)(t) = eAtx0 +
∫ t

0

eA (t−s)f(s, x(s))ds.

We will show that, for all x0 ∈ BX1(y0, r), T takes K(τ0) into itself, and that T is
a strict contraction in K(τ0).

Let us first prove that T is a well-defined map and that T (K(τ0)) ⊂ K(τ0). We
start by showing that

if x ∈ K(τ0), then Tx ∈ C((0, τ0], X1+θ), ∀θ ∈ [0, γ(ε)).(15)

Fix t2 ∈ (0, τ0] and let τ0 ≥ t1 > t2; then, for 0 ≤ θ < γ(ε), we have

‖(Tx)(t1)− (Tx)(t2)‖X1+θ

≤ ‖(e−At1 − e−At2)x0‖X1+θ + ‖
∫ t1

t2

eA(t1−s)f(s, x(s))ds‖X1+θ

+ ‖[I − e−A(t1−t2)]
∫ t2

0

eA(t2−s)f(s, x(s))ds‖X1+θ .

In the above, the first and third term trivially go to zero as t1 → t2. Let us consider
the second term. For it we have

‖
∫ t1

t2

eA(t1−s)f(s, x(s))ds‖X1+θ

≤ c
∫ t1

t2

M(t1 − s)−1+γ(ε)−θ(δs−γ(ε) + ‖x(s)‖ρX1+ε)ds

≤ cMδ

∫ t1

t2

(t1 − s)−1+γ(ε)−θs−γ(ε)ds

+ cM

∫ t1

t2

(t1 − s)−1+γ(ε)−θs−ρε(sε‖x(s)‖X1+ε)ρds

≤ cMδt−θ1

∫ 1

t2/t1

(1− s)−1+γ(ε)−θs−γ(ε)ds

+ cMµρt
γ(ε)−θ−ρε
1

∫ 1

t2/t1

(1− s)−1+γ(ε)−θs−ρεds,

which goes to zero as t1 → t+2 . The case t1 < t2 is similar.
Let us now show that tε‖x(t)‖X1+ε ≤ µ, for all t ∈ (0, τ0]. In fact,

tε‖(Tx)(t)‖X1+ε

≤ ‖tεe−Atx0‖X1+ε + cMtε
∫ t

0

(t− s)−1+γ(ε)−ε(δs−γ(ε) + ‖x‖ρX1+ε)ds

≤ ‖tεe−Atx0‖X1+ε + cMtεδ

∫ t

0

(t− s)−1+γ(ε)−εs−γ(ε)ds

+ cMtε
∫ t

0

(t− s)−1+γ(ε)−εs−ρε(sε‖x‖X1+ε)ρds

≤ ‖tεe−Atx0‖X1+ε + cMδBε
ε + cMBε

εµ
ρ

≤Mr + ‖tεe−Aty0‖X1+ε + cMBε
εδ + cMBε

εµ
ρ ≤ µ.

This shows that T takes K(τ0) into itself.
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The next step is to prove that the map T is a contraction from K(τ0) into itself.
It follows from Lemma 3, by taking θ = ε, that T is a strict contraction in K(τ0)

and that

‖T (x)− T (y)‖K(τ0) ≤
1
2
‖x− y‖K(τ0).

By the Banach contraction principle we have that T has a unique fixed point in
K(τ0). We will denote this fixed point by X(t, x0); it is defined for ‖x0−y0‖X1 < r,
0 ≤ t ≤ τ0. Note that, from (15), X(·, x0) ∈ C((0, τ0], X1+θ) for all 0 ≤ θ < γ(ε).

Let us prove that tθ‖X(t, x0)‖X1+θ → 0 as t→ 0 for all 0 < θ < γ(ε).
From Lemma 2,

tθ‖X(t, x0)‖X1+θ ≤ tθ‖eAtx0‖X1+θ + tθ
∫ t

0

‖eA(t−s)f(s,X(s, x0))‖X1+θds

≤ tθ‖eAtx0‖X1+θ + cMBθ
εν(t) + cMBθ

εµ
ρ−1 sup

0<s≤t
{tε‖X(t, x0)‖X1+ε}.

Therefore if θ = ε we have

tε‖X(t, x0)‖X1+ε ≤ tε‖eAtx0‖X1+ε + cMBε
εν(t) +

1
8

sup
0<s≤t

{tε‖X(t, x0)‖X1+ε},

from which we obtain

sup
0<s≤t

{sε‖X(s, x0)‖X1+ε} ≤ 8
7
(tε‖eAtx0‖X1+ε + cMBε

εν(t))→ 0 as t→ 0.

If 0 < θ < γ(ε), from the above expressions we also obtain tθ‖X(t, x0)‖X1+θ → 0
as t→ 0.

Let us prove now that

lim
t→0+

‖X(t, x0)− x0‖X1 = 0.

In fact, from Lemma 2

‖X(t, x0)− x0‖X1 ≤ ‖eAtx0 − x0‖X1 +
∫ t

0

‖eA(t−s)f(s,X(s, x0))‖X1ds

≤ ‖eAtx0 − x0‖X1 + cMBε(ν(t) + [ sup
0<s≤t

{tε‖X(t, x0)‖X1+ε}]ρ) t→0+

−→ 0.

From all this we see that X(t, x0) is an ε–regular solution starting at x0 and it is
the unique ε–regular solution starting at x0, in the set K(τ0). We will hereafter
call it the K−solution starting at x0.

Moreover, if x0, z0 ∈ BX1(y0, r), taking into account the estimates of Lemma 3
and our choice of τ0, we have

tθ‖X(t, x0)−X(t, z0)‖X1+θ

≤ tθ‖eAt(x0 − z0)‖X1+θ

+ tθ
∫ t

0

‖eA(t−s)[f(s,X(s, x0))− f(s,X(s, z0))]‖X1+θds

≤M‖x0 − z0‖X1 + Γθ(t) sup
s∈[0,τ̄0]

sε‖X(s, x0)−X(s, z0)‖X1+ε .

(16)
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For θ = ε we get

tε‖X(t, x0)−X(t, z0)‖X1+ε

≤M‖x0 − z0‖X1 +
1
2

sup
s∈[0,τ̄0]

sε‖X(s, x0)−X(s, z0)‖X1+ε ,

which implies

tε‖X(t, x0)−X(t, z0)‖X1+ε ≤ 2M‖x0 − z0‖X1 .

For 0 ≤ θ ≤ θ0 < γ(ε) we have from (16) that

tθ‖X(t, x0)−X(t, z0)‖X1+θ ≤M‖x0 − z0‖X1 + Γθ(t)2M‖x0 − z0‖X1

≤ C(θ0)‖x0 − z0‖X1 ,

where C(θ0) = M(1 + 2 sup{Γθ(t); t ∈ [0, τ0], 0 ≤ θ ≤ θ0}).
This concludes the existence part of the theorem.

Uniqueness. Notice that from the existence part we have that for any x0∈BX1(y0, r)
and for any f ∈ F(ν(·)) there exists a unique K-solution, defined in [0, τ0], of the
problem

ẋ = Ax+ f(t, x),

x(0) = x0.
(17)

To stress the dependence of the K-solution on f we will denote it by Xf (t, x0).

Consider the following:

Lemma 4. If φ(t) is an ε–regular solution in [0, t0] of (17) and tε‖φ(t)‖X1+ε → 0
as t→ 0, then φ(t) = Xf (t, x0) for all 0 ≤ t ≤ min{τ0, t0}
Proof. It is clear that φ ∈ K(τ̄) for some small τ̄ ≤ τ0. Since we also have
Xf(·, x0) ∈ K(τ̄ ) and both φ and Xf (·, x0) are solutions of the integral equation,
we get Xf (t, x0) = φ(t) for all 0 ≤ t ≤ τ̄ . With a standard continuation argument
it is easy to see that we must have Xf (t, x0) = φ(t) for all 0 ≤ t ≤ min{t0, τ0}.
This proves the lemma.

Lemma 5. If f ∈ F(ν(·)), then fa ∈ F(νa(·)) for all a ≥ 0, where fa(t, x) ≡
f(t+ a, x), and νa(t) = ν(t + a)(t/t+ a)γ(ε) ≤ ν(t + a). Moreover, there exists an
a0 > 0 so small that for all a ∈ [0, a0] the time of existence τ0(a) given by (14) can
be chosen independent of a.

Proof. The first part of the lemma is trivial.
For the second one we just need to observe that if ν(t) < δ for t ∈ [0, τ0], then,

for small a, we will also have ν(t + a) < δ for t ∈ [0, τ0].

Following similar ideas as in [BC], we can now prove the uniqueness of ε–regular
solutions.

Let φ(t), 0 ≤ t ≤ t0, be an ε−regular solution starting in x0 ∈ BX1(y0, r). Since
φ ∈ C([0, t0], X1), there exists a0 ∈ (0, t0] such that φ(a) ∈ BX1(y0, r), for all
0 < a ≤ a0. Notice that φa(·) ≡ φ(a + ·) ∈ C([0, t0 − a], X1+ε), and therefore
tε‖φa(t)‖X1+ε → 0 as t→ 0. Moreover, φa is an ε–regular mild solution of

ẋ = Ax+ fa(t, x),

x(0) = φ(a).
(18)
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296 JOSÉ M. ARRIETA AND ALEXANDRE N. CARVALHO

From Lemma 5 and the results of the existence part we have that there exists
a unique K-solution of problem (18), Xfa(t, φ(a)), defined in [0, τ0]. Moreover,
from Lemma 4, we get Xfa(t, φ(a)) = φa(t) for all 0 ≤ t ≤ min{τ0, t0 − a}, for all
0 < a ≤ a0. In particular this implies that without loss of generality we can assume
that t0 ≥ τ0, since if this is not the case we can define φ̃(t) = φ(t) for 0 ≤ t ≤ t0
and φ̃(t) = Xfa0

(t− a0, φ(a0)) for t0 ≤ t ≤ τ0, and from the results above φ̃ is also
an ε–regular solution starting at x0.

In view of the definition of a K–solution, the only thing we need to show is that
tε‖φ(t)‖X1+ε ≤ µ for all 0 < t ≤ τ0. But, for 0 < a < a0,

tε‖φ(t)‖X1+ε ≤ tε‖φ(t)− φ(t+ a)‖X1+ε + tε‖Xfa(t, φ(a))‖X1+ε

≤ tε‖φ(t)− φ(t+ a)‖X1+ε + µ.

For 0 < t ≤ τ0 fixed, letting a→ 0 we have that tε‖φ(t)−φ(t+a)‖X1+ε → 0, which
implies that tε‖φ(t)‖X1+ε ≤ µ for all t ∈ (0, τ0]. This concludes the uniqueness part
of the theorem.

For the case where γ(ε) > ρε, we proceed as follows. Let us define y(t) = x(a t),
for some a < 1. The equation for y is ẏ = Ãy + f̃(t, y), where f̃(t, x) = af(at, x),
Ã = aA. Moreover, notice that x(t) is a solution of the original equation in (0, τ0] if
and only if y(t), t ∈ [0, aτ0], is a solution of the new equation. For this new equation,
applying the existence part of the theorem, we can find a positive number r̃ such
that the conclusions of the theorem are valid. Notice that from (13) we have

r̃ =
1

4M̃(8c̃M̃Bεε)
1

ρ−1
,

where r̃, c̃ and M̃ are constants related to the new equations. Let us relate r̃, c̃, M̃
with r, c and M . Denote by X̃α the fractional power spaces associated to the
operator Ã. Note that ‖ · ‖X̃α = aα‖ · ‖Xα and

tα−β‖eaA tx‖X̃α = aβ(at)α−β‖eAatx‖Xα ≤Maβ‖x‖Xβ = M‖x‖X̃β ,

which implies that M̃ = M . To see that c̃ = aγ(ε)−ρε+1−ρc, observe that

‖f̃(t, y)‖X̃γ(ε) = aγ(ε)+1‖f(at, y)‖Xγ(ε)

≤ aγ(ε)+1−ρ(1+ε)c
(
ν(at)aρ(1+ε)(at)−γ(ε) + ‖y‖ρ

X̃1+ε

)
≤ aγ(ε)+1−ρ(1+ε)c

(
ν̃(t)t−γ(ε) + ‖y‖ρ

X̃1+ε

)
,

where ν̃(t) = ν(at)aρ(1+ε)−γ(ε). The computations with the Lipschitz properties of
f are similar. From this we have

r̃ =
1

4M̃(8c̃M̃Bεε)
1

ρ−1
= ra(ρε−γ(ε))/(ρ−1)+1.

This implies that if ‖y0 − x0‖X̃1 < r̃ there exists a τ̃0 such that the solution of
˙̃x = Ãx̃+ f̃(t, x̃) starting in x0 is defined in [0, τ̃0]. Therefore, if

‖y0 − x0‖X1 < ra(ρε−γ(ε))/(ρ−1),
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then ẋ = Ax+f(t, x) has the solution x(t, x0) = x̃( ta , x0) defined in [0, aτ̃0]. Since a
can be chosen arbitrarily small and γ(ε) > ρε, we see that solutions have a common
interval of existence on bounded subsets of X1.

Finally, if t → f(t, x) is locally Hölder continuous for t > 0, uniformly on
bounded sets of X1+ε, by standard regularity arguments (see for example [HE])
we obtain the regularity stated in the theorem.

This concludes the proof of the theorem.
From Theorem 1 we have the following

Corollary 2. If f is as in Theorem 1 and if K is a precompact set in X1, then
there exists a τ0 = τ(K) such that the ε−regular solution starting at x0 exists for
time τ0 for any x0 ∈ K
Proof. By Theorem 1, for any y0 ∈ K̄ ≡ Cl(K) there exist a r(y0) and a τ(y0)
such that for any x0 ∈ X1 with ‖x0 − y0‖X1 < r(y0) the unique ε−regular solution
exists in [0, τ(y0)]. By the compactness of K̄ we can choose y1, · · · , yn ∈ K̄ such
that K ⊂ ⋃

BX1(yi, r(yi)). Choosing τ0 = min{τ(yi) : 1 ≤ i ≤ n}, we prove the
corollary.

We now prove a result on the maximal time of existence of ε−regular solutions.

Proposition 1. If f is as in Theorem 1 and x(t, x0) is an ε−regular solution start-
ing at x0 with a maximal time of existence τm <∞, then limt→τ−m ‖x(t, x0)‖X1+δ =
∞, for any 0 < δ < ε. If, moreover, γ(ε) > ρε, then also limt→τ−m ‖x(t, x0)‖X1 =∞.

Proof. It is easy to check that if f is ε–regular relative to (X1, X0) with γ(ε) ≥ ρε,
then for any 0 < δ < ε, f is ε∗–regular relative to (X1+δ, Xδ), for ε∗ = ε− δ, with
γ(ε∗) > ρε∗. Also, if γ(ε) > ρε, then we can take δ = 0. Assume the solution
remains bounded in X1+δ along a sequence that converges to τm. Then, using
Theorem 1 for the pair (X1+δ, Xδ) and the uniform existence time on bounded
sets, we get that the solution can be extended beyond τm, which is a contradiction.
This proves the proposition.

In the autonomous case, f is often an ε−regular map for a range of values of the
parameter ε. In this direction we have the following:

Corollary 3. If f is an ε−regular map for all ε ∈ (ε0, ε1] and if we denote by
xε(t, x0) the unique ε−regular solution starting at x0, for ε ∈ (ε0, ε1], then xε = xε1
and x ∈ C((0, τ ], X1+γ(ε1)).

If f is a time-independent map which is ε−regular, for ε ∈ I, relative to the pair
(X1, X0), we classify the map in the following way:

• If I = [0, ε1] for some ε1 > 0 and γ(0) > 0, we say that f is a subcritical map
relative to (X1, X0).
• If I = [0, ε1] for some ε1 > 0 with γ(ε) = ρε, ε ∈ I, and if f is not subcritical,

then we say that f is a critical map relative to (X1, X0).
• If I = (0, ε1] for some ε1 > 0 with γ(ε) = ρε, ε ∈ I, and f is not subcritical or

critical, then we say that f is a double-critical map relative to (X1, X0).
• If I = [ε0, ε1] for some ε1 > ε0 > 0 with γ(ε0) > ρε0 and f is not subcritical,

critical or double critical, then we say that f is an ultra-subcritical map
relative to (X1, X0).
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• If I = [ε0, ε1] for some ε1 > ε0 > 0 with γ(ε) = ρε, ε ∈ I, and if f is not
subcritical, critical, double critical or ultra-subcritical, then we say that f is
an ultra-critical map relative to (X1, X0).

Note that if f is subcritical then f : X1 → Xγ(0), γ(0) > 0, which is the usual
definition of subcritical map. When f is a critical map it takes X1 into X0 but there
is no positive constant α such that f takes X1 into Xα. When f is double-critical
(this name first appears in [BC]) it is not defined as a map from X1 into X0 but
it is ε−regular for arbitrarily small positive values of ε. When f is ultra-subcritical
or ultra-critical it is not a well defined map in X1+ε for small values of ε > 0, and
it is only an ε−regular map when ε ≥ ε0 > 0, for some ε0. The main difference
between ultra-subcritical and ultra-critical maps is that for the former the time of
existence of the solution can be chosen uniformly on bounded sets of X1, while for
the latter this is still an unknown property.

In Section 3 we will supply several examples of nonlinearities, coming from the
Navier-Stokes and heat equations, and will classify them according to the above
scheme.

3. Applications

It is clear from the results in the previous section that for a given problem
ẋ = Ax+f(t, x), where A is a sectorial operator with fractional powers Xα, α ∈ R,
we need to study these fractional power spaces and the ε−regularity properties of
the map f . In this way the local existence of solutions for this problem is reduced
to a good knowledge of the linear operator A.

The characterization of fractional power spaces is a very interesting and difficult
subject. For the cases considered here (that is, the Stokes operator in the Hilbert
setting and the Dirichlet Laplacian in Lp(Ω), 1 < p < ∞), these characterizations
are well known (see [vW] for the Stokes operator and [Tri, p. 103], [PS] for the
Dirichlet Laplacian in a C2 domain). These characterizations are not so well known
for other elliptic operators and boundary conditions, but there are results with more
regular coefficients and domains (see, for example [S, Fu]). We point out that for the
results presented here we do not need a complete characterization of the fractional
power spaces, but rather its embedding relations with the Lp(Ω) spaces (see (22),
(25)).

In the following examples we show how this technique considerably simplifies the
study of local existence in parabolic equations and Navier-Stokes equations with
critically growing nonlinearities as seen in [KF, FK, BC, W1, W2].

In this section we will constantly use certain well known embeddings that we
summarize as:

H l1
p1(Ω) ↪→ H l2

p2(Ω), if
l1
N
− 1
p1
≥ l2
N
− 1
p2
, 1 < p1 ≤ p2 <∞,

H l
p(Ω) ↪→ Cη(Ω̄), if l − N

p
> η > 0,

(19)

where the spaces H l
p(Ω) are the Bessel potentials, also called Lebesgue spaces (see

[AD]). Notice that H l
p(Ω) = W l,p(Ω), the standard Sobolev-Slobodeckii spaces,

whenever p = 2 and l ∈ R, or p > 1 and l is an integer (see [AD]).
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3.1. Navier-Stokes Equations. Consider the N -dimensional Navier-Stokes sys-
tem; that is, if Ω ⊂ RN is a bounded smooth domain,

ut = ∆u−∇p+ g − (u · ∇)u, x ∈ Ω,

div(u) = 0, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(20)

where u ∈ RN is the velocity field, p is the pressure and g is the external force.
It is a standard procedure to set this problem in an abstract context by using

the orthogonal projection P : L2(Ω,RN ) → H , where H is the closure of {u ∈
C2(Ω,RN ) : div(u) = 0, u · n = 0} in L2(Ω,RN ). In this way the problem becomes

u̇ = Au + f(u) + h(t),(21)

where A : D(A) ⊂ H → H , D(A) = H2(Ω,RN ) ∩ V , V = {u ∈ H1
0 (Ω,RN ) :

div(u) = 0}, A = P∆, f(u) = −P (u · ∇)u and h = Pg. The operator A is
self-adjoint and positive.

In their very nice papers [KF, FK], Fujita and Kato search for the largest
fractional power space in which a local-existence and uniqueness theorem for the
problem (21) can be proved, for N = 3. They arrive at the following result: If
u0 ∈ D(A

1
4 ) and ‖h(t)‖H = o(t−

3
4 ), then there exist T > 0 and a curve u(t) such

that
• u : [0, T ]→ H is continuous and u(0) = u0;
• A 1

2u(t) is continuous in H for t ∈ (0, T ], and limt→0+ t
1
4 ‖A 1

2u(t)‖H = 0;
• A 3

4u(t) is continuous in H for t ∈ (0, T ], and limt→0+ t
1
2 ‖A 3

4u(t)‖H = 0;
• u(t) satisfies the integral equation (7) for t ∈ [0, T ];
• if h is locally Hölder continuous in (0, T ], then u : (0, T ]→ H is continuously

differentiable and satisfies (21); and
• the solution found is unique in the class of functions satisfying the first four

properties above.
We will show that this result can be easily obtained (in an even more general

form) from the results in the previous section. Moreover we will obtain uniqueness
of local solutions for this problem in a larger class of functions.

The operator A has an associated scale of fractional power spaces Eα, α ∈ R,
which satisfy E0 = H and Eα ↪→ H2α(Ω,RN ), α ≥ 0. From this and the continuity
of the projection P : Lp(Ω,RN )→ Lpσ(Ω,RN ), 1 < p <∞, we obtain the following
embeddings:

Eα ↪→ Lrσ(Ω,RN ) r ≤ 2N
N − 4α

, 0 ≤ α < N

4
,

Eα ←↩ Lsσ(Ω,RN ) s ≥ 2N
N − 4α

, − N

4
< α ≤ 0,

(22)

where Lrσ is the closure of {u ∈ C2(Ω,RN ) : div u = 0, u ·n = 0} in Lr(Ω,RN ) (see
[vW]). The realization of A in Eα (denoted by Aα) is an isometry from Eα+1 into
Eα, and Aα : D(Aα) = Eα+1 ⊂ Eα → Eα is a sectorial operator. Furthermore,
D(Aβα) = Eα+β .

Denote Xα := Eα−
3
4 , α ∈ R, and let A : X1 ⊂ X0 → X0 be the operator A− 3

4
.

Lemma 6. For N = 3, the nonlinearity f in (21) is an ε−regular map relative
to (X1, X0), for 1

4 ≤ ε ≤ 3
8 . In this case ρ = 2 and γ(ε) = 2ε. Therefore the

nonlinearity is an ultra-critical map relative to (X1, X0).
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Proof. If 1
4 ≤ ε ≤ 3

8 , then

L
6

6−8ε
σ ↪→ X2ε, X1+ε ↪→ H1/2+2ε ↪→ H1

3
2−2ε

↪→ L
3

1−2ε .(23)

From this we have

‖P (u · ∇)u‖X2ε ≤ c‖P (u · ∇)u‖
L

6
6−8ε
σ

≤ c‖(u · ∇)u‖
L

6
6−8ε

≤ c‖u‖
L

6
6−8ε

r‖∇u‖
L

6
6−8ε

r′ .

Choosing r = 3−4ε
1−2ε and r′ = 3−4ε

2−2ε we get

‖P (u · ∇)u‖X2ε ≤ c‖u‖
L

6
2−4ε
‖∇u‖

L
3

2−2ε
≤ c‖u‖2X1+ε.

Similarly we obtain

‖P (u · ∇)u − P (v · ∇)v‖X2ε ≤ c‖u− v‖X1+ε(1 + ‖u‖X1+ε + ‖v‖X1+ε).

This concludes the proof of the lemma.

It is clear from the previous lemma that the following holds.

Lemma 7. If the forcing term h goes from (0, T ] to Xγ(ε), for some ε ∈ [ 14 ,
3
8 ],

and satisfies ‖h(t)‖Xγ(ε) ≤ ν(t)t−2ε, where 0 ≤ ν(t) ≤ δ, ν(t)→ 0 as t → 0+, then
f(u) + h(t) ∈ F(ν(·)).

From Theorem 1 and the above lemmas we have that

Theorem 2. If there exists an ε ∈ [ 1
4 ,

3
8 ] such that h : (0, T ] → X2ε and

t2ε‖h(t)‖Xγ(ε) = o(1); then, for any u0 ∈ X1, the problem (21) has a unique
ε−regular solution starting in u0. Moreover this solution satisfies tθ‖u(t, u0)‖X1+θ →
0, ∀ 0 < θ < γ(ε) = 2ε.

Corollary 4 (Fujita & Kato). If h : (0, T ] → X
3
4 = H and t

3
4 ‖h(t)‖H = o(1),

then, for any u0 ∈ X1 = D(A
1
4 ), the problem (21) has a unique 3

8−regular solution
starting in u0. Moreover this solution satisfies tθ‖u(t, u0)‖X1+θ → 0, ∀ 0 < θ < 3

4 .
In particular, for θ = 1

4 and θ = 1
2 we have

lim
t→0+

t
1
4 ‖A 1

2 u(t)‖H = 0,

lim
t→0+

t
1
2 ‖A 3

4 u(t)‖H = 0.

3.2. Heat Equations: Lq Theory. There is a series of very interesting papers
[W1, W2, BC] that study in the spaces Lq(Ω) the model equation

ut = ∆u+ u|u|ρ−1, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(24)

where Ω ⊂ RN is a bounded smooth domain. The aim is to establish for each value
of q the largest value of ρ for which one may have existence and (maybe) uniqueness
of solutions for (24).

In this section we show that most of the results in [W1, W2, BC] can be easily
obtained from the results in Section 2. The basic results obtained in [W1, W2, BC]
are the following.
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Theorem 3 (Brezis & Cazenáve). Assume that q > N (ρ−1)
2 and q ≥ 1 (resp. q =

N (ρ−1)
2 ) and q > 1), N ≥ 1. Given any u0 ∈ Lq(Ω), there exist a time T =

T (u0) > 0 and a unique function u ∈ C([0, T ], Lq(Ω)) with u(0) = u0 which is a
classical solution of (24) on (0, T )× Ω̄ in the sense that u is C1 in t ∈ (0, t) and
C2 in x ∈ Ω̄. Moreover, we have:
• for all t ∈ (0, T ]

‖u(t)− v(t)‖Lq(Ω) + t
N
2q ‖u(t)− v(t)‖L∞(Ω) ≤ C‖u0 − v0‖Lq(Ω),

where T = min{T (u0), T (v0)} and C can be estimated in terms of ‖u0‖Lq(Ω)

and ‖v0‖Lq(Ω); and
• limt→0+ t

N
2q ‖u(t)‖L∞(Ω) = 0.

Furthermore, the time T can be chosen uniformly in compact subsets of Lq(Ω).

The operator L = ∆ with Dirichlet boundary conditions in a bounded and
smooth domain Ω can be seen as an unbounded operator in E0

q = Lq(Ω), for
1 < q <∞, with domain E1

q = W 2,q(Ω) ∩W 1,q
0 (Ω). The scale of fractional powers

spaces {Eαq }α∈R associated to L satisfy

Eαq ↪→ H2α
q (Ω), α ≥ 0, 1 < q <∞,

E−α
q = (Eαq′)

′, α ≥ 0, 1 < q <∞, q′ =
q

q − 1
(see [AM2]). Therefore, from (19) and standard duality arguments, we get

Eαq ↪→ Lr(Ω) for r ≤ Nq

N − 2αq
, 0 ≤ α < N

2q
,

E0
q = Lq(Ω),

Eαq ←↩ Ls(Ω) for s ≥ Nq

N − 2αq
, − N

2q′
< α ≤ 0.

(25)

Moreover, the realization of L in Eαq (denoted by Lα) is an isometry from Eα+1
q

into Eα, and Lα : D(Lα) = Eα+1
q ⊂ Eαq → Eαq is a sectorial operator. Furthermore,

D(Lβα) = Eα+β
q .

Denote Xα
q := Eα−1

q , α ∈ R, and let Aq : X1
q ⊂ X0

q → X0
q be the operator L−1.

The fractional power spaces associated to Aq satisfy

Xα
q ↪→ Lr(Ω) for r ≤ Nq

N + 2q − 2αq
, 1 ≤ α < 1 +

N

2q
,

X1
q = Lq(Ω),

Xα
q ←↩ Ls(Ω) for s ≥ Nq

N + 2q − 2αq
, 1− N

2q′
< α ≤ 1,


(26)

with continuous embeddings.
If we consider f : R → R given by f(u) = u|u|ρ−1, or in general f satisfying

|f(u)− f(v)| ≤ c|u− v|(|u|ρ−1 + |v|ρ−1 + 1), we have the following.

Lemma 8 (Critical Nonlinearities). If 1 < q <∞ and q = N(ρ− 1)/2, then :
• If q > N

N−2 , then f is an ε−regular map relative to (X1
q , X

0
q ) for 0 = ε0(q) ≤

ε < N
N+2q and γ(ε) = ρε. Therefore f is a critical map.

• If q = N
N−2 , then f is an ε−regular map relative to (X1

q , X
0
q ) for 0 = ε0(q) <

ε < N
N+2q and γ(ε) = ρε. Therefore, f is a double-critical map.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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• If 1 < q < N
N−2 , then f is an ε−regular map relative to (X1

q , X
0
q ) for 0 <

ε0(q) < ε < N
N+2q for ε0(q) = N

N+2q

(
1− N

2

(
1− 1

q

))
> 0 and γ(ε) = ρε.

Therefore, f is an ultra-critical map.

Proof. Just use the embeddings (26).

Now it is clear that, applying Theorem 1, for each u0 ∈ Lq(Ω) we have the
existence of a unique ε−regular solution of the above problem, starting at u0, for
any ε ∈ (ε0(q), N

N+2q ). Moreover, for any 0 < θ < γ( N
N+2q ) = 1, this solution

satisfies

tθ‖u(t)‖X1+θ → 0, as t→ 0+,

tθ‖u(t, u0)− u(t, v0)‖X1+θ ≤ C‖u0 − v0‖Lq , 0 < t < τ(u0, v0).

In particular, since X1
q = Lq(Ω), we get thatX1+θ ↪→W 2θ,q ↪→ Lp for p = Nq

N−2θq >

q, if θ > 0. Therefore, there exists a p0 > q such that

t
N
2 ( 1

q− 1
p0

)‖u(t)‖Lp0
t→0+−→ 0,

t
N
2 ( 1

q− 1
p0

)‖u(t, u0)− u(t, v0)‖Lp0 ≤ C‖u0 − v0‖Lq , 0 < t < τ(u0, v0).
(27)

Now it is possible to apply a bootstrap argument to show that in fact

t
N
2q ‖u(t)‖L∞ → 0 as t→ 0+,

t
N
2q ‖u(t, u0)− u(t, v0)‖L∞ ≤ C‖u0 − v0‖Lq , 0 < t < τ(u0, v0).

(28)

For this let us establish the following lemma:

Lemma 9. There exists η > 0 small enough so that if p ≥ p0, then

N

2

(
ρ

p
− 1
p+ η

)
< 1, ∀p ≥ p0.

Proof. Note that

N

2

(
ρ

p
− 1
p+ η

)
=
q

p
+
N

2

(
1
p
− 1
p+ η

)
≤ q

p0
+
N

2

(
1
p
− 1
p+ η

)
.

Choose η so small that N
2

(
1
p − 1

p+η

)
< 1 − q

p0
, for all p ≥ p0. This proves the

result.

The next step is to use an induction argument as follows:

Lemma 10. Let η and p0 be as above and define the sequence pn by pn+1 = pn+η.
If

t
N
2 ( 1

q− 1
pn

)‖u(t)‖Lpn(Ω) → 0 as t→ 0+,

then
t

N
2 ( 1

q− 1
p)‖u(t)‖Lp(Ω) → 0 as t→ 0+ ∀p ∈ [pn, pn+1].

Proof. Using the expression

u(t) = e−∆ t
2 u(

t

2
) +

∫ t

t
2

e−∆(t−s)f(u(s))ds,
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we have

t
N
2 ( 1

q− 1
p )‖u‖Lp

≤ tN
2 ( 1

q− 1
p)‖e−∆ t

2 u(
t

2
)‖Lp + t

N
2 ( 1

q− 1
p )

∫ t

t
2

(t− s)−N
2 ( ρ

pn
− 1

p )‖f(u)‖
L

pn
ρ

≤ tN
2 ( 1

q− 1
p)‖e−∆ t

2 u(
t

2
)‖Lp + ct

N
2 ( 1

q− 1
p)

∫ t

t
2

(t− s)−N
2 ( ρ

pn
− 1

p )(1 + ‖u‖ρLpn )

≤ tN
2 ( 1

q− 1
p)

(
t

2

)N
2 ( 1

p− 1
pn

)
‖u( t

2
)‖Lpn + ct

N
2 ( 1

q− 1
p )

∫ t

t
2

(t− s)−N
2 ( ρ

pn
− 1

p)ds

+ct
N
2 ( 1

q− 1
p)

∫ t

t
2

(t− s)−N
2 ( ρ

pn
− 1

p)s−
N
2 ( 1

q− 1
pn

)ρds sup
0≤s≤t

(
s

N
2 ( 1

q− 1
pn

)‖u(s)‖Lpn(Ω)

)ρ
≤ c sup

0<s<t

(
s

N
2 ( 1

q− 1
pn

)‖u(s)‖Lpn

)
+ ct

Nρ
2 ( 1

q− 1
pn

)
∫ 1

1
2

(1 − s)−N
2 ( ρ

pn
− 1

p )ds

+c
∫ 1

1
2

(1− s)−N
2 ( ρ

pn
− 1

p )s−
N
2 ( 1

q− 1
pn

)ρds sup
0≤s≤t

(
s

N
2 ( 1

q− 1
pn

)‖u(s)‖Lpn(Ω)

)ρ
.

Notice that from the previous lemma we have N
2

(
ρ
pn
− 1

p

)
< 1, and therefore all

the integrals are well defined. Hence sup
(
s

N
2 ( 1

q− 1
pn

)‖u(s)‖Lpn

)
→ 0 as t → 0+.

Also, since pn > q we have t
Nρ
2 ( 1

q− 1
pn

) → 0 as t→ 0.
This concludes the proof.

Note that from (27) and the previous lemma we get that

t
N
2 ( 1

q− 1
p)‖u‖Lp → 0, ∀p ≥ p0.(29)

In order to estimate the L∞ norm we choose p > Nρ
2 , and with a similar argument

as above we can show that

t
N
2q ‖u‖L∞ ≤ t N

2q ‖e−∆ t
2u(

t

2
)‖L∞ + t

N
2q

∫ t

t
2

(t− s)−Nρ
2p ‖f(u)‖Lp/ρ

≤ t N
2q (t/2)−

N
2p ‖u( t

2
)‖Lp + t

N
2q

∫ t

t
2

(t− s)−Nρ
2p c(1 + ‖u‖ρLp)ds

≤ tN
2 ( 1

q− 1
p )‖u(t)‖Lp + ct

N
2q

∫ t

t
2

(t− s)−Nρ
2p ds

+ ct
N
2q

∫ t

t
2

(t− s)−Nρ
2p s−ρ

N
2 ( 1

q− 1
p )ds sup

0<s<t

[
s

N
2 ( 1

q− 1
p )‖u(s)‖Lp

]ρ → 0

as t→ 0, because of reasons similar to the argument above.
This shows the first statement of (28).
For the second one the analysis is similar. Starting with the second statement

of (27) and with a similar bootstrap argument as above, we can obtain the desired
estimate.

Now it is not difficult to obtain certain estimates of the behavior of the Cα norm
of the solutions as t→ 0+. We have
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Proposition 2. If q = N(ρ−1)
2 > 1 and |f(u)−f(v)| ≤ c|u−v|(|u|ρ−1 + |v|ρ−1 +1),

then, for any η < 1, we have

t1+
N
2q ‖u(t)‖C1,η → 0 as t→ 0,

t1+
N
2q ‖u(t)− v(t)‖C1,η ≤ C‖u0 − v0‖Lq .

(30)

Proof. Let us start with the following result.

Lemma 11. With the hypothesis above, if p is large enough, we have

f : X1
p = Lp → L

p
ρ ↪→ Xα

p ,

with α = N
2p (ρ− 1), and

‖f(u)− f(v)‖Xα
p
≤ c‖u− v‖X1

p
(‖u‖ρ−1

X1
p

+ ‖v‖ρ−1
X1

p
+ 1).

That is, f is a subcritical map relative to the pair (X1
p , X

0
p ).

Proof. We use (26) again.

Proof of the proposition. Let β < 1 and choose p large enough so that α =
N
2p (ρ− 1) < 1− β. Then

tβ+ N
2 ( 1

q− 1
p )‖u(t)‖X1+β

p

≤ tβ+ N
2 ( 1

q− 1
p )‖e−∆ t

2u(
t

2
)‖X1+β

p
+ tβ+ N

2 ( 1
q− 1

p )

∫ t

t
2

e−∆(t−s)f(u(s))ds‖X1+β
p

≤ tβ+ N
2 ( 1

q− 1
p )

(
t

2

)−β
‖u( t

2
)‖X1

p

+ tβ+ N
2 ( 1

q− 1
p )

∫ t

t
2

(t− s)−(β+α)c(1 + ‖u(s)‖ρX1
p
)ds

≤ ctN
2 ( 1

q− 1
p )‖u( t

2
)‖X1

p
+ ctβ+ N

2 ( 1
q− 1

p )

∫ t

t
2

(t− s)−(β+α)ds

+ ctβ+ N
2 ( 1

q− 1
p )

∫ t

t
2

(t− s)−(β+α)s−
N
2 ( 1

q− 1
p )ρds sup

0<s<t

(
s

N
2 ( 1

q− 1
p )‖u(s)‖X1

p

)ρ
t→0+−→ 0,

for reasons similar to the arguments above.
The proof of the first statement of (30) follows from the above result and the fact

that for any η < 1 we can choose a β < 1 and a p large enough, with the property
that X1+β

p ↪→ H2β
p ↪→ C1,η (see statement (19)).

For the second part of statement (30) the argument is similar. This concludes
the proof of the proposition.

So far we have treated the case where q = N
2 (ρ − 1), that is, critical cases. In

principle, the treatment of the cases q > N
2 (ρ− 1) is simpler. It can be seen that:

• If N
N−2 ≤ q and N

2 (ρ−1) < q, then f is a subcritical map relative to (X1
q , X

0
q ).

• If 1 < q < N
N−2 and ρ ≤ q, then f is a subcritical map relative to (X1

q , X
0
q ).

• If 1 < q < N
N−2 and N

2 (ρ − 1) < q < ρ, then f is an ultra-subcritical map
relative to (X1

q , X
0
q ).
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In order to visualize this classification we designed Figures 1, 2 and 3.

Figure 1. Criticality of f in Lq(Ω) for N = 1

Figure 2. Criticality of f in Lq(Ω) for N = 2

3.3. Heat Equations: W 1,q Theory. Once we have the results from Section 2,
the W 1,q-theory for heat equations is not much different from the Lq theory. Again,
what we need is a good understanding of the fractional power spaces of the linear
operator (already done in the Lq setting), and of the ε−regularity properties of the
nonlinearities involved.

Roughly speaking, we will see that, in this case, for 1 < q < N the critical
growth exponents are ρ = N+q

N−q , that for q > N there is no critical exponent due
to the embedding of W 1,q(Ω) ↪→ C(Ω̄), and that for q = N the critical growth is
larger than exponential and is established by Trudinger’s inequality (see, [Tr, Mo]).

Let Eαq , α ∈ R, 1 < q < ∞, be, as in the previous section, the fractional power
spaces of the Laplace operator with Dirichlet boundary condition in Lq(Ω). Denote
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Figure 3. Criticality of f in Lq(Ω) for N = 3

Xα
q := E

α− 1
2

q , α ∈ R, and by Aq : X1
q ⊂ X0

q → X0
q the operator L− 1

2
. Moreover

the fractional power spaces Xα
q associated to Aq satisfy

Xα
q ↪→ Lr(Ω), for r ≤ Nq

N + q − 2αq
,

1
2
≤ α < 1

2
+
N

2q
,

X
1
2
q = Lq(Ω),

Xα
q ←↩ Ls(Ω), for s ≥ Nq

N + q − 2αq
,

1
2
− N

2q′
< α ≤ 1

2
.

(31)

Assume that f : R → R is a C1 map. In the W 1,q theory we will need the
following two growth conditions:

|f(u)− f(v)| ≤ c|u− v|(1 + |u|ρ−1 + |v|ρ−1), u ∈ R,(32)

lim
|u|→∞

|f ′(u)|
eη|u|

N
N−1

= 0, ∀η > 0, u ∈ R.(33)

The ε−regularity properties of the map f are given by the following lemma.

Proposition 3. The nonlinearity f can be classified as follows:

• If q > N , then any f ∈ C1 is a subcritical map relative to (X1
q , X

0
q ).

• If q = N , then any f ∈ C1 which satisfies (33) is a subcritical map relative
to (X1

q , X
0
q ).

• If N
N−1 < q < N and f ∈ C1 satisfy (32), then:

1. If ρ = N+q
N−q , f is an ε−regular map relative (X1

q , X
0
q ) for 0 ≤ ε < 1

2ρ .
Therefore f is a critical map.

2. If ρ < N+q
N−q , f is a subcritical map relative to (X1

q , X
0
q ).

• If N
N−1 = q and f ∈ C1 satisfy (32), then:

1. If ρ = N+q
N−q = N

N−2 , f is an ε−regular map relative to (X1
q , X

0
q ) for

0 < ε < 1
2ρ . Therefore f is a double-critical map.

2. If ρ < N
N−2 , f is a subcritical map relative to (X1

q , X
0
q ).

• If 1 < q < N
N−1 and f ∈ C1 satisfying (32), then:
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1. If ρ = N+q
N−q , f is an ε−regular map relative to (X1

q , X
0
q ) for 0 < ε0 =

N−q
2q − N

2ρ < ε < ε1 = N−q
2q − N

2qρ , with γ(ε) = ρε. Therefore f is an
ultra-critical map.

2. If Nq
N−q < ρ < N+q

N−q , f is an ε−regular map relative to (X1
q , X

0
q ) for

0 < ε0 = N−q
2q − N

2ρ < ε < ε1 = N−q
2q − N

2qρ , with γ(ε) > ρε. Therefore f
is an ultra-subcritical map.

3. If 1 < ρ ≤ Nq
N−q , f is a subcritical map relative to (X1

q , X
0
q ).

In order to visualize this classification we include Figures 4, 5 and 6, which are
similar to the figures from the Lq theory.

Figure 4. Criticality of f in W 1,q(Ω) for N = 1

Figure 5. Criticality of f in W 1,q(Ω) for N = 2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Figure 6. Criticality of f in W 1,q(Ω) for N = 3

Proof. All the proofs follow from the embeddings (19) and (31) except for the case
q = N , for which the proof is based in the following lemma due to N. Trudinger
(see [Tr, Mo]).

Lemma 12. Given p ≥ 1 and σ ≤ 1
pNω

1
N−1
N−1, there exists a positive constant K

such that, if u ∈W 1,N (Ω,Rn), ‖u‖W 1,N ≤ 1, then

‖eσ |u(·)|
N

N−1 ‖Lp ≤ K,
where ωN−1 is the (N − 1)−dimensional surface of the unit sphere.

Proof. Let us prove that the function f : X1
N → X

1
2
N is Lipschitz continuous in

bounded subsets of X1.
Let r > 0, and let u and v be functions in W 1,N such that ‖u‖W 1,N ≤ r,

‖v‖W 1,N ≤ r. Let η < σ

2N r
N

N−1
. Then, from (33), there exists cη > 0 such that

|f(u)− f(v)|N ≤ cη(eNη|u|
N

N−1 + eNη|v|
N

N−1 )|u− v|N ,
and

‖f(φ)− f(ψ)‖NLN(Ω) ≤ cη
∫

Ω

[eNη|φ(x)|
N

N−1 + eNη|ψ(x)|
N

N−1 ] |φ(x) − ψ(x)|Ndx

≤ cη
(∫

Ω

[eNη|φ(x)|
N

N−1 + eNη|ψ(x)|
N

N−1 ]2 dx
) 1

2
(∫

Ω

|φ(x) − ψ(x)|2N dx

) 1
2

≤ cη ‖φ− ψ‖NL2N (Ω)

(∫
Ω

[eNη|φ(x)|
N

N−1 + eNη|ψ(x)|
N

N−1 ]2 dx
) 1

2

≤ c̄η ‖φ− ψ‖NW 1,N

(∫
Ω

[e2Nη|φ(x)|
N

N−1 + e2Nη|ψ(x)|
N

N−1 ] dx
) 1

2

.

The result now follows from the fact that X1
N ⊂W 1,N with continuous embedding,

X
1
2
N = LN , and from the fact that

‖e2Nη|φ(·)|
N

N−1 ‖L1 ≤ K,
which comes from Lemma 12.
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4. A comment on uniqueness

In Section 2 we have been able to establish the existence and uniqueness of ε-
regular solutions for the problem ẋ = Ax + f(x), where f is an ε−regular map.
This ε-regular solutions are characterized by immediate regularization properties for
t > 0. Therefore, uniqueness is established in the class of functions C((0, τ ], X1+ε).
It is natural and interesting to ask whether uniqueness can be obtained in the larger
space C([0, τ ], X1). This is equivalent to establishing uniqueness of mild solutions
(not just ε-regular mild solutions).

In this respect there are several results in the literature that can give some insight
into this problem in the abstract setting.

In [NS], Ni and Sacks were able to give a non-uniqueness result in C([0, τ ], Lq(Ω))
for the heat equation (24) when q = N

2 (ρ − 1) and q = ρ (see also [BC]). This
is exactly the case q = ρ = N

N−2 , which in our classification of nonlinearities
corresponds to the double critical case. In [BC] (Theorem 4), Brezis and Cazenáve
were able to give a uniqueness result in the space C([0, τ ], X1) for the problem (24)
when q = N

2 (ρ−1) and q > ρ. In our classification of nonlinearities this corresponds
to the critical case. Recently, the authors have learned of a uniqueness result for
the Navier-Stokes equations in L3(R3) by P.G. Lemarié-Rieusset (see [LR]). He
proved the uniqueness of solutions in the space C([0, τ), L3(R3)). The proof uses a
very nice bound of the integral expression from the variation of constant formula
in certain Besov spaces.

We tried, unsuccessfully, to prove an abstract uniqueness result in C([0, τ ], X1),
for the critical case, but this uniqueness result seems plausible. The main difference
between the critical case and the double critical case is that in the former the map
f is ε-regular even for ε = 0. This means that f transforms X1 into X0. In the
double critical case the ε-regularity properties of f start for ε > 0, and therefore f
does not transform X1 into X0. Any proof of a uniqueness result for the critical
case should exploit this fact.

Needless to say to prove or disprove any of the uniqueness results mentioned
above will be extremely important for a full understanding of the subject.
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